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1 Introduction

It is a stylized fact that the typical portfolio of a venture capitalist (VC) includes several

firms, although a limited number of them (see Gorman and Sahlman (1989), Sahlman

(1990), Norton and Tenenbaum (1993) and Reid, Terry and Smith (1997). Gompers and

Lerner (1999) summarize recent research on venture capital). How many start-ups should

a VC include in her portfolio? We argue that the optimal company portfolio results from

a trade-off between the number of firms included and the advisory effort allocated to each

one. With diminishing returns on advice in each firm, it is better to expand the number

of companies rather than concentrating advice on a single project. On the other hand,

the VC’s effort cost increases progressively as more firms are included. Advice is easily

stretched too thin, thereby reducing the survival chances of all firms in the portfolio.

When projects become riskier, the VC must cede a higher profit share to entrepreneurs to

secure their effort which is critical for survival. With her own profit share eroded, the VC

eventually finds it unattractive to expand the portfolio further. In developing a simple

model of VC activity with double-sided moral hazard, our analysis draws on Repullo and

Suarez (1999), Casamatta (1999) and Strobel (2000). These authors assume, like all other

contributers in this field, that a VC finances only one entrepreneur.

2 A Simple Model

Venture Capital Activity: We assume that each project yields R > 0 if successful

and zero if it fails. An entrepreneur pursues exactly one project, all being identical. In

exchange for a profit share 1 − si, the VC must finance the entire start-up cost I of

i = 1, . . . , n symmetric projects since entrepreneurs are assumed to have no resources

of their own. Apart from supplying funds, the VC provides managerial assistance ai.

The entrepreneur’s contribution ei ∈ {0, 1} is deemed critical. Her shirking will certainly
result in business failure. We assume a survival probability P (ei, ai) = eip (ai), satisfying

p0 (ai) > 0 > p00 (ai) and p (ai) < 1 over the relevant range. Active managerial consulting
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thus adds value and enhances the probability of success. Such services are increasingly

costly, however. In supporting a portfolio of n companies, the VC’s total managerial

input amounts to A =
nP
i=1

ai = an, where ai = a by symmetry. The VC’s effort cost c (A)

is increasing and convex, the entrepreneur’s is discrete, l (ei) ∈ {0, β}. We work with
isoelastic functions

c (A) = γ
A1+ε

1 + ε
, p (a) =

a1−θ

1− θ , ε > 0, 0 < θ < 1. (1)

Neither the effort of each entrepreneur nor the extent of managerial advice are verifiable

and contractable. The informational asymmetry is reflected in the following sequence of

decisions. First, the VC chooses a number n of start-up firms, offering an equity share

si to each entrepreneur. Next, given n and si, efforts are chosen. Finally, risk is resolved

and payments distributed. The model is solved by backward induction. Both parties are

risk neutral. The VC’s problem is

max π =
nP
i=1

[eip (ai) (1− si)R− I]− c (A) s.t. (2)

PCE : πEi = eip (ai) siR− l (ei) ≥ 0, i = 1, ..., n, (i)

ICE : p (ai) siR− β ≥ 0, i = 1, ..., n, (ii)

ICF : {ai} = argmax {[
P

i eip (ai) (1− si)R]− c (A)} . (iii)

Condition (i) is the participation constraint of entrepreneurs. To attract them, the con-

tract must at least yield an expected income equal to the alternative income, normalized

to zero. Conditions (ii) and (iii) reflect the ex post incentive constraints. Given that

contracts are already fixed and investments are sunk, agents choose effort to maximize

the remaining income that is still at their discretion. Emphasizing the critical nature

of the entrepreneurs’ effort, their choice is restricted to two alternatives, high effort and

shirking.

Effort and Advice: Optimal managerial advice in (2iii) must satisfy

eip
0 (ai) (1− si)R = c0 (A) , i = 1, . . . , n. (3)
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Anticipating the ex post incentive constraints, the VC will always offer a profit share

sufficient to satisfy (2ii), eliciting high effort e∗i = 1. Otherwise, she would earn no revenue.

