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ABSTRACT

Value-at-Risk (VaR) has become the universally accepted metric adopted internationally
under the Basel Accords for banking industry internal control and for regulatory reporting.
This has focused attention on methods of measuring, estimating and forecasting lower tail
risk. One promising technique is Quantile Regression which holds the promise of
efficiently calculating (VAR). To this end, Engle and Manganelli in (2004) developed their
CAViaR model (Conditional Autoregressive Value at Risk). In this paper we apply their
model to Australian Stock Market indices and a sample of stocks, and test the efficacy of
four different specifications of the model in a set of in and out of sample tests. We also
contrast the results with those obtained from a GARCH(1,1) model, the RiskMetrics ™
model and an APARCH model
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1. Introduction

Value at risk (VaR) remains the standard measure of market risk used by financial institutions
and their regulators since it was first promoted by J.P. Morgan and RiskMetrics and
subsequently adopted in the Basel Accords, beginning in 1988. VaR is used globally by
financial institutions and their regulators and Australia has also adopted the Basel Accords. In
June 2003, APRA announced its decision to implement Basel II in its totality. The
International Monetary Fund (2009) under-took an analysis of Basel 11 implementation in
Australia and was largely complementary, but noted that: “It will be important for APRA to
continue to undertake increasingly complex work (drill down reviews for advanced banks,
stress testing, assessment of Pillar 2 risks, and economic capital models, etc.) to assure itself

that banks remain well capitalized relative to their risks”.

Despite the importance of this topic, very little research has been undertaken on the uses and
applications of VaR or related metrics at all in Australia. A search of the Australian
Prudential Regulatory Authority’s (APRA) website revealed Sy (2006), Engel and Gizycki
(1999) and Gizycki and Hereford (1999) as being the only papers considering aspects of
VaR. More recently Allen and Powell (2009) have contrasted VaR and CVaR (Conditional
Value at Risk) as alternative risk metrics in an Australian context. This paper seeks to further
address this gap in Australian empirical work by assessing the relative performance of the
recently developed CAViaR model (Conditional Autoregressive Value at Risk by regression

quantiles model of Engle and Manganelli (2004) with more customary approaches.

VaR is a measure of how much a certain portfolio can lose within a given time period, for a
given confidence level. Despite its apparent simplicity in summarizing the downside risk of a
portfolio it is not an easy number to calculate. To summarise: Value-at-Risk (VaR) is
probably the most used measure of risk since the 1996 amendment to the Basel Capital
Accord which proposed that commercial banks with significant trade activity could use their
own VaR measure to define how much capital they should set aside to cover their market risk
exposure, and typically bank regulatory agencies audit the VaR methodology employed by
the banks. (See the APRA website; http://www.apra.gov.au/ADI/Prudential-Standards-and-
Guidance-Notes-for-ADIs.cfm).

Its application has also been fostered by the enormous body of work on volatility modelling,
such as the time series models nested in the ARCH/GARCH family. For surveys of the latter
see Li, Ling and McAleer (2002), the survey of ARCH models by Bollerslev, Engle and
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Nelson (2003), whilst Jorion (2006) reviews the concept and applications of VaR. (See
Holton (2003) also). Subsequently, there have been parallel developments in the stochastic

volatility and realised volatility literature.

The empirical literature on modelling VaR contains three different categories of methods:

parametric, nonparametric and semi-parametric.

1.  Parametric approaches involve a parameterisation of the behaviour of prices. Quantiles
are estimated using a volatility forecast with an assumption about the type of the
distribution utilised; e.g. Gaussian. Typically, exponential smoothing or a GARCH
model is used to forecast the volatility.

2. The most widely used nonparametric method is historical simulation, which requires no
distributional assumptions and estimates the VaR as the quantile of the empirical
distribution of historical returns from a moving window drawn from recent periods.

3. An alternative approach is to use a quantile regression based methods as in Engle and
Manganelli (2004) who consider an autoregression of the estimated VaRs. Thus, whilst
statistical volatility models rely on the assumption that the shape of the conditional
distribution is fixed over time and that it is only the volatility that varies. The recently
proposed Conditional Autoregressive Value at Risk (CAViaR) model requires no such
assumption, and allows quantiles to be modelled directly in an autoregressive

framework.

