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ABSTRACT 

 

In this paper a number of alternative ACD models are compared using a sample of data 

for three major companies traded on the Australian Stock Exchange. The comparison is 

performed by employing the methodology for evaluating density and interval forecasts, 

developed by Diebold, Gunther and Tay (1998) and Christoffersen (1998), respectively. 

Our main finding is that the generalized gamma and log-normal distributions for the error 

terms have similar performance and perform better that the exponential and Weibull 

distributions. Additionally, there seems to be no substantial difference between the 

standard ACD specification of Engle and Russel (1998) and the log-ACD specification of 

Bauwens and Giot (2000). 
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1 Introduction

The introduction of the Autoregressive Conditional Duration Model (ACD) by
Engle and Russel [10] as well as the increased availability of high-frequency data
has sparked a substantial amount of work modelling of the �nancial durations,
both theoretical as well as empirical. Correctly specifying the dynamics of times
between transactions of �nancial assets is important to such issues as testing
market microstructure theories (see the survey by Madhavan [20]), optimizing
execution costs (see Kissel and Glantz [18] and intra-daily estimation and fore-
casting of the volatility (see for example, Ghysels and Jasiak [14], Engle [9]).
In their seminal paper, Engle and Russel [10] consider a linear speci�cation

for the conditional mean equation and exponential and Weibull distributions
for the error terms. Their approach has been subsequently extended by many
authors. Bauwens and Giot [3] put forth a log-linear speci�cation for the condi-
tional mean which always guarantees the positivity of the durations without im-
posing restrictions on the coe¢ cients. Zhang, Russell and Tsay [24] introduced
a non-linear version of the ACD model in the spirit of the linear autoregres-
sive threshold models. Bauwens and Veredas [5] proposed a stochastic duration
model which is analogous to the stochastic volatility models in the same way as
the Engle and Russel�s ACD model is analogous to the GARCH model. Ghysels,
Gourieroux and Jasiak [13] considered a rather complicated version of the ACD
model, which allows disentangling the dynamics of the mean and the variance
of the duration process.
In addition to the exponential and Weibull distributions for the error terms,

other distributions have been proposed. Grammig and Maurer [15] consider
the Burr distribution and Lunde [19] considers the generalized gamma distribu-
tion. The log-normal distribution, although seemingly a natural candidate, has
received limited attention in the literature with the exception of the work by
Allen, Chan, McAleer and Peiris [2] and Sun, Rachev, Fabozzi and Kalev [23].
Despite this impressive body of work, only a limited number of papers have

been devoted to testing the speci�cations of the alternative ACD models. Two
notable exceptions are the work of Fernandes and Grammig [12] and Bauwens,
Giot, Grammig and Veredas [4]. The �rst paper evaluates ACD models by gaug-
ing the distance between the parametric density of the duration process and its
non-parametric estimate, using the methods developed by Ajt-Sahalia [1]. Only
the standard ACD speci�cation of Engle and Russel [10] is considered, using er-
ror terms with exponential, Weibull, generalized gamma and Burr distributions.
Employing only one sample of durations for Exxon, these authors �nd that the
Burr and generalized gamma distributions perform better than the exponential
and Weibull distributions.
Bauwens, Giot, Grammig and Veredas [4], using the methodology for eval-

uating density forecasts by Diebold, Gunther and Tay [8], consider a number
of alternative ACD speci�cations for three stocks traded on New York Stock
Exchange. One of their main �ndings is that the exponential and Weibull dis-
tributions are often mis-speci�ed, while on the other hand Burr and generalized
gamma distributions perform much better. Additionally, they �nd that the
speci�cation for the conditional mean (e.g. the standard ACD, log-ACD as well
as non-linear approaches such as the Threshold ACD model) doesn�t seem to
a¤ect the models�performance much. In particular, their results suggest very
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little di¤erence between the ACD and log-ACD speci�cations.
Given the very little work which has been devoted to evaluating ACD mod-

els, which additionally has been done exclusively with US data, in this paper we
test a series of ACD models using data from the Australian Stock Exchange. We
consider four di¤erent distributions for the residuals: exponential, Weibull, gen-
eralized gamma and the log-normal one. Two speci�cations for the conditional
mean: standard ACD speci�cation of Engle and Russel [10] and the log-ACD
speci�cation of Bauwens and Giot [3] are included in our study. To check for
possible variation in the shape of the residual distribution, we also consider two
models with GARCH-type variation of the residuals�variance.
The alternative models are evaluated on the basis their density and interval

forecasts, using the methods developed by Diebold, Gunther and Tay [8], and
Cristo¤errsen [6], respectively. Our results con�rm the �ndings of Fernandes
and Grammig [12] and Bauwens, Giot, Grammig and Veredas [4] concerning
the superior performance of the generalized gamma distribution in comparison
to the exponential and Weibull distributions. Also, we �nd that the ACD and
log-ACD speci�cations are pretty similar, which is also con�rmed by Bauwens
and Veredas [5]. Additionally, we �nd that the log-normal distribution has a
surprisingly good performance similar to that of the generalized gamma distri-
bution, although it has one free parameter less.
The rest of the paper is organized as follows. In Section 2, we provide

a brief summary of the Diebold , Gunther and Tay [8] and Christo¤ersen [6]
methodologies for evaluating density and interval forecasts, respectively. Section
3 contains an overview of the alternative ACD speci�cations used in the paper.
Description of the data and ACD models estimations are discussed in Section
4. Comparison of the di¤erent models is provided in Section 5. Finally, Section
6 summarizes the main �ndings of the paper.

2 Evaluation of ACD Models by Density and
Interval Forecasts

The literature on forecasting has traditionally focused on evaluating point fore-
casts. However, in the case of ACD modelling, point forecasts can�t tell us
much about the suitability of the model in question, and especially about the
appropriateness of the residual distribution, for several reasons. First, Engle
and Russel [10] showed that if the equation for the mean is correctly speci�ed,
then a QMLE estimation of a model with exponentially distributed error terms
will produce consistent and asymptotically normal coe¢ cient estimates. Since
the point forecasts don�t depend on the shape of the residual distribution, this
might render comparison of alternative ACD models di¢ cult.
Second, we �nd that even though sometimes there is a substantial di¤erence

in coe¢ cient estimates, there is not much di¤erence in the precision of the point
forecasts even among models with di¤erent speci�cation for the mean, such as
the standard ACD and the log-ACD model (results not reported here for the
sake of brevity).
Additionally, point forecasts provide evidence of how well a model captures

the dynamics of the durations around the mean. However, most empirical tests
of market microstructure theories are concerned with the dynamics of the (very)
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short or (very) long durations. For example, periods of high volatility are asso-
ciated with clustering of short durations.
Recently, Diebold, Gunther and Tay [8] proposed a simple and intuitive

method for evaluating nested and non-nested models on the basis of evaluating
density forecasts. As a motivation for their approach, these authors showed that
forecast users would always prefer a model which produces the correct density
function, regardless of their loss function. In addition, their method gives a
broader perspective on the models ability to capture the dynamics of durations
(in our case) of di¤erent sizes.
The basic idea of Diebold, Gunther and Tay [8] approach dates as early as

Rosenblatt [22]. The latter author showed that if z is a continuos random vari-
able with cumulative density function F (x), then F (z) is uniformly distributed
in the interval [0; 1] (U [0; 1] random variable). Diebold , Gunther and Tay [8]
generalized this result in the following way. Let y0; y1; ::: be a time series and let
ffi (xj	i�1)g1i=1 be a sequence of one-step ahead density forecasts conditional
on the information at time i � 1: 	i�1 = fyi�1; yi�2; :::; y0g, produced by a
particular model. The corresponding cumulative density forecasts are given by

