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1. Introduction

In resource economics two intertemporal allocation rules have attracted particular

attention: the Hotelling rule and the Hartwick rule. The Hotelling rule provides the

fundamental no-arbitrage condition that every efficient resource utilisation path has to meet.

In its basic form it indicates that along such a path the price of an exhaustible resource has to

grow with a rate that equals the interest rate. Although the Hotelling rule is in principle

relevant for all models of non-renewable resource use, its simplest application is that of a

cake-eating economy where consumption results from depleting a given stock of natural

capital. The Hartwick rule, in contrast, was formulated for a production economy where

consumption at any point of time t  depends not only on the extraction of natural capital but

also on the stock of manmade capital available at t . In such a Dasgupta-Heal-Solow model

Hartwick (1977) showed that, given the Hotelling rule as condition for local efficiency, a zero

value of aggregate net investment will entail constant consumption over time. This result was

the heart of what later on was called the Hartwick rule.

Hartwick’s result became so attractive because it gave an extension to a basic message of

neoclassical resource economics (cf. Solow (1974)): Exhaustible natural resource inputs can

be substituted by manmade capital in a way that depleting these natural resources does not

harm future generations. Substitutability between natural and manmade capital thus, in spite

of the exhaustibility of natural resources, may allow for equitable consumption for all

generations, and Hartwick (1977) seemed to have found the investment policy that would

bring about sustainability in this way.

In the meantime, however, doubts have been raised concerning the true status of

Hartwick’s results and thus of the Hartwick rule. So following Asheim (1994) and Pezzey

(1994) it has been claimed that the Hartwick rule is, contrary to the first impression, not a

prescriptive but rather a descriptive rule (cf. Toman, Pezzey & Krautkraemer (1995, p. 147)).

But the wording of the investment policy underlying the Hartwick rule undoubtedly gives a

prescription. And even if one tends to see the Hartwick rule as a description, it is not exactly

clear what is described by it. So more than 20 years after Hartwick’s pioneering work

everyone in resource economics will have some understanding of the Hartwick rule, but

astonishingly there is no real consensus on what the Hartwick rule in fact is. This is partly a

semantic problem, which can be solved by more precise formulations, including all specific

assumptions. Beyond that, however, the ambiguous status of the Hartwick rule has also led to

false beliefs concerning the material content of the rule. In order to give a correct
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interpretation of the Hartwick rule, we will confront two myths on this rule that are pertinent

in the literature.

Myth 1: The Hartwick rule indicates sustainability.

This myth was already suggested by Hartwick (1977, pp. 973–974) himself when he stated

that “investing all net returns from exhaustible resources in reproducible capital … implies

intergenerational equity”.

Myth 2: The Hartwick rule requires substitutability between manmade and natural capital.

This myth is implicit in many contributions on the Hartwick rule. An explicit formulation

can, e.g., be found in Spash & Clayton (1997, p. 146): “... the... Hartwick rule depends upon

man-made capital ... being a substitute for, rather than a complement to, natural capital.”

We will demonstrate that neither of these two assertions is true, showing that an adequate

understanding of the Hartwick rule is still pending. The structure of our argument will be as

follows: After introducing the general technological framework in section 2, we give some

semantic clarifications in section 3 where we, e.g., distinguish between the Hartwick

investment rule, the Hartwick result and its converse. In sections 4 and 5 we will separately

deal with the two myths described above. In section 4 we use the Dasgupta-Heal-Solow

model to illustrate that consumption may exceed or fall short of the maximum sustainable

level even if capital management is guided by the Hartwick investment rule in the short run.

In section 5 we show how the Hartwick rule applies in models with no possibility for

substitution between manmade and natural capital. On this basis we then try in section 6 to

give an interpretation of the Hartwick rule that indicates in which sense an adequately

conceived Hartwick rule can be used as a prescription or whether it should be seen as a

description. We leave some technical derivations for an appendix, where we also refer to the

interesting, but somewhat inaccurate, analysis by Hamilton (1995).



4

2. The technological setting

To concentrate on issues that are central to this paper (and to the analysis of the Hartwick

rule), we will make the following simplifying assumptions:

• Constant population. We will assume that each generation lives for one instance; i.e.,

generations are not overlapping nor infinitely lived, implying that any intertemporal issue

is of an intergenerational nature. Distributional issues within each generation will not be

discussed.

• Constant technology. This means that any technological progress is endogenous, being

captured by accumulated stocks of knowledge. Hence, the technology is time-

independent, meaning that there is no exogenous technological progress in the sense of a

time-dependent technology.

The analysis will allow for multiple capital goods since it is evident that the central question

motivating the Hartwick rule — “is our accumulation of man-made capital sufficient to make

up for the decreased availability of natural capital?” — is less interesting in a setting with one

aggregate capital good.

In the real world environmental externalities are not always internalised. This is one of

many causes which prevent market economies from being fully efficient. Furthermore, for

many capital stocks (e.g. stocks of natural and environmental resources or stocks of

accumulated knowledge) it is hard to find market prices (or to calculate shadow prices) that

can be used to estimate the value of such stocks. In the present setting, we will abstract from

these problems by assuming the

• existence of an intertemporal competitive equilibrium that leads to efficiency and that

provides market prices for all capital goods.

Such an assumption is needed for a discussion of the Hartwick rule, which compares the

market value of the net investments in different capital goods.

Following Dixit, Hammond & Hoel (1980) (henceforth referred to as DHH), we assume

that the vector of consumption goods at time t, c(t), the vector of capital stocks at time t, k(t),

and the vector of investments at time t, � ( )k t , is feasible if ))(),(),(( ttt kkc �  is in the set of

feasible triples �. Here, c(t) includes both ordinary material consumption goods (measured as

positive quantities) and labour inputs (measured as negative quantities), as well as

environmental amenities, while k(t) comprises not only different kinds of manmade capital,

but also stocks of natural capital and stocks of accumulated knowledge (thereby capturing
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endogenous technological progress). Since � is time-independent, the analysis does not

allow for exogenous technological progress. We will assume that � is a closed and convex

set that satisfies: (a) Capital stocks are non-negative ( �∈),,( kkc �  implies k ≥ 0) and (b) free

disposal of investment flows ( �∈),,( kkc �  implies �∈′),,( kkc �  if � �′ ≤k k ). The latter

assumption means e.g. that stocks of environmental resources are considered instead of

stocks of pollutants. Lastly, the vector of consumption goods generates utility, u(t) = u(c(t)),

where u is a time-invariant, strictly increasing, concave, and differentiable function.

Given the assumption of an intertemporal competitive equilibrium, there are, at each t,

prices for consumption and capital goods as well as utility. Let p(t) denote the present value

prices of the consumption goods at time t, let q(t) denote the vector of present value prices of

the capital stocks at time t, and let λ(t) denote the present value price of utility (i.e. the utility

discount factor) at time t. The term ‘present value’ reflects that discounting is taken care of

by the prices. If λ(t) is an exponentially decreasing function — i.e. λ(t) = λ(0)e−δt — then

there is one constant (utility) discount rate: =−= )()( tt λλδ �  ( )∫
∞
t dsst )()( λλ . If not, there is

a term structure of discount rates. The instantaneous discount rate is )()()(0 ttt λλδ �−= ,

while the infinitely long-term discount rate is ( )∫= ∞
∞ t dsstt )()()( λλδ .

The notion of a competitive path can now be defined.

DEFINITION 1.  The path ∞
=

∗∗∗
0))(),(),(( tttt kkc �  is competitive at present value prices

∞
=0))(),(( ttt qp  and positive utility discount factors ( ( ))λ t t=

∞
0  if, at each t,

C1 instantaneous utility is maximized  (i.e. c∗ (t)  maximizes  λ(t)u(c) − p(t)c),

C2 instantaneous profit is maximized  (i.e. ))(),(),(( ttt ∗∗∗ kkc �  maximizes

kqkqp )()()( ttct �

� ++  subject to �∈),,( kkc � ).

Refer to C1 and C2 as the competitive conditions.

