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Abstract 
 
We investigate whether the simple plurality rule aggregates information efficiently in a large 
election with three alternatives. The environment is the same as in the Condorcet Jury 
Theorem (Condorcet (1785)). Voters  have common preferences that depend on the unknown 
state of nature, and they receive imprecise private signals about the state of nature prior to 
voting. With two alternatives and strategic voters, the simple plurality rule aggregates 
information efficiently in elections with two alternatives (e.g., Myerson (1998)). We show 
that there always exists an efficient equilibrium under the simple plurality rule when there are 
three alternatives as well. We characterize the set of inefficient equilibria with two alterna- 
tives and the condition under which they exist. There is only one type of inefficient 
equilibrium with two alternatives. In this equilibrium, voters vote unresponsively because 
they all vote for the same alternative. Under the same condition, the same type of equilibrium 
exists with three alternatives. However, we show that the number and types of coordination 
failures increase with three alternatives, and that this leads to the existence of other types of 
inefficient equilibria as well, including those in which voters vote informatively. 
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1 Introduction

We investigate whether the simple plurality rule aggregates information effi-
ciently in a large three-alternative election in which all voters have common
preferences that depend on the unknown state of nature, and in which all voters
receive imprecise private signals about the state of nature prior to voting. This
environment should remind the reader of the Condorcet Jury Theorem (Con-
dorcet (1785)). This theorem is about a (potentially large) jury with common
state-dependent preferences who has to elect one of two alternatives. In state
a, all voters prefer to elect alternative A; in state b, all voters prefer to elect
alternative B. The state of nature is unknown at the time of the election, but
each voter receives a private signal which is independently drawn from the same
distribution. The winning alternative is elected according to the simple plurality
rule (one vote per voter, and the alternative with most votes wins). Condorcet
(1785) finds that a population of voters elects the correct alternative (the one
preferred by all voters) with probability converging to one if the number of vot-
ers converges to infinity under the conditions that voters vote informatively and
signals are more likely correct than incorrect. Informative voting means that
each voter votes for his or her private signal.

However, voting informatively is not necessarily a Nash equilibrium in the
environment of the Condorcet Jury Theorem (Feddersen and Pesendorfer (1998),
Wit (1998), among others). With strategic voters, one can obtain the same re-
sult, even with a relaxed assumption on private signals: Myerson (1998) shows
that there always exists an ’informationally efficient’ equilibrium in which the
correct alternative is elected with probability converging to one if the number
of voters converges to infinity. However, in informationally efficient equilibria
with two alternatives, voters never vote informatively (but usually mix between
their signal and the other alternative).

We add a third alternative and a third state of nature to the environment
of the Condorcet Jury Theorem. With the results from Goertz and Maniquet
(2009, 2011), it is not obvious whether efficient equilibria exist and whether they
are the unique type of equilibria with three alternatives. Goertz and Maniquet
(2009, 2011) consider two different versions of a three-alternative large election
with independent voters, who have common state-dependent preferences, and
with partisan voters, who always prefer one of the three alternatives independent
of the state of nature. If the independent voters are part of a majority in each
state of nature, informational efficiency requires that the elected alternative be
the same as it would be if all information were public. However, both papers
find, contrary to the previous literature, that no simple scoring rule (including
the simple plurality rule) except approval voting is efficient with three alter-
natives. This means that no simple scoring rule except approval voting has at
least one efficient equilibrium.1 Three alternatives lead to coordination failures

1With approval voting, there is at least one efficient equilibrium, but also inefficient equi-
libria.
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among voters with common preferences that do not exist with two alternatives.2

In Goertz and Maniquet (2009, 2011), the partisan voters are ’responsible’
for the fact that no simple scoring rule except approval voting is informationally
efficient. So, it is interesting to investigate whether the same or other types of
coordination failures exist in a model without partisans. And then we will also
know whether or not the Condorcet Jury Theorem with strategic voters (Myer-
son (1998)) extends to more than two alternatives.

The present model is most closely related to Goertz and Maniquet (2011)
because all voters receive private signals from the same information technology.
It is also closely related to Myerson (1998). Compared to the former, it has no
partisan voters and does not allow for abstention. Compared to the latter, it
has three alternatives rather than two.

We find that an efficient equilibrium always exists. However, there are also
inefficient equilibria. To compare the sets of inefficient equilibria with two alter-
natives and with three alternatives, we characterize the set of inefficient equilib-
ria with two alternatives and the necessary condition for their existence. There
is only one type of inefficient equilibrium with two alternatives. It is unrespon-
sive because all voters vote for the same alternative independent of their private
signals.3 It only exists when private signals are ’not particularly informative’
relative to prior probabilities. Not surprisingly, the example of an inefficient
equilibrium in Myerson (1998) is of exactly this type. The same type of inef-
ficient equilibrium under the same condition exists with three alternatives as
well.

There are also other inefficient equilibria with three alternatives that do not
exist with two alternatives. In Theorem 3, we give an example of an inefficient
equilibrium in which voters surprisingly vote informatively, but the election out-
come is inefficient nevertheless. This is a particularly interesting inefficient equi-
librium because informative voting is typically not a Nash equilibrium with two
alternatives. In addition, it will obviously lead to an inefficient outcome because
of the relaxed assumption on private signals (they are not more likely correct
than incorrect). In addition, this inefficient equilibrium is entirely different from
the inefficient equilibria with three alternatives in Goertz and Maniquet (2009,
2011). In their inefficient equilibria, voters vote responsively, but not informa-
tively. In addition, the equilibria require drastically different posterior beliefs of
voters (some voters believe certain states to have zero probability, while other
voters consider the same states as likely) to lead to coordination failures. In
the inefficient equilibrium in Theorem 3, posterior beliefs are not so drastically
different.

