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Abstract

With the growing number of stocks and other financial instruments in the investment

market, there is always a need for profitable methods of asset selection. The Fama-French

three factor model, makes the problem of asset selection easy, by narrowing down the number

of parameters, but the usual technique of Ordinary Least Square (OLS), used for estimation of

the coefficients of the three factors suffers from the problem of modelling using the conditional

mean of the distribution, as is the case with OLS. In this paper, we use the technique of Data

Envelopment Analysis (DEA) applied to the Fama-French Three Factor Model, to choose

stocks from Dow Jones Industrial Index. We use a more robust technique called as Quantile

Regression to estimate the coefficients for the factor model and show that the assets selected

using this regression method form a higher return equally weighted portfolio.

Keywords: Asset Selection, Factor Model, DEA, Quantile Regression

JEL Codes: G11, G12, C21
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1 INTRODUCTION

The main objective of asset selection for any portfolio manager is to select stocks, which can form a

portfolio having higher expected return for given risk levels. The level of risk associated with the assets,

stocks in our case, becomes a major deciding factor when choosing stocks from the ever increasing number

of stocks in the financial market. Markowitz (1952), used stock return variance as a measure of risk and

the prime deciding factor in stock selection in his pioneering portfolio theory. Jack Treynor (1961, 1962),

William Sharpe (1964), John Lintner (1965) and Jan Mossin (1966) independently, proposed Capital Asset

Pricing Theory, (CAPM), to quantify the relationship between beta of an asset and its corresponding

return, which in potential applications, given appropriate assumptions, simplified the Markowitz portfolio

theory by reducing the number of parameters required for asset selection.

The use of a single factor risk metric as in the CAPM oversimplifies a complex market. Eugene

Fama and Kenneth French developed the Fama-French three factor model, which described “value” and

“size” to be the most significant factors, outside of market risk, for explaining the realized returns of

publicly traded stocks. The three factors, beta, SMB (for size effect), HML (for value), as proposed by

Fama-French gives the projected return of a stock as a combination of these three factors. The natural

approach to quantify the model is to apply OLS regression, which assumes a linear relationship across

the mean of the distribution, and thus doesn’t quantify or assess the lower and upper tails of the return

distribution which may play a major part when it comes to the efficient quantification of risk. A new

and more robust alternative to OLS is Quantile Regression developed by Koenker and Basset (1978),

which gives the capability of modelling the conditional quantiles across the distribution. Modelling the

whole distribution becomes important when the return distribution becomes skewed due to adverse market

conditions like the recent Global Financial Crisis, and the incapability of OLS to quantify the lower tails

of the distribution can lead to wrong asset selection which could lead to greater loss.

Data Envelopment Analysis (DEA), Charnes et.al. (1978) and Banker et.al. (1984) is a powerful

technique adopted from the operational research area. DEA is used for evaluating and comparing perfor-

mances of organizational units in multi-attribute and multidimensional environment by determining the

relative efficiency of a productive unit by considering its closeness to an efficiency frontier.

In this paper we use the Fama-French factor model coefficients as calculated from Quantile Regression

as an input to DEA for asset selection process. We show by a comparative analysis of asset selected by

means of OLS and assets selected by application of Quantile Regression that the assets selected by the

latter give better returns when combined in a equally weighted portfolio. We also show that the assets

selected by application of Quantile Regression not only give better returns in normal market conditions

but also in conditions of extreme financial distress.

After the introduction in section 1, the rest of the paper is organized as follows: Section 2 provides

the background with more insight into Fama-French Three Factor Model, Quantile Regression and Data
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Envelopment Analysis. Section 3 discusses the research method employed in this work. Next, Section 4

presents and discusses the major results and finally Section 5 draws the conclusions.