The development of quantile regressions techniques was by Basset and Koenker (1978). (For
a comprehensive account of these recent developments see Koenker (2005)). Koekner (2005)
notes that: “Quantile regression is gradually emerging as a unified statistical methodology for
estimating models of conditional quantile functions. By complementing the exclusive focus
of classical least-squares regression on the conditional mean, quantile regression offers a
systematic strategy for examining how covariates influence the location, scale, and shape of
the entire response distribution”. This approach had been directly foreshadowed by
Boscovitch and Laplace in the 18" Century and in the next by Edgeworth (1888).
Applications of quantile regressions in the time series domain have been slowly developing.
Davis and Dunsmuir (1997) were some of the first with a very general treatment of the
asymptotics of the median regression estimator for regression models with autoregressive
moving average (ARMA) errors, obtaining an asymptotically normal theory under quite

general conditions. Koenker and Zhao (1996) began work on developing a type of ARCH



framework for applications of quantile regressions. Recently, Engle and Manganelli (2004)
have developed the CAViaR model. Taylor (2008) has extended the model to include double
kernel quantile regressions in the context of an exponentially weighted framework. Taylor
(2008) points out that estimating the VaR amounts to forecasting, conditional on current
information, the tail quantiles of the distribution of a series of financial returns. Although a
variety of approaches have been proposed for forecasting conditional tail quantiles, there is
no established method. Quantile regression is very promising technique because of its

strength in exploring relationships with covariates through the quantiles.

In this article we apply Engle and Manganelli’s (2004) CAViaR model to an Australian index
and a sample of Australian stocks and compare the value at risk forecasts with one day ahead
Var forecasts obtained by means of Gaussian GARCH(1,1) VaR, RiskMetrics™ and Skewed
student-t APARCH(1,1). The paper is divided into four sections; the following section two
introduces quantile regressions, the CAViaR model with the other VaR models used for the
study and the data and research design implemented in the paper, section three presents the

results and a short conclusion follows in section four.

2. Quantile Regression ,the CAViaR model and the Research Design.
2.1 QUANTILE REGRESSION

CAViaR uses quantile regression for estimation of its parameters; first introduced by
Koenker and Bassett (1978), as an extension of classical ordinary least squares (OLS)
estimation of conditional mean models to the estimation of a group of models for conditional
quantile functions for a data distribution. The central special case is the median regression
estimator that minimizes a sum of absolute errors. The remaining conditional quantile
functions are predicted by minimizing an asymmetrically weighted sum of absolute errors,
weights being the function of quantile of interest. This makes quantile regression a robust
technique even in presence of outliers. Taken together the group of estimated conditional
quantile functions offer a more complete view of the effect of covariates on the location,

scale and shape of the distribution of the response variable.

Quantiles refer to the generalized case of dividing an unconditional distribution into parts.
The technique of quantile regression extends this idea to build models which express the

quantile of conditional distribution of the response variable as function of observed
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covariates. Linear regression coefficient represents the change in the response variable
produced by a one unit change in the predictor variable associated with that coefficient.
Quantile regression coefficients gives the change in a specified quantile of the response

variable produced by a one unit change in the predictor variable.

Consider a series of observations on random variables generated by the following model

Yt = X'tPo + ot Quantg(yelx,) = x¢'Bg (D

Where x; is a p-vector of regressors and Quanty(y:|x;) = x;'Bg is the 6 quantile of y,

conditional on x;.

Koenker and Bassett (1978) show that 8 regression quantile is defined as any 34 that solves

the following generalized objective function

. 1 ! !
ming ;{Zt:ytzxgﬁ Oly: —x:Bl + Zt;yt<x{ﬁ(1 -y — xtﬁl} ()

Let f;(B) = x:f3, rewriting the above expression in terms of indicator function ( I()) gives

the equivalent objective function

ming %ZL[@ — Iy <fe(BNIye = fe(B)] 3)

To simplify, Quantiles as proposed by Koenkar and Bassett (1978) can be defined through an
optimization problem. Similar to the problem of defining sample mean as the solution of the
problem of minimizing the sum of squared residuals (as done in OLS regression), the median
quantile (0.5) is defined through the minimization of sum of absolute residuals. The
symmetrical piecewise linear absolute value function assures same number of observations

above and below the median of the distribution.