So, besides extending the Condorcet Jury Theorem to three alternatives,
this paper shows that new coordination failures arise when the number of alter-
natives increases beyond two, even if there are no partisans and posterior beliefs

2In models with independent voters and partisan voters and two alternatives, informational
efficiency of equilibria is generally satisfied (most prominently Feddersen and Pesendorfer
(1996, 1997, 1999)).

3The definition of responsive and unresponsive strategies and equilibria is taken from Fed-
dersen and Pesendorfer (1998).
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are not drastically different. In addition, we can have inefficient equilibria in
which voters vote informatively. Notice that, of course, these coordination fail-
ures are different from the typical difficulties with preference aggregation when
there are more than two alternatives. In our model, all voters have the same
preferences. The coordination failures stem from the difficulty of coordination
among voters with common interests but imprecise private signals, and these
difficulties arise only when there are more than two alternatives.

For three alternatives, we can only prove the existence of responsive ineffi-
cient equilibria by example. As we will argue later (discussion below Theorem
3), more general results (such as the characterization of the set of inefficient
equilibria with three alternatives) are currently beyond reach.

In Section 2, we describe the model. In Section 3, we show that there exists
an informationally efficient equilibrium for three alternatives. In Section 4, we
present our results on inefficient equilibria for two and three alternatives. In
Section 5, we conclude.

2 The Setting

2.1 The Model

We consider an election with three alternatives {A, B, C} = K and three states
of nature {a, b, c} = k with prior probabilities πa, πb, πc ∈ (0, 1). Voters have
common, state-dependent, and dichotomous preferences. They prefer a partic-
ular alternative in each state of nature, and are indifferent between the other
two:

u(X |x) = 1 ∀X ∈ K, x ∈ k,

u(Y |x) = 0 ∀Y 6= X ∈ K, x ∈ k.

Assuming dichotomous preferences simplifies the strategic analysis. With di-
chotomous preferences, voters care only about those election outcomes in which
their vote changes the outcome from any of the two disliked alternatives to the
preferred alternative; they never care about election outcomes in which they are
pivotal between the two less preferred alternatives. Even in this less strategic
environment, we find coordination failures among voters that lead to inefficient
equilibria. The reader can easily imagine that more general assumptions on the
preferences would only increase these problems.

We assume that the population of voters is large. In addition, there is
uncertainty about the actual size of the population. This assumption is fairly
common in the previous literature (e.g., Feddersen and Pesendorfer (1996, 1997,
1999), Myerson (1998, 2000, 2002), Goertz and Maniquet (2009, 2011), among
others). In the precise way of modeling the population uncertainty, we follow
Myerson (1998, 2000, 2002) and assume that the population size is Poisson-
distributed with parameter n. So, the voting game is a so-called Poisson game.
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The probability there are exactly N voters is4

P (N |n) =
e−nnN

N !
.

With population uncertainty, each voter is pivotal (i.e., the decisive voter)
with positive probability. This is true even in an equilibrium in which all voters
vote for the same alternative. Therefore, unresponsive equilibria are not (as
they are in other models without population uncertainty) equilibria in weakly
dominated strategies.

Prior to voting, each voter receives an informative but imprecise signal about
the state of nature. Signals are drawn independently from the same distribu-
tion. In this sense, the model is similar to Feddersen and Pesendorfer (1998,
1999), Myerson (1998), and Goertz and Maniquet (2011).5 For simplicity, we
assume that there are only three signals {a, b, c} = T. We denote by ϕz(x) the
probability that a voter receives signal x in state z. Ex ante, all voters are the
same. They only differ after receiving the private signals. Therefore, a voter’s
type is defined by the signal he or she receives.

Signals are informative about the state of nature in the sense of Myerson
(1998):

ϕx(x) > ϕz(x) ∀x 6= z ∈ k, x ∈ T. (1)

In the original Condorcet Jury Theorem and in, for example, Feddersen and Pe-
sendorfer (1998), signals are ’correct’ with a probability larger than 1/2. This
means that signal x is more likely in state x than any other signal. Myerson
(1998) relaxes this assumption. With Eq. (1), signal x is merely more likely
in state x than in any other state of nature. He shows that this condition is
sufficient to ensure the existence of an efficient equilibrium in a two-alternative
election if voters vote strategically and the number of voters converges to infinity.
The same is true for three-alternative elections (Theorem 1 below). However,
it does not preclude the existence of inefficient equilibria for two- or for three-
alternative elections.

If signals satisfy Eq. (1), there is no aggregate uncertainty in the population:
If all private information were public, the state of nature would be known and
voters would unanimously vote for the same alternative. So, we can say that
informational efficiency is satisfied if the elected alternative is the same as the
one that would be elected if all information were public.

There is no abstention in our model. This makes the comparison with Myer-
son (1998) more straightforward. However, this assumption is not consequential
for our main results on three alternatives (Theorems 1 and 3). In particular, the

4Notice that population uncertainty implies that a voter does not know precisely how many
other voters there are in the game. In models that allow for abstention, some of those other
voters might decide to abstain, while others decide to submit a particular ballot. Population
uncertainty is different from uncertainty about how many voters abstain.