Fi (x) =

xZ
�1

fi (vj	i�1) @v. If the model is correctly speci�ed, then the sequence

of probability integral transforms

fFi (yij	i�1)g1i=1; (1)

consists of IID U [0; 1] random variables.
In addition to formally testing the assumptions of independence of the ran-

dom variables fFi (yij	i�1)g1i=1 and their goodnes-of-�t to the uniform distribu-
tion, Diebold, Gunther and Tay [8] advocate the use of a visual inspection of the
z�histogram of fFi (yij	i�1)g1i=1 to detect deviations and assess closeness to
the uniform distribution. The approach of informal assessment of the histogram
of the probability integral transforms has been used in �nancial econometrics
�eld by Bauwens, Giot, Grammig and Veredas [4] and Sun, Rachev, Fabozzi and
Kalev [23] for evaluation of ACD models and by Corsi, Kretschmer,Mittnik, and
Pigorsch [7] for evaluation of Realized Volatility models.
In order to directly asses the ability of alternative models to capture the

dynamics of durations of di¤erent sizes, we also employ the simple techniques
for evaluating interval forecasts, �rst formally developed by Christo¤ersen [6].
More speci�cally, let for a given ACD model and a duration time series d1; :::; dN
the threshold levels dl (p)i ; p = 0:99; 0:95; 0:90; 0:80 computed at time i � 1,
denote lower bounds on duration sizes at times i; i = 2; :::; N , such that:

P [di 2 [dl (p)i ;1] j	i�1] = p: (2)

With each interval type [dl (p)i ;1], we can associate a binary random variable
Ipi which takes value one if di 2 [dl (p)i ;1] and zero otherwise. It is simple
to show (see Christo¤ersen [6]) that each set of random variables fIpi gNi=2; p =
0:99; 0:95; 0:90; 0:80 consists of IID Bernoulli random variables with parameter
p, if the ACD model in question is correctly speci�ed. Intuitively, we can asses
and compare how competing ACD models capture the dynamics of the (very)
short durations (e.g. durations which occur with probability less than 1 � p )
by assessing how the corresponding binary variables Ipi di¤er from being IID
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Bernoulli distributed with parameter p. Similarly, to gauge the model�s ability
to describe the behavior of (long) durations, we compute the threshold levels
dr (p)i ; p = 0:99; 0:95; 0:90; 0:80 such that:

P [di 2 [0; dr (p)i] j	i�1] = p: (3)

Additionally, we calculate two other sets of binary random variables which
take value one i¤ the corresponding duration di is in the interval [dl (p)i ; dr (p)i]
for p = 0:90; 0:80. We use these two sets of random variables to asses how the
medium sized durations are captured. Obviously:

P [di 2 [dl (p)i ; dr (p)i] j	i�1] = 2p� 1: (4)

First, we test whether the estimated Bernoulli parameter of the sequence of the
corresponding binary variables di¤ers from its assumed value by employing the
following simple likelihood-ratio test by Christo¤ersen [6]. Let It; t = 1; :::; s be
a sequence of identically and independently distributed Bernoulli variables with
parameter �. Then a test of the hypothesis � = p versus the alternative � 6= p
can be formulated as a standard likelihood ratio test

LR = �2 � log (L (p) =L (�)) � �2 (1) ; (5)

where L (p) = (1� p)s0 � ps1 is the likelihood function under the null hypothesis
and L (�) = (1� �)s0 � �s1 is the likelihood function under the alternative. By
s0 and s1 are denoted the number of 1�s and 0�s in the sequence fItgt=1;::;s and
� = s1= (s0 + s1) = s1=s is the maximum likelihood estimator of the Bernoulli
parameter of fItgt=1;::;s.
The test above is valid under the assumptions that the binary variables It; t =
1; :::; s are independent. The presence of serial autocorrelation could bias the
inference about the Bernoulli parameter. Keeping this in mind, we also perform
a test for serial correlation. In addition, it is desirable that an ACD model
is able to capture the clustering of short (long) durations, since periods with
concentrated occurrence of short (long) durations is associated with important
economic phenomenon such as high (low) volatility.
We check for �rst order serial correlation by testing the null hypothesis of

independence versus the alternative hypothesis that the series of binary variables
follows a Markov chain. Let fItgt=1;::;s be a �rst-order Markov chain with a
transition matrix

� =

�
1� �01 �01
1� �11 �11

�
; (6)

where �km = P [It = kjIt�1 = m] are the transition probabilities. The approxi-
mate likelihood function (omitting the �rst observation) is

L
�
fItgt=1;::;s ;�01; �11

�
= (1� �01)n00 �n0101 (1� �11)

n10 �n1111 ; (7)

where the nkm is the number of consecutive pairs fIt = k; It�1 = mg:The
maximum-likelihood estimation for the parameters �01 and �11can be easily
computed asd�01 = n01= (n00 + n01) andd�11 = n11= (n10 + n11). Under the null
hypothesis of independence, the transition matrix reduces to:

�0 =

�
1� � �
1� � �

�
: (8)
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.The corresponding likelihood function is

L
�
fI�t gt=1;::;s ;�

�
= (1� �)n00+n10 �n01+n11 ; (9)

and the maximum-likelihood estimate for � is b� = (n01 + n11) =s. From stan-
dard results on Markov chains (Hoel(1954)) it follows that the LR test for in-
dependence

LR = �2 log
�
L
�
fItgt=1;::;s ; b�� =L�fItgt=1;::;s ;d�01;d�11�� ; (10)

is asymptotically distributes as a �2 (1).
Using the above results, we perform tests for unconditional coverage and

independence of all interval forecasts and report their �2 (1) respective statistics.

3 Model Overview

In this section we give a short overview of the di¤erent ACD models which are
used for density and interval forecasts. In addition to the widely used ACD
and log-ACD models, we also introduce two ACD models with GARCH-type
time-varying variance for the log-normally distributed error terms.
The literature on ACD modelling started with the seminal paper of Engle

and Russel [10]. They proposed modelling the time series of �nancial durations
fdig1i=0 as a stochastic process of the following form:

di = �i � "i: (11)

Here �i is the conditional mean value of the duration di i.e. �i = E [dij	i�1]
where 	i�1 is the information set at time i � 1: 	i�1 = fdi; :::; d0g. The
speci�cation of the conditional mean is usually assumed to have the following
autoregressive linear form:

�i = �+ � � di +  � �i�1: (12)

Of course, more lagged values of the duration and the conditional duration can
be included in (12). However, to keep the considered models as parsimonious as
possible we consider only the speci�cation (12), which is also the one most widely
used in the literature. The random variables f"ig1i=1 are positive, identically and
independently distributed with mean value one. The above model is commonly
referred in the literature as the ACD(1,1) model.
It is clear that the ACD model is very similar to the GARCH model and this

similarity can be exploited to derive its asymptotic properties (see for example
Engle and Russel [10]). They initially considered the exponential distribution
for the residuals f"ig1i=1 with density:

f (x) = exp(�x); x � 0: (13)

The rationale for this choice is parsimony and the fact that if the conditional
mean �i is correctly speci�ed, then the QMLE estimator is consistent and
asymptotically normal (under some regularity conditions). As an extension,
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these authors also considered the standard Weibull distribution for the residu-
als, which nests the exponential distribution and has density of the form:

f (xj�) = � � (� (1 + 1=�)�) � x��1 � exp (� (� (1 + 1=�) � x)�) ; x � 0: (14)

Here � > 0 is the shape parameter of the Weibull distribution, which reduces
to the exponential distribution when � = 1. Lunde (2000) was the �rst one to
propose the use of the standard generalized gamma distribution, which nests
the standard Weibull distribution. It has density of the following form

f (xj�; �) = � � x���1
��� � � (�) � exp

�
�
�x
�

���
; x � 0; (15)

where � = � (�) =� (�+ 1=�) :
Here � and � are shape parameters and the standard generalized gamma

distribution reduces to the standard Weibull distribution when � = 1. In ad-
dition to nesting speci�cations (13) and (14), the speci�cation (15) allows for
non-monotonic hazard function, while the standard Weibull density has neces-
sarily a monotonic hazard function and the exponential density has a constant
one.
Besides these three distributions, we also consider a log-normal speci�cation

for the residuals. The corresponding density function is given by:

f (x) =
1p

2��2 � x
exp

"
�
�
lnx+ 1

2�
2
�2

2�2

#
; x � 0: (16)

The density (16) is the density of the exponent of a normally distributed random
variable with standard deviation �2 and mean - 12�

2 . The value of the mean
is chosen in order to guarantee that the log-normal error terms have expected
value one.
The log-normal distribution seems to be a natural choice for positive resid-

ual terms, but surprisingly it has received little attention in the literature. To
our knowledge, the only papers which perform estimations of ACD models with
log-normally distributed error terms are Allen, Chan, McAleer and Peiris [2]
and Sun, Rachev, Fabozzi and Kalev [23]. Thus, one of the contributions of
this paper is to shed some light on the empirical properties of ACD models
with log-normally distributed residuals. In addition, for notational purposes,
we denote the corresponding ACD(1,1) models with exponential, Weibull, gen-
eralized gamma and log-normal distribution for the residuals, by EACD(1,1),
WACD(1,1), GACD(1,1) and LACD(1,1) models, respectively.
Generally, the positivity of the conditional mean �i given by (12) can not

be guaranteed unless positivity restrictions on the coe¢ cients are imposed i.e.
� � 0, � > 0 and  � 0. Although it seems natural to assume that � > 0 and
 � 0, it is not so for the intercept coe¢ cient �. In addition, negative values for
the conditional mean could arise, if exogenous regressors are included in (12)
which a¤ect negatively the conditional durations.
To account for this drawback of the standard ACD models, Bawens and

Giot [3] propose the so-called log-ACD model. It di¤ers from the standard
ACD model by using the following speci�cation for the conditional mean:

�i = exp
�
�+ � � log (di) +  � log

�
�i�1

��
: (17)
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The volatility counterpart of the log-ACDmodel is the Nelson�s EGARCHmodel
[21], and as in the case of the EGARCH model, the asymptotic properties of the
log-ACD model are unknown (see for example, Feng, Jiang and Song [11]). It
is possible to derive the models moment conditions and Allen, Chan, McAleer
and Peiris [2] consider its �nite sample properties.
Given that the log-ACD model has gained popularity as a tool for mod-

elling �nancial durations, we include it in our study. As in the case of the
standard ACD model, four speci�cations for the residuals with exponential,
Weibull, generalized gamma and log-normal distribution, are considered. These
models are denoted as Log-EACD(1,1), Log-WACD(1,1), Log-GACD(1,1) and
Log-LACD(1,1) models, respectively.
We also proceed to check the importance of higher-order moments of the

durations and residuals for density and interval forecasting. An important fea-
ture of the ACD and log-ACD models is that the dynamics of the higher-order
moments of the conditional durations is completely speci�ed by the conditional
mean. However, this might be too restrictive as argued by Ghysels, Gourieroux,
and Jasiak [13], who proposed a model which disentangles the movements of
the mean and variance. They call their model the Stochastic Volatility duration
(SVD) model. In this SVD setting, the dynamics of the durations is driven by
a complicated non-linear two-factor latent model, which is di¢ cult to estimate.
To be as parsimonious as possible, we propose two models with time-varying

variance for the residuals, which nest and are a straightforward generalization of
the LACD(1,1) and Log-LACD(1,1) models, respectively. The �rst one, which
we call the GARCH Volatility ACD (GV-ACD(1,1)) model speci�es the dynam-
ics of the durations as in [12] and [13]. However, the variance of the residuals is
time-varying and it is given in the following way:

log ("i) s N
�
�1
2
�2i ; �

2
i

�
;

�2i = �
1 + �1 �

�
log ("i�1) +

1

2
�2i�1

�2
+ 1 � �2i�1: (18)

The speci�cation (18) is quite similar to the standard GARCH volatility speci-
�cation. The di¤erence arises in using the term

�
log ("i�1) +

1
2�

2
i�1
�2
instead of

log ("i�1)
2 as a proxy for the variance of the duration at time i�1. This is done

to account for the fact that the conditional mean of log ("i�1) is non-zero and has
value 1

2�
2
i�1. Similarly, we consider a version of the GV-ACD(1,1) model where

the conditional mean has the form (17) , and call this model GV-Log-ACD(1,1)
model.

4 Data Description and ACDModel Estimation

The data used in this study comes from the Australian Stock Exchange (ASX).
ASX is the primary stock exchange is Australia operating as a pure limit order
market. On 25 July 2006 it merged with Sydney Futures Exchange, creating the
ninth largest listed exchange in the world. The normal trading ours are between
10:00 a.m. and 16:00 p.m. with an initial opening period between 10:00 a.m.
and 10:10 a.m., when securities open according to the �rst letter of their ticker
symbol in groups of �ve. We omit all trades in the opening period and consider
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only transactions that occur in the normal trading period. A similar approach
has been adopted by other authors (e.g. Engle and Russel [10]). Our data
consists of complete sets of transactions on three stocks randomly chosen from
the Australian Stock Market index ASX 20, namely National Australia Bank (a
major bank with ticker symbol NAB), Westpack Banking Corporation (another
major bank with ticker symbol WBC) and Telstra (the main telecommunication
company with ticker symbol TLS). To ensure robustness of the results we use
di¤erent time periods for each stock.
The transactions data for NAB spans the time interval January 2, 2004

to March 31, 2004, which consists of 63 trading days and 64 561 durations.
Following [10] this full dataset is used to "diurnally adjust" the data in order
to account for the time-of-the day e¤ects. This is achieved by using a linear
spline with knots at round hours, e.g. 10:00 a.m,11:00 a.m., 12:00 a.m. ,13:00
p.m., 14:00 p.m. ,15:00 p.m. and 16:00 p.m..We also experiment with other
approaches for deseasonalization. However, this seems to have little impact
on coe¢ cient estimates well as our �ndings concerning ACD model forecasts.
Similar results have been reported by other authors, for example (Bauwens
and Giot [3]). Estimations of di¤erent ACD models using all the data for
whole period of three months suggests that most of the considered models are
miss-speci�ed as indicated by small but signi�cant autocorrelation in the �tted
residuals. In view of these �ndings, we restrict our attention to the �rst 10 000
durations. In the case of NAB, the time interval for the considered duration
data shrinks to January 2, 2004 to January 19, 2004
The transactions data for WBC and TLS is seasonally adjusted in the same

manner, and after restricting the two duration samples to the �rst 10 000 obser-
vations, we end up with time intervals spanning April 2, 2002 to April 22, 2002
(15 trading days) and January 2, 2003 to January 23, 2003 (16 trading days),
respectively.
In Tables 1.1, 1,2 and 1.3 are presented the estimations of the ACD(1,1) models
described in Section 3 for NAB, WBC and TLS, respectively. We report the
coe¢ cient estimates, together with the corresponding heteroscedasticty robust
errors. All coe¢ cients are highly signi�cant, which is not surprising given the
large number of observations.
As a robustness check, the Ljung-Box test for autocorrelation in the �tted

residuals for each model is performed. The results, not reported here for the
sake of brevity, indicate very small degree of autocorellation which is almost
always insigni�cant at any conventional statistical level. Similar results hold for
the squared �tted residuals.
As it can be seen, the sum of the coe¢ cients of the autoregressive terms is

always greater than 0:9, indicating a high degree of persistence. In the case of the
WACD and log-WACD models, the residual shape parameter v is quite close to
unity, the value at which the Weibull distribution collapses to the exponential
one. Also, the coe¢ cient estimates for conditional mean for the EACD and
WACD models, as well as log-EACD and log-WACD, are quite close to each
other. This suggests that nothing much is gained by replacing the exponential
distribution with a Weibull one in the speci�cation for the residuals. In Section
5, we will see that the two distributions also exhibit quite close forecasting
performances.
For the generalized gamma distribution, the corresponding shape parameter

v is well below one. Also, in the case of NAB and WBC, the coe¢ cient estimates
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for the conditional mean are substantially di¤erent from the corresponding esti-
mates for the EACD,WACD, log-EACD and log-WACD models. Additionally,
for these two companies, the (Log-)GACD and (Log-)LACD models seem to
give pretty close coe¢ cient estimates, although the generalized gamma and the
log-normal distribution are non-nested, and the latter has one parameter less.
Results in Section 5 indicate that the (Log-)GACD model exhibits similar fore-
casting performance to the (Log-LACD) model, respectively. In contrast, for
TLS, the three nested distributions give estimates for the conditional mean
which are close to each other, while the log-normal ACD speci�cation produces
noticeably di¤erent estimates.
The GARCH volatility models GV-LACD and GV-Log-LACD give estimates

for the conditional mean pretty close to the estimates for their �xed residual
variance models, the LACD and Log-LACD models. The estimates for the vari-
ance equations always give highly signi�cant autoregressive coe¢ cients. For the
GV-LACD model, ARCH-type coe¢ cient �1 is quite small and falls in the range
of 1-4%. There seems to be evidence for more time-variation in the residual vari-
ance for NAB and TLS, than for WBC, since for the former two companies the
GARCH-type coe¢ cient 1 is much smaller. Indeed, the �tted conditional resid-
ual variance shows greater variability for these two companies than for WBC
(results not reported here for the sake of brevity).
Estimations of the GV-Log-LACD models suggest a much smaller degree of

variation in the residual variance. The ARCH-type coe¢ cient �1 is about 0:4%
for NAB and WBC, and about 1:7% for TLS. The GARCH-type coe¢ cient 1

is quite high and very close to unity for the three companies.