2 BACKGROUND

2.1 THE FAMA-FRENCH THREE FACTOR MODEL

Jack Treynor (1961, 1962), William Sharpe (1964), John Lintner (1965) and Jan Mossin (1966) inde-

pendently, proposed Capital Asset Pricing Theory, (CAPM), to quantify the relationship between the

beta of an asset and its corresponding return. CAPM stands on the broad assumption that, that only

one risk factor is common to a broad-based market portfolio, which is beta. (As derived from sweeping

assumptions about common expectations, frictionless markets, etc). Modelling of the CAPM using OLS

assumes that the relationship between return and beta is linear, as given in equation (1).

rA = rf + βA(rM − rF ) + α+ e (1)

where

rA is the return of the asset

rM is the return of the market

rF is the risk free rate of return

α is the intercept of regression

e is the standard error of regression

Fama and French (1992,1993) extended the basic CAPM to include size and book-to-market effects as

explanatory factors in explaining the cross-section of stock returns. SMB (Small minus Big) gives the size

premium which is the additional return received by investors from investing in companies having a low

market capitalization. HML (High minus Low), gives the value premium which is the return provided to

investors for investing in companies having high book-to-market values.

SMB is a factor measuring "size risk", which comes from the view that, small companies (companies

with low market capitalization), are expected to be relatively more sensitive to various risk factors, which

is a result of their undiversified nature and their inability to absorb negative financial events. HML, on

the other hand is a factor which proposes association of higher risk with “value” stocks (high B/M values)

as compared to “growth” stocks (low B/M values). This is intuitively justified as firms or companies ought

to attain a minimum size in order to enter an Initial Public Offering (IPO).

The three factor Fama-French model is written as;

rA = rf + βA(rM − rF ) + sASMB + hAHML+ α+ e (2)
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Where sA and hA capture the security’s sensitivity to these two additional factors. Portfolio formation

using this model requires the historical analysis of returns based on the three factors using regression

measures, which quantifies estimates of the three risk variables involved in the model, i.e. βA , sA,hA, and

the usual regression analysis using OLS gives us the estimates around the means of the distributions of

the historical returns and hence doesn’t efficiently quantify the behaviour around the tails. Modelling the

behaviour of factor models using quantile regression gives us the added advantage of capturing the tail

values as well as efficiently analysing the median values. The coefficients obtained from lower quantiles

(5% or lower) represent the lower tail risk in the return distribution of every stock, which is of interest

when it comes to efficient asset selection.

2.2 QUANTILE REGRESSION

Linear regression represents the dependent variable, as a linear function of one or more independent

variable, subject to a random ‘disturbance’ or ‘error’ term. It estimates the mean value of the dependent

variable for given levels of the independent variables. For this type of regression, where we want to

understand the central tendency in a dataset, OLS is an effective method. OLS loses its effectiveness

when we try to go beyond the median value or towards the extremes of a data set.

Koenker and Bassett (1978), introduced Quantile Regression as an extension of classical ordinary least

squares (OLS) estimation of conditional mean models to the estimation of an ensemble of models for

conditional quantile functions for a data distribution. The central special case is the median regression

estimator that minimizes a sum of absolute errors. The remaining conditional quantile functions are

predicted by minimizing an asymmetrically weighted sum of absolute errors, weights being the function of

quantile of interest. This makes quantile regression a robust technique even in presence of outliers.Taken

together the ensemble of estimated conditional quantile functions offers a much more complete view of

the effect of covariates on the location, scale and shape of the distribution of the response variable.

Quantiles refer to the generalized case of dividing a conditional distribution into parts. The technique of

quantile regression extends this idea to build models which express the quantile of conditional distribution

of the response variable as function of observed covariates.

Linear regression coefficient represents the change in the response variable produced by a one unit

change in the predictor variable associated with that coefficient. Quantile regression coefficients gives the

change in a specified quantile of the response variable produced by a one unit change in the predictor

variable. .

Quantiles as proposed by Koenkar and Bassett (1978) can be defined through an optimization problem.

Similar to the problem of defining sample mean as the solution of the problem of minimizing the sum of

squared residuals (as done in OLS regression), the median quantile (0.5) is defined through the minimiza-

tion of sum of absolute residuals. The symmetrical piecewise linear absolute value function assures same
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number of observations above and below the median of the distribution.