We will not discuss further the mathematical details of the regression technique, please refer

to Koenker’s (2005) monograph for a comprehensive discussion.
2.2 CAViaR

The problem in estimating VaR is that it is a particular quantile of potential future portfolio
values, conditioned on current available information. However, portfolio returns and risk
change over time, so a time-varying forecasting procedure is required. Essentially this

involves forecasting a value each period that will be exceeded with a probability of (/-6) by



the current portfolio value. In this case O (0,1)are representative of the confidence level

attached to the VaR.

CAViaR, uses quantile regressions and instead of modelling the whole return distribution for
calculation of VaR, it models the required quantiles of the return distribution directly. To
predict the value at risk by modelling the lower quantiles, the model uses a conditional
autoregressive specification, inspired by the fact that the distribution of volatilities over time
is auto-correlated, hence the model. Engle and Manganelli (2004) propose four different
specification processes for the calculation of value at risk viz: an Adaptive model, a
Symmetric Absolute Value, an Asymmetric Slope and an Indirect GARCH model. We follow
suit and test the relative suitability of all the four models on our Australian sample data set in

the calculation of VaR and contrast the results with those of more standard approaches.

The first model; an Adaptive model, is a smoothed version of a step function (for finite G), is

given by

fiB) = feoa(B) + Bi{[1 + exp(Glye—1 — fioa(BODI™ = 63, “4)

Adaptive model as the name suggests changes itself depending on whether VaR is exceeded
or not, it takes a higher value when VaR is exceeded but decreases slightly otherwise. Engle
and Manganelli (2004) note that the structure of the Adaptive CAViaR model is such that the

estimator increases the VaR uniformly regardless of the extent the returns exceed the VaR.
A second model which features symmetric absolute values is set out below:

ft(B) = B1+ Baft-1(B) + B3lye-al 5

A third has an asymmetric Slope:
fr(B) = B+ Bofeica(B) + Bz(e-1)* + Ba(ye-1)” (6)
where, notation (x)"=max(x,0), (x) =-min(x,0).
Whilst the fourth is an indirect GARCH (1,1):
fi(B) = (B + Bof*,_,(B) + Bsy?,_ D'V ()

These last three models are similar to GARCH models in structure, the second and the fourth

model are symmetrical and hence responds symmetrically to past returns. The third model



responds asymmetrically to returns and captures the asymmetric leverage effect. The fourth
model is same as GARCH(1,1) model in form but with a difference of estimation technique

used, this model estimated by directly using quantile regressions against the maximum

likelihood in usual GARCH.

Taylor (1986) and Schwert (1988), first introduced VaR models based on symmetric and
asymmetric quantile specification, and it was subsequently analysed by Engle (2002). A merit
of the CAViaR specification, as suggested by Engle and Manganelli (2004), is that it is more
general than these GARCH models.

2.3 OTHER VAR MODELS
23.1 Garch (1,1)

A very widely used method of VaR forecast is using Gaussian or normal Garch(1,1)

forecasts, which is given by

Uzt =w+ aq 52t—1 + ,3102t—1 (8)

This model assume normality of the return distribution and uses maximum likelihood for
estimation of the model as opposed to the proposed indirect GARCH(1,1) which used

quantile regressions to model the specific quantile of interest directly.
2.3.2  RiskMetrics™

In simplest of its forms the basic RiskMetrics (Morgan, 1996) is equivalent to a normal
Integrated GARCH model (IGARCH), where the autoregressive and decay parameters are
predefined to 0.94 and 0.06 respectively. RiskMetrics is the most simple and still the most

used VaR model available. The model is given by:
ot =w+ (1—2Ae?_1 + 0%, )

Where w = 0 and A is usually set to 0.94 for daily data and 0.97 for weekly data. There are
many extensions to this basic RiskMetrics model which are freely available at RiskMetrics

Group website.
2.3.3 APARCH (1,1) with Skewed Student-t

Ding, Granger, and Engle (1993), introduced the Asymmetric power ARCH, or APARCH
model as an extension to GARCH model. The APARCH(p,q) model can be described as



o) =w+ YL a(leeil — viee—)® + 2=, Biorl; (10)

where w, a;, y;, Bj and § are the parameters to be estimated, also § > 0 and —1 <y; <

1(=1,..,9).

Here § gives the Box-Cox transformation of a;, while y; reflects the impact of negative and

positive returns on volatility, or the leverage effect.