What then is the minimum profit share si to retain the entrepreneurs’ incentive? Taking

logarithmic differentials of (2ii) and (3) at the symmetric equilibrium solution and using

(1), we obtain1

ICE : ŝ = −R̂ − (1− θ) â, ICF : (θ + ε) â = R̂− s

1− sŝ− εn̂. (4)

A higher return R and a larger profit share 1− s for the VC boost the marginal benefits
of advice while a larger portfolio raises the marginal cost of advice. The entrepreneur’s

profit share may be reduced if her incentives are strengthened by a higher project value

or a higher success probability p̂ = (1− θ) â. Using ICE to replace ŝ in (4) gives

â =
1

Ψ

·
1

1− sR̂ − εn̂
¸
, Ψ ≡ θ + ε− s (1− θ)

1− s > 0. (5)

When the VC increases advice because of a higher project value R, she boosts the firm’s

survival chance. A smaller profit share then suffices to retain the entrepreneur’s incentive.

With her own profit share larger, she advises even more intensively. When this cycle

converges, the total effect is positive, Ψ > 0, and exceeds the direct effect.

Optimal Contract: Substituting (5) back into ICE in (4) gives

ŝ =
1

Ψ

h
(1− θ) εn̂− (1 + ε) R̂

i
. (6)

When more firms call for support, the VC advises each one less. As the success rate falls,

she must offer higher shares to her entrepreneurial partners to enlist their effort.

Optimal Company Portfolio: With an optimal number of firms, the contribution of

the marginal start-up to profits is zero. Differentiating (2) and imposing symmetry yields

πn ≡ dπ
dn
= [p (1− s)R − I] − ac0 − npR ∂s

∂n
. Although a larger portfolio dilutes advice in

1The hat notation indicates a logarithmic differential, â ≡ d ln(a) = da/a etc. Because of (1), p̂ =

(1− θ) â, p̂0 = −θâ, ĉ = (1 + ε) Â, and ĉ0 = εÂ.
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(5), the marginal effect on profits is zero by the envelope theorem applied to (2iii). The

square bracket indicates the marginal contribution of an extra firm to VC profits. The

second term reflects the additional effort cost from extending managerial support to the

marginal firm. The last term captures a profit destruction effect. Having more firms leads

the VC to advise each one less, which erodes survival chances. To preserve incentives in

face of higher risk, the VC must cede a higher profit share to entrepreneurs. Insert (6)

together with (2ii), replace c0 by (3) and use ap0 = (1− θ) p from (1) to get

πn ≡ dπ

dn
= [θp (a) (1− s)R− I]− β (1− θ) ε

Ψ (s)
= 0, πnn < 0. (7)

The number of firms is determined by (7). By (5) and (6), n reduces a but raises s.

Since Ψ0 (s) = − 1−θ
(1−s)2 < 0, all terms in πn decline with n, thereby fulfilling the sufficient

condition. As more firms are financed, the profit destruction effect becomes more severe.

With small n, on the other hand, the VC advises rather intensively and can appropriate a

large profit share without losing the entrepreneur’s effort. Marginal benefits (net of effort

cost) of expanding the portfolio are then relatively high. A separate appendix proves

Proposition 1 A unique optimal number of portfolio companies exists, 0 < n∗ <∞.

If effort cost were linear (ε = 0), advice and profit share in (5) and (6) would be

independent of n. The profit destruction effect would disappear, making marginal benefits

a constant πn = θp (a) (1− s)R − I ≷ 0 and leaving the individual portfolio problem

indeterminate. If, on the other hand, the survival probability were linear (θ = 0), a would

fall and s would increase in n as before. In this case, however, the benefit of an extra firm

(net of marginal effort) would be unambiguously negative, making πn < 0 in (7). The

optimal number of firms would be driven to one, if that was still profitable.