Why is kqkqcp )()()( ttt �

� ++  instantaneous profit? By writing P(t) = )()( tt λp  and Q(t)

= )()( tt λq  for the consumption and capital prices in terms of current utility, we have that

)(tQ�  = ( ) dtttd )()( λq  = ( )( ))()()()()()( tttttt λλλλ qq �

� −  = ( ) )()()()( 0 tttt Qq δλ +� , which

amounts to a no-arbitrage condition. In particular, it implies that the Hotelling rule will be

satisfied in resource applications. It follows that ( ) ( ) ( )kqkqcp )()()()()()( tttttt λλλ �

� ++  =

( )kQQkQcP )()()()()( 0 tttrtt �� −−+ , where kQcP �)()( tt +  is the current value of production

and ( )kQQ )()()(0 ttt �−δ  is the current cost of holding capital.

It turns out that every competitive path is efficient given that the sum of discounted

utilities is finite and a capital value transversality condition holds.
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DEFINITION 2.  The competitive path ∞
=

∗∗∗
0))(),(),(( tttt kkc �  is regular at present value prices

∞
=0))(),(( ttt qp  and positive utility discount factors ( ( ))λ t t=

∞
0  if,

R1 ∫
∞ ∗

0
))(()( dttut cλ  exists (and is finite),

R2 q(t)k∗ (t) → 0  as  t → ∞.

PROPOSITION 1. If ∞
=

∗∗∗
0))(),(),(( tttt kkc �  is regular at present value prices ∞

=0))(),(( ttt qp  and

positive utility discount factors ( ( ))λ t t=
∞

0 , then ∞
=

∗∗∗
0))(),(),(( tttt kkc �  maximizes

∫
∞ ∗

0
))(()( dttut cλ  subject to �∈))(),(),(( ttt kkc �  for all t and k(0) = k0.

Proof. Assume �∈))(),(),(( ttt kkc �  for all t and k(0) = k0. Then

( )∫ ∗−
T

dttutut
0

))(())(()( ccλ  ≤ ( )∫ ∗−
T

dtttt
0

)()()( ccp  (by C1)

≤ ( ) ( )[ ]q k k q k k( ) � ( ) � ( ) � ( ) ( ) ( )t t t t t t dt
T ∗ ∗− + −∫0

 (by C2)

= ( )( )[ ]∫ −∗T
dtdttttd

0
)()()( kkq  = q(T)(k∗ (T) − k(T)) − q(0)(k∗ (0) − k(0))

≤ q(T)k∗ (T)

since k∗ (0) = k(0) = k0, q(T) ≥ 0 (by free disposal of investment flows) and k(T) ≥ 0. By R1

and R2 the result follows.   �

Given that the utility discount factors are positive, this means that any competitive path

satisfying the regularity conditions R1 and R2 is efficient.

For the analysis of the Hartwick rule, the following lemma turns out to be useful.

LEMMA 1. (i) If ∞
=

∗∗∗
0))(),(),(( tttt kkc �  is a competitive path with c∗ (t) interior, then, for each

consumption good i, )(/))(()( * tpctut ii =∂∂ cλ . (ii) (DHH) If � is smooth and
∞
=

∗∗∗
0))(),(),(( tttt kkc �  is a competitive path, then ( ) 0)()()()( =+ ∗∗ dtttdtt kqcp �

� .

Proof. (i) follows directly from C1. (ii) Since � is time-invariant, C2 implies that

)()()()()()( ttttttttt ∆++∆++∆+ ∗∗∗ kqkqcp �

�  ≤ )()()()()()( tttttt ∗∗∗ ++ kqkqcp �

� .

Divide by ∆t, and let ∆t go to zero both from the right and from the left. This yields

0 = )()()()()()( tttttt ∗∗∗ ++ kqkqcp �

�

��

�  = ( ) dtttdtt )()()()( ∗∗ + kqcp �

� ,

where differentiability follows since � is smooth.   �

Hence, as pointed out by Aronsson et al. (1997, p. 105), if there is no exogenous

technological progress and ∞
=

∗∗∗
0))(),(),(( tttt kkc �  is a competitive path satisfying that
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q k( ) � ( )T T∗  → 0 as T→∞, then ∫
∞ ∗∗ =

t
dssustt )()()()( �

� λkq . Thus, the value of net investments

at time t measures the present value of future changes in utility. The investment value

transversality condition, q k( ) � ( )T T∗  → 0 as T→∞, needed for this result, follows from the

optimality (and hence, from the regularity) of the path if there is a constant discount rate; i.e.

if λ(t) = λ(0)e−δt (cf. Dasgupta & Mitra, 1999). However, if λ(t) is not an exponentially

decreasing function, then regularity will not imply this condition.

It will be instructive for the discussion that follows to introduce three different

technologies that fit into the framework above. Each of the three models has only one

consumption good, which thereby becomes an indicator of the quality of life. This means that

the competitive condition C1 becomes less important. The first has also only one capital

good, while the two others are two capital good models.

1. The Ramsey model. Let the set of feasible triples be given by ))(()()( tkftktc ≤+ � : The

stock of the aggregate capital good (k(t)) leads to production f(k(t)) that can either

contribute to the quality of life of generation t or be used to accumulate capital. We will

assume that the production function f is twice continuously differentiable, with f′ > 0 and

f″ < 0. Furthermore, f(0) = 0, ∞=′→ )(lim 0 kfk , and 0)(lim =′∞→ kfk . It will turn out to

be interesting to discuss issues relating to the Hartwick rule even in the setting of the

Ramsey model.

In the remaining two models with two capital goods, the one capital good will be

interpreted as manmade capital ( )(tkm ) and the other as natural capital ( )(tkn ). The

production ))(),(( tetkF m , that can either contribute to the quality of life of generation t or be

used to accumulate manmade capital, depends both on the stock of manmade capital and the

extraction (e(t)) of natural capital: ))(),(()()( tetkFtktc mm ≤+ � . The extraction of natural

capital is counteracted by natural renewal ))(( tkg n  that depends on the stock of natural

capital: ))(()()( tkgtkte nn ≤+ � . If there is no natural renewal (i.e. nk  is a non-renewable

exhaustible resource) and the production function F is of an ordinary neoclassical type, then

we obtain a model investigated by Dasgupta & Heal (1974, 1979) and Solow (1974):

2. The Dasgupta-Heal-Solow (DHS) model. We will assume that F is linearly homogenous

and twice continuously differentiable w.r.t. both arguments, with 0>mF , 0>eF ,

0<mmF , 0<eeF , and .0>= emme FF  Furthermore, ∞=→ ),(lim 0 ekF mee , and

0),(lim =∞→ ekF mee  hold for any 0>mk , and ∞=→ ),(lim 0 ekF mmkm
, and

0),(lim =∞→ ekF mmkm
 hold for any 0>e . Finally, we assume that the resource share of

total production, ),(/),( ekFeekF mme , is bounded away from zero by some b. A Cobb-
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Douglas function, ba
mm ekekF =),( , with 0 < b < a + b = 1, satisfies all these properties. If,

in addition, b < a, then it follows from an analysis by Solow (1974) that a regular (hence

efficient) path with constant and positive consumption exists, as long as the initial stocks,

)0(mk  and )0(nk , are both positive. Such a path is feasible by letting the increasing stock

of manmade capital substitute for the dwindling extraction of natural capital. The DHS

model is of course the setting in which Hartwick (1977) first formulated the rule bearing

his name.

Another model, which is a variant of a model appearing in Asheim (1978) and Hannesson

(1986), is obtained by assuming a positive regenerative capacity for natural capital, and by

assuming that the extraction of natural capital is limited by the extractive capacity.

3. The complementarity model. Let the regenerative capacity for natural capital be given by

a logistic growth model, ))()(())(( tkktktkg nnnn −= , and let the extractive capacity be

given by ))(( tkf m , where f is twice continuously differentiable, with f′ > 0 and f″ < 0,

and satisfies f(0) = 0, ∞=′→ )(lim 0 kfk , and 0)(lim =′∞→ kfk . Since the extraction of

natural capital is limited by the extractive capacity, it follows that

)}()),((min{))(),(( tetkftetkF mm = . As long as production is smaller than the maximal

level of natural renewal, this model behaves as the Ramsey model. However, when one

tries to sustain production above such a level, this model has interesting features to which

we will return in Section 5.