5 Performance Comparison

In this section we analyze the density and interval forecasts of the alterna-
tive ACD models. First, we report the z-histograms of the probability integral
transforms (1) and their corresponding autocorrelations up to lag 10. Then the
performance of forecasts for intervals with di¤erent sizes is discussed.
Visual inspection of the z-histograms for the probability integral transforms

fFi (yij	i�1)g1i=1 has been advocated by Diebold, Gunther and Tay [8] as a
simple and reliable tool for detecting deviations from uniformity (see Section
2). Graphs 1.1, 1.2 and 1.3 contain the corresponding z-histograms with 40
bins, for NAB, WBC and TLS, respectively.
First, notice that there is no discernible substantial di¤erence between the

z-histograms of the standard ACD models and their log-ACD counterparts.
On the other hand, there is a substantial di¤erence in the histogram shape
for models with di¤erent residual distribution. EACD, WACD, log-EACD and
log-EACD histograms exhibit a bump on the left-hand side, which is especially
pronounced for NAB and WBC. This suggests that these models might not be
able to capture the left-tail of the durations distribution very well, which is
con�rmed by the analyzes of the interval forecasts below.
The z-histograms for models with generalized gamma distribution seem to

match the z-histogram of the uniform distribution most closely. For NAB and
WBC, the LACD and log-LACD models have z-histograms pretty similar to
their GACD and log-GACD counterparts. However, for TLS, the z-histogram
for the LACD and log-LACD models has a pronounced bump on the right-hand
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side and big spike in the �rst bin.
The evidence for GV-LACD and GV-Log-LACD models is mixed. For NAB,

there seems to be not much di¤erence between GARCH Volatility models and
their �xed variance counterparts. On the other hand, for WBC, the z-histograms
for GARCH Volatility ACDmodels is visibly smoother, with no spikes in the �rst
bin. Finally, for TLS, the GARCH Volatility speci�cations exhibit worsening in
the z-histograms, esp. for the GV-Log-LACD model.
We also report the autocorrelations up to lag 10 as well as the Ljung-Box

statistics of the probability integral transforms (1) in Tables 2.1,2.2 and 2.3. As
we can see, there is always a small, but statistically signi�cant autocorrelation,
with the exception of the Log-GACD and Log-LACD models for NAB.
Generally, the autocorellation pattern is smaller for GACD, LACD,log-GACD

and log-LACD models than for the corresponding models with exponential and
Weibull distributions. For example, the �rst-order autocorrelation usually de-
creases by more than a half for models with exponential and Weibull distribu-
tions for the residuals. The evidence for the GARCH Volatility models is mixed:
for NAB there is no change in the autocorrelation pattern when extending the
LACD model to GV-LACD model, while for GV-Log-LACD model the auto-
correlation increases in comparison to the Log-LACD model. For WBC, the
autoccorelation decreases and for TLS, the autoccorelation increases for both
GV-LACD and GV-Log-LACD models.
The evidence from the behavior of the probability integral transforms sug-

gests that generalized gamma and log-normal distributions might be a better
choice than the exponential and Weibull distributions. To investigate this pos-
sibility more thoroughly we perform analysis of the interval forecasts below.
In Tables 3.1,3.2 and 3.3 are presented the descriptive statistics for di¤erent

interval forecasts for NAB, WBC and TLS, respectively. We report the cor-
responding �2 (1)-statistics for unconditional coverage and independence. We
do not report the independence statistics for intervals of the type [dl (0:99) ;1]
and [0; dr (0:99)] representing very short and long durations, since it is di¢ cult
to make inference about the serial dependence of the corresponding binary vari-
ables due to the small size of the sample. For example, if the binary variable
I0:99i ; i�2; :::; 10000 takes value 0 approximately every 100 observations, we can
expect only a few consecutive occurrences of two zeros in the sample, even in
the presence of signi�cant temporal dependence among fI0:99i g10000i=2 .
Let us �rst consider the results for NAB. It can be seen that quite often,

the null hypothesis are rejected at any conventional statistical level. Keep in
mind however, that the number of observations is very high. On the other hand,
the �2 (1)-statistics are lower for GACD,log-GACD, and LACD and log-LACD
models for most of the cases, although there are a few exceptions. On average,
it seems that the dynamics of the (very) long durations is better captured than
the dynamics of the (very) short durations. The independence �2 (1)-statistics
for intervals of the type [0; dr (p)] are substantially smaller than the correspond-
ing statistics for intervals of the type [dl (p) ;1] ; p = 0:95; 0:90; 0:80, i.e. the
long durations are better captured by the long durations. Also, the correspond-
ing �2 (1)-statistics for unconditional coverage exhibit similar pattern, although
there are three exceptions: Log-GACD, Log-LACD, and GV-Log-LACD mod-
els. Note, that for the exponential and Weibull distribution, this was suggested
by the left-hand bump of the z�histogram of the probability integral transform.
Comparison of the LACD and GV-LACD models as well as the Log-LACD
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and GV-Log-LACD models, reveals that the GARCH-type speci�cation can
capture some of the autocorrelation in the interval forecasts as evidenced by the
much lower values for the independence statistics, which quite often indicate
insigni�cance at 5-10% con�dence levels. This observation is contrary to the
unchanged and even increased autocorrleation of the probability integral trans-
form for the GV-type of models. Finally, the results suggest that there is no
advantage of choosing an Log-ACD model vs. an ACD model with standard
speci�cation of the conditional mean.
Analysis of the interval forecasts for WBC shows that they are qualitatively

similar to the interval forecasts for NAB. The models with exponential and
Weibull distribution have the worst performance. The ACD models with gener-
alized gamma and log-normal distribution as well as models with the Log-ACD
and the standard ACD speci�cation for the mean, have similar performance.
With regards to the GV-LACD and GV-Log-ACD models, we don�t �nd ev-
idence for improvement over the LACD and Log-LACD models, on contrary
they show slightly worse performance, indicated by the higher values for the
corresponding statistics. Interestingly, as in the case of NAB, this is in contrary
with the evidence from the autocorrelations of the probability integral trans-
forms, which decrease after we assume a time-varying form for the variance of
the residuals.
For TLS, as for the case of NAB and WBD, the models with exponential

and Weibull distribution have the worst performance and the models with gen-
eralized gamma and log-normal seem to perform much better. Interestingly, by
looking at the Graph 1.3, the probability integral transform for the LACD and
Log-LACD models seems as "bad" an approximation to the uniform distribu-
tion as the probability integral transforms for the corresponding models with
exponential and Weibull distribution. However, the models with log-normal
distribution for the residuals on average have worse �2 (1)-statistics for uncon-
ditional coverage then their counterparts with generalized gamma distribution.
However, the �2 (1)-statistics for independence are pretty similar for both types
of models.
Allowing the variance of the residuals to be time-varying shows that substan-

tial decrease in the �2 (1)-statistics for independence, which is most pronounced
for the GV-Log-LACD model. Indeed, the GV-LACD and GV-Log-LACD mod-
els have the lowest independence �2 (1)-statistics. Also, the statistics for the
unconditional average decrease on average. Again, this is in contradiction with
the evidence implied by the statistics for the probability integral transforms.
As we mentioned before, the z�histograms for the GV-LACD and GV-Log-
LACD seem to be worse than their LACD and Log-LACD counterparts, and
the di¤erence is very clearly seen for the histogram of the GV-Log-LACD model.
Additionally, the �rst order autocorrelation for the probability integral trans-
form either remains the same (GV-LACD model) or increases (GV-Log-LACD
model) when we specify a Grach-type variance for the residuals.
In a nutshell, the results of this section are as follows. Evidence from ana-

lyzing both probability integral transforms and interval forecasts suggests that
models with generalized gamma and log-normal residual distribution are a better
than models with exponential and Weibull distribution. Using Log-ACD spec-
i�cation for the conditional mean doesn�t make much di¤erence. The choice of
log-normal residual distribution gives pretty close performance to the general-
ized gamma distribution, even though it has one free parameter less. Finally,
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there seems to be mixed evidence for time-variation in the variance of the resid-
uals.