The other quantile values can be obtained by minimizing a sum of asymmetrically weighted absolute

residuals, (giving different weights to positive and negative residuals). Solving

minξεR
∑

ρτ (yi − ξ) (3)

Where ρτ (�) is the tilted absolute value function as shown in Figure 1, this gives the τth sample

quantile with its solution. Taking the directional derivatives of the objective function with respect to ξ

(from left to right) shows that this problem yields the sample quantile as its solution.

Figure 1: Quantile Regression ρ Function

After defining the unconditional quantiles as an optimization problem, it is easy to define conditional quan-

tiles similarly. Taking least squares regression model as a base to proceed, for a random sample,y1, y2, . . . , yn,

we solve

minµεR

n∑
i=1

(yi − µ)2 (4)

which gives the sample mean, an estimate of the unconditional population mean, EY . Replacing the

scalar µ by a parametric function µ(x, β) and then solving

minµεRp

n∑
i=1

(yi − µ(xi, β))2 (5)

gives an estimate of the conditional expectation function E(Y|x).

Proceeding the same way for quantile regression, To obtain an estimate of the conditional median

function, the scalar ξ in the first equation is replaced by the parametric function ξ(xt, β) and τ is set to
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1/2 . The estimates of the other conditional quantile functions are obtained by replacing absolute values

by ρτ (�) and solving

minµεRp

∑
ρτ (yi − ξ(xi, β)) (6)

The resulting minimization problem, when ξ(x, β) is formulated as a linear function of parameters,

can be solved very efficiently by linear programming methods. Further insight into this robust regression

technique can be obtained from Koenkar and Bassett Quantile Regression monograph.

Quantile regression coefficients have the advantages that by including them in the analysis we can

combine them by certain weighting schemes to yield more robust measurements of effect of the factors

across the quantiles, in contrast to OLS estimates around the mean. Chan and Lakonishok (1992),

originally proposed this approach in their work, which proved by means of simulations the applicability

of quantile regression in beta estimation. We will use a symmetric weighting scheme to combine the

coefficients obtained from each of the quantile levels (5%, 25%, 50%, 75% and 95%), to get a single

coefficients for each of the three factors, which will be set as a input in the DEA model. The resulting

estimators have weights which are the linear combination of quantile regression coefficients.

βt = 0.05β(0.05,t) + 0.2β(0.25,t) + 0.5β(0.5,t) + 0.2β(0.75,t) + 0.05β(0.95,t) (7)

st = 0.05s(0.05,t) + 0.2s(0.25,t) + 0.5s(0.5,t) + 0.2s(0.75,t) + 0.05s(0.95,t) (8)

ht = 0.05h(0.05,t) + 0.2h(0.25,t) + 0.5h(0.5,t) + 0.2h(0.75,t) + 0.05h(0.95,t) (9)

2.3 DATA ENVELOPMENT ANALYSIS (DEA)

Data Envelope Analysis was originally introduced by Charnes et al. (1978) as a non-parametric linear

programming approach, capable of handling multiple inputs as well as multiple outputs, Charnes et al.

(1994) and Cooper et al. (2000). DEA measures the efficiency of the decision making unit (DMU) by the

comparison with best producer in the sample to derive compared efficiency.

DEA submits subjective measures of operational efficiency to the number of homogenous entities

compared with each other, through a number of sample’s units which form together a performance frontier

curve that envelopes all observations, and hence this approach is called Data Envelopment Analysis.

Consequently, DMUs which lie on the curve are efficient in distributing their inputs and producing their

outputs, while DMUs which do not lie on the curve are considered inefficient.

Performance measurement using DEA method consists of determining the relative efficiency of a pro-
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ductive unit by considering its closeness to an efficiency frontier. DEA efficiency is not the same as

mean-variance efficiency in the Markowitz model where mean and variance are the only two parameters

for optimization. In the DEA approach, efficiency is the objective function value of a multi-criteria linear

programming model. The objective of the DEA is to determine relative performance indicators among

productive units, considering specific groups of inputs and outputs. It is a multi-factor productivity anal-

ysis model for measuring the relative efficiencies of a homogenous set of decision-making units (DMUs).