The two technologies with heterogeneous capital — models 2 and 3 — have the following

feature in common: The stock of manmade capital is to a certain degree complementary to

the extraction of natural capital. In the first of these technologies (the DHS model) the

marginal productivity of manmade capital is positively related to the extraction of natural

capital. In model 3, the complementarity is, however, more extreme: Manmade capital can

only be used for extracting natural capital. With such extreme complementarity, the

accumulation of manmade capital is a mixed blessing. Following Richard Norgaard’s (1991)

analogy: if the livelihood of a society depends on the harvesting of a forest, future

generations can gain more if the current generation invests by letting trees grow rather than

accumulating saws.

It can be shown that these models essentially satisfy the general technological

assumptions we made above when introducing the setting of DHH.
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3. What is the Hartwick rule?

The term ‘the Hartwick rule’ has been used in different meanings. E.g. DHH in their first

paragraph (p. 551) associated this term with both the investment rule of keeping “the total

value of net investment under competitive pricing equal to zero” and the result that following

such a investment rule “yields a path of constant consumption”. In particular, it will be

clarifying to differentiate between

•  the Hartwick investment rule – which we will associate with the prescription of holding

the value of net investments constant and equal to zero – and

•  the Hartwick result – which we will associate with the finding that following such a

prescription leads to constant utility.

Both ‘the Hartwick investment rule’ and ‘the Hartwick result’ require that the economy

satisfies the competitive conditions C1 (when there are multiple consumption goods) and C2

along the interval of time in question. This means that there will, at any time, be a vector of

present value prices of capital, q(t). Furthermore, the vector of capital stocks, )(* tk , will be

superscripted by a star, to indicate that the competitive conditions apply. The term ‘(present)

value of net investments’ as used above corresponds to q k( ) � ( )*t t⋅ . We can now state the

definitions that we will suggest, present the results that follow from the analysis of Section 2,

and provide a partial review of the relevant literature.

DEFINITION 3. Say that the Hartwick investment rule is followed if q k( ) � ( )*t t⋅  is constant and

equal to zero.

PROPOSITION 2. (The Hartwick result; Hartwick (1977) and later contributions.) If the

Hartwick investment rule is followed in an economy with constant population and constant

technology, then utility is constant (provided that the assumptions of Lemma 1 are satisfied).

Proof. Assume that C1, C2, and 0)()( * =⋅ tt kq �  is satisfied for all ),( 21 ttt ∈ . Then

)()( tut �λ  = )()( * tt cp �     (by Lemma 1(i))

= ( ) dtttd )()( ∗− kq �     (by Lemma 1(ii))

= 0    (since 0)()( * =⋅ tt kq � )

for all ),( 21 ttt ∈ .   �

DHH made the observation that the Hartwick result can be generalised. For the statement

of this more general result we first need to define ‘the generalised Hartwick investment rule’.
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DEFINITION 4. Say that the generalised Hartwick investment rule is followed if )()( * tt kq �⋅  is

constant.

PROPOSITION 3. (The generalised Hartwick result, DHH.) If the generalised Hartwick

investment rule is followed in an economy with constant population and constant technology,

then utility is constant (provided that the assumptions of Lemma 1 are satisfied).

Proof. The proof of Proposition 2 applies even if ν=⋅ )()( * tt kq �  for all ),( 21 ttt ∈ .   �

DHH posed the question of whether the converse of the Hartwick result can be

established. It is instructive to observe that the converse of the (ordinary) Hartwick result is

not correct.

INCORRECT CLAIM. (The converse of the Hartwick result.) If a path satisfying the competitive

conditions and yielding constant utility is followed in an economy with constant population

and constant technology, then the Hartwick investment rule is followed (provided that the

assumptions of Lemma 1 are satisfied).

Counter-example. Consider the Ramsey model. Here the competitive condition C2 implies

that ))(()()( *** tkftktc =+ � , p(t) = q(t), and )())(()( * tqtkftq �−=′ . Hence,

( ) dtkqdkqkqkkfqkqcqcp ******** )( ��

�

�����

�� −=−−=′+−== ,

where the time-dependency has been surpressed. Hence, 0)(* =tc�  for all ),( 21 ttt ∈  is

compatible with 0)()( * ≠=νtktq �  for all ),( 21 ttt ∈ . In particular, if ν < 0, then

))(()(** tkftcc >= , which is feasible in the short run.

However, the converse of the generalised Hartwick result can be established:

PROPOSITION 4. (The converse of the generalised Hartwick result, DHH.) If a path satisfying

the competitive conditions and yielding constant utility is followed in an economy with

constant population and constant technology, then the generalised Hartwick investment rule

is followed (provided that the assumptions of Lemma 1 are satisfied).

Proof. Since C1 and C2 imply that )()( tut �λ  = )()( * tt cp �  = ( ) dtttd )()( ∗− kq � , as shown in the

proof of Proposition 2, it follows from the constancy of q k( ) � ( )*t t⋅  that utility is constant.   �

Applying these results at all times along infinite horizon paths yields some observations

concerning the relationship between the (generalised) Hartwick result and the concept of
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sustainable development, as a precursor to the discussions of sections 4 and 5. For the

statement of these results, we introduce the notion of

•  the Hartwick rule for sustainability,

and say that a utility path ∞
=0)}({ ttu  is egalitarian if utility is constant for all t.

PROPOSITION 5. (The Hartwick rule for sustainability.) If the Hartwick investment rule is

followed for all t in an economy with constant population and constant technology, then the

utility path is egalitarian (provided that the assumptions of Lemma 1 are satisfied).

Proof. This is an immediate consequence of the Hartwick result.   �

PROPOSITION 6. (The generalised Hartwick rule for sustainability.) If the generalised

Hartwick investment rule is followed for all t in an economy with constant population and

constant technology, then the utility path is egalitarian (provided that the assumptions of

Lemma 1 are satisfied).

Proof. This is an immediate consequence of the generalised Hartwick result.   �

One may wonder whether Proposition 6 is an empty generalisation of Proposition 5, in

the sense that any feasible competitive path with constant utility does in fact satisfy the

(ordinary) Hartwick investment rule. This is not the case since in the Ramsey model there

exist feasible competitive paths with constant utility for which 0)()( * >=νtktq �  for all

),0( ∞∈t , provided that ))0(()0( kfq<ν . Then ))(()(** tkftcc <=  for all t, so that the path

is inefficient since capital is over-accumulated. It is, however, true that the (ordinary)

Hartwick investment rule must be satisfied for all t if the egalitarian utility path is efficient.

PROPOSITION 7. (The converse of the Hartwick rule for sustainability, DHH, Withagen &

Asheim (1998).) If the utility path is egalitarian along a regular path in an economy with

constant population and constant technology, then the Hartwick investment rule is followed

for all t (provided that the assumptions of Lemma 1 are satisfied).

Proof. The proof of Withagen & Asheim (1998) is too extensive to be reproduced here. The

result means that a regular path with constant utility satisfies q k( ) � ( )T T∗  → 0 as T→∞.

Combining this transversality condition with the results of Lemma 1 means that

∫
∞ ∗∗ =

t
dssustt )()()()( �

� λkq , as already noted in the discussion following the Lemma. From

this it can be easily seen that the Hartwick investment rule is satisfied for all t if the utility

path is egalitarian.   �
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The fact – shown above – that there exist egalitarian, but inefficient, utility paths in the

Ramsey model, means that Proposition 7 does not hold if regularity is not assumed. If only

the competitive conditions C1 and C2 are assumed to hold at any t, then a weaker result

obtains:

PROPOSITION 8. (The converse of the generalised Hartwick rule for sustainability, DHH) If

the utility path is egalitarian along a competitive path in an economy with constant population

and constant technology, then the generalised Hartwick investment rule is followed for all t

(provided that the assumptions of Lemma 1 are satisfied).