Proposition 2 The number of start-up firms in the VC’s portfolio increases with R.

For proof, apply the implicit function theorem to (7), giving dn
dR
= −πnR

πnn
. This result

follows from πnn < 0 and πnR = θp (1− s) + θ (1− s)Rp0aR −
h
θpR + βε(1−θ)2

(1−s)2Ψ2
i
sR > 0.
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Depending on her profit share, a larger return R directly raises the VC’s income by

θp (1− s). The profit from an extra firm is also strengthened by the fact that a higher

project value R encourages the VC to advise more intensively, making the firm more likely

to survive, θ (1− s)Rp0aR > 0. By reducing risk, the VC may increase her own profit

share without provoking the entrepreneur to shirk, which raises profits by −θpRsR >
0. Finally, funding an additional start-up dilutes advice over more firms, leaving less

support and a higher risk for each individually. To preserve incentives, entrepreneurs

must be compensated with a higher profit share, giving rise to the profit destruction

effect in (7). When projects become more valuable, however, the VC starts to advise

more intensively and cuts the entrepreneurs’ profit share on account of lower risk. In

obtaining a larger share for herself, the VC is able to alleviate the profit destruction effect

by −( 1−θ
(1−s)Ψ)

2εβcE · sR > 0, which boosts the incentive to expand portfolio size.

3 Final Remarks

In real life, a VC finances a small number of start-up enterprises, typically fewer than

ten. This note has developed a model which rationalizes this fact. It is shown that

both diminishing returns to advice and convex effort cost are necessary to determine the

optimal number of firms in a VC’s portfolio.
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Appendix: Proof of Proposition 1
To prove existence and uniqueness, we must first show how a and s in (7) depend on n.

Advice and Profit Share: The solution for a and s follows from (2ii) and (3). Since

we must impose p ≤ 1, the form of p (a) in (1) implies an upper limit for advice of ā. By

the same argument, (2ii) implies a minimum profit share s,

ā ≡ (1− θ)1/(1−θ) , s = β/R. (A.1)

Figure 1 now plots the ICEcurve given in (2ii) in s, a-space:

ICE : a = E (s) = ā · (s/s)1/(1−θ) . (A.2)

This curve hits the upper limit at s, i.e. ā = E (s). Since the profit share cannot exceed

one, it is bounded below by a = E (1) = ās1/(1−θ). It is falling and convex, E0 < 0 < E00.

The financier’s incentive constraint (3) is

ICF : a = F (s) =

·
R

γnε
(1− s)

¸1/(θ+ε)
. (A.3)

This curve is negatively sloped, F 0 (s) < 0. Since F 00 (s) = −F 0(s)(1−θ−ε)
(θ+ε)(1−s) ≷ 0, it is concave

for 1 − θ < ε and convex otherwise. It satisfies F (1) = 0. To have an interior solution
with ICE binding, we must impose

F (s) ≤ ā ⇔ (1− θ)θ+ε (γnε)1−θ ≥ (R− β)1−θ . (A.4)
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For a solution to exist, the incentive constraints in Figure 1must intersect. By equating

F (s) = E (s), we get H (s) ≡ (1− s)1−θ sθ+ε = [(1− θ)β]θ+ε (γnε)1−θ /R1+ε ≡ X. The

H-schedule satisfies H (0) = H (1) = 0 and attains a maximum at s̄ = θ+ε
1+ε

< 1 which

follows from H 0 (s) = sε
£
(θ + ε) (1−s

s
)1−θ − (1− θ) ( s

1−s)
θ
¤
= 0. Evaluating H (s) at its

maximum gives the condition H (s̄) > X for the existence of a solution,

H (s̄) =
(1− θ)1−θ (θ + ε)θ+ε

(1 + ε)1+ε
>
[(1− θ)β]θ+ε (γnε)1−θ

R1+ε
. (A.5)