5In a second set of papers on information aggregation in large elections, voters receive
signals from signal technologies that are differently precise (e.g., Feddersen and Pesendorfer
(1996, 1997), or Goertz and Maniquet (2009)).
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inefficient equilibrium in Theorem 3 would also exist with abstention because in
the equilibrium all voters receive positive expected utility from the particular
ballot they choose (which implies that they rather choose this ballot than any
other action including abstention (if it was allowed)).

Each voter votes for an alternative in K or mixes between different alter-
natives. The alternative with most votes is elected. We assume a particular
tie-breaking rule that is without loss of generality: Any tie involving alternative
A is broken in favor of A; a tie between alternatives B and C is broken in favor
B.

An economy E is a list (π, ϕ) that satisfies Eq. (1). For any expected size
of the population n, a strategy is a function σn : T → ∆(K), associating a
voter type with a probability distribution over K.6 Let σX

n (t) ≥ 0 denote the
probability that a voter of type t chooses to vote for alternative X . It has to
be true that

∑

X∈K
σX

n (t) = 1∀t ∈ T. Suppose that σ∗

n is a Bayesian Nash
equilibrium of the voting game given n expected voters. We are interested in
limit equilibria σ∗ such that σ∗

n → σ∗ as n → ∞.
Feddersen and Pesendorfer (1998) call an equilibrium strategy profile respon-

sive, if voters ”change their vote as a function of their private information with
positive probability” (p. 26). Following them, we call a limit equilibrium re-
sponsive if σ∗(t) 6= σ∗(t′) for all t 6= t′ ∈ T. In an unresponsive equilibrium, all
voters vote the same way, independent of the signal. We call a limit equilibrium
unresponsive if σ∗(t) = σ∗(t′) for all t 6= t′ ∈ T. If voters vote informatively,
they vote for their signal. Informative voting is responsive, but responsive vot-
ing is not necessarily informative. We call a limit equilibrium informative if
σX∗(x) = 1 for all X ∈ K and x ∈ T. If voters vote informatively, the election
outcome accurately reflects the private information held by the population. But
if signals satisfy only Eq. (1), but are not more likely correct than incorrect in
each state of nature (as the were in the original Condorcet Jury Theorem), in-
formative voting cannot be efficient. So, it is all the more surprising that it can
be an equilibrium.

2.2 Voting Behavior

Before we can prove our results, we need to consider how rational voters vote
in a large Poisson voting game. However, we will keep this section brief, discuss
only the necessary tools, and refer the reader to more elaborate references where
appropriate.

Recall that voters derive utility from the outcome of the election alone. A
rational voter needs to consider pivotal events in which his or her vote changes
the outcome of the election from a less preferred to a more preferred alternative.
Pivotal events depend on the particular ballot that a voter wants to submit and
on the tie-breaking rule. A voter who considers ballot B, for example, is pivotal
if alternative A has the same number of votes as alternative B and both have

6In Poisson games, strategies are defined by type. This corresponds to an assumption of
symmetric equilibria in games in which strategies are defined agent by agent.
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at least as many votes as C. If a voter considers ballot A, however, the voter
is pivotal if alternative B has one more vote than alternative A and alternative
C is sufficiently behind. Generally, denote by EXY

z the pivotal event in which
one additional vote for alternative X changes the outcome of the election from
alternative Y to alternative X in state z. And denote by pivXY

z the probability
of this pivotal event. The probability of a pivotal event depends on the under-
lying strategy profile. To save on notation, we will avoid the additional index it
it is not misleading. If a voter of type t considers voting for alternative Y rather
than alternatives X or Z, the expected utility of this voter can be written as

EU(Y |t) = −πx(t)pivY X
x + πy(t)pivY X

y + πy(t)pivY Z
y − πz(t)pivY Z

z , (2)

where πz(t) denotes the posterior probability of state z conditional on receiving
signal t. We need to evaluate equations such as Eq. (2) to construct strategies
of the voters. In large elections, the probability of a pivotal event converges
to zero, and so do entire equations such as Eq. (2). However, Myerson (2000)
shows that probabilities of pivotal events do not converge to zero with the same
speed. Events with probabilities that converge to zero slower than others are
infinitively more likely, and so events with probabilities that converge faster can
be ignored. The difference in the speed of convergence of pivotal probabilities
makes comparisons between expected utilities from different ballots meaningful.

Myerson (2000) proposes the magnitude as a measure for the speed of con-
vergence to zero of a probability in a large Poisson game. The magnitude µ of
the probability of a pivotal event is defined as

µ(EXY
z ) = limn→∞

log(pivXY
z )

n
,

where pivXY
z is the probability of event EXY

z given the underlying strategy
profile. Events with larger magnitude are infinitively more likely than events
with smaller magnitude. The magnitude of an event can be calculated by solving
a maximization problem (Magnitude Theorem (Myerson (2000))). For a more
detailed discussion of magnitudes, we would like to refer the reader to Myerson
(2000) or to Goertz and Maniquet (2009, 2011). Here, we will only highlight
the outcome of the maximization problem that gives us a formula according to
which we can calculate the magnitudes of the probabilities of pivotal events that
are relevant for Theorems 2 and 3.

Each pivotal event is characterized by a system of linear equations. Consider,
for example, pivotal event EBA

z . This event occurs if NA
z = NB

z ≥ NC
z , where

NX
z denotes the actual number of votes for alternative X in state z. The

magnitude of a pivotal event depends on the closeness of the race between the
alternatives, and also on the number of alternatives that are involved in the
race. In a three-alternative election, a pivotal event can either be the result of a
close race between two alternatives (Case 1 below) or between three alternatives
(Case 2 below). If there are only two alternatives, Case 2 below is irrelevant.