Proof. This follows from the converse of the generalised Hartwick result.   �

In the following two sections we will discuss the implications of these results along two

dimensions. Firstly, we note that these results are weak since they are based on strong

premises involving the properties of the entire paths. In section 4 we therefore pose the

question: can stronger results be obtained by weakening the premises – i.e. by relating

sustainability of a path to only the current value of net investment – thereby addressing Myth

1.  Secondly, in section 5 we discuss whether the Hartwick rule for sustainability requires

substitutability between manmade and natural capital, thereby addressing Myth 2.

4. Myth 1: The Hartwick investment rule indicates sustainability

What makes Hartwick’s investment rule so appealing in the framework of resource

economics is its alleged relation with intergenerational fairness. Hartwick himself purported

to have found a prescription how “to solve the ethical problem of the current generation

shortchanging future generations by ‘overconsuming’ the current product, partly ascribable to

current use of exhaustible resources” (Hartwick (1997, p. 972)). By invoking Hartwick’s

result the Hartwick investment rule then seemed to provide a sufficient condition for

intergenerational justice. Although Hartwick’s result is undoubtedly correct, this

interpretation is not quite precise because the assumptions underlying it are not completely

worked out. What in fact is not correct is to draw a close link between Hartwick’s result and

intergenerational equity without taking notice of additional conditions. There are more or less

sophisticated versions of this precipitate interpretation.
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INCORRECT CLAIM. (trivial version): If the competitive conditions C1 and C2 hold and

q k( ) � ( )*t t⋅  is non-negative for all ),( 21 ttt ∈  in an economy with constant population and

constant technology, then the constant utility level realised during the interval ),( 21 tt  is

sustainable forever.

Whether this claim is correct or incorrect crucially depends on the underlying technology.

Even in this simplistic version, which combines short-term considerations with long-term

results, the claim is correct for, e.g. the Ramsey technology. To see this, note that in the

Ramsey technology the utility level c  that can be sustained forever from time t on is equal to

)))((()( tkfucu = , where )(tk  is the stock of capital at t . Having non-negative value of net

investment at t , i.e. 0)()( * ≥tktq � , it follows from the technological constraint that

0)()())(( *** ≥≥− tktctkf �  or )()))((())(( ** cutkfutcu =≤ , which proves the claim.

The claim is, however, not true in the DHS model. To give a counter-example, choose

any consumption level *c  exceeding the maximum consumption level c , which can be

sustained for the underlying production function F, and the given stocks of manmade and

natural capital )0(mk  and )0(nk . Then consider the path where consumption is held constant

at *c  for some interval during which the competitive condition C2 is fulfilled and the

Hartwick investment rule is followed, i.e. at any t  in this interval *** ))(),(( ctetkF m −  =

)())(),(( *** tetetkF me  has to hold. Such a path is uniquely determined as demonstrated in the

Appendix (cf. Lemma A3). But as cc >*  the consumption level *c  can be maintained only

for an interval of finite length. At some T < ∞  the stock of the natural capital is exhausted,

and the sum of future consumption is limited to )(* Tkm , as continued production is not

feasible without resource extraction. Hence, during the interval ),0( T  the competitive

condition C2 is satisfied (while C1 does not apply) and the value of net investments is non-

negative; still, the constant consumption during this interval is not sustainable forever.

Hartwick (1977) does not say much about efficiency requirements going beyond

competitiveness conditions, i.e. the Hotelling rule. In this context he only remarks that the

entire stock of the exhaustible resource has to be used up in the long run in order to achieve

an optimal solution. But it does not seem appropriate to neglect efficiency requirements going

beyond competitiveness in looking for counter-examples. The path described above for the

DHS model is in fact not efficient. Even the Hotelling rule is not fulfilled everywhere along

that path, as there exist arbitrage possibilities by which the total length of the period when

consumption *c  is possible can be prolonged. At time T  a certain stock of manmade capital

)(* Tkm  has been accumulated, which can be used to maintain consumption *c  even for some

interval following T . If – as in the Cobb-Douglas case – the marginal productivity of
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extraction tends to infinity when extraction goes to zero, then there are profits to be made by

shifting resource extraction from right before T to right after T. Hence, there are profitable

opportunities for arbitrage at T, implying that the Hotelling rule is not satisfied at that time.

As the path in this counter-example thus is not efficient, the possibility arises that the missing

link between the Hartwick investment rule and sustainability might be attributed to lack of

efficiency. However, this is not true either. The claim above does not become valid even if

we refer to regular – and thus efficient – paths for which not only competitiveness but also

transversality conditions hold.

INCORRECT CLAIM. (sophisticated version): If along a regular path q k( ) � ( )*t t⋅  is non-negative

for all ),( 21 ttt ∈  in an economy with constant population and constant technology, then the

constant utility level realised during the interval ),( 21 tt  is sustainable forever.

Again counter-examples can be provided in the framework of the DHS model. Asheim

(1994) and Pezzey (1994) gave a counter-example to this statement by considering paths in

the DHS model, where the sum of utilities discounted at a constant discount rate is

maximised. If, for some discount rate, the initial consumption level along such a discounted

utilitarian optimum exactly equals the maximum sustainable consumption level given )0(mk

and )0(nk , then there exists an initial interval during which the value of net investments is

strictly positive while consumption is unsustainable given the current capital stocks )(* tkm

and )(* tkn . It is, however, not obvious that the premise of this statement can be fulfilled; i.e.

that there exists some discount rate such that initial consumption along the optimal path is

barely sustainable. This has subsequently been established for the Cobb-Douglas case by

Pezzey and Withagen (1998). The fact that their proof is quite intricate indicates, however,

that this is not a trivial exercise.

Consequently, we wish to provide another

type of counter-example here, which resembles

our first counter-example given above. Moreover

it can be used to show that even if in a DHS

model in which the maximum sustainable

consumption level is zero there exist regular

paths that have a non-negative value of net

investments in an initial period.

This example, which is illustrated in Figure 1, consists of three separate phases with

constant consumption, spliced together so that the Hotelling rule is satisfied at any time, even

consumption

*
2c

*
1c                                max. sust. cons.

                 1T           2T                   
time

                     Figure 1.
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at the two points in time, 1T  and 2T , when consumption is not continuous. The initial stock of

natural capital, )0(nk , is determined so that both capital stocks are exhausted at 2T , implying

that consumption equals zero for ),( 2 ∞T .

Let )0(mk  be given, fix some consumption level 0*
1 >c  and some terminal time 1T  of the

first phase of the path. Then construct, as described in the proof of Lemma A3 of the

appendix, the unique path that has constant consumption *
1c  and obeys the Hartwick

investment rule in the interval ),0( 1T . Let )( 1
* Tkm  be the stock of manmade capital at time 1T ,

and let )(lim)( *
1

*

1
teTe

Tt −>−
= . To satisfy the Hotelling rule at time 1T , extraction must be

continuous; i.e. the continuation of the path must be constructed so that

)(lim)( *
1

*

1
teTe

Tt +>−
= . Hence, the constant consumption during the interval ),( 21 TT , *

2c , and

the constant (present) value of net investment during this phase, ν, must satisfy

))())((),(( 1
*

1
*

1
* ν+TeTeTkF me  = *

21
*

1
* ))(),(( cTeTkF m − . Since )())(),(( 1

*
1

*
1

* TeTeTkF me  =
*
11

*
1

* ))(),(( cTeTkF m − , these two equalities are fulfilled if

))(),(( 1
*

1
*

*
2

*
1

TeTkF

cc

me

−=ν .

By choosing an arbitrary )( ))(),(( *
11

*
1

**
2 cTeTkFc m >>  and by choosing ν according to the

equation above, a path can be determined along which investment in manmade capital is

strictly negative at each point in time (cf. Lemma A7 of the appendix). This path is

terminated at some finite point of time 2T  when the stock of manmade capital is completely

depleted (cf. Lemma A8). For the two open intervals ),0( 1T  and ),( 21 TT  the Hotelling rule is

fulfilled (cf. Lemma A1). By the construction of ν given *
2c  a jump of the marginal

productivity of extraction at 1T  is avoided so that the Hotelling rule obtains everywhere along

this path. As the second part of this path is regular for an appropriate choice of )0(nk  (cf.

