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1. Introduction

Ever since Cournot (1838) quantity competition on homogeneous markets has

played an important role in micro-economics. But selling a certain amount and

leaving it to the market at which price this amount is sold is only possible on

markets with especially designed trade institutions like commodity or stock ex-

changes. Such institutions allow sellers to abstain from own pricing policies. If

such institutions exist, one should, however, incorporate them when modelling

homogeneous markets with quantity competition.

When costly institutions like (commodity or stock) exchanges do not exist, quan-

tity competition is hardly an acceptable idea: What is a seller supposed to answer

to the first customer asking for the price? To overcome the obvious absurdity

Kreps and Scheinkman (1983) have offered a natural reinterpretation of quan-

tity competition on homogeneous markets and of the results by Cournot (1838).

Quantity competition is seen as the first stage of a two stage-market decision

process: First sellers state their sales capacities which then become commonly

known. Then, knowing the available capacities, sellers choose their individual

sales prices.

According to the solution play sellers choose capacities matching the quantities

of quantity competition (Cournot, 1838) and rely, on the second stage, on the

price for which the sum of these capacities is demanded. Kreps and Scheinkman

(1983) analyse only duopoly markets and assume a special rationing scheme:

In subgames with larger capacities than the (Cournot-) solution quantities the

seller with the lower price may not be able to serve all his customers. The resid-

ual demand for the seller with the higher price then depends crucially on whom

the cheaper seller serves, respectively on whom he does not serve. Kreps and

Scheinkman (1983) rely on the rationing scheme maximizing consumer sur-

plus, i.e. the cheaper seller serves customers with the higher willingness to pay

(see the partly critical discussion by Davidson and Deneckere, 1986).
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In our view, the basic idea of Kreps and Scheinkman (1983) is very intuitive and

should not be questioned by debatable assumptions of rationing and consequences

like equilibria in mixed pricing strategies (in case of “too large” capacities prices

have to be chosen randomly). One possibility is to rely on less rigorous cost

functions. According to Kreps and Scheinkman a capacity is an upper bound

for sales. This can be rephrased by saying that at the capacity level the costs of

production are prohibitively large. What we will consider here is a similar jump in

the cost of production at the capacity level, but only a moderate one. Given that

capacities pose no longer absolute upper bounds for sales one can avoid rationing

and equilibria in mixed pricing strategies by assuming that sellers must serve their

customers.

Two other rather special assumptions of the model, analyzed by Kreps and Scheinkman

(1983), are the deterministic framework and the simultaneity of capacity, respec-

tively price choices. In our analysis both, simultaneous as well as asynchronous

timing of capacity and price decisions are possible. Whereas delaying one’s de-

cisions allows for choosing when more information (about cost parameters and

about others’ choices) is available, early decisions can mean to preempt, i.e. to

possibly enjoy the so-called first mover advantages. Are simultaneous decisions

the likely result when there is cost uncertainty and when one can commit to

one’s action before or after the respective cost uncertainty is resolved? If so, is

the probable market outcome still the one of quantity competition as analyzed

by Cournot (1838)? Partly our study can be seen as an attempt to analyze the

robustness of the Kreps and Scheinkman-result when cost uncertainty and asyn-

chronous timing are possible where we rely on a weaker notion of “capacities” as

in Güth (1995). Partly it is an exercise in endogenous timing on markets with

a richer stage structure due to the original two stage-structure of the Kreps and

Scheinkman-model.

Studies of endogenous timing or indirect evolution try to derive — instead of impos-

ing exogenously — the timing of market decisions (see van Damme and Hurkens,

1999, for a brief review). In our model sellers can determine their “capacities” be-

fore or after the random choice of the constant unit (capacity) costs, i.e. the first
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stage of the Kreps and Scheinkman-model now consists of three successive sub-

stages (preemption, chance move, adjustment). By determining his sales capacity

earlier a seller can try to preempt his competitor, similar to the sequential duopoly

solution (von Stackelberg, 1934). Although this will be less important, we also

allow for three substages on the second stage of the Kreps and Scheinkman-model

(preemption in price setting, random choice of constant unit (excess capacity)

cost, cost dependent choice).

(Endogenous)Timing of market activities before or after uncertainty is resolved

has been studied by Spencer and Brander (1992) and Sadanand and Sadanand

(1996). The results are mixed in the sense that all firms may prefer to wait (for the

sake of flexibility) or to preempt or that asymmetric timing positions are stable.

Here we are not primarily interested in deriving similar results for more complex

market models although we derive general preemption and general waiting for

specific examples. As mentioned before, our main focus is on analyzing whether

the reinterpretation of the classical Cournot results (Cournot, 1838), supplied by

Kreps and Scheinkman (1983), survives when its highly restrictive institutional

assumptions do not hold: In the first place we avoid rationing schemes and mixed

strategies by forcing sellers to serve customers beyond their planned sales amounts.

Second we allow sellers to choose freely whether to choose planned sales amounts,

the so-called capacities, and prices early or late. Only if the Cournot results carry

over to such a more general setting they are, in our opinion, substantially justified

by Kreps and Scheinkman.