Ferniandez and Steel (1998), proposed to extend the Student distribution by adding a
skewness parameter to account for the excess skewness and kurtosis in the return series. The
main drawback with this procedure is that it is modelled in terms of mode and the dispersion
of the distribution, which is checked by Lambert and Laurent (2001) who re-expressed the
skewed student density in terms of the mean and the variance. This innovation process has

zero mean and unit variance.

The innovation process z is said to be (standardized) skewed-Student distributed if:

%lsg[f(sz +m)v], if z< —%
3

fzI§v) =f(x) = (1)

2
—sgl(sz +m)/E], 22—
'3 tz s

where g(.|v) is the symmetric or unit variance Student density and & is the asymmetry
coefficient. m and s? are respectively the mean and the variance of the non-standardized

skewed-Student.

To summarize, ¢ models the asymmetry, while v expresses the tail thickness. See Lambert

and Laurent (2000, 2001) for detailed explanation.

The VaR results from the four CAViaR methods and the other VaR models, viz., Gaussian
Garch (1,1), RiskMetrics™ and Skewed student-t APARCH are tested using a dynamic
quantile test, as proposed by Engle and Manganelli (2004). We will omit further details of the

methods for the sake of brevity, as further insights can be obtained from their original paper.

2.4 Data and Methodology



We apply the four CAViaR methods to Australian stock market data, viz. Two indices: the
ASX-200, and the ASX-50 plus two stocks: NAB and ANZ, from ASX-200 for a period of
15 years (September 1994-September 2009). As this period includes the period of Global
Financial Crisis, we do the empirical investigation in two steps. First, we include the GFC
period, and then we exclude it (roughly last two years daily data). A 500 day out of sample
period is chosen here which amounts to approximately two years of daily returns. We make
use of percentage daily returns calculated in logarithms. Our total data set amounts to 3869

observations (including the GFC period) and 3167 observations (excluding the GFC period).

We will use 1000 returns with a 250 days forward moving window to forecast one day ahead
1% and 5% VaR using Gaussian (normal) Garch(1,1), RiskMetrics™ and Skewed Student-t
APARCH (1,1) VaR models, we start with estimating the models with first 250 days and
forecasting the one day ahead VaR, then moving the window a day ahead and re-estimating
the model for forecast. This is done to forecast 750 daily VaR values, for a period including
the GFC and excluding it and then compare it with CaViAR model based on the Dynamic
Quantile test. The R code from Lima and Neri (2007), is modified and used to calculate these

three VaR models.
2.5 Backtest

The performance of the VaR models is assessed by computing their failure rate for the return
series. Failure rate can be defined number of times the return on a specific day exceeds (in
absolute value) the forecasted VaR for that day. As the computation of failure rate follows a
binomial distribution (a sequence of yes and no observations), it is possible to test Hy: f =

against Hy: f # a , where f is the failure rate.

Kupiec (1995) proposed this test as the unconditional coverage test, in which the hypothesis

is tested using a likelihood ratio test. The likelihood ratio test is given as

(12)

LR = —2In ("‘N“‘“)T_N)

aN@a-a)T-N

where N is the number of VaR violations, T is the total number of observations and « is the

theoretical failure rate. @ is defined as @ = % . LR~ )((21) under the null hypothesis thata = & .

A relevant VaR model should also feature a sequence of VaR violations which are not

serially correlated. Engle and Manganelli (2004), suggest the Dynamic Quantile or DQ test



with new Hit variable; Hit,(a) = I(y, < —VaR.(«)) — a . DQ test suggest testing jointly
the hypothesis that E(Hit.(a)) = 0 and Hit,(a) is uncorrelated with the variables included

in the information set.

Engle and Manganelli (2004), suggests that both tests can be done using the following

artificial regression

Hit, = X1 + ¢,

€ = { —a, prob(1l—a) (13)

(1—a), prob(a)
Where X is a Txk matrix whose first column is a column of ones the next p columns are Hit,.

1,....Hitep, and the k - p - 1 remaining columns are additional independent variables (including

the VaR itself).
The DQ test statistics is given by

AX'x1 .
ai-a) ¥ (f)
(14)
Where A is the OLS estimate of A.