Case 1: The constraint on NC
z is not binding, i.e., NA

z > NC
z .

In this case, the magnitude of the probability of event EAB
z can be calculated

7



using the following formula, which is derived from the maximization problem
mentioned above:

µ(EBA
z ) = 2

√

λA
z λB

z − (λA
z + λB

z ), (3)

where λX
z denotes the expected fraction of votes for alternative X in state z. Of

course, event EBA
z is composed of many subevents of the form NA

z = NB
z ≥ NC

z

because there are many possible election outcomes in which a voter with ballot
B is pivotal. However, in a large Poisson game, it is true in the limit that the
probability of EBA

z is equal to the probability of its most likely subevent. The
solution of the maximization problem mentioned above not only gives us the
magnitude of the event, but also its most likely subevent. In the case of EBA

z ,
for example, the most likely subevent is election outcome ÑA

z = ÑB
z = n

√

λA
z λB

z

and ÑC
z = nλC

z . The number of votes for the two leading alternatives in the
most likely subevent is a function of the two expected fractions of votes. Given
the expected fractions of votes, one can easily verify whether the constraint on
the actual number of votes for alternative C is binding or not.

Case 2: The constraint on NC
z is binding, i.e., NA

z = NB
z = NC

z .
In this case, the magnitude of event EBA

z has to be calculated using a different
formula:

µ(EBA
z ) = 3

√

λA
z λB

z λC
z − (λA

z + λB
z + λC

z ). (4)

The magnitude of the event now depends on the expected fractions of votes
for all three alternative because the race involves all three alternatives. In this
case, the most likely sub-event of EBA

z is election outcome ÑA
z = ÑB

z = ÑC
z =

n 3

√

λA
z λB

z λC
z .

From Eqs. (3) and (4), it is clear that the magnitude of a pivotal event
depends on the expected closeness of the race between alternatives: The closer
the expected fractions of votes for the alternatives with most votes are, the more
likely is a pivotal event and the larger is its magnitude. Eqs. (3) and (4) suffice
to calculate all necessary magnitudes in the proofs of Theorems 2 and 3.

Generally, a voter wants to submit ballot X if the most likely pivotal event
occurs in state x. It can, however, be the case (as we will see in the proof of The-
orem 3) that events EXY

x and EXY
y have the largest and the same magnitude.

In this case, it is possible that both ballots X and Y yield negative expected
utility. Then the voter needs to consider pivotal events with lower magnitudes
to decide whether voting for alternative Z yields positive expected utility. If
yes, the voter will submit ballot Z instead.

Besides the two formulas to calculate magnitudes, we need two other results
from Myerson (2000) in the proof of Theorem 3. The first one is about the
actual probability of a pivotal event. Recall that each pivotal event has a most
likely subevent denoted by (ÑA

z , ÑB
z , ÑC

z )z∈k . As mentioned above, it is true
in a large Poisson game that

limn→∞pivXY
z =

∏

X∈K

e−nλX

z (nλX
z )ÑX

z

(ÑX
z )!

. (5)
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In addition, one can show that µ(EBA
z ) = µ(EAB

z ) (Offset-Theorem (Myer-
son (2000))). The intuition behind this result is that the most likely election
outcome leading to event EAB

z is only one vote different from the most likely
election outcome leading to event EBA

z . In a large Poisson game, the proba-
bilities of these two events are not very different, and so they have the same
magnitude. Indeed, one can use Eq. (5) to verify that the ratio of the probabil-
ities of these two events converges to a finite number different from zero (ratios
of events with different magnitudes converge to zero or to infinity).

The decision rules and tools outlined in this section suffice to evaluate any
strategy we have to consider in the remainder of the paper, so that we can now
prove our results.

3 Informational Efficiency with Three Alterna-

tives

Since all voters have common preferences and there is no aggregate uncertainty,
it is quite natural to call an equilibrium informationally efficient if the elected
alternative in this equilibrium is the same as the one that would be elected if all
private information was public. In an informationally efficient limit equilibrium,
this alternative is selected with probability converging to one in each state of
nature.

Definition 1. Informationally Efficient Equilibrium A limit equilibrium
σ∗ of an economy E is informationally efficient if for all X ∈ K, x ∈ k it is true
that Pσ∗(X |x) = 1.

Following Goertz and Maniquet (2009, 2011), we call a voting rule informa-
tionally efficient if all of its limit equilibria are informationally efficient for all
E . A voting rule is called weakly informationally efficient if it has at least one
efficient limit equilibrium for each E . In the presence of partisans (as in Goertz
and Maniquet (2009, 2011)), the simple plurality rule is not informationally
efficient and not weakly informationally efficient because there does not neces-
sarily exist an efficient equilibrium under this rule. Theorem 1 shows that the
simple plurality rule is weakly informationally efficient for three alternatives in
the absence of partisans because an efficient limit equilibrium always exists.

Theorem 1. There exists an informationally efficient equilibrium for any econ-
omy E with three alternatives if signals satisfy Eq. (1).

The proof is an adaptation of the proof of Theorem 2 in Goertz and Maniquet
(2011) to the current model.

Proof. The proof is divided into two steps. In step 1, we show that for any E
with three alternatives that satisfies Eq. (1) there exists a sequence of strategy
profiles σn such that limn→∞Pσn

(X |x) = 1 for all X ∈ K, x ∈ k. To guarantee
that limn→∞Pσn

(X |x) = 1 it is sufficient to verify that the expected fraction of
votes for alternative X in state x is larger than the expected fraction of votes
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for each of the other two alternatives. As n tends to infinity, the whole mass of
probability concentrates in arbitrarily close neighborhoods around the expected
events (Law of Large Numbers). In step 2, we deduce from step 1 that there
exists a limit equilibrium σ∗ that aggregates information efficiently.
Step 1: Consider an economy E with three alternatives that satisfies Eq. (1).
Let ǫa, ǫb, ǫc be small positive numbers such that

ǫaϕa(a) = ǫbϕb(b) = ǫcϕc(c).