6 Conclusion

In this paper, we analyze di¤erent approaches to modelling the durations of three
major Australian companies traded on the Australian Stock Exchange. More
speci�cally, we consider four di¤erent types of distributions for the residuals,
namely the exponential, Weibull, generalized gamma and log-normal distribu-
tions, as well as GARCH-type time-varying speci�cation for the variance of the
log-normally distributed residuals. Additionally, we assume alternative speci�-
cation for the conditional mean (the Log-ACD approach of Bauwens and Giot
[3]).
Estimations of the alternative models show that the coe¢ cient estimates

of models with exponential and the Weibull distribution for the residuals are
close to each other. Additionally, the estimated shape parameter of the Weibull
distribution � is close to unity, the value at which the Weibull distribution col-
lapses to the exponential one. For NAB and WBC, the models with generalized
gamma and the log-normal distribution are close to each other, but for TLS they
seem to be substantially di¤erent. These preliminary �ndings suggest that the
models with generalized gamma and log-normal distribution for the residuals
perform similarly and they jointly di¤er from the models with exponential and
the Weibull distribution, which is con�rmed later in the paper.
To compare the suitability of the alternative ACD speci�cations, we employ

the method of evaluating density forecasts proposed by Diebold, Gunther and
Tay [8] and the methodology for evaluating interval forecasts by Christo¤ersen
[6]. The results strongly suggest that the generalized gamma and the log-normal
distribution perform better than the exponential and the Weibull distribution.
However, given the fact that the log-normal distribution has only one free pa-
rameter compared to the two free parameters of the generalized gamma distri-
bution, it might very well be the preferred choice. Additionally, a promising
unexplored topic would be the investigation of di¤erent generalizations of the
log-normal distribution such as the Inverse Gaussian and Student t-distribution.
There seems to be no gain or loss in choosing between a standard ACD

speci�cation for the conditional mean and the Log-ACD speci�cation of Bauwens
and Giot [3]. Finally, the results show mixed evidence for time-variation in the
shape of the residual distributions as evidenced by the result for the GARCH
Volatility ACD models.
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Graph 1.1

Histograms of the Probability Integral Transforms for National Australia Bank (NAB)
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Graph 1.2

Histograms of the Probability Integral Transforms for Westpack Banking Corporation (WBC)
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Graph 1.3

Histograms of the Probability Integral Transforms for Telstra Corporation (TLS)
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Table 1.1

Autocorrelations of the Probability Integral Transforms for NAB1

EACD WACD GACD LACD GV-LACD

Lag AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value
1 0.050 25.334 0.000 0.047 21.906 0.000 0.030 8.8121 0.003 0.029 8.4222 0.004 0.031 9.3973 0.002
2 0.046 46.266 0.000 0.043 40.043 0.000 0.033 19.585 0.000 0.034 19.707 0.000 0.033 20.308 0.000
3 0.030 55.205 0.000 0.028 47.654 0.000 0.018 22.694 0.000 0.019 23.179 0.000 0.015 22.696 0.000
4 0.019 59000 0.000 0.017 50.621 0.000 0.011 23.930 0.000 0.013 24.804 0.000 0.007 23.245 0.000
5 0.007 59.549 0.000 0.005 50.922 0.000 0.004 24.056 0.000 0.006 25.161 0.000 0.001 23.259 0.000
6 0.009 60.290 0.000 0.007 51.368 0.000 0.011 25.353 0.000 0.015 27.413 0.000 0.007 23.797 0.001
7 0 .001 60.291 0.000 -0.001 51.377 0.000 0.001 25.355 0.001 0.003 27.524 0.000 -0.005 24.068 0.001
8 -0.005 60.567 0.000 -0.006 51.694 0.000 -0.002 25.382 0.001 0.001 27.545 0.001 -0.008 24.687 0.002
9 -0.003 60.641 0.000 -0.003 51.795 0.000 0.005 25.593 0.002 0.008 28.190 0.001 -0.003 24.771 0.003
10 -0.009 61.456 0.000 -0.009 52.564 0.000 -0.003 25.675 0.004 0.001 28.190 0.002 -0.009 25.562 0.004

Log-EACD Log-WACD Log-GACD Log-LACD GV-Log-LACD

Lag AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value
1 0.049 24.294 0.000 0.047 21.906 0.000 0.017 2.9519 0.086 0.014 2.0859 0.149 0.039 15.036 0.000
2 0.044 43.852 0.000 0.043 40.043 0.000 0.022 7.6160 0.022 0.020 6.1735 0.046 0.041 31.881 0.000
3 0.028 51.447 0.000 0.028 47.654 0.000 0.007 8.1158 0.044 0.006 6.5669 0.087 0.023 37.208 0.000
4 0.017 54.259 0.000 0.017 50.621 0.000 0.001 8.1202 0.087 0.001 6.5686 0.161 0.016 39.710 0.000
5 0.003 54.349 0.000 0.005 50.922 0.000 -0.006 8.5172 0.130 -0.006 6.8788 0.230 0.008 40.371 0.000
6 0.006 54.672 0.000 0.007 51.368 0.000 0.004 8.7026 0.191 0.006 7.2427 0.299 0.016 42.885 0.000
7 -0.005 54.934 0.000 0.001 51.377 0.000 -0.008 9.3446 0.229 -0.007 7.6693 0.363 0.002 42.921 0.000
8 -0.010 55.997 0.000 0.006 51.694 0.000 -0.010 10.259 0.247 -0.008 8.3112 0.404 -0.001 42.937 0.000
9 -0.010 56.945 0.000 0.003 51.795 0.000 -0.004 10.420 0.318 -0.002 8.3442 0.500 0.005 43.146 0.000
10 -0.016 59.558 0.000 0.009 52.564 0.000 -0.011 11.583 0.314 -0.009 9.1011 0.523 -0.003 43.235 0.000

1 the table presents the autocorrelation coefficients, Q-statistics and the associated p-values for the residuals of the corresponding ACD models up to lag 10.



Table 1.2

Autocorrelations of the Probability Integral Transforms for WBC1

EACD WACD GACD LACD GV-LACD

Lag AC Q-stat. p-value AC Q-stat. p -value AC Q-stat. p-value AC Q-stat . p-value AC Q-stat. p-value
1 0.071 50.662 0.000 0.068 45.636 0.000 0.064 40.519 0.000 0.064 41.241 0.000 0.022 4.7096 0.030

2 0.023 56.055 0.000 0.021 49.875 0.000 0.017 43.282 0.000 0.017 44.290 0.000 0.029 13.068 0.001

3 0.022 61.003 0.000 0.020 53.93 0.000 0.016 45.986 0.000 0.017 47.247 0.000 0.016 15.525 0.001

4 0.010 61.959 0.000 0.008 54.638 0.000 0.004 46.137 0.000 0.004 47.434 0.000 0.010 16.526 0.002

5 0.004 62.117 0.000 0.002 54.697 0.000 0.005 46.439 0.000 0.008 48.069 0.000 0.006 16.871 0.005

6 0.010 63.088 0.000 0.009 55.437 0.000 0.012 47.898 0.000 0.014 50.120 0.000 0.016 19.326 0.004

7 -0.014 65.072 0.000 0.015 57.550 0.000 0.014 49.737 0.000 0.012 51.559 0.000 0.004 19.502 0.007

8 0.010 66.014 0.000 0.009 58.352 0.000 0.015 51.975 0.000 0.018 54.673 0.000 0.003 19.581 0.012

9 -0.013 67.654 0.000 0.013 59.949 0.000 0.010 52.982 0.000 0.008 55.332 0.000 0.009 20.456 0.015

10 -0.002 67.710 0.000 0.002 59.99 0.000 0.001 52.987 0.000 0.002 55.386 0.000 0.002 20.518 0.025

Log-EACD Log-WACD Log-GACD Log-LACD GV-Log-LACD

Lag AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value
1 0.052 27.174 0.000 0.068 45.636 0.000 0.038 14.594 0.000 0.037 13.667 0.000 0.019 3.6065 0.058

2 0.007 27.678 0.000 0.021 49.875 0.000 0.004 14.769 0.001 0.005 13.887 0.001 0.029 12.276 0.002