Engle and Manganelli (2004) explain that the in-sample test, or DQ test is a specification test
for the particular CAViaR process under study and it can be very useful for model selection
purposes. They suggest the parallel DQ out of sample tests could be used by regulators to
check that the VaR estimates submitted by a financial institution satisfy some basic model
specification requirements such as unbiasedness, independent hits and independence of the
quantile estimates. We utilise their tests and Matlab code in this paper. (We are thankful to

Simone Manganelli for making available his MATLAB code for the exercise).

3.  RESULTS

To apply the models we first had to extract our daily index and stock price series from
Datastream and convert the series into continuously compounded daily return series which
are scaled by 100. We then estimate the 1% and 5% VaRs using the four models previously
introduced. In the case of the first adaptive model, we follow Engle and Manganelli (2004)

and set G equal to 10. This permits a direct comparison with their sets of results.



The results for 1% and 5% VaRs for the four models are presented in Table 1 and Table 2
which presents the results as obtained for the whole data which includes the financial crisis
period. The tables include the values of the estimated parameters, and their associated
standard errors and (one-sided) p values. It also shows the value of the regression quantile
objective function (equation-3), the percentage of times the VaR is exceeded, plus the p value
of the DQ tests for both in and out of sample cases.We follow Engle and Manganelli (2004)
and compute the VaR series for CAViaR models by initialising f;(f) to the sample 8
quantile using the first 300 observations. In the out of sample DQ tests the instruments used
were a constant, the VaR forecast and the first four lagged hits. The algorithm for computing

in the in-sample DQ test is explained in Engle and Manganelli (2004).

The results for 1% and 5% VaRs presented in Tables 1 and 2 for this Australian data set share
many common characteristics with those presented by Engle and Manganelli (2004) for their
US data set which featured General Motors, IBM and the S&P 500 index. One notable result
is that the autoregressive term (f3;) is always very significant. This matches their results and
implies that volatility clustering is also important in the tails of the distributions, in these
cases, in these extreme quantiles. All the models appear to be highly precise, as measured by
the in sample hits. In Table 1 for the 1% VaR all values are very close to 1, the weakest being
the adaptive model, which has a value of 0.83 in the case of NAB. A similar picture emerges
for the 5% VaR presented in Table 2. The weakest case is again the adaptive model which
has a value of 4.42 for the ASX200 but all its percentage hits are less accurate than the other
three models. This finding, which exactly parallels Engle and Manganelli (2004) adds weight
to their observation that a focus on the number of exceptions, or breaches of the VaR, as
suggested by the Basle Committee on Banking Supervision (1996) is likely to be a sub-
optimal way of evaluating a VaR model. This finding, which exactly parallels Engle and
Manganelli (2004) adds weight to their observation that a focus on the number of exceptions,
or breaches of the VaR, as suggested by the Basle Committee on Banking Supervision (1996)

is likely to be a sub-optimal way of evaluating a VaR model.

In the out of sample tests none of the models work well for either 1% or 5% VaRs. They all
show excessive breaches of VaR, sometimes double the number targeted. The DQ tests for
the in-sample cases suggest no rejection of the asymmetric slope model which appears to
have the optimum performance. Once again, the adaptive model is the weakest and it is

rejected at the 5% level for 3 of the 4 series with the exception being ANZ.
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The results from the out of sample, DQ test shows that the technique loses its effectiveness at
the time of financial distress (all values are lower than 1%). Also the in sample statistics
show that only the Asymmetric Slope specification is efficient for all the sample data for both
1% and 5% VAR. Figure 1 and Figure 2 provide the graphs of the estimated 1% and 5%
CAViaR specifications for the ASX-200. The spike at the end indicates the increasing
volatility due to the effects of global financial crisis. Figure 3 shows the news impact curve,
(calculated from the effects of one day lag data) for ASX-200, which shows the effect on
VaR from the previous day’s portfolio return when considered as the effect of news or
changes in fundamentals. It is notable that the best-performing model, the asymmetric slope
model, suggests that negative returns are likely to have a much stronger effect on the VaR
estimate than positive returns. This is a finding supported by Allen, McAleer and Scharth
(2009) in their work on modelling volatility.