The efficiency score in the presence of multiple input and out¬put factors is defined as:

Efficiency =
Weighted Sum of Outputs
Weighted Sum of Inputs

(10)

In the current analysis, the Fama-French three factor coefficients for the securities are used as an input

to the DEA application and expected returns are the output. Assuming that there are n DMUs, each with

m inputs and s outputs, the relative efficiency score of a test DMU p is obtained by solving the following

model proposed by Charnes et al. (1978):

max
∑s
k=1 ϑkykp∑m
j=1 ujxjp

,

st
∑s
k=1 ϑkykp∑m
j=1 ujxjp

≤ ∀i (11)

uk, uj ≥ 0∀k, j

Where,

k=1 to s,j=1 to m,i=1 to n,

yki= amount of output k produced by DMU i,

xji= amount of input j utilized by DMU i,

ϑk= weight given to output k,

uj= weight given to input j

The fractional program shown in the above equation can be converted to a linear program as shown

in equation below.

max
s∑

k=1

ϑkykp

st
∑

ujxjp = 1 (12)
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s∑
k=1

ϑk −
s∑

k=1

ϑkyki ≤ 0∀i

uk, uj ≥ 0∀k, j

To identify the relative efficiency scores of all the DMUs the above problem is run n times. Each DMU

selects input and output weights that maximize its efficiency score. DEA, has demonstrated some very

satisfactory applications in finance; such as, in the evaluation (ex-post) of investment funds (e.g., Morey

and Morey 1999, Gregorious 2003, Haslem and Scheraga 2003), although its initial applications had been

predominantly to public organizations (e.g., Shen et al. 2005, Zhu 2003, Avkiran 2001, Calhoun 2003).

Chen (2008), used DEA for stock selection to form portfolios and compare them against the benchmark

market portfolio, by using the size effect in the model. Lopes, Ana, Edgar Lanzer, Marcus Lima, and

Newton da Costa, Jr., (2008) applied DEA on the Brazilian stock market applying risk measures like

variance and beta as inputs and quarterly returns as the output. Singh, Sahu, Bharadwaj (2009), used

DEA to form efficient portfolio in their comparative analysis. With all these wide applications, DEA has

never been tested in contrasting market situations, for example in the period before the financial crisis

and during the financial crisis (2007-2008).

3 DATA AND METHODOLOGY

The study uses daily prices of the 30 Dow Jones Industrial Average Stocks, for a period from January

2005 to December 2008, along with the Fama-French factors for the same period, obtained from French’s

website to calculate the Fama-French coefficients. Table 1, gives the 30 stocks traded in Dow Jones

Industrial Average and used in this study.

Table-1: Dow Jones Industrial 30 Stocks used in the study.

3M EI DU PONT DE
NEMOURS

KRAFT FOODS

ALCOA EXXON MOBILE MCDONALDS
AMERICAN EXPRESS GENERAL ELECTRIC MERCK & CO.

AT&T GENERAL MOTORS MICROSOFT
BANK OF AMERICA HEWLETT-PACKARD PFIZER

BOEING HOME DEPOT PROCTER&GAMBLE
CATERPILLAR INTEL UNITED TECHNOLOGIES

CHEVRON IBM VERIZON COMMUNICATIONS
CITIGROUP JOHNSON & JOHNSON WAL MART STORES
COCA COLA JP MORGAN CHASE &

CO. WALT DISNEY

The methodology adopted in this research can be summarized in the following steps:

9



1. Calculate Fama-French Coefficients using Quantile Regression (5%, 25%, 50%, 75% and 95%

quantiles ) and OLS, using daily log returns for each stock along with the daily factors.

2. Use the symmetric weighting scheme (equation 7, equation 8 and equation 9), to combine the

coefficients calculated from quantile regression to get a single measure for each of the three

coefficients.

3. Standardize the coefficients and the annualized returns to make them positive to be used as

deciding input and output parameters in the DEA model, using the following relation

RZij = Abs(min(Zj)) + Zi (13)

where

RZij is the rescaling for each j attributes for stock i.

Min(Zj) is the minimum of all the values of jth attribute for all stocks.

Zi is the value of attribute j for stock i.

Finally all the attributes for all the stocks are divided by respective maximums, as shown in equation-

14.

MRZij =
RZij

Column Maximum
(14)

Where, MRZij is the final rescaled value for each attribute for a stock.