Lemma A9), regularity then holds for the whole path.

First note that the construction given above is completely independent of whether the

underlying production function F allows for sustaining a strictly positive consumption level

forever given finite initial stocks of manmade and natural capital. If F does not allow for a

positive level of sustainable consumption, we have thus shown that having non-negative

value of net investments during an initial phase of a regular path is well compatible with

consumption exceeding the sustainable level.

However, even if the production function F allows for a positive level of sustainable

consumption, we obtain a counter-example as desired. For this purpose, increase *
2c  beyond

all bounds so that −ν increases (i.e. ν becomes more negative). Then 2T  decreases and

converges to 1T , and the aggregate input of extracted natural capital in the interval ),( 21 TT
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converges to zero. This in turn means that *
1c  cannot be sustained forever for large enough *

2c

given the choice of )0(nk  needed to achieve exhaustion of natural capital at time 2T .

This example shows that a non-negative value of net investments during a time interval

need not entail that consumption is sustainable. Although this result is not new, it is here

established through a counter-example that it is simpler than those that have previously been

available. However, it has up to now been an open question whether negative value of net

investments during a time interval implies that consumption exceeds the sustainable level.

We are able to show that not even this conjecture is true.

INCORRECT CLAIM: If along a regular path q k( ) � ( )*t t⋅  is negative for all ),( 21 ttt ∈  in an

economy with constant population and constant technology, then the constant utility level

realised during the interval ),( 21 tt  is not sustainable forever.

Also in this case we will provide a counter-

example in the framework of the DHS model.

Let the production function F allow for a positive

level of sustainable consumption. Again, the

example (cf. Figure 2) consists of three separate

phases with constant consumption, spliced

together so that the Hotelling rule is satisfied at

any time, even at the two points in time, 1T  and

2T , when consumption is not continuous.

Let )0(mk  be given, fix some consumption level 0*
1 >c  and some terminal time 1T  of the

first phase of the path. Construct, as described in the proof of Lemma A7 of the appendix, a

path that has constant consumption *
1c  and obeys the generalised Hartwick investment rule

with 01 <ν  in the interval ),0( 1T , where 1T  is small enough to ensure that 0)( 1
* >Tkm . Let, as

the second phase, the path have a constant consumption *
2c  and a constant (present) value of

net investments 02 >ν  in the interval ),( 21 TT , To satisfy the Hotelling rule at time 1T , *
2c  and

2ν , must fulfil 21
*

1
**

2 ))(),(( νTeTkFc me+  = 11
*

1
**

1 ))(),(( νTeTkFc me+ . E.g. we can set

0)(
))(),((

))(),((

2

1
1

*

1
*

1
*

1
*

1
*

2 >







−= Te

TeTkF

TeTkF

mm

mν ,

so that ( ) 0)())(),(())(),(( 1
*

1
*

1
*

1
*

1
*

2
1*

2 >−= TeTeTkFTeTkFc mm . Construct, as described in the

proof of Lemma A3 of the appendix, the unique path that has constant consumption *
2c  and

obeys the generalised Hartwick investment rule in the interval ),( 21 TT . Let )( 2
* Tkm  and

)( 2
* Te  be the stock of manmade capital and the flow of extraction at time 2T . Then, at T2 , the

consumption

*
3c

*
1c                                max. sust. cons.

*
2c

                 1T           2T                   
time

                     Figure 2.



17

path turns over to the third phase where the (ordinary) Hartwick path is followed with *
3c  =

22
*

2
**

2 ))(),(( νTeTkFc me+ .

Since the production function F allows for a positive level of sustainable consumption,

there exists an appropriate choice of )0(nk  that makes the third phase of the path – and hence

the whole path – regular. This stock of natural capital depends on T1  and T2 , but it is finite in

any case. Keep T1  fixed and increase T2 . If T2  goes to infinity, then the stock )0(nk  will also

tend to infinity (by Lemma A4). The same holds true for the maximum sustainable

consumption level c  that can be attained given )0(mk  and )0(nk . Hence, by shifting T2  far

enough into the future, a regular path can be constructed which has a first phase where the

value of net investments is negative and a consumption level *
1c  which is sustainable given

)0(mk  and )0(nk .

In these counter-examples (and in the analysis of the appendix) we have not invoked the

competitive condition C1, which is somewhat superfluous in the one-consumption case.

However, for any time-invariant strictly increasing, concave, and differentiable function u

one can find a path of utility discount factors so that C1 is satisfied at any point in time. If u is

strictly concave, the examples above will not lead to continuous paths of discount factors.

Both our counter-examples are consistent with the result for regular paths noted

subsequently to Lemma 1 of section 2, namely that the value of net investments at time t

measures the present value of all future changes in utility. It follows directly from that result

that if along an efficient path utility is monotonely decreasing/increasing indefinitely, then

the value of net investments will be negative/positive, while utility will exceed/fall short of

the sustainable level. The value of net investments will thus indicate sustainability correctly

along such monotone utility paths. Hence, the counter-examples above are minimal by having

consumption (and thus, utility) be constant except at two points in time.

Moreover, such paths with piecewise constant consumption would not yield counter-

examples if constant consumption would lead to a constant consumption interest rate (as it

does in the Ramsey model). In the DHS model, however, it follows from the competitive

conditions (cf. (A1)–(A5) of the appendix) that the consumption interest rate, )(/)( tptp�− ,

measures the marginal productivity of manmade capital and is decreasing whenever

consumption is constant. It is therefore the non-monotonicity of the paths – combined with

the property that the consumption interest rate is decreasing along a constant consumption

path in the DHS model – that leads to the negative results established above concerning the

connection between the value of net investments and the sustainability of utility.
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It is also worth to emphasise the point made in Asheim (1994) and elsewhere that the

relative value of different capital stocks in an intertemporal competitive equilibrium depends

on the property of the whole path. The counter-examples above show how the relative value

of natural capital depends positively on the consumption level of the generations in the

distant future. Thus, the future development – in particular, the distribution of consumption

between the intermediate and the distant future – affects the value of net investments today

and, thereby, the usefulness of this measure as an indicator today of sustainability.

Hence, in order to link the (generalised) Hartwick investment rule to sustainability we

cannot avoid letting this rule apply to investment behavior at all points in time. We can

present a correct claim concerning the value of net investments and the sustainability of

utility by restating the generalised Hartwick rule for sustainability (Proposition 6) as follows.

CORRECT CLAIM: If along a competitive path q k( ) � ( )*t t⋅  is constant for all ),0( ∞∈t  in an

economy with constant population and constant technology, then the constant utility level at

time t is sustainable forever.

Proof. From the generalised Hartwick rule for sustainability, it follows that the utility path is

egalitarian. Hence, utility at any time is sustainable.   �

If the path is regular, it follows from Proposition 7 that an egalitarian utility path is consistent

only with q k( ) � ( )*t t⋅  being equal to zero for all ),0( ∞∈t . In the Ramsey model, it is

feasible, but not efficient to have q k( ) � ( )*t t⋅  being constant and positive for all ),0( ∞∈t . As

established in Lemma A5 in the appendix, this case is not even feasible in the DHS model. In

both the Ramsey model and the DHS model, feasibility rules out q k( ) � ( )*t t⋅  being constant

and negative for all ),0( ∞∈t .