Under this condition, H (s) = X has two solutions for s, meaning that the incentive

constraints in Figure 1 intersect twice. For the solutions to be in the relevant range,

(A.5) and (A.4) must be satisfied simultaneously. Multiplying (A.5) by R1+ε/βθ+ε and

comparing with (A.4) gives the condition

(1− θ)1−θ
µ
θ + ε

β

¶θ+εµ
R

1 + ε

¶1+ε
> (1− θ)θ+ε (γnε)1−θ ≥ (R − β)1−θ . (A.6)

Choosing R large and β small opens a wide wedge, allowing placement of the middle term

to this interval by choice of appropriate values for γ and n.

Of the two intersection points in Figure 1, A is the solution. To see this, note that all

combinations to the north east of the E-schedule are admissible choices for the VC. For

any given s, the F -curve gives the VC’s optimal advice according to (3). Applying the

envelope theorem to (2), the VC maximizes profit by increasing her own profit share, i.e.

by reducing s. She moves along the F -curve to the north west until the entrepreneur’s

incentive constraint binds at A. Equation (4) linearizes the two constraints at solution A.

The condition Ψ > 0 in (5) reflects the fact that ICE is steeper than ICF at A.2

The comparative statics in n is also illustrated in Figure 1. A larger number of firms

n leaves the E-schedule unaffected but shifts down the F -schedule, moving solution A to

the south east. Advice per firm is reduced, and the entrepreneur’s equity share must be

increased on account of higher risk.

2Note that E0 (s) = −a
(1−θ)s < 0 and F

0 (s) = −a
(θ+ε)(1−s) < 0, whence E

0 (s) < F 0 (s)⇔ Ψ (s) > 0.
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Optimal Number of Firms: To prove proposition 1 claiming the existence and unique-

ness of n∗, we use p (a) = s/s from ICE. Write (7) as πn = z1 (s) − z2 (s). Note that
n enters the condition only via its effect on s (n) which is the intersection of (A.2) and

(A.3) with the lowest share s. The profit creation and destruction effects, z1 and z2, are

z1 (s) ≡ θRs1− s
s

− I, z2 (s) ≡ (1− θ) εβ
Ψ (s)

. (A.7)

Evaluating these terms at the lowest admissible equity share (see Figure 1), we get

z1 (s) ≡ θ (R− β)− I, z2 (s) ≡ (1− θ) εβ
Ψ (s)

. (A.8)

Since Ψ0 < 0, Ψ gets larger for low values of s, making z2 (s) comparatively small. In

raising R relative to β [see also the discussion of (A.6)], we make z1 (s) arbitrarily large,

both directly and indirectly on account of a smaller s. The effect on s also squeezes the

profit destruction effect at the lower boundary of s. With R appropriately set, we have

z1 (s) > z2 (s) > 0 in Figure 2.

Expanding portfolio size n raises the equity share s on account of the “dilution of

advice” effect, see Figure 1. Since z01 (s) < 0 and z
0
2 (s) > 0, the profit creation effect melts

down while the profit destruction effect becomes ever larger. In particular, Ψ (s̄) = 0 for

s̄ = θ+ε
1+ε

< 1, which makes z2 (s)→∞ for s→ s̄.3 Since both schedules are monotonic, a

unique solution n∗ exists in the interval [n, n̄] which corresponds to the interval [s, s̄].

3Evaluating at s̄ = θ+ε
1+ε gives E

0 (s̄) = −E(s̄)(1+ε)
(1−θ)(θ+ε) and F

0 (s̄) = −F (s̄)(1+ε)
(1−θ)(θ+ε) . By (A.2) and (A.3), there

is one n̄ such that E (s̄) = F (s̄), implying a tangency solution E0 (s̄) = F 0 (s̄) and Ψ (s̄) = 0 in Figure 1.

The value of s̄ corresponds to the maximum of H (s) as noted prior to (A.5).
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