3 0.013 29.449 0.000 0.02 53.930 0.000 0.003 14.849 0.002 0.002 13.929 0.003 0.020 16.430 0.001

4 0.002 29.500 0.000 0.008 54.638 0.000 0.007 15.371 0.004 0.008 14.552 0.006 0.019 19.865 0.001

5 0.001 29.500 0.000 0.002 54.697 0.000 0.001 15.387 0.009 0.001 14.552 0.012 0.016 22.309 0.000

6 0.008 30.198 0.000 0.009 55.437 0.000 0.007 15.912 0.014 0.008 15.227 0.019 0.027 29.512 0.000

7 -0.015 32.521 0.000 0.015 57.550 0.000 0.018 19.086 0.008 0.017 18.240 0.011 0.015 31.871 0.000

8 0.012 33.972 0.000 0.009 58.352 0.000 0.014 21.035 0.007 0.015 20.593 0.008 0.015 34.155 0.000

9 -0.011 35.087 0.000 0.013 59.949 0.000 0.011 22.235 0.008 0.010 21.614 0.010 0.021 38.500 0.000

10 0.001 35.094 0.000 0.002 59.990 0.000 0.001 22.235 0.014 0.001 21.615 0.017 0.016 41.109 0.000

1 the table presents the autocorrelation coefficients, Q-statistics and the associated p-values for the residuals of the corresponding ACD models up to lag 10.



Table 1.3

Autocorrelations of the Probability Integral Transforms for TLS1

EACD WACD GACD LACD GV-LACD

Lag AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value
1 0.061 37.350 0.000 0.060 35.784 0.000 0.0370 13.470 0.000 0.046 20.902 0.000 0.048 23.497 0.000

2 0.014 39.406 0.000 0.013 37.605 0.000 -0.013 15.050 0.001 -0.002 20.957 0.000 0.002 23.535 0.000

3 0.008 40.058 0.000 0.007 38.127 0.000 -0.014 17.045 0.001 -0.002 20.999 0.000 0.001 23.539 0.000

4 -0.009 40.822 0.000 -0.009 39.001 0.000 -0.032 27.420 0.000 -0.020 25.185 0.000 -0.016 26.043 0.000

5 -0.002 40.875 0.000 -0.003 39.082 0.000 -0.023 32.597 0.000 -0.012 26.633 0.000 -0.007 26.550 0.000

6 0.007 41.357 0.000 0.006 39.488 0.000 -0.010 33.557 0.000 -0.001 26.645 0.000 0.005 26.754 0.000

7 0.005 41.567 0.000 0.004 39.656 0.000 -0.008 34.122 0.000 -0.001 26.657 0.000 0.004 26.946 0.000

8 0.004 41.719 0.000 0.003 39.764 0.000 -0.006 34.493 0.000 0.001 26.658 0.001 0.005 27.233 0.001

9 0.021 46.224 0.000 0.021 44.127 0.000 0.012 35.902 0.000 0.017 29.466 0.001 0.023 32.417 0.000

10 0.015 48.392 0.000 0.015 46.242 0.000 0.004 36.026 0.000 0.008 30.184 0.001 0.014 34.401 0.000

Log-EACD Log-WACD Log-GACD Log-LACD GV-Log-LACD

Lag AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value AC Q-stat. p-value
1 0.067 45.168 0.000 0.064 41.161 0.000 0.037 13.470 0.000 0.034 11.632 0.001 0.060 36.013 0.000

2 0.017 47.902 0.000 0.016 43.681 0.000 -0.013 15.050 0.001 -0.014 13.709 0.001 0.011 37.291 0.000

3 0.006 48.293 0.000 0.006 44.098 0.000 -0.014 17.045 0.001 -0.015 15.876 0.001 0.010 38.274 0.000

4 -0.014 50.152 0.000 -0.012 45.434 0.000 -0.032 27.420 0.000 -0.032 26.311 0.000 -0.010 39.188 0.000

5 -0.009 50.979 0.000 -0.008 46.009 0.000 -0.023 32.597 0.000 -0.022 31.377 0.000 -0.002 39.240 0.000

6 -0.001 50.987 0.000 0.001 46.014 0.000 -0.010 33.557 0.000 -0.009 32.219 0.000 0.006 39.646 0.000

7 -0.003 51.067 0.000 -0.002 46.068 0.000 -0.008 34.122 0.000 -0.006 32.625 0.000 0.007 40.141 0.000

8 -0.004 51.254 0.000 -0.003 46.171 0.000 -0.006 34.493 0.000 -0.005 32.840 0.000 0.008 40.839 0.000

9 0.011 52.470 0.000 0.012 47.693 0.000 0.012 35.902 0.000 0.013 34.601 0.000 0.022 45.724 0.000

10 0.004 52.630 0.000 0.005 47.977 0.000 0.004 36.026 0.000 0.004 34.796 0.000 0.013 47.370 0.000

1 the table presents the autocorrelation coefficients, Q-statistics and the associated p-values for the residuals of the corresponding ACD models up to lag 10.



Table 2.1
ACD Model Estimates for NAB

ACD Conditional Mean Specification and Error Distribution Coefficients
Estimates1

Coefficient Estimates
Model      2
EACD 0.03644

(0.0033)***
0.0743

(0.0032)***
0.9097

(0.0042)***
------------ ------------ ------------

WACD
0.0443

(0.0054)***
0.0766

(0.0045)***
0.9025

(0.0058)***
0.8984

(0.0039)***
------------ ------------

GACD 0.1216
(0.0133)***

0.1067
(0.0073)***

0.8352
(0.0111)***

0.1830
(0.0199)***

22.0644
(4.8137)***

------------

LACD 0.1530
(0.0152)***

0.1155
(0.0080)***

0.8198
(0.0118)***

------------ ------------ 1.3831
(0.0218)***

GV-LACD 0.0790
(0.0111)***

0.1051
(0.0074)***

0.8644
(0.0098)***

------------ ------------ ------------

Log-EACD 0.0466
(0.0020)***

0.0621
(0.0022)***

0.9267
(0.0027)***

------------ ------------ ------------

Log-WACD 0.0509
(0.0029)***

0.0652
(0.0031)***

0.9190
(0.0043)***

0.8969
(0.0048)***

------------ ------------

Log-GACD 0.0937
(0.0075)***

0.0910
(0.0057)***

0.8551
(0.0106)***

0.1476
(0.0213)***

33.9771
(9.8641)***

------------

Log-LACD 0.1067
(0.0085)***

0.0937
(0.0060)***

0.8450
(0.0115)***

------------ ------------ 1.3704
(0.0217)***

Log-GV-LACD 0.0989
(0.0078)***

0.0915
(0.0059)***

0.8544
(0.0107)***

------------ ------------ ------------

Coefficient Estimates of the Variance Equation2

Coefficient Estimates
Model 1 1 1

GV-LACD 0.0411
(0.0100)***

0.0223
(0.0034)***

0.9476
(0.010)***

GV-Log-LACD
0.0180

(0.0092)***
0.0040

(0.0020)***
0.9828

(0.0078)***

1 This table contains the coefficients estimates and standard errors for the autoregressive specifications
for the corresponding ACD models, as well as the coefficients estimates for the error term distributions
with the exception of the Garch Volatility ACD models. As usual, coefficients significant at 10%,5%
and 1% significance level are marked with *,** and ***, respectively..
2 This table contains the coefficient estimates for the autoregressive specifications for the time-varying
variance of the error terms of the corresponding ACD models.