4. We drop the stock having the minimum rescaled annualized return, which was zero in every

case. The asset selection using the three factors for the rest of the 29 stocks is done for both

OLS and quantile regression measures.

5. The coefficients are chosen as input to the variable return to scale input oriented DEA model

and the annualized returns as the output, which minimizes the inputs (three risk factors) for

a given level of output (return). Stocks having an efficiency score of 100% are chosen to form

an equally weighted portfolio.

6. The resulting portfolios obtained for both the regression techniques are evaluated based on

their return after a hold out period of one year.

7. All the steps are repeated for three year data period (2005-2007), resulting in three different

asset sets selected during different time periods representing different market conditions, which

included the period of Global Financial Crisis.
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(GRETL an open source software is used for OLS and Quantile Regression and another open source

software called Efficiency Measurement System (EMS), is used for calculating DEA model).

4 DISCUSSION OF RESULTS

Table 2 gives the stocks selected using the factor coefficients calculated from OLS, it also gives the

return which the set of selected stocks gives when combined into an equally weighted portfolio after a hold

out period of one year. Table 3 gives the stocks selected using factor coefficients calculated for different

quantiles using quantile regression along with the hold out period equally weighted portfolio return. As

evident from the results in these tables, the stocks selected by using quantile regression estimates gives

better hold out period returns than the ones selected using OLS. The method not only gives better results

in normal market conditions but also gives better performance at the time of the recent financial crisis

(years 2007-2008).

Table-2: Assets Selected from DEA using OLS estimates

YEAR STOCKS ONE YEAR HOLD
OUT RETURN

2005 Boeing, HP, INTEL, Johnson & Johnson, Kraft
Foods, Pfizer, Procter & Gamble 12.03333

2006 AT&T, General Motors, HP, IBM, Johnson &
Johnson, Kraft Foods, Merk & Co. , Walt Disney 4.181735

2007
Boeing, Chevron, Coca Cola, HP, INTEL, IBM,
Johnson & Johnson, Mac Donalds, Merk & Co.,

Procter & Gamble

-43.0281

Table-3: Asset Selected from DEA using Quantile Regression estimates.

YEAR STOCKS ONE YEAR HOLD
OUT PERIOD

2005 Beoing, HP, INTEL, IBM, Johnson & Johnson, Kraft
Foods,Merk & Co., Pfizer, Procter & Gamble 14.414368

2006 AT&T, General Motors, HP, IBM, Johnsons &
Johnsons, Kraft Foods, Merk & Co., Microsoft 5.259369

2007
AT&T, Chevron, Coca Cola, HP, INTEL, IBM,
Johnsons & Johnsons, Mac Donalds, Microsoft,

Procter & Gamble
-39.1764

The stocks selected based on applications of quantile regression estimates using DEA perform better,

as the quantile measures provide an efficient quantification of the tail risk involved with the return distri-

bution, which is not possible with OLS. Figure 2 gives the distribution of fitted values obtained for one of

the sample stocks from the factor model using OLS and 5% and 95% quantile regression, the fitted values

show that OLS is incapable of capturing the tail values and hence less efficient for the quantification of

the overall risk .
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Figure 2: Fitted Values obtained from OLS and Quantile Regression (5% and 95%).

5 CONCLUSION

The Fama-French Three factor model models the dependence of asset returns on three factors, the

market return, size factor and value factor, but the traditional technique used for the estimation of model,

i.e. OLS is incapable of describing the extremes of the distribution. In this research work we used a

more robust technique of Quantile Regression which efficiently describes the required quantiles and hence

gives better estimates of the risk described by the factors. The research provides a new dimension to

the use of factors in DEA analysis for selecting efficient assets using Quantile Regression. The empirical

results not only show that the assets selected by DEA perform better when quantile estimates are used,

but they also show that the quantile based estimates also prevent the investor from some degree of loss

to an extent at times of unpredictable financial distress situations. Quantile Regressions are now widely

used in quantitative finance and also in specialized financial fields like econometrics. Further work can be

done on applications of this robust tool with other optimization algorithms to test the capabilities and

applicability of the technique.
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