It is an open question whether the claim can be strengthened to: “if along a competitive

path q k( ) � ( )*t t⋅  is non-negative for all ),0( ∞∈t  in an economy with constant population and

constant technology, then the constant utility level at time t is sustainable forever.” We

cannot prove this under general assumptions, but does not have a counter-example either.
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5. Myth 2: The Hartwick rule for sustainability requires substitutability between

manmade and natural capital

Hartwick (1977) concentrated his attention on economics where substitution of manmade

capital and resource extraction is feasible. In the wake of his contribution an impression

appears to have been formed to the effect that the Hartwick rule for sustainability requires

that manmade capital can substitute for natural capital; i.e. that the production possibilities

are consistent with the beliefs held by the proponents of ‘weak sustainability’ (cf. the citation

from Spash and Clayton (1997) reproduced in the introduction). If, on the other hand, natural

capital has to be conserved in order for utility to be sustained (i.e. the world is as envisioned

by the proponents of ‘strong sustainability’), then – it is claimed – the Hartwick rule for

sustainability does not apply.

The relevance of the Hartwick rule for sustainability is related to the question of whether

a constant utility path exists. Since a false premise does not falsify an implication, the

Hartwick rule for sustainability as an implication is true even if, in some specific model, there

does not exist any path with q k( ) � ( )*t t⋅  being constant and equal to zero for all t. What the

Hartwick rule for sustainability entails is that if no constant utility path exists, then there

cannot exist any path with q k( ) � ( )*t t⋅  being constant and equal to zero for all t. Still, even

though the non-existence of an egalitarian path does not falsify the Hartwick rule for

sustainability, it is interesting to discuss in what kind of technologies there exists an

egalitarian utility path, implying that the result is relevant (i.e. not empty).

It turns out, however, that such substitutability is not necessary even for the relevance of

the Hartwick rule for sustainability.

INCORRECT CLAIM: The Hartwick rule for sustainability is relevant only if manmade capital

can substitute for natural capital.

That this assertion is not correct can be seen even if one considers the Ramsey model. In that

model there is only one capital good such that substitution between different kinds of capital

stocks is a priori not possible. Surprisingly, the general treatment of the Hartwick result and

its converse given by DHH carries over to the Ramsey model if one replaces vectors of

capital goods )(tk  and their prices )(tq  by scalars describing the size of the stock of

manmade capital )(tk  and its present value price )(tq . As we have seen, when analysing the

Ramsey model in section 3, it is feasible to follow forever the generalised Hartwick rule
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( ν=)()( * tktq �  for all ),0( ∞∈t ) as long as the constant (present) value of net investment, ν,

satisfies ))0(()0(0 kfq<≤ν . And the resulting path has constant consumption as

( ) dtkqdkqkqkkfqkqcqcp ******** )( ��

�

�����

�� −=−−=′+−== .

Seen in this way, one could even turn things around by deriving the Hartwick result and its

converse first for the Ramsey model and then generalising it in a very straightforward way to

the many capital goods case. This would not only serve didactical purposes but would, more

importantly, highlight that the DHS model is by no means the only field of application for the

Hartwick result and its converse. This trivial insight alone sheds light on the Hartwick rule.

As the most important subcase this general treatment of the Ramsey model includes the

situation where the stock of manmade capital )(* tk  is time invariant, which, by the feasibility

constraint, immediately implies constant consumption. This is the only efficient sustainable

constant consumption path given an initial capital stock )0(k . The generalised Hartwick

investment rule with positive or negative net investment either leads to an efficient path with

over-accumulation of capital, or to a non-sustainable path.

Even within a model with multiple capital goods it can be shown that an ability to

substitute manmade capital for natural capital is not necessary for the relevance of the

Hartwick rule for sustainability. For this purpose, consider the complementarity model

introduced in section 2. Here, the regenerative capacity for natural capital depends on the

stock of natural capital, ))()(())(( tkktktkg nnnn −= , while the extractive capacity depends on

manmade capital ))(( tkf m .

The competitive condition C2 implies that

)()( ** tktc m
�+  = )}()),((min{ tetkf m ,

))(()()( *** tkgtkte nn =+ � ,

)()( tqtp m= ,

)())(())()(( * tqtkftqtq mmnm �−=′− ,

)())(()( * tqtkgtq nnn �−=′ .

If, in this model, one tries to sustain production above the maximal level of natural renewal,

then natural capital will be exhausted in finite time, undermining the productive capabilities.

Any competitive path with constant consumption forever will satisfy the (ordinary) Hartwick

investment rule by having the stock of manmade capital remain constant and the value of

investments in natural capital be equal to zero. Hence, constant consumption along a

competitive path is characterised by )( **
mkfc = , implying that 0* =mk� , while 0)()( * =tktq nn

� .

If, along such a path, the stock of natural capital converges to a size larger than the one
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corresponding to the maximal level of natural renewal, then 0)( ≡tqn  and the productivity of

manmade capital measures the consumption interest rate: )(/)()( * tqtqkf mmm �−=′ . If, on the

other hand, the stock of natural capital is constant and smaller than the size corresponding to

the maximal level of natural renewal, then )()( ****
nm kgekfc ===  and 0)( >tqn . And the

productivity of natural renewal measures the consumption interest rate:

)(/)()( * tqtqkf mmm �−>′  = )()(/)( *
nnn kgtqtq ′=− � . In this latter case, the application of the

Hartwick investment rule leads to a feasible egalitarian path by keeping both capital stocks

constant. Hence, the model is consistent with the world as envisioned by the proponents of

‘strong sustainability’; still, the Hartwick rule for sustainability applies.

In order to state a correct claim concerning the relevance of the Hartwick rule for

sustainability, we must define the concept of ‘eventual productivity’.

DEFINITION 5. Say that a model with preferences u and technology F satisfies eventual

productivity given the vector of initial stocks )0(k  if starting from these initial stocks there

exists a regular path with constant utility forever.

CORRECT CLAIM. The Hartwick rule for sustainability is relevant under the assumptions of

Lemma 1, if eventual productivity is satisfied given the vector of initial stocks )0(k .

Proof. From eventual productivity and the converse of the Hartwick rule for sustainability, it

follows that there exists a path with q k( ) � ( )*t t⋅  being constant and equal to zero for all t.   �

The question of whether manmade capital can substitute for natural capital is important for

the relevance of the Hartwick rule for sustainability only to the extent that lack of such

substitutability means that eventual productivity cannot be satisfied.

6. Prescription or description?

The preceding analysis naturally leads to a more profound discussion of the following

questions that are raised in the literature: Can the Hartwick investment rule be used as a

prescription? Or is the Hartwick rule for sustainability (and its converse) a description of an

egalitarian utility path; i.e. a characterisation result?

In Section 4 we have shown that a generation may well obey the Hartwick investment

rule but nevertheless consume more than the maximum sustainable consumption level. On

the other hand, a generation with a negative value of net investments will not necessarily
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undermine the consumption possibilities of its successors. It is thus an important message of

the analysis of Section 4 that the Hartwick investment rule as such cannot serve as a

prescription for sustainability, as capital management that is guided by the Hartwick

investment rule in the short run may be compatible with quite different consumption levels.

Hence, it is not enough to know whether the current investment in manmade capital in value

makes up for the current depletion of natural capital, since the Hartwick result (Proposition 2)

only says that following the Hartwick investment rule will entail constant consumption for an

interval of time. This is clearly not sufficient for development to be sustainable, thereby

ensuring intergenerational justice. Rather, a judgement on whether short-run behaviour is

compatible with sustainable development must be based on the long-run properties of the

path and the technological environment. By Proposition 6 of Section 3 (the generalised

Hartwick rule for sustainability) these long-run properties are:

1. Feasiblity. The generalised Hartwick rule for sustainability requires that constant

consumption can be sustained indefinitely. How can we know now that a path with

constant consumption for some interval of time can be sustained forever? The DHS

model of capital accumulation and resource depletion shows that it can be problematic to

determine whether it is feasible to sustain a given level of constant consumption. As

illustrated by a counter-example to the trivial version of the incorrect claim of Section 4,

one can construct paths where feasibility breaks down due to an underestimation of the

availability of natural capital.

2. Competitive conditions. The generalised Hartwick rule for sustainability requires that

competitive conditions hold indefinitely. How can we know now that competitive

conditions will be followed at any future point in time? Within the context of the DHS

model the remaining examples of Section 4 illustrate that it is quite demanding to assume

that competitive conditions (in particular, the Hotelling rule) hold for all t so there is no

possibility for arbitrage.