Consider a sequence of strategy profiles with σX
n (x) = ǫx + 1−ǫx

3
, σY

n (x) = 1−ǫx

3
,

σZ
n (x) = 1−ǫx

3
∀x ∈ T and ∀X, Y, Z ∈ K. Recall that λX

z denotes the expected
fraction of votes for alternative X in state z. Given the strategy profile, the
expected fractions of votes for each alternative in state a are

λA
a = ϕa(a)(ǫa +

1

3
(1 − ǫa)) +

1

3
ϕa(b)(1 − ǫb) +

1

3
ϕa(c)(1 − ǫc),

λB
a = ϕa(b)(ǫb +

1

3
(1 − ǫb)) +

1

3
ϕa(a)(1 − ǫa) +

1

3
ϕa(c)(1 − ǫc),

λC
a = ϕa(c)(ǫc +

1

3
(1 − ǫc)) +

1

3
ϕa(a)(1 − ǫa) +

1

3
ϕa(b)(1 − ǫb).

It can easily be seen that limn→∞Pσn
(A|a) = 1 as n → ∞. Similarly, it can be

shown that limn→∞Pσn
(B|b) = 1 and limn→∞Pσn

(C|c) = 1 as n → ∞. Notice
that ǫx can always be chosen so that

∑

X∈K
σX(t) = 1∀t ∈ T. Also notice that

σn does not depend on n.
Step 2: Let σ∗

n be a sequence of strategy profiles that maximizes the ex-ante
utility of the voters. Such strategies exist, as they maximize a continuous func-
tion on a compact set. We claim that they are equilibrium strategies. Indeed,
the existence of a profitable deviation would contradict the fact that σ∗

n(t) max-
imizes expected utilities. Also, it is impossible that the expected utility from
σ∗

n(t) is lower than the expected utility from σn(t) as defined above. The ex-
pected utility of a voter of type t tends to 1 if alternative X is elected in state
x for all X ∈ K. Given that Pσn

(X |x) → 1 as n → ∞ for all X ∈ K, so that
the expected utility associated with σ tends to 1, and, given that, by construc-
tion, σ∗

n yields at least the same expected utility as σ, it has to be true that
Pσ∗

n
(X |x) → 1 as n → ∞ for all X ∈ K. So, limn→∞σ∗

n is a limit equilibrium
that aggregates information efficiently.

4 Informationally Inefficient Equilibria

To be able to compare the set of inefficient equilibria with two and with three
alternatives, we characterize the set of inefficient equilibria with two alternatives
and the necessary condition under which they exist (Theorem 2). There is only
one type of inefficient equilibrium with two alternatives. In this equilibrium, all
voters vote unresponsively because they all vote for the same alternative. And
they do so because they all believe the same state of nature to be more likely,

10



conditional on their signal. This is true because private signals are ’not partic-
ularly informative about the state of nature’, relative to the prior probabilities.
Or, in other words, in the inefficient equilibrium with two alternatives, all voters
vote for the same alternative because

πx(t) > πy(t) for x ∈ k, all y ∈ k \ {x}, all t ∈ T. (6)

Theorem 2. Suppose that there are two alternatives and that signals satisfy Eq.
(1). The only inefficient equilibrium that exists is unresponsive because all voters
vote for the same alternative. It only exists if signals and prior probabilities are
such that posterior beliefs satisfy Eq. (6).

Proof. Consider a two-alternative election with K = {A, B}, k = {a, b}, and
T = {a, b}. Recall from the proof of Proposition 1 that, by the Law of Large
Numbers, a limit equilibrium is informationally efficient if the expected frac-
tion of votes for alternative X is larger than the expected fraction of votes for
alternative Y in state x. Consider, without loss of generality, an inefficient equi-
librium in which alternative B is elected in state a, i.e., λB

a > λA
a .

The expected utility of voting for alternative Y , after receiving signal s,
can be written as EU(Y |s) = πy(s)pivY X

y − πx(s)pivY X
x . Consider now sig-

nal s′ so that state y is more likely with signal s′ than with signal s. Then
EU(Y |s′) = πy(s′)pivY X

y − πx(s′)pivY X
x . With Eq. (1), EU(Y |s′) ≥ EU(Y |s).

So, type b is never less likely to vote for alternative B than type a, and type a is
never less likely to vote for alternative A than type b. In addition, at most one
of the two types of voters mixes between the two alternatives (if, for example,
EU(Y |s) = 0, then necessarily EU(Y |s′) > 0). If type a mixes, then type b
votes for B, and if type b mixes, then type a votes for A. If, as assumed above,
alternative B is elected in state a, then it cannot be true that both types vote
for alternative A. Therefore, we have to consider four cases.

Case 1: Type a mixes and type b votes for B.
Suppose that in equilibrium, type a mixes with probabilities σ∗A(a) > 0 and
σ∗B(a) = 1 − σ∗A(a) > 0. The expected fractions of votes are

λA
a = σ∗A(a)ϕa(a), (7)

λB
a = (1 − σ∗A(a))ϕa(a) + ϕa(b), (8)

λA
b = σ∗A(a)ϕb(a), (9)

λB
b = (1 − σ∗A(a))ϕb(a) + ϕb(b). (10)

Because the equilibrium is inefficient, it must be true that (8)-(7)> 0. So, it is
also necessarily true that (10)-(9)>(8)-(7). With Eq. (3) we can conclude that
µ(EAB

a ) > µ(EAB
b ). This implies, among others, that EU(A|a) > EU(B|a),

which is a contradiction to the assumption that type a mixes.