As a comparison test, when compared to the one day ahead 1% and 5% VaR forecasts
obtained from Gaussian GARCH (1,1), RiskMetrics and Skewed student-t APARCH(1,1)
(figure 4, figure 5). Table 3, gives the DQ test results for 1% VaR, which shows that DQ test
rejects the GARCH(1,1) and RiskMetrics for all the sample time series returns while it
slightly improves in case of APARCH(1,1) but it still doesn’t give significant p-values for all
the time series. Table 4, gives the DQ test results for 5% VaR, the p-values in this case are
significant for few cases, while RiskMetrics is the best performing model in this case
GARCH(1,1) and APARCH (1,1) improves slightly. These results shows that according to
DQ test none of the model is able to give highly significant VaR results for all the four time

series.
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Figure 3: News Impact Curve for 1% CAVIAR specifications
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Figure 4: Normal GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 1% VaR
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Figure 5: Normal GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 5% VaR

Table 3: DQ Test Results for GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 1% VaR

VaR (1%) | GARCH(1,1) RiskMetrics APARCH(1,1)
ASX- ASX- ANZ NAB ASX- ASX- ANZ NAB ASX- ASX- ANZ NAB
200 50 200 50 200 50
DQ Hits 98.889 68.180 | 22.755 18.308 | 92.824 93.140 | 18.593 15.188 19.479 10.262 | 11.012 12.601
DQ (p 0 0 0.001 0.006 0 0 0.005 0.019 0.003 0.114 0.088 0.050
Value)
Table 4: DQ Test Results for GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 5% VaR
VaR (5%) GARCH(1,1) RiskMetrics APARCH(1,1)
ASX- ASX- ANZ NAB ASX- ASX- ANZ NAB ASX- ASX- ANZ NAB
200 50 200 50 200 50
DQ Hits 15.263 20.917 | 8.826 5.602 16.277 11.575 | 8.750 5.955 12.293 12.334 | 16.728 16.444
DQ (p 0.018 0.002 0.184 0.469 0.012 0.072 0.188 0.428 0.056 0.055 0.010 0.012
Value)
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Table 6 DQ test results for pre GFC period GARCH(1,1), RiskMetrics and Skewed student-t APARCH(1,1) 1% VaR

VaR GARCH(1,1) RiskMetrics APARCH(1,1)
1%)
ASX-200 | ASX- | ANZ NAB ASX- ASX- | ANZ NAB ASX- ASX- | ANZ NAB
50 200 50 200 50
DQ Hits 46.882 50.637 | 38.336 | 20.868 | 55.025 | 77.312 | 2.113 11.147 | 42,756 | 39.599 | 17.375 | 8.735
DQ (p 0 0 0 0.002 0 0 0.909 0.084 0 0 0.008 0.189

Value)

The significant DQ test results for the out of sample period, as indicated in Table 1 and Table
2 suggest rejection of all the models in this period. This was most likely due to the impact of
the GFC. We test this justification by excluding the period of the market turmoil from our
sample data and then testing the specifications as proposed with other settings kept the same.
Table -5 presents the results of the 1% CAViaR specifications with the period of the GFC
removed. The results prove that this interpretation is correct and the out of sample estimates
become significant when the period of turmoil is removed from the empirical investigation.
In this case again the specification which works the best for the Australian market is the
Asymmetric Slope Model. Here again it is interesting to see how the other models performs
in normal market conditions. DQ test results as shown in Table 6 suggest that these methods
don’t improve after removing the GFC period either. The analysis shows the usual regression
modelling of GARCH based and similar models for Value at Risk forecast is not efficient

enough when compared to CAViaR.

4. Conclusion

In this paper we have applied the robust method of quantile regression to predict VaR using
Engle and Manganelli’s (2004) CAViaR model applied to a sample of company and index
returns from the Australian Market. As a primary objective we have done a comparative
analysis of CAViaR with normal GARCH (1,1), GARCH(1,1), RiskMetrics and Skewed
student-t APARCH(1,1) one day ahead forecast, which clearly shows the efficiency of
CAViaR over the later methods. modelling. Our findings closely parallel those of Engle and
Manganelli (2004) from their original paper featuring US data sets. Their new class of
CAViaR models, which specify the evolution of quantiles over time using a special type of

autoregressive process appear to work well on this Australian data set apart from during the
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period coloured by the GFC. The findings also suggest that behaviour in the tails may well be
different from the rest of the distribution. The GFC produced more extreme returns and all
our models produce an excessive number of violations of the VaR in this period and the DQ
tests reject the models for this out of sample period. This suggests we still have a long way to

travel before we can achieve satisfactory VaR models for periods of extreme stress
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