Unfortunately, the price for the richness of institutional details in our framework

is a loss of analytical tractability. It will be shown that results depend crucially

on the stochastic nature of costs. It is in this respect where we can just provide

examples instead of offering general results. Nevertheless, our numerical examples

allow already some interesting insights: The Cournot results are neither a mere

artifact of the restrictive assumptions, imposed by Kreps and Scheinkman (1983),

nor the general solution under all possible circumstances. We identify classes

of cost distributions implying Cournot, respectively non-Cournot results. We

cannot yet answer whether our results cover the full range of possible outcomes
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or characterize under which conditions which result can be expected. In our view,

the problem is, however, too important to delay its discussion until analytical

results are obtained.

In section 2 we introduce our market model which we solve in section 3 for all

possible constellations of timing dispositions. Based on these results we define

in section 4 an evolutionary game or truncation by which, in section 5, we can

derive the evolutionarily stable or optimal timing dispositions. After concluding

the Appendix illustrates the multiplicity of price equilibria and how to select one

of these.

2. The model

On the homogeneous duopoly market the two (risk neutral) sellers i = 1, 2 first

have to determine their planned sales amounts ki and then their actual sales

prices. To allow for an easy terminology we refer to the planned sales amounts ki

as capacities although actual sales amounts xi can be higher (as well as lower).

Due to our distinction between capacities ki and actual sales amounts xi a cost

function Ci (·) must assign a cost level Ci (ki, xi) to every constellation (ki, xi) of
capacity ki and sales amount xi. For the sake of simplicity we rely on piecewise

linear cost functions of the form

Ci (ki, xi) = Cki + (C +D)max {0, xi − ki} for i = 1, 2 (II.1)

where ki ∈
h
0, 1

2

i
and xi ∈

h
0, 1

2

i
for i = 1, 2 and where the positive parameters

C and D are assumed to be stochastic variables whose realizations, denoted by c

and d, are the same for both sellers.

The idea of such cost functions is that a seller plans for a specific sales volume ki.

The costs for “capacity” ki are sunk, i.e. must be paid even in case of lower sales

than ki. In case of a positive excess demand xi − ki delivery is not excluded, but
implies (by d > 0) higher unit cost. The assumption that demand must be served
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avoids complicated and debatable assumptions concerning demand rationing in

case of excess demand and subgames with equilibria in mixed pricing strategies

(see Kreps and Scheinkman, 1983, and the discussion of their model by Davidson

and Deneckere, 1986).

Rigid capacity constraints in the sense of D = +∞ are rather unlikely. Never-

theless we readily admit that the higher cost of excess demand xi − ki will often
question that excess demand is served. Here we concentrate on the possibly less

likely situation where one always serves excess demand.

Since the market is homogeneous, a demand function X (p) must assign a total

(non-negative) demand level X to any non-negative price p not exceeding the pro-

hibitive price. To allow for a simple and parameter free description we assume a

linear demand function whose prohibitive price and satiation level are standard-

ized to 1 (by an appropriate choice of the monetary unit as well as of the unit

amount). Thus the linear demand function can be written as

X (p) = 1− p for all 0 ≤ p ≤ 1. (II.2)

Market clearing implies, of course,

X (p) = x1 + x2. (II.3)

Furthermore, due to the homogeneity of the market one has

p = min {p1, p2} (II.4)

where for i = 1, 2 the sales price is denoted by pi. The profit πi of seller i = 1, 2

is determined by ki, pi and p as follows:

Πi (ki, pi, p) =



−Ci (ki, 0) for pi > p = pj

pxi − Ci (ki, xi) for p1 = p2 = p

p (1− p)− Ci (ki, 1− p) for pi = p < pj (j 6= i)

(II.5)
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where

xi = max

(
0; ki +

1− p− k1 − k2
2

)
(II.6)

Except for the special case p1 = p = p2 our assumptions are standard ones. For

p1 = p = p2 demand is distributed such that each seller encounters a demand level

as close to his capacity as possible. If, for instance, X (p) = k1 + k2 both sellers

i = 1, 2 will sell xi = ki even when ki 6= kj for i 6= j. Thus in case of equal prices
total excess demand 1−p−k1−k2 is distributed equally. This assumption can be
justified as equal burden sharing among all efficient redistributions of demands.

For other selections, e.g. when individual burdens are proportional to capacities,

a similar analysis is possible.

The decision process describes the timing of decisions and what is learnt about

them, i.e. when sellers make which choices under which information conditions.

A seller first chooses his capacity what can be done before (stage K) or after

(stage k) the realization c of the random variable C. Similarly, he can thereafter

determine his price before (stage M) or after (stage m) the realization of the

random variable D. As usual in stage games all former decisions are commonly

known. The process is graphically illustrated and explained by Figure 1.
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Figure 1: The market decision process (seller i = 1, 2 can determine his capacity
ki either in periodK or, after the realization c of the random variable C, in period
k; thereafter the sales prices pi are chosen either in period M or, after the choice
d of the random variable D, in period m; when deciding all former decisions are
known)

Endogenous timing assumes that one determines strategically when to decide. An

alternative is to view timing dispositions as basic (inherited or culturally acquired)
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traits which are subject to (genetical or cultural) evolutionary selection. In indi-

rect evolution rational decisions are derived for all possible constellations of such

individual traits. With the help of these results one then defines an evolutionary

model to determine the evolutionarily stable constellations of individual traits.