3. Constant present value of net investments. The generalised Hartwick rule for

sustainability requires that q k( ) � ( )*t t⋅  is constant indefinitely. It is not sufficient to have

current price-based information about the path in order to prescribe sustainable

behaviour; rather such information has to be available at all future points in time. How

can we know now that q k( ) � ( )*t t⋅  will be constant for all t?

4. No exogenous technological progress. The generalised Hartwick rule for sustainability

applies only if the technology remains constant. Constant utility requires that any
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technological progress is endogenous, being captured by accumulated stocks of

knowledge. How can we know now that we will be able to attribute any future

technological progress to accumulated stocks of knowledge?

Moreover, if this amount of information were available about the long-run properties of paths

as well as the future technological environment, and a constant consumption path is desirable,

then the price-based information entailed in Hartwick rule would hardly seem necessary nor

convenient for the social planning of such a path. Therefore, it is our opinion that the

Hartwick investment rule is of limited use as a prescription for decision-makers trying to

ensure that development is sustainable.

The Hartwick investment rule is, however, of interest when it comes to describing an

efficient path with constant utility. It follows from the converse of the Hartwick rule for

sustainability (Proposition 7) that any such egalitarian path will be characterised by the

Hartwick investment rule being satisfied at all points in time. Note that the importance of this

result is not that it tells decision-makers anything concerning how to steer the economy along

such a path; rather, it describes how the path would look like if it were followed. It is

therefore our view that it seems more natural to consider 0)()( * =⋅ tt kq �  for all t as a

descriptive result, characterising an efficient and egalitarian utility path. This characterisation

result is of high generality so that, as was seen in Section 5, it does impose any particular

requirements on the possibility of substitution between manmade and natural capital. The

DHS model is only one application among many others.

Even the interpretation of the Hartwick rule as a descriptive device needs a couple of

caveats. First, the existence of an efficient and egalitarian path requires the assumption of

eventual productivity to be satisfied so that such a path is in fact feasible. Without eventual

productivity, sustainable and price supported paths need not exist, so that the Hartwick rule

loses its relevance. Secondly, the unrealistic assumption that future technological progress

can be contributed to accumulated stocks of knowledge, the value of which can be measured

in market prices, is needed for all results relating to the Hartwick rule. Without being able to

attribute the evolving technology to the augmentation of identifiable stocks, it becomes, for

obvious reasons, a deficient exercise to account for the value of net investments.
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7. Concluding remark

As proposed by Hartwick (1977) and further refined by Dixit, Hammond & Hoel (1980), the

Hartwick result – based on the Hartwick investment rule – is a most important finding within

resource economics that focused attention on the close relationship between constant

consumption and zero net investment. Still, it appears that the meaning and implications of

this result are often misunderstood or misinterpreted in the literature. Here we have attempted

to clarify the underlying assumptions for the result, and tried to show what its significance in

fact is. Our theoretical analysis and interpretative discussion shed light on the converse of the

Hartwick rule for sustainability as the important result, giving a useful characterization of

regular paths with constant utility forever. The existence of such paths has, however, to be

ensured by additional technological assumptions that are not in necessarily implied by having

capital management be guided by the Hartwick investment rule at some interval of time.

Appendix: The generalised Hartwick investment rule in the DHS model

Recall the assumptions that we make for the DHS model: F is linearly homogenous and twice

continuously differentiable w.r.t. both arguments, with 0>mF , 0>eF , 0<mmF , 0<eeF , and

.0>= emme FF  Furthermore, ∞=→ ),(lim 0 ekF mee , and 0),(lim =∞→ ekF mee  hold for any

0>mk , and ∞=→ ),(lim 0 ekF mmkm
, and 0),(lim =∞→ ekF mmkm

 hold for any 0>e . Since, by

linear homogeneity ),1(),( meme keFekF =  and )1,(),( ekFekF mkmk = , this implies that

∞=∞→ ),(lim ekF mekm
, and 0),(lim 0 =→ ekF mekm

 hold for any 0>e , and

∞=∞→ ),(lim ekF mme , and 0),(lim 0 =→ ekF mme  hold for any 0>mk . Finally, the resource

share of total production, ),(/),( ekFeekF mme , is bounded away from zero by some b. A

Cobb-Douglas function, ba
mm ekekF =),( , with 0 < b < a + b = 1, satisfies all these properties.

The competitive condition C2 implies that

(A1) ))(),(()()( **** tetkFtktc mm =+ � ,

(A2) 0)()( ** =+ tkte n
� ,

(A3) )()( tqtp m= ,

(A4) )())(),(()( ** tqtetkFtq mmmm �−= ,

(A5) 1))(),(()( ** =tetkFtq mem ,
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where (A5) follows from )())(),(()( ** tqtetkFtq nmem =  and )(0 tqn�=  by choosing resource

extraction as numéraire. Note that (A4) and (A5) entail that the Hotelling rule (HOR) is

satisfied:

HOR
))(),((

))(),((
))(),(( **

**
**

tetkF

dttetkdF
tetkF

me

me
mm = .

Since p(t) and )(tqm  are present value prices, (A2) and (A5) implies that the generalised

Hartwick investement rule (GHIR) is satisfied if

GHIR ))())((),(()( **** ν+= tetetkFtk mem
� ,

where ν is the constant present value of net investments, a result that has previously been

observed by Hamilton (1995). It is of interest to note that constant consumption (CC),

CC ** )( ctc = ,

and (GHIR) imply that (HOR) is satisfied; this is a generalisation of the main result of

Buchholz (1980).

LEMMA A1. Every path that satisfies CC and GHIR on an open interval where
*** ))(),(( ctetkF m ≠  fulfils HOR on this interval.

Proof: Taking derivatives w.r.t. time we obtain from (A1), CC and GHIR that

**** )( eFeFkeFkF ee
n
memm �

���

�

� ++==+ ν ,

which implies that

**** )()( m
e

e
e

e

e
emm k

F

F
eF

F

F
eFkF �

��

�� =+=+= νν .

Cancelling 0))(),(( **** ≠−= ctetkFk mm
�  gives HOR: eem FFF �= .   �

When describing paths that fulfil CC and GHIR we take a certain consumption level

0* >c  and an initial stock of manmade capital as exogenously given and then endogenously

determine the stock of the natural resource that is used along such a path. Such a path will be

called a GHIR path. Depending on the sign of the constant ν we distinguish two subcases:

0≥ν  and 0<ν . We start with the former of these cases.

LEMMA A2. If 0≥ν  and 0* >c , then, for any 0>mk , there is exactly one )(*
mke  that fulfils

**** ))(,())(( ))(,( ckekFkekekF mmmmme −=+ν .
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Proof: Given mk  consider the function

mmkmemmem kekFekFccekFeekFkeh ),(),()),(())(,();( ** −+=−−+= νν ,

where the second equality follows from linear homogeneity. As ∞=→ ),(lim 0 ekF mee , and

0),(lim 0 =→ ekF mme  hold for any 0>mk , we have that 0);( >mkeh  for small values of e, as

0),(lim =∞→ ekF mee , and ∞=∞→ ),(lim ekF mme  hold for any 0>mk , we have that 0);( <mkeh

for e high enough. By continuity of );( mkh ⋅ , there is at least one )(*
mke  that fulfils

0));(( * =mm kkeh . As 0))(,(/);( <+= νeekFdekedh meem , for ν ≥ 0 and e > 0, )(*
mke  is

uniquely determined.   �

LEMMA A3. Let a consumption level 0* >c , an initial stock of manmade capital )0(mk , and a

constant 0≥ν  be given. Then a corresponding GHIR path is uniquely determined. Along

such a path investment in manmade capital is strictly positive at each point in time.

Proof: This result follows from Lemma A2, since the development of the stock of manmade

capital is determined by the differential equation

***** )))((),(()( ctketkFtk mmm −=�

starting from the initial value )0(mk , while the path of the resource extraction is given by

))(( ** tke m . It follows from GHIR that 0)(* >tkm
�  as 0≥ν  and 0))(( ** >tke m .   �

LEMMA A4. If ν > 0  and 0* >c  there exists a γ > 0  so that γ≥)(*
mke  for any 0>mk .