Case 2: Type a votes for A and type b votes for B.
The expected fractions of votes are

λA
a = ϕa(a), (11)
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λB
a = ϕa(b), (12)

λA
b = ϕb(a), (13)

λB
b = ϕb(b). (14)

Because the equilibrium is inefficient, it must be true that (12)-(11)> 0. So,
it is also necessarily true that (14)-(13)>(12)-(11). Consequently, µ(EAB

a ) >
µ(EAB

b ), which implies that EU(A|b) > EU(B|b), a contradiction to the fact
that type b votes for B.

Case 3: Type a votes for A and type b mixes.
Suppose that in equilibrium, type b mixes with probabilities σ∗A(b) > 0 and
σ∗B(b) = 1 − σ∗A(b) > 0. The expected fractions of votes are

λA
a = ϕa(a) + σ∗A(b)ϕa(b), (15)

λB
a = (1 − σ∗A(b))ϕa(b), (16)

λB
b = (1 − σ∗A(b))ϕb(b), (17)

λA
b = ϕb(a) + σ∗A(b)ϕb(b). (18)

Because the equilibrium is inefficient, it must be true that 16)>(15). So, it is also
necessarily true that (17)-(18)>(16)-(15). Consequently, µ(EAB

a ) > µ(EAB
b ),

which implies that EU(A|b) > EU(B|b), a contradiction to the fact that type b
mixes.

Case 4: Type a votes for B and type b votes for B.
The expected fractions of votes are

λA
a = 0,

λB
a = 1,

λB
b = 1,

λA
b = 0.

In this case, the magnitudes of the pivotal events are all the same and are equal
to −1. The pivotal event of a voter considering voting for A is the event that one
other voter votes. This voter votes according to the proposed strategy σ∗B = 1.
The probability of this event, pivAB

a or pivAB
b , is the same in both states and

is, according to Eq. (5), equal to e−nn
1

. The pivotal event of a voter considering
voting for B is the event in which no other voter votes. The probability of this

event, pivBA
a or pivBA

b , is the same in both states and is equal to e−n

1
.

A voter of type a votes for B only if EU(B|a) > EU(A|a), or if

(πb(a) − πa(a))pivBA
a > (πa(a) − πb(a))pivAB

a .

However, since

limn→∞

pivBA
a

pivAB
a

= 0,
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a voter of type a only votes for B if 0 > (πa(a) − πb(a)). This implies that this
type of inefficient equilibrium only exists if

πa

πb

<
ϕb(a)

ϕa(a)
,

or if

πa(a) < πb(a). (19)

With Eq. (1), Eq. (19) implies that πa(b) < πb(b) and that a voter of type b
votes for B as well.

Therefore, the only possible inefficient equilibrium with two alternatives is the
equilibrium described in Case 4. In this equilibrium, all voters vote for the same
alternative because posterior beliefs satisfy Eq. (6).

Notice that the equilibrium described in Case 4 of the proof is different
from those types of equilibria in voting games without population uncertainty in
which all voters voting for the same alternative is always an equilibrium because
no voter is ever pivotal.7 With population uncertainty, each voter has a positive
probability of being pivotal. However, if all voters vote for the same alternative,
the probability of being pivotal is the same in state a and in state b. While the
probabilities of pivotal events usually convey valuable information about the
likelihoods of the different states of nature, this is not true here. So, voters rely
on their posterior beliefs to guide their voting behavior. If all voters consider the
same state of nature to be more likely, voting for the same alternative is clearly
an equilibrium. Myerson (1998) gives an example of an inefficient equilibrium
with two alternatives. Not surprisingly, it is of exactly the type described in
Theorem 2. Signals and prior probabilities (or, more precisely, posterior beliefs)
satisfy Eq. (6) and all voters vote for the same alternative.

The arguments in Case 4 of the proof of Theorem 2 can be applied to an
election with three alternatives as well. If all voters consider the same state
of nature most likely, the same type of unresponsive equilibrium also exists for
three alternatives.

Corrollary 1. Suppose that there are three alternatives and that signals satisfy
Eq. (1). There exists an unresponsive inefficient equilibrium in which all voters
vote for the same alternative if (ϕ, π) satisfy Eq. (6).

Any further arguments of the proof cannot be extended to three alternatives
because they rely on the fact that a voter of type b is never less likely to vote
for alternative B than a voter of type a and a voter of type a is never less likely
to vote for alternative A than a voter of type b. In addition, only one of the
two types mixes if there are only two alternatives. However, the same facts are
not true for three alternatives (see discussion below Theorem 3). So, we cannot

7These types of equilibria exist, for example, in Feddersen and Pesendorfer (1998) or in
Wit (1998).
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exclude the existence of other inefficient equilibria with three alternatives. In-
deed, in Theorem 3, we show by example that other types of inefficient equilibria
exists with three alternatives. In the particular equilibrium we present, voters
not only vote responsively, but (surprisingly) they vote informatively.

Theorem 3. Suppose that there are three alternatives and that signals satisfy
Eq. (1), but that Eq. (6) is not satisfied. There exists a responsive inefficient
equilibrium in which voters vote informatively.