Thus an indirect evolutionary analysis allows to combine rational choice making

(here of the capacities and the prices on the various stages of market interaction)

with predetermined timing dispositions (here being early or late in choosing ca-

pacities or prices). The latter dispositions represent actual forward looking choices

before periodK when interpreting our model as an exercise in endogenous timing.

In other words, viewing our study as an approach in endogenous timing means

to interpret the model as a grand game in which every individual has to make

four decisions, time and size of capacities as well as of prices have to be fixed. In

the context of indirect evolution one instead considers the game in which sellers

only choose the size of capacity and of prices whereas timing dispositions are part

of their personal characteristics. Having solved this game one then determines

which constellations of timing dispositions are evolutionarily stable.

The two stochastic variables C and D are assumed to have distributions concen-

trated on
h
1
2
; 1
i

C ∈
·
1

2
, 1
¸
and D ∈

·
1

2
, 1
¸
. (II.7)

We refer to their means as c and d. Of course, one generally needs conditions

guaranteeing 0 ≤ p ≤ 1 and non-negative individual sales levels as well as capaci-
ties. We will confine ourselves to check these conditions for the solution outcomes

only. Sellers are assumed to be risk neutral.

3. Optimal behavior for given timing dispositions

What has to be derived here are the optimal prices p∗i as well as the optimal

capacities k∗i for the three constellations

(m1,m2) =


(m,m)
(M,M)
(M,m) or (m,M)
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of timing dispositions in pricing as well as for the three analogous constellations

(n1, n2) =


(k, k)
(K,K)
(K, k) or (k,K)

of timing dispositions for choosing capacities. Since capacities are known when

choosing prices, backward induction in the sense of subgame perfect equilib-

ria (Selten, 1965, 1975) requires to solve first the (m1,m2)-constellations before

investigating capacity choices.

a) The case (m1,m2) = (m,m)

What one encounters here is a deterministic (both, c and d are commonly known

in period m) duopoly market with piecewise linear cost functions. If p1 6= p2,

one seller would encounter 0-demand. Thus there can be no equilibrium in pure

pricing strategies with p1 6= p2.

We now consider constellations p1 = p2 = p. For any capacity vector (k1, k2) let

p (k1, k2) denote the price for which

X (p (k1, k2)) = k1 + k2 (III.a.1)

holds, i.e. p (k1, k2) = 1 − k1 − k2. It is interesting that our model allows for
more than just one pricing equilibrium (p1, p2) with p1 = p2 = p. A seller i, who

underbids the common price p, has to serve the whole market demand at the lower

price p. Thus the positive cost of serving positive excess demand in the sense of

X (pi) = 1− pi > ki

can prevent any attempt to underbid a common price p = p1 = p2. Here we

will neglect the multiplicity of pricing equilibria and simply impose the solution

p∗1 = p
∗
2 = p (k1, k2) for which we now prove the equilibrium property. The chances

of (p∗1, p
∗
2) to result from equilibrium selection are discussed later (Appendix).

Although the results implied by familiar concepts (payoff and risk dominance)

are not generally encouraging, it is interesting that in an experimental study of
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a related heterogenous duopoly market (Anderhub, Güth, Kamecke, Normann,

2000) the behavior p∗1 = p
∗
2 = p (k1, k2) was close to being universally observed.

When checking the equilibrium property for p∗1 = p
∗
2 = p (k1, k2) one obtains that

pi > p
∗
i can never be optimal. For

p∗1 = p
∗
2 = p (k1, k2) (III.a.2)

to be in equilibrium one therefore only has to guarantee that a marginal price

decrease from (III.a.2) is worse than p∗i = p (k1, k2). Comparing

p∗i ki − Ci (ki, ki) (III.a.3)

and

pi (1− pi)− Ci (ki, 1− pi) , (III.a.4)

where pi is only marginally smaller than 1− ki− kj, shows that no marginal price
cut pays if

(c+ d) kj ≥ (1− ki − kj) kj (III.a.5)

or, for kj > 0,

c+ d ≥ p (k1, k2) = 1− k1 − k2. (III.a.5’)

Due to c, d ≥ 1
2
and ki ≥ 0 for i = 1, 2 this condition is always fulfilled.

b) The case (m1,m2) = (M,M)

All what is changed here compared to the case (m1,m2) = (m,m) is that sellers

i = 1, 2 do not know the actual realization of d. Proceeding in the same way thus

yields the condition

c+ d ≥ 1− k1 − k2 (III.b.1)
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which is less stringent than (III.a.5’) and thus always fulfilled.

c) The case (m1,m2) = (M,m)

Assume that seller 1 does not know d, but seller 2 does. Clearly, in case of (III.a.5’)

and thus also of (III.b.1) neither seller has an incentive to slightly undercut the

price p (k1, k2). When deriving the results for the various timing constellations of

“capacity” choices the results of the later decision stage are anticipated.

d) The case (n1, n2) = (k, k)

In case of (n1, n2) = (k, k) capacities are chosen knowing the realization c. As-

suming that always the prices p (k1, k2) result (see the section a), b) and c) above)

seller i’s profit depends on ki as follows:

Πi (ki, kj) = (1− ki − kj) ki − cki (III.d.1)

for i = 1, 2 and j 6= i. The equilibrium choices are

k∗i =
1− c
3

for i = 1, 2, (III.d.2)

i.e. the well-known duopoly solution (Cournot, 1838). Since c ≤ 1 the optimal
“capacities” are non-negative. The profit expectations resulting from (III.d.2) are

E

(µ
1− c
3

¶2)
for i = 1, 2 (III.d.3)

where E {·} denotes the expectation operator.

e) The case (n1, n2) = (K,K)

Here c in (III.d.2) must simply be substituted by its average c so that

k∗i =
1− c
3

for i = 1, 2 (III.e.1)
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guaranteeing a well-defined solution for all realizations of C ∈
h
1
2
, 1
i
and all dis-

tributions of C on
h
1
2
, 1
i
. The profit expectations resulting from (III.e.1) are

µ
1− c
3

¶2
for i = 1, 2 (III.e.2)

which are obviously non-negative since c ∈
h
1
2
, 1
i
.

f) The case (n1, n2) = (K, k)

Assume that seller 1 does not yet know c whereas seller 2 does. From

Π2 (k1, k2) = (1− k1 − k2) k2 − ck2 (III.f.1)

one obtains seller 2’s reaction function

k∗2 (k1) =


1−c−k1

2
for 0 ≤ k1 ≤ 1− c

0 for k1 > 1− c.
(III.f.2)

In order to determine seller 1’s optimal capacity level k∗1 we first have to calculate

his expected profit as a function of k1. This function E {π1 (k1)} depends crucially
on the distribution of C. In the following we will carry out the analysis for various

different distributions. First we examine the case in which the distribution of

C has a continuous Lebesgue-density and solve the special case of a uniform

distribution explicitly. Then, as an example for measures with finite support,

we study one-point measures and give one numerical example for a two-point

measure.

f1) Continuous distributions

In this case seller 1’s expected profit is

E {Π1 (k1)} =



1−k1R
1
2

³
1− k1 − 1−c−k1

2

´
k1ϕ (c) dc+

1R
1−k1

(1− k1) k1ϕ (c) dc− k1
1R
1
2

cϕ (c) dc.

(III.f.3)
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where ϕ (·) denotes the density of C on
h
1
2
, 1
i
and Ψ (·) its distribution with

Ψ0 (c) = ϕ (c) and Ψ
³
1
2

´
= 0, Ψ (1) = 1. Equation (III.f.3) can be rewritten as

E {Π1 (k1)} =



1−k1R
1
2

1−k1
2
k1ϕ (c) dc+

k1
2

1−k1R
1
2

cϕ (c) dc

+(1− k1) k1
1R

1−k1
ϕ (c) dc− ck1

(III.f.3’)

or

E {Π1 (k1)} =


−1−k1

2
k1Ψ (1− k1) + k1

2

1−k1R
1
2

cϕ (c) dc

+(1− k1) k1 − ck1
. (III.f.3”)

From the first order condition of a local maximum of (III.f.3) one obtains

1− 2k1 −
µ
1

2
− k1

¶
Ψ (1− k1) + 1

2

1−k1Z
1
2

cϕ (c) dc = c (III.f.4)

as an implicit formula for the interior maximum k∗1. Moreover

d2

dk21
E {π1 (k1)} = −2 +Ψ (1− k1)− k1

2
ϕ (1− k1) < 0 for all k1 ∈

·
0,
1

2

¸
.

Thus E {π1 (k1)} is strictly concave, i.e. the first order conditions are necessary
and sufficient for a global maximum, and the left-hand side of equation (III.f.4)

is strictly decreasing. By inserting k1 = 0 and k1 = 1
2
into (III.f.4) one can now

easily show that, for every continuous distribution of C, the equation has a unique

solution in
h
0; 1

2

i
. For the special case of the uniform density ϕ (·) on

h
1
2
, 1
i
, i.e.

Ψ (c) = 2
³
c− 1

2

´
for 1

2
≤ c ≤ 1, this implies, for instance,

k21 +
2

3
k1 =

7

12
− 2
3
c =

7

12
− 2
3
· 3
4
=
1

12
(III.f.5)

or

k∗1 = −
1

3
+

√
25− 24c
6

=

√
7− 2
6

= .1076252. (III.f.5’)
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Let Π∗1 denote the profit expectation of seller 1 resulting from k∗1 and the subse-

quent choice k∗2 (k
∗
1) by seller 2. Let, furthermore, Π

∗
2 be the corresponding profit

expectation of seller 2 who is second in determining the sales capacity. For the

special case of the uniform density ϕ (·) on
h
1
2
, 1
i
we obtain

E {Π∗1} = k∗1
"
(1− k∗1)

Ã
1 +

k∗1
2

!
− 7
8

#
≈ 0.007 (III.f.6)

and

E {Π∗2} = (1− k∗1)
·
1

8
− 1
6
(1− k∗1)

µ
1

2
+ k∗1

¶¸
− 1

48
≈ 0.01, (III.f.7)

i.e. if preemption takes place, on average, the seller, who first determines his

capacity, is worse off.

f2) One-point measures

We now look at the situation where the distribution of C is a one-point measure,

i.e. where the cost parameter c is no longer random. Obviously this case is

equivalent to the classical (von Stackelberg, 1934) leadership model.