Proof: The GHIR condition can be transformed to















+−=

)(
1

))(,(

)())(,(
1 ))(,( **

**
**

mmm

mmme
mm kekekF

kekekF
kekFc

ν
.

Since, by assumption ),(/),( ekFeekF mme  is bounded away from zero by some b, it follows

that













+−≤<

)(
11 ))(,(0

*
**

m
mm ke

bkekFc
ν

,

implying that ( )( ) 0)(11 * >+− mkeb ν . This gives )1/( bb −= νγ  as a lower bound for

)(*
mke .   �

On these grounds the next lemma will give, for the considered class of production functions,

an impossibility result for GHIR paths having 0>ν .
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LEMMA A5. Let ν > 0 , 0* >c , )0(mk , and )0(nk  be given. Then the GHIR path is not

sustainable.

Proof: It follows from Lemma A3 that the aggregate extraction along such a GHIR path will

approach infinity as time goes to infinity. Hence, any finite stock of natural capital will be

exhausted in finite time, implying that the GHIR cannot be sustained indefinitely.   �

In this respect the DHS model is different from the Ramsey model, where – as we have seen

in section 3 – there exist sustainable GHIR paths with ν > 0  and 0* >c . In the DHS model,

in contrast, any such path can be followed only for a finite period of time. Note also that

following a GHIR path with ν > 0  and 0* >c  all along to exhaustion is not efficient since a

positive stock of manmade capital will be left over at this point in time. This implies that

profits are to be made by shifting resource extraction from right before exhaustion to right

after exhaustion, meaning that there are profitable opportunities for arbitrage at that time.

Hamilton (1995) also analyses GHIR paths having 0>ν  for different classes of

technologies. For the class that overlaps with the one treated here ( 1≤σ ), he incorrectly

claims (1995, pp. 397–398 & Table 1) that – along a GHIR path with 0>ν  – the level of

consumption has to become negative at a finite point in time, which clearly contradicts

Proposition 3. This as well as many other inaccuracies seem to be caused by his implicit and

inappropriate assumption that variables are continuous functions of time throughout, even in

the case when a GHIR path cannot be sustained indefinitely. For the case of a GHIR path

with 0>ν , the GHIR path (which yields constant consumption by Proposition 3) can be

sustained up to the point when the stock of natural capital has been exhausted. The path from

then on must be a completely different path, which cannot be governed by GHIR with 0>ν .

E.g., it is not correct, as claimed by Hamilton (1995, pp. 397–398), that resource extraction

goes continuously to zero as the stock of natural capital approaches exhaustion.

In the case with 0=ν  – i.e. the (ordinary) Hartwick investment rule is followed – the

answer to the question of whether some 0* >c  is sustainable depends on the possibility for

substitution between the stock of manmade capital and the flow of extraction. If F is in the

CES class, constant and positive consumption is feasible if the coefficient of substitution, σ,

is larger than 1, and infeasible if σ  is smaller than 1. In this class, only the case of σ = 1 – i.e.

F is a Cobb-Douglas function, ba
mm ekekF =),( , with 0 < b < a + b = 1 – is consistent with the

general assumptions we made above. It then follows from an analysis by Solow (1974) that a

regular (hence efficient) path with constant and positive consumption exists, as long as b < a

and the initial stocks, )0(mk  and )0(nk , are both positive. Such a path satisfies 0=ν  and is
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feasible by letting the increasing stock of manmade capital substitute for the dwindling

extraction of natural capital. For more general production functions, Cass & Mitra (1991)

give a necessary and sufficient condition for the existence of a path with constant and

positive consumption, while the analysis of Dasgupta & Mitra (1983) can be used to argue

that this implies the existence of an efficient path. From Withagen & Asheim (1998) it

follows that any such efficient path with constant and positive consumption must satisfy the

(ordinary) Hartwick investment rule (i.e. 0=ν ).

Turn now to the case with 0<ν . In this case it turns out that if ν is too negative, the

GHIR path is not feasible even in the short run. For the statement of the following results, let

)( mke  be defined by ckekF mm =))(,(  for any given mk .

LEMMA A6. If 0<ν  and 0* >c , then, for any 0>mk , there exists *e  that fulfils
**** ),()( ),( cekFeekF mme −=+ν  if and only if )( mke≤−ν . There is a unique value,

ν−=)(*
mke , that fulfils this equation if )( mke=−ν , while there are two values,

),0()(*
1 ν−∈mke  and )()(*

2 mm keke > , that fulfil this equation if ))(,0( mke∈−ν .

Proof. Given mk  consider again the function

mmmmemmem kekFekFccekFeekFkeh ),(),()),(())(,();( ** −+=−−+= νν .

As ))(,(/);( ν+= eekFdekedh meem , if it follows that 0/);( >dekedh m  if e < −ν and

0/);( <dekedh m  if e > −ν. At e = −ν, 0)),(();( * ≥−−= cekFkeh mm  if and only if )( mkee ≤ .

As ∞=→ ),(lim 0 ekF mee , and 0),(lim 0 =→ ekF mme  hold for any 0>mk , we have that

0);( <mkeh  for small values of e. As 0),(lim =∞→ ekF mee , and ∞=∞→ ),(lim ekF mme  hold for

any 0>mk , we have that 0);( <mkeh  for e high enough. By continuity of );( mkh ⋅  the results

follow.   �

LEMMA A7. Let a consumption level 0* >c , an initial stock of manmade capital )0(mk , and a

constant )0)),0((( mke−∈ν  be given. Then a corresponding GHIR path is determined along

which investment in manmade capital is strictly negative at each point in time.

Proof. Analogous to the proof of Lemma A3 except that the development of the stock of

manmade capital is determined by the differential equation

) )))(()))(((),(( (  )))((),(()( **
1

**
1

****
1

** ν+=−= tketketkFctketkFtk mmmemmm
� ,

where it follows from Lemma A6 that ν−<))(( **
1 tke m ; hence 0)(* <tkm

� .   �
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An alternative GHIR path is determined by letting resource extraction be determined by )(*
2 ⋅e

during an initial phase. Such paths need not be considered in the present analysis.

LEMMA A8. Let )0)),0((( mke−∈ν , 0* >c , )0(mk , and )0(nk  be given. Then the GHIR path

with strictly negative investment in manmade capital is not sustainable.

Proof: First observe that )(*
1 mke  falls if mk  decreases. This follows from taking the total

differential in the GHIR condition, which gives

*
1

*
1

*
1

*
1 ))(( deFdkFdeFedeFdkF emmeeemem +=+++ ν

or

0
)( )(

*
1

*
1 >

−
= +

ee

emke

F

m

m

F

F

dk

kde
m

e

ν

as 0>mF , 0>emF , 0<eeF  and 0)(*
1 <−νmke . This in turn means that output decreases and

that the negative investment in manmade capital accelerates. Hence, the stock of manmade

capital is used up in finite time.   �

As a consequence we get

LEMMA A9. Let )0)),0((( mke−∈ν , 0* >c , and )0(mk  be given. Then there exists )0(nk  such

that the path consisting of the GHIR path with strictly negative investment in manmade

capital up to the time when manmade capital is used up, and of a path with zero consumption,

capital investment and resource extraction thereafter, is regular.

Proof: Let )0(nk  equal the integral of ))(( 1*
1 tke m  up the time when 0)(* =tkm . It follows from

Lemma A1 that the competitive conditions are satisfied, while the regularity conditions R1

(by normalising 0)0( =u ) and R2 (as both stocks are exhausted in finite time) are clearly

fulfilled.   �

Thus, since the path of Lemma A9 is efficient, it follows that *c  strictly exceeds the maximal

consumption level that is sustainable given the initial stocks )0(mk  and )0(nk .

Hamilton’s (1995) analysis of GHIR paths with 0<ν  contains inaccuracies for reasons

similar as those noted subsequent to Lemma A5.
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