We prove Theorem 3 by example. More general results (including a complete
characterization of the set of inefficient equilibria) for three alternatives are
currently beyond reach (see discussion below).

Proof. We construct E that satisfies Eq. (1) and for which there exists a limit
equilibrium σ∗ in which alternative A is not elected in state a. Consider E such
that πa = 1

3
, πb = 1

3
+ ǫ, πc = 1

3
− ǫ, and ǫ sufficiently small. Also assume

that ϕa(a) = 0.2, ϕa(b) = ϕa(c) = 0.4, ϕb(a) = 0.1, ϕb(b) = 0.5, ϕb(c) = 0.4,
ϕc(a) = 0.1, ϕc(b) = 0.4, ϕc(c) = 0.5. We claim that σ∗X(x) = 1 is a limit
equilibrium, but is not efficient. With σ∗, the expected fractions of votes are

λa
a = 0.2, λB

a = λC
a = 0.4,

λA
b = 0.1, λB

b = 0.5, λC
b = 0.4,

λA
c = 0.1, λB

c = 0.4, λC
c = 0.5.

We need to show that σ∗ is an equilibrium.
With the formulas from Section 2.2, the magnitudes of the most likely piv-

otal events are µ(EBC
b ) = µ(ECB

b ) = µ(EBC
c ) = µ(ECB

c ) = −5.75 ∗ 10−3 and
µ(EAB

a ) = µ(EAC
a ) = −0.034. Clearly, pivotal events in states b and c have a

larger magnitude than pivotal events in state a and are therefore more likely.
Given that the most likely pivotal events in states b and c all have the

same magnitude, we will also need to know the exact relationship between the
pivotal probabilities. Consider first events ECB

b and ECB
c . Recall from Sec-

tion 2.2 that the number of votes of the two leading alternatives in the most
likely subevent is a function of the expected fractions of votes of these two
alternatives. Since the expected fractions of votes for alternatives B and C
are symmetric in states b and c, the two most likely subevents take the form
(ÑA

b , ÑB
b , ÑC

b ) = (ÑA
c , ÑB

c , ÑC
c ) = (j, k, k), where k > j. This implies that

pivCB
b =

e−nλC

b (nλC
b )k

(k)!
∗

e−nλB

b (nλB
b )k

(k)!
∗

e−nλA

b (nλA
b )

(nλA
b )!

(20)

pivCB
c =

e−nλC

c (nλC
c )k

(k)!
∗

e−nλB

c (nλB
c )k

(k)!
∗

e−nλA

c (nλA
c )

(nλA
c )!

(21)

So, it is clear that pivCB
b = pivCB

c .
Now consider pivotal events EBC

b and EBC
c . For these two events, the most
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likely subevents, due to arguments similar as above, take the form (ÑA
b , ÑB

b , ÑC
b ) =

(ÑA
c , ÑB

c , ÑC
c ) = (j, k, k + 1), where k > j. This implies that

pivBC
b =

e−nλC

b (nλC
b )k+1

(k + 1)!
∗

e−nλB

b (nλB
b )k

(k)!
∗

e−nλA

b (nλA
b )

(nλA
b )!

(22)

pivBC
c =

e−nλC

c (nλC
c )k+1

(k + 1)!
∗

e−nλB

c (nλB
c )k

(k)!
∗

e−nλA

c (nλA
c )

(nλA
c )!

(23)

So, pivBC
c = pivBC

b ∗
λC

c

λC

b

. Because of the expected fractions of votes, it is slightly

(in terms of a large Poisson game) more likely in state c than in state b that
alternative C has one more vote than alternative B.

We can now prove that σ∗ indicated above is indeed and equilibrium.

Case 1: A voter receives signal b.
Considering only the most relevant pivotal events, EU(B|b) = πb(b)pivBC

b −
πc(b)pivBC

c and EU(C|b) = πc(b)pivCB
c − πb(b)pivCB

b . Consider first EU(B|b).
This ballot yields positive expected utility if πb(b)pivBC

b > πc(b)pivBC
c , or if

πb(b)λ
C
b > πc(b)λ

C
c , or if (1

3
+ ǫ)ϕb(b)λ

C
b > (1

3
− ǫ)ϕc(b)λ

C
c , which is true. Now

consider EU(C|b). This ballot yields negative expected utility if πc(b)pivCB
c <

πb(b)pivCB
c , or if πc(b) < πb(b), or if(1

3
− ǫ)ϕc(b) < (1

3
+ ǫ)ϕb(b), which is true.

So, this voter receives positive expected utility from ballot B and negative util-
ity from ballot C. In addition, the expected utility from ballot B is larger
than the expected utility from ballot A because of the ranking of pivotal events.
Therefore, voting B is a best response for this voter.

Case 2: A voter receives signal c.
Considering only the most relevant pivotal events, EU(B|c) = πb(c)pivBC

b −
πc(c)pivBC

c and EU(C|c) = πc(c)pivCB
c − πb(c)pivCB

b . We use similar argu-
ments as in Case 1 to show: EU(C|c) > 0 because πc(c) > πb(c), or because
(1

3
− ǫ)ϕc(c) > (1

3
+ ǫ)ϕb(c), which is indeed true for sufficiently small ǫ. And

EU(B|c) < 0 because πb(c)pivBC
b < πc(c)pivBC

c , which is indeed true for suffi-
ciently small ǫ. For similar reasons as above, a voter with signal c also does not
want to submit ballot A rather than ballot C. So, the best response of a voter
of type c is to vote C.