Maximizing seller 1’s expected profit function

E {π1 (k1)} =
(
(1− k1 − k∗2 (k1)) · k1 − c · k1 if 0 ≤ k1 ≤ 1− c
(1− k1) · k1 − c · k1 if k1 > 1− c

leads to

k∗1 =
1− c
2

(III.f.8)

k∗2 =
1− c
4

(III.f.9)

E {π∗1} =
(1− c)2
8

(III.f.10)

and

E {π∗2} =
(1− c)2
16

. (III.f.11)
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Clearly, in contrast to the case of a uniform distribution, the position of the leader

is more profitable than the one of the follower.

f3) Two-point measures

As a final example we analyze the case where C can have exactly two values c1

and c2 with c1 < c2. Since solving the maximization problems for arbitrary two-

point measures involves a complex case distinction, we restrict ourselves to one

numerical example. Let the distribution of C be the measure assigning probability

1/2 to the numbers c1 = 0.69 and c2 = 0.81, respectively.

The expected profit of seller 1 is

E {π1 (k1)} =


k1
2
· {1− k1 − c} if c2 ≤ 1− k1

k1 ·
n
3
4
(1− k1) + 1

4
c1 − c

o
if c2 > 1− k1 and c1 ≤ 1− k1

k1 · {1− k1 − c} if c1 > 1− k1
(III.f.12)

By maximizing this function we obtain

k∗1 =
1

8
(III.f.13)

k∗2 =

(
0.0925 if c = c1
0.0325 if c = c2

(III.f.14)

E {π∗1} =
1

128
≈ 0.0078 (III.f.15)

E {π∗2} ≈ 0.0048 (III.f.16)

Here again, as in the case of one-point measures, the seller who preempts is more

successful than his opponent.

4. The truncated or evolutionary game

In general, the market decision process in Figure 1 allows for four constellations

of individual timing dispositions, namely (K,M), (K,m), (k,M), and (k,m). For
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our purposes it suffices that a stable timing dispositions is a unique best reply to

itself, i.e. a symmetric equilibrium (the concept of evolutionarily stable strategies

imposes an additional condition when the best reply is not unique). Here the task

of deriving the stable timing dispositions is, however, reduced to the problem

whether both will be of type K or k or whether the bimorphisms with one being

of type K and the other of type k are stable. This is implied by our assumption

that equilibrium prices on the second stage (of the Kreps-Scheinkman-model)

induce full capacity utilization, i.e. p∗i = p (k1, k2) for i = 1, 2. If this holds for all

constellations (k1, k2) of capacities, it obviously does not matter whether one sets

one’s price before or after the parameter d is randomly determined.

According to indirect evolution timing dispositions regarding capacities are not

consciously chosen, but rather evolve. The stable timing constellation is thus

viewed as the final result of an evolutionary process. Endogenous timing assumes

instead that timing dispositions are consciously and independently determined

before stage K in Figure 1 and then publicly announced. The entries of Table

2 are the expected payoffs of seller 1 resulting from the optimal capacity vectors

(k∗1, k
∗
2) and the resulting equilibrium prices p∗1 = p∗2 = p (k∗1, k

∗
2) for the four

possible constellations (k, k), (k,K), (K, k), and (K,K) of timing dispositions.

seller 2
k K

seller 1

k
E{(1−c)2}

9
E {Π∗2}

K E {Π∗1} (1−c)2
9

Table 2: The symmetric evolutionary game or truncation as defined by Π∗1

For the case at hand the distinction between indirect evolution and endogenous

timing matters more for the interpretation rather than for the nature of the results.
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To give an example assume that (k∗, K∗) and thus (due to symmetry) also (K∗, k∗)

is stable. For indirect evolution this would mean that both bimorphisms are stable

and that it depends on the initial state of the evolutionary process and possibly on

random results which of the two will actually prevail, i.e. the final results would

be path dependent.

In view of endogenous timing such a result would be more troublesome since

one cannot recommend which timing disposition a seller should choose without

equilibrium selection (e.g. Harsanyi and Selten, 1988). There also exists a mixed

strategy equilibrium which is, however, non-strict and therefore a less suitable

solution candidate.

A general analysis of Table 2 for all distributions ϕ (·) allows no informative
results. We therefore concentrate on specific distributions ϕ (·) for which we have
determined the expected profits E {Π∗1} and E {Π∗2}. For the special case of the
uniform distribution with ϕ (c) = 2 for all 1

2
≤ c ≤ 1 Table 2 becomes

seller 2 k K

seller 1
k 1

108
= .009 .01

K .007 1
144
= .007

Table 2’: The special case of the uniform density ϕ (c) = 2 for 1
2
≤ c ≤ 1

If C is constant, i.e. the distribution of C is a one-point measure with C ≡ c,
Table 2 is of the form

seller 2 k K

seller 1

k (1−c)2
9

(1−c)2
16

K (1−c)2
8

(1−c)2
9

Table 2”: The case of a one-point distribution C ≡ c
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For the numerical case of the two-point measure introduced in section 3.f3) Table

2 is of the form

seller 2 k K

seller 1
k 0.0073 0.0048
K 0.0078 0.0069

Table 2”’: The two-point measure where C = 0.69 and C = 0.81, each with

probability 1
2

We now turn to the question whether k or K will finally evolve, respectively be

chosen strategically.