Table 2.2
ACD Model Estimates for WBC

ACD Conditional Mean Specification and Error Distribution Coefficients
Estimates1

Coefficient Estimates
Model      2
EACD 0.1182

(0.0103 )***
0.0874

(0.0047)***
0.8571

(0.0042)***
------------ ------------ ------------

WACD 0.1225
(0.0137)***

0.0903
(0.0062)***

0.8514
(0.0107)***

0.8862
(0.0074)*** ------------ ------------

GACD 0.1632
(0.0207)***

0.1094
(0.0085)***

0.8174
(0.0150)***

0.2405
(0.0230)***

11.782
(2.8004)*** ------------

LACD 0.1928
(0.0245)***

0.1199
(0.010)***

0.8084
(0.0160)*** ------------ ------------ 1.526

(0.0245)***

GV-LACD 0.1823
(0.0234)***

0.1287
(0.0102)***

0.8063
(0.0160)***

------------ ------------ ------------

Log-EACD 0.12023
(0.0067)***

0.0893
(0.0040 )***

0.8245
(0.0094)***

------------ ------------ ------------

Log-WACD 0.1221
(0.0087)***

0.0921
(0.0053)***

0.8200
(0.0123)***

0.8866
(0.0074)*** ------------ ------------

Log-GACD 0.1431
(0.0114)***

0.1050
(0.0068)***

0.7958
(0.0106)***

0.2301
(0.02901)***

12.9123
(3.1941)*** ------------

Log-LACD 0.1627
(0.0137)***

0.1067
(0.0070)***

0.7900
(0.0167)*** ------------ ------------ 1.5163

(0.0243)***

Log-GV-LACD 0.1576
(0.0131)***

0.1052
(0.0068)***

0.7963
(0.0160)***

------------ ------------ ------------

Coefficient Estimates of the Variance Equation2

Coefficient Estimates
Model 1 1 1

GV-LACD 0.2429
(0.0682)***

0.0352
(0.0070)***

0.8059
(0.0489)***

GV-Log-LACD ------------ 0.004
(0.0006)***

0.9961
(0.0006)***

1 This table contains the coefficients estimates and standard errors for the autoregressive specifications
for the corresponding ACD models, as well as the coefficients estimates for the error term distributions
with the exception of the Garch Volatility ACD models. As usual, coefficients significant at 10%,5%
and 1% significance level are marked with *,** and ***, respectively.
2 This table contains the coefficient estimates for the autoregressive specifications for the time-varying
variance of the error terms of the corresponding ACD models. Estimating the GV-Log-ACD model
shows that the intercept coefficient in the conditional variance specification is not significant and the
GV-Log-ACD model is re-estimated without an intercept in the conditional variance specification.



Table 2.3
ACD Model Estimates for TLS

ACD Conditional Mean Specification and Error Distribution Coefficients
Estimates1

Coefficient Estimates
Model      2
EACD 0.1411

(0.0144)***
0.0823

(0.0048)***
0.8651

(0.0087)***
------------ ------------ ------------

WACD 0.1408
(0.0170)***

0.0830
(0.0058)***

0.8642
(0.0103)***

0.9295
(0.0071)*** ------------ ------------

GACD 0.1538
(0.0213)***

0.0917
(0.0074)***

0.8522
(0.0128)***

0.4455
(0.0294)***

3.7945
(0.4777)*** ------------

LACD 0.2138
(0.0302)***

0.1115
(0.0094)***

0.8315
(0.0160)*** ------------ ------------ 1.5000

(0.0244)***

GV-LACD 0.1967
(0.0287)***

0.1108
(0.010)***

0.8381
(0.0150)***

------------ ------------ ------------

Log-EACD 0.0981
(0.0068)***

0.0659
(0.0034)***

0.8739
(0.0080)***

------------ ------------ ------------

Log-WACD 0.0992
(0.0082)***

0.0671
(0.0041)***

0.8719
(0.010)***

0.9276
(0.0068)*** ------------ ------------

Log-GACD 0.1134
(0.0108)***

0.0765
(0.0055)***

0.8549
(0.0125)***

0.4280
(0.0282)***

4.0940
(0.5190)*** ------------

Log-LACD 0.1538
(0.0154)***

0.0850
(0.0063)***

0.8303
(0.0154)*** ------------ ------------ 1.4934

(0.0242)***

Log-GV-LACD 0.1564
(0.0158)***

0.0836
(0.0062)***

0.8278
(0.0158)***

------------ ------------ ------------

Coefficient Estimates of the Variance Equation2

Coefficient Estimates
Model 1 1 1

GV-LACD
0.3097

(0.0950)***
0.0300

(0.0064)***
0.7633

(0.0671)***

GV-Log-LACD ------------ 0.0017
(0.0003)***

0.9984
(0.0003)***

1 This table contains the coefficients estimates and standard errors for the autoregressive specifications
for the corresponding ACD models, as well as the coefficients estimates for the error term distributions
with the exception of the Garch Volatility ACD models. As usual, coefficients significant at 10%,5%
and 1% significance level are marked with *,** and ***, respectively.
2 This table contains the coefficient estimates for the autoregressive specifications for the time-varying
variance of the error terms of the corresponding ACD models. Estimating the GV-Log-ACD model
shows that the intercept coefficient in the conditional variance specification is not significant and the
GV-Log-ACD model is re-estimated without an intercept in the conditional variance specification.



Table 3.1
Statistics for the Interval Forecasts for NAB1

EACD WACD GACD LACD GV-LACD
Interval Type Est.

Value
Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

  ,99.0dl 0.9998 181.29 -------- 0.9998 181.29 -------- 0.9957 41.730 -------- 0.9922 5.2800 -------- 0.9934 13.261 --------

  ,95.0dl 0.9706 104.15 27.236 0.9908 521.71 44.454 0.9445 6.1703 9.4282 0.9381 27.831 14.410 0.9356 40.205 0.1717

  ,90.0dl 0.9001 0.0001 25.762 0.9368 170.76 21.738 0.8873 17.316 9.7089 0.8828 31.367 5.9234 0.8836 28.579 2.2045

  ,80.0dl 0.7654 71.950 31.119 0.8143 12.983 27.702 0.7912 4.8101 10.140 0.7931 2.9678 9.1187 0.7960 1.0051 8.1292

  80.0,0 dr 0.8166 17.555 4.1464 0.8142 12.800 3.6403 0.7897 4.8101 0.6166 0.7873 9.9579 0.6879 0.7841 15.540 0.8877

  90.0,0 dr 0.8939 4.0756 7.8800 0.8994 0.0413 5.5504 0.8952 2.5352 4.5077 0.8994 0.0413 4.2075 0.8993 0.0559 4.5044

  95.0,0 dr 0.9359 38.609 3.0788 0.9439 7.5620 0.0119 0.9516 0.5411 0.5655 0.9588 17.280 4.8167 0.9571 11.112 1.2479

  99.0,0 dr 0.9793 88.388 -------- 0.985 21.903 -------- 0.9949 29.551 -------- 0.9976 84.065 -------- 0.9970 68.241 ---------

    90.0,90.0 drdl 0.7940 2.2485 14.718 0.8363 86.416 12.422 0.7826 18.573 8.7339 0.7823 19.212 6.6983 0.7829 17.946 1.4866

    80.0,80.0 drdl 0.5820 13.497 1.5030 0.6286 34.283 5.1616 0.5810 15.031 0.8830 0.5805 15.829 0.7929 0.5801 16.481 0.1717

Log-EACD Log-WACD Log-GACD Log-LACD GV-Log-LACD
Interval Type

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

  ,99.0dl 0.9995 160.93 -------- 0.9995 160.93 -------- 0.9956 40.050 -------- 0.9942 20.980 -------- 0.9356 40.205 --------

  ,95.0dl 0.9589 17.688 14.976 0.9881 435.36 42.021 0.9489 0.2553 10.410 0.9475 1.3008 9.4770 0.9459 3.4596 5.5259

  ,90.0dl 0.8764 58.064 24.986 0.9249 74.675 24.007 0.8955 2.2307 11.514 0.8983 0.3233 9.8496 0.8938 4.2089 6.1700

  ,80.0dl 0.7317 270.69 27.201 0.7910 5.0296 28.860 0.8048 1.4368 13.310 0.8152 14.689 7.1061 0.8097 5.9298 7.5435

  80.0,0 dr 0.8504 170.25 7.9390 0.8419 116.12 5.7408 0.7689 58.362 0.9416 0.7563 113.63 1.6130 0.7620 86.457 1.9923

  90.0,0 dr 0.9210 52.375 8.1357 0.9206 50.327 9.0747 0.8809 38.483 0.7846 0.8774 53.386 0.6768 0.8807 39.272 1.0315

  95.0,0 dr 0.9533 2.3351 0.7582 0.9567 9.8656 0.4490 0.9442 6.8490 0.0001 0.9463 2.8250 0.0562 0.9481 0.7551 0.0457

  99.0,0 dr 0.9871 7.7886 -------- 0.9899 0.0103 -------- 0.9932 11.647 -------- 0.996 47.048 -------- 0.9963 52.812 ---------

    90.0,90.0 drdl 0.7975 0.3957 12.615 0.8456 138.32 17.374 0.7765 33.622 5.2010 0.7758 35.625 5.1444 0.7745 39.493 1.8158

    80.0,80.0 drdl 0.5826 12.616 0.2541 0.6320 42.979 4.2920 0.5821 13.348 2.8510 0.5827 12.472 2.2026 0.5717 33.225 0.0315

1 the table presents the estimations for the corresponding Bernoulli parameters and the associated chi-squared statistics for unconditional coverage and independence. The critical values for
the chi-squared distribution are 2.706, 3.841, 5.024, 6.635 and 10.828 with the associated p-values being 0.10, 0.05, 0.025, 0.01 and 0.001.