Case 3: A voter receives signal a.
Considering only the most relevant pivotal events, EU(B|a) = πb(a)pivBC

b −
πc(a)pivBC

c and EU(C|a) = πc(a)pivCB
c − πb(a)pivCB

b . Clearly, EU(B|a) < 0
because πb(a)λC

b < πc(a)λC
c , which is indeed true for sufficiently small ǫ. And

EU(C|a) < 0 because πc(a) < πb(a), which is true as well. So, ballots B and
C both yield negative expected utility for this voter. Recall from Section 2.2
that a voter for whom the consideration of the most likely pivotal events leads
to negative expected utility must consider the remaining ballot A. With the
ranking of magnitudes, EU(A|a) = πa(a)pivAB

a + πa(a)pivAC
a > 0. The best

response of a voter of type a is to vote for A.
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In the equilibrium presented in the proof of Theorem 3, voters vote informa-
tively. In this equilibrium, the most likely pivotal events occur in states b and
c, and they have the same magnitude, so that their probabilities are not too
different in a large Poisson game. So, being pivotal is no overwhelming evidence
to help discriminate between states b and c, and voters also need consider their
posterior beliefs about the states of nature πx(z) as additional information. Re-
ceiving signal b is stronger evidence for state b, so a voter with signal b votes
for alternative B. Similarly, a voter with signal c votes for C.

According to her posterior beliefs, a voter with signal a believes states b
and c to be almost equally likely. This type of voter finds him- or herself in a
situation similar to the swing voter’s curse (Feddersen and Pesendorfer (1996)).
Both ballots B and C lead to the wrong outcome almost as likely as to the right
outcome. So, this voter considers ballot A instead because it yields positive
expected utility.

Because voters vote informatively, but signal a is less likely in state a than
signals b or c, the equilibrium is inefficient. However, voters with signals b and
c do not consider state a because they are less likely to be pivotal in this state
than in both states b and c. This type of coordination failure cannot happen
with two alternatives, so a similar inefficient equilibrium does not exist.

Notice also that in the equilibrium the expected utilities of voters from vot-
ing for the respective ballots is always larger than zero, so the same equilibrium
would also exist if one allowed for abstention. Of course, the economy in the
proof also has an efficient equilibrium according to Theorem 1.

If voters vote informatively, the voting outcome accurately reflects the pri-
vate information held by the population. But since Eq. (1) does not require
that signals are more likely correct than incorrect, an informative vote is not
desirable because it cannot efficient. Nevertheless, we have just shown that with
three alternatives, it can be a Nash equilibrium.

The inefficient equilibrium in proof is quite different from those in Goertz and
Maniquet (2009) and Goertz and Maniquet (2011). In their inefficient equilib-
ria, voters vote responsively, but not informatively. In addition, these equilibria
are very particular because voters with common preferences have drastically dif-
ferent posterior beliefs about the states of nature (some consider certain states
of nature to occur with zero probability, while others consider the same states
as likely) that lead to coordination failures among them. The inefficient equilib-
rium above shows that posterior beliefs do not need to be drastically different
and that we do not need partisan voters to find coordination failures among
voters with common preferences if there are more than two alternatives.

Unfortunately, more general results for elections with three alternatives are
currently beyond reach. Recall, for example, Theorem 2, a general theorem
about two-alternative elections. In the proof, we use the argument that voter
type x is never less likely to vote for alternative X than type y, and that at
most one type mixes. The same statements cannot be made for three alterna-
tives. The formal reasoning for this is taken from Goertz and Maniquet (2011).
Consider, similar to the argument the proof of Theorem 2, a voter voting for
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alternative Y when receiving signal s. Then

πy(s)pivY X
y + πy(s)pivyY Z − πx(s)pivY X

x − πz(s)pivY Z
z ≥ 0. (24)

Now consider signal s′, which makes state y more likely. Then we cannot con-
clude that

πy(s)pivY X
y + πy(s)pivyY Z − πx(s)pivY X

x − πz(s)pivY Z
z ≥ 0. (25)

With three alternatives, it is not true that πy(s) < πy(s′) leads to both πx(s) >
πx(s′) and πz(s) > πz(s

′). Therefore, Eq. (25) can very well be less than zero
(in which case type s′ is less likely to vote for alternative Y than type s); or
both Eqs. (24) and (25) can be zero, so that both types mix.

The fact that strategies lose a certain monotonicity in signals is detrimental
for the general analysis of elections with three alternatives. Without any lead
about general properties of strategies, it is very hard to create constructive
proofs and not likely that one can prove general results.

5 Conclusion

This paper shows that new types of coordination failures arise in elections with
more than two alternatives. These inefficiencies are caused by failures to coor-
dinate votes if voters with common preferences have imprecise private signals
about the state of nature.

There are efficient equilibria in elections with both two and three alter-
natives. However, with two alternatives, there is only one type of inefficient
equilibrium in which all voters vote unresponsively (for the same alternative)
because they consider the same state of nature to be more likely and therefore
disregard their private signals. The same type of inefficient equilibrium also
exists with three alternatives. On the other side of the spectrum, there are also
inefficient equilibria with three alternatives in which voters vote entirely infor-
matively (only for their signal). The voting outcome now correctly reflects the
private information held by the electorate, but the voting outcome is inefficient
nevertheless.

While more general are currently beyond reach (discussion in Section 4),
there can be no doubt that increasing the number of alternatives beyond two
increases the number (and types) of possible coordination failures between vot-
ers immensely and that inefficient equilibria become more and more common
(almost certainly others besides those in Theorems 2 and 3 exists). This should
in particular be true for environments in which voters do not have dichotomous
preferences.
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