5. The evolutionarily stable or optimal timing constellation

For the special case of the uniform density the unambiguous result is the constel-

lation (k, k). This is true since the expected profit for k is always larger than the

one for K (see Table 2’). Thus k strictly dominates K and is both, the unique

evolutionarily stable strategy of Table 2’ as well as the only optimal timing dis-

position.

If the distribution of C is concentrated on c we again obtain a unique evolutionarily

stable strategy as long as c 6= 1. Table 2” shows that K strictly dominates k. This

result is very intuitive: The realization of c is of no interest at all, thus (K,K)

and (k, k) lead to equal profits. But choosing K instead of k offers each seller

the chance to substitute a (Cournot) duopoly by a (von Stackelberg) leadership

model with him in the leading position and avoids the risk of ending as a follower.

Table 2”’ proves that in our example of a two-point measure, as in the case

of one-point measures, K strictly dominates k. Whereas in the deterministic
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case C ≡ c the capacities in the unique strict equilibrium (K,K) equaled those

for the timing disposition (k, k), we have now found an example where ex post

equilibrium capacities deviate from the deterministic (Cournot, 1838) duopoly

solution ki = 1−c
3
. What is justified by (K,K) is the analogous solution of a

stochastic duopoly market on which sales amounts are determined before the cost

levels are randomly selected. This result does not hold for all two-point measures.

For other values of c1 and c2 and other probabilities for them the constellation

(k, k) can also be a unique strict equilibrium. Unfortunately we could neither find

nor exclude bimorphic equilibria.

More generally, stability or optimality of (k, k) in the sense of (k, k) being a strict

equilibrium of Table 2 requires

E
n
(1− c)2

o
/9 > E {Π∗1} . (V.1)

For (K,K) the condition is

(1− c)2
9

> E {Π∗2} (V.2)

whereas for the bimorphism (k,K) or (K, k) the conditions are

E {Π∗1} > E
n
(1− c)2

o
/9 and E {Π∗2} >

(1− c)2
9

. (V.3)

6. Conclusions

Quantity competition requires special institutions like commodity or stock ex-

changes which, when they exist, should be appropriately captured by the market

model. The alternative is to rely on the natural and intuitive idea of Kreps and

Scheinkman (1983) who justify quantity competition by a two stage-decision pro-

cess of simultaneous decisions (first capacities, then sales prices).

Now simultaneous decision making on two stages is just one of several possibil-

ities. In our model it is possible to preempt on both stages. Even when sellers
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decide simultaneously, they can do this early (before the random choice of cost)

or later (after this chance move). Unfortunately, no general conclusion seems

possible. Especially, up to now we have no general result justifying or rejecting

the implicit assumption of Kreps and Scheinkman (1983) that sellers decide si-

multaneously. More specifically, we could not prove the impossibility of stable

bimorphisms (k,K) nor find an example for which such bimorphisms are stable.

Thus the troublesome ambiguity remains although now at a deeper level. Differ-

ent cost densities might imply different market decision processes. Simultaneous

or independent market decisions can, furthermore, avoid cost uncertainty (when

both sellers wait) or not (when both sellers preempt).

Our model differs from the one of Kreps and Scheinkman (1983) mainly by our

different interpretation of “capacities” which appears more natural (usually pro-

duction and sales can be more or less easily varied even beyond their planned

levels). An analysis like ours for the original Kreps and Scheinkman-model is very

difficult or even practically impossible. Whereas our model can be easily extended

to oligopoly markets (see Güth, 1995), the results of Kreps and Scheinkman (1983)

still await such a generalization.

Such advantage has, of course, its price in the form of three crucial and debatable

assumptions, namely: (i) In case of equal prices demand is distributed according to

capacities (see equation (II.6)). (ii) Sellers must serve demand even beyond their

planned sales level. (iii) On the price setting stage the solution p∗1 = p
∗
2 = p (k1, k2)

is just an ad hoc-selection (see Appendix below). One can justify (i) as a result of

renegotiating the demand distribution by the two sellers. Assumption (ii) could be

valid when not serving a customer would result in losing him forever. The ad hoc-

selection (iii) relies mainly on the intuition that sellers coordinate on prices which

fulfill their initial expectations as represented by their total planned sales level

k1 + k2. The experimental results of Anderhub at al. (2000) seem to confirm the

focal role of such prices. Thus the three crucial assumptions are not outrageous,

but their main justification is, of course, that they greatly simplify the analysis.
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Appendix

Equilibriumselection for price competition on homogeneous
markets

Due to the obligation to serve all customers price competition on homogeneous

markets may have other equilibria than just p∗1 = p∗2 = p (k1, k2) on which our

previous analysis has been based. Here we want to investigate this possibility in

more detail. By applying the theory of equilibrium selection (Harsanyi and Selten,

1988) we also explore whether one can justify our solution candidate p∗1 = p
∗
2 =

p (k1, k2). As we have seen before, in equilibrium both sellers set the same price

p. We first compare the equilibrium p1 = p2 = p (k1, k2) to equilibria p1 = p2 = p

with p < p (k1, k2), then we analogously analyse the case p > p (k1, k2).

Case A.1: p < p (k1, k2)

Let (p1, p2) be an arbitrary strategy constellation p1 = p2 = p with p < p (k1, k2).

Analogously to the proof of the equilibrium property of p∗1 = p∗2 = p (k1, k2)

in section 3 one can show that this constellation is an equilibrium if and only

if, at price p, production beyond the capacity ki causes losses. More formally,

p1 = p2 = p with p < p (k1, k2) is a strict equilibrium if and only if

p (1− p)− (c + di) (1− p− ki) < pki + (p− c− di) 1− p− k1 − k2
2

for i = 1, 2

or
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(A.1.A) p < c+ di for i = 1, 2

where di is the value of D individual i expects when setting his price, i.e. d if

seller i has timing disposition M and d if this timing disposition is m.

Since we only want to compare p (k1, k2) to other equilibria, we focus on those

prices p which fulfill the equilibrium condition (A.1.A). In the cases where timing

dispositions are asymmetric, i.e. (m1,m2) = (m,M) or (M,m), it is obvious

which of the two equilibrium prices p and p (k1, k2) should be selected, namely the

one which is payoff dominant. Anticipating that the second mover sets the same

price the first mover clearly prefers the price which yields higher profits for both

sellers.

It remains to analyse the symmetric cases (M,M) and (m,m), i.e. the situations

where d1 = d2 = d, respectively d1 = d2 = d with d denoting the realization of

the random variable D. The payoff implications of all price constellations pi with

pi = p (k1, k2) or pi = p for i = 1, 2 can be represented as a 2 x 2-bimatrix game

(Table 3) where one can neglect the cost of “capacity” ki since these cost are sunk

on the price setting stage. Of course, one cannot neglect cost which result from

selling more than one’s capacity.

p2 p (k1, k2) p
p1

(1− k1 − k2) k1 0
p (k1, k2)

(1− k1 − k2) k2 (1− p) (p− c− d2) + (c+ d2) k2

(1− p) (p− c− d1) + (c + d1) k1 pk1 + (p− c− d1) 1−p−k1−k22

p
0 pk2 − (p− c− d2) 1−p−k1−k22

Table 3: The 2 x 2-bimatrix game for p < p (k1, k2)
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The equilibrium (p, p) would be payoff dominated by (p∗1, p∗2) when

(1− k1 − k2) ki > pki + (p− c− di) 1− p− k1 − k2
2

(A.1)

or

(1− p− k1 − k2) (2ki + c+ di − p) > 0 (A.1’)

holds for i = 1, 2. It is interesting that here the condition for payoff dominance

depends on the sum c+di whereas the corresponding condition (A.7) for the case

p > p (k1, k2) is completely independent of the cost parameters. Since 1 − p >
k1 + k2 this is equivalent to

2ki + c + di > p. (A.2)

Due to ki ≥ 0 and the equilibrium condition (A.1.A) this is always fulfilled. This

shows that strict equilibria (p1, p2) with p1 = p2 < p (k1, k2) are always payoff

dominated by (p∗1, p
∗
2).

Payoff dominance completely neglects the risks implied by coordinating on a spe-

cific strict equilibrium. Such risks are, however, carefully considered by risk dom-

inance (Harsanyi and Selten, 1988) which, for the case at hand, is axiomatically

characterized by three requirements, namely best reply and isomorphic invariance

and monotonicity. Actually the axioms can be constructively used when deriving

which of the two strict equilibria risk dominates the other.

p2 p (k1, k2) p
p1

(1− k1 − k2 − c− d1) k1 − (1− p) (p− c− d1) 0
p (k1, k2)

(1− k1 − k2 − c− d2) k2 − (1− p) (p− c− d2) 0

0 pk1 + (p− c− d1) 1−p−k1−k22

p
0 pk2 + (p− c− d2) 1−p−k1−k22
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Table 4: A best reply invariant transformation of Table 3

The bimatrix game of Table 4 results from Table 3 by subtracting the non-

equilibrium payoff from the equilibrium payoff for a given strategy of the other

seller, i.e. after such a transformation the non-equilibrium payoff for a given strat-

egy of the other player is 0. The mixed strategy equilibrium in Table 4 is the same

as in Table 3. Thus both games have the same best reply structure, i.e. the same

stability sets (the sets of mixed strategy vectors to which every component of a

pure strategy vector is a best reply). By best reply invariance we can thus solve

the game in Table 4 instead of the one in Table 3.

p2 p (k1, k2) p
p1

X 0
p (k1, k2)

1 0

0 1
p

0 Y

Table 5: An isomorphic transformation of Table 4 where

X =
(1− k1 − k2 − c− d1) k1 − (1− p) (p− c− d1)

pk1 + (p− c− d1) 1−p−k1−k22

(A.3)

and

Y =
pk2 + (p− c− d2) 1−p−k1−k22

(1− k1 − k2 − c− d2) k2 − (1− p) (p− c− d2) . (A.4)

Finally, the game of Table 5 results from Table 4 by positively affine transforma-

tions of payoff functions, i.e. by an isomorphic transformation. If X = Y would
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hold, isomorphic invariance in the form of symmetry invariance would prescribe

the mixed strategy equilibrium as the solution. If, however, X 6= Y monotonic-

ity prescribes (p∗1, p
∗
2) for X > Y and (p1, p2) for Y > X as the solution. A

change from a game with X0 = Y 0, where no strict equilibrium is the solution, to

X > X0 = Y 0 can be seen as strengthening the strict equilibrium (p∗1, p
∗
2) since

player 1’s incentive to coordinate on (p∗1, p
∗
2) is increased. Monotonicity requires

that such strengthening induces (p∗1, p
∗
2) as the solution. Now the conditionX > Y

is equivalent to

2

Π
i=1
[(1− k1 − k2 − c− di) ki − (1− p) (p− c− di)] >

2

Π
i=1

"
pki + (p− c− di) 1− p− k1 − k2

2

#
.

(A.5)

or equivalently

2

Π
i=1
{(c+ d− p) (1− p)− ki [c + d− p (k1, k2)]} >

2

Π
i=1

(
(c+ d− p) p (k1, k2)− p

2
− pki

)
(A.6)

revealing a complicated dependence on the various parameters k1, k2, d = d1 = d2,

and p with p < p (k1, k2) .

Case A.2: p > p (k1, k2)

As for the other case we first state the condition under which p1 = p2 = p is

an equilibrium and then explore the conditions for payoff and risk dominance of

(p∗1, p
∗
2) over (p1, p2) for the cases of symmetric timing dispositions (M,M) and

(m,m). In the asymmetric cases again the payoff dominant equilibrium will be

selected.

The indicator function 1A assumes the value 1 on A and 0 otherwise. The con-

stellation p1 = p2 = p is an equilibrium if and only if

p (1− p)− (c+ di) (1− p− ki) · 1{1−p−k1>0} < p
1− p + ki − kj

2

for i = 1, 2 and j 6= i or
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(A.2.A) 1− p > ki for i = 1, 2

and

(A.2.B) (c + di) > p
2

³
1 + kj

1−p−ki
´
for i, j = 1, 2 with i 6= j.

As mentioned earlier, the multiplicity of equilibria is due to the assumption that

a seller i with the lower price must serve the whole market. If total demand

exceeds his capacity, i.e. condition (A.2.A) is fulfilled, then the cost of the excess

demand 1 − p − ki might be higher than the additional surplus resulting from
underbidding the common price. For this (A.2.B) is a necessary and sufficient

condition. The payoffs of all price constellations pi with pi = p (k1, k2) or pi = p

are again represented as a 2 x 2-bimatrix game in Table 6. As in Table 3 the cost

of ki is neglected. Clearly (p∗1, p
∗
2) and (p, p) are both strict equilibria of this game.

p2 p (k1, k2) p
p1

(1− k1 − k2) k1 (1− k1 − k2) (k1 + k2)− (c+ d1) k2
p (k1, k2)

(1− k1 − k2) k2 0

0 p1−p+k1−k2
2

p
(1− k1 − k2) (k1 + k2)− (c+ d2) k1 p1−p−k1+k2

2

Table 6: The 2 x 2-bimatrix game for p > p (k1, k2)

The strict equilibrium (p∗1, p
∗
2) with p

∗
1 = p

∗
2 = p (k1, k2) payoff dominates (p1, p2)

with p1 = p2 = p > p (k1, k2) when

(1− k1 − k2) ki > p1− p+ ki − kj
2

for i, j = 1, 2 and i 6= j. (A.7)
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For risk dominance of (p∗1, p
∗
2) one needs again that X > Y where now

X =
(1− k1 − k2) k1

p1−p+k1−k2
2

− (1− k1 − k2) (k1 + k2) + (c + d1) k2
(A.8)

and

Y =
p1−p+k2−k1

2
− (1− k1 − k2) (k1 + k2) + (c+ d2) k1

(1− k1 − k2) k2 . (A.9)

To illustrate the chances that (p∗1, p
∗
2) payoff dominates (p1, p2) assume k1 = k2 = k

so that (A.7) simplifies to

(1− 2k) 2k > p (1− p) . (A.10)

Thus payoff dominance typically depends on whether (p∗1, p
∗
2) or (p1, p2) generates

the larger total revenue. In other words: Only capacity vectors (k1, k2), whose

sums do not exceed the monopoly supply of 1/2, cannot be payoff dominated by

price vectors (p1, p2) with p1 = p2 = p > p (k1, k2).

A larger sum c + d1 = c + d2 reduces X and increases Y . It thus does not

only improve the chances of an alternative strict equilibrium (p1, p2) according to

(A.2.B), but also that this alternative solution risk dominates the solution (p∗1, p
∗
2).

By this we only wanted to illustrate how to derive a unique solution of the price

competition subgames and on which parameters it will depend on whether the

equilibrium (p∗1, p
∗
2) with p

∗
1 = p∗2 = p (k1, k2) is selected or not. A complete

solution for all possible subgames would have to rely on a (too) complicated case

distinction.
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