Table 3.2
Statistics for the Interval Forecasts for WBC1

EACD WACD GACD LACD GV-LACD
Interval Type Est.

Value
Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

  ,99.0dl 0.9998 181.30 -------- 0.9999 189.76 -------- 0.9957 41.735 -------- 0.9902 0.0403 -------- 0.9977 86.976 --------

  ,95.0dl 0.9569 10.479 2.2051 0.9857 369.17 0.4160 0.9426 11.042 1.2348 0.9343 47.464 0.2283 0.9355 40.743 2.1422

  ,90.0dl 0.8907 9.3788 11.180 0.9256 79.135 0.9410 0.8949 2.8588 7.0881 0.8909 8.9842 9.0896 0.8918 7.3151 0.6782

  ,80.0dl 0.7501 147.19 42.383 0.8049 1.4978 23.627 0.7900 6.1991 20.586 0.7949 1.6282 20.369 0.7950 1.5654 7.7749

  80.0,0 dr 0.8080 4.0210 4.3129 0.8071 3.1615 23.627 0.7852 13.484 4.1626 0.7831 17.533 1.1999 0.7825 18.785 0.9989

  90.0,0 dr 0.8890 13.054 1.5504 0.8954 2.3301 3.5796 0.8948 2.9709 4.5524 0.9021 0.4884 7.1282 0.9024 0.6393 8.1288

  95.0,0 dr 0.9328 56.524 0.4401 0.9412 15.488 1.4763 0.9525 1.3319 0.6372 0.9627 37.066 0.0612 0.9625 35.850 0.3316

  99.0,0 dr 0.9750 160.46 -------- 0.9835 35.697 -------- 0.9934 13.262 -------- 0.9979 93.066 -------- 0 .9977 86.976 --------

    90.0,90.0 drdl 0.7797 25.187 0.0139 0.8211 28.552 1.6521 0.7898 6.4475 0.0229 0.7931 2.9678 0.0114 0.8162 2.1021 5.2740

    80.0,80.0 drdl 0.5581 72.544 3.9049 0.6121 6.0818 2.4017 0.5753 25.342 2.6512 0.5781 19.944 2.3623 0.5775 21.047 0.0726

Log-EACD Log-WACD Log-GACD Log-LACD GV-Log-LACD
Interval Type

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

  ,99.0dl 0.9997 173.89 -------- 0.9999 189.76 -------- 0.9961 48.917 -------- 0.9900 0.0001 -------- 0.9975 81.237 --------

  ,95.0dl 0.9571 11.111 0.7144 0.9867 395.67 0.0334 0.9429 10.183 2.1241 0.9346 45.740 1.6867 0.9349 44.045 1.9909

  ,90.0dl 0.8924 6.2956 2.1886 0.9268 87.113 0.6658 0.8954 2.3301 0.5160 0.8918 7.3151 0.5371 0.8908 9.1800 0.6392

  ,80.0dl 0.7492 152.41 14.210 0.8057 2.0311 4.8585 0.7898 6.4475 3.3352 0.7954 1.3265 2.1032 0.7935 2.6359 3.9300

  80.0,0 dr 0.8083 4.3307 5.7885 0.8071 3.1615 5.2578 0.7867 10.912 3.3352 0.7840 15.734 2.4373 0.7832 17.328 4.2211

  90.0,0 dr 0.8883 14.738 0.0010 0.8971 0.9330 1.1571 0.8946 3.2016 2.2861 0.9032 1.1417 0.7782 0.9030 1.0024 0.4797

  95.0,0 dr 0.9310 68.341 0.0589 0.9396 21.436 0.0758 0.9516 0.5411 0.5915 0.9608 26.417 0.8890 0.9607 25.911 0.4497

  99.0,0 dr 0.9753 154.91 -------- 0.9831 39.854 -------- 0.9943 22.096 -------- 0.9975 81.237 -------- 0.9975 81.237 --------

    90.0,90.0 drdl 0.7808 22.563 0.6526 0.8240 37.097 0.5253 0.7901 6.0767 0.0057 0.7951 1.5039 0.0083 0.7938 2.3998 0.0049

    80.0,80.0 drdl 0.5576 74.276 5.0278 0.6129 6.9171 1.5990 0.5766 22.756 1.3927 0.5795 17.486 1.2536 0.5767 22.563 2.2540

1 the table presents the estimations for the corresponding Bernoulli parameters and the associated chi-squared statistics for unconditional coverage and independence. The critical values for
the chi-squared distribution are 2.706, 3.841, 5.024, 6.635 and 10.828 with the associated p-values being 0.10, 0.05, 0.025, 0.01 and 0.001.



Table 3.3
Statistics for the Interval Forecasts for TLS1

EACD WACD GACD LACD GV-LACD
Interval Type Est.

Value
Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

  ,99.0dl 1.0000 -------- -------- 0.9999 189.76 -------- 0.9984 110.05 -------- 0.9861 13.708 -------- 0.9729 201.35 --------

  ,95.0dl 0.9542 3.8077 9.9781 0.9718 117.92 20.576 0.9397 21.038 6.1241 0.9252 113.17 16.772 0.9086 293.10 1.0294

  ,90.0dl 0.8897 11.469 22.298 0.9110 13.885 19.639 0.8885 14.247 22.333 0.8831 30.307 18.875 0.8576 179.08 3.0211

  ,80.0dl 0.7651 73.179 24.272 0.7952 1.4435 22.753 0.7872 10.114 18.756 0.7967 0.6861 18.681 0.7667 66.743 13.807

  80.0,0 dr 0.8074 3.4364 1.4750 0.8071 3.1615 1.3270 0.7917 4.2828 3.1062 0.7873 9.9579 2.5188 0.7995 0.0169 2.0226

  90.0,0 dr 0.8954 2.3301 2.1270 0.9012 0.1579 2.4040 0.9010 0.1092 3.7863 0.9169 33.438 3.5835 0.9182 38.955 3.1369

  95.0,0 dr 0.9397 21.0374 3.6746 0.9450 5.1154 2.0771 0.9524 3.1738 0.6372 0.9730 132.74 0.2464 0.9722 122.74 0.4422

  99.0,0 dr 0.9811 63.447 -------- 0.9850 21.903 -------- 0.9927 8.1204 -------- 0.9986 117.68 -------- 0.9985 113.80 --------

    90.0,90.0 drdl 0.7851 13.665 0.7150 0.8123 9.5755 0.6150 0.7896 6.7007 0.3363 0.8001 0.0001 0.2323 0.7758 35.625 1.2412

    80.0,80.0 drdl 0.5725 31.383 2.4010 0.6024 0.2322 1.8540 0.5790 18.345 1.3266 0.5841 10.543 1.8179 0.5775 0.5662 0.8517

Log-EACD Log-WACD Log-GACD Log-LACD GV-Log-LACD
Interval Type

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

Est.
Value

Point
Stat.

Ind
Stat.

  ,99.0dl 0.9999 189.76 -------- 0.9999 189.76 -------- 0.9981 99.540 -------- 0.9856 17.222 -------- 0.9975 81.237 --------

  ,95.0dl 0.9533 11.1107 0.7144 0.9733 136.61 5.5789 0.9388 24.750 0.3960 0.9267 100.62 2.2350 0.9349 44.045 1.9909

  ,90.0dl 0.8908 9.1800 5.3223 0.9127 18.615 6.4670 0.8901 10.608 4.1878 0.8835 28.921 4.2017 0.8908 9.1800 0.6392

  ,80.0dl 0.7680 61.725 16.957 0.7951 1.5039 10.550 0.7865 11.239 10.716 0.7951 1.5039 5.2150 0.7935 2.6359 3.9300

  80.0,0 dr 0.8081 4.1230 6.4789 0.8081 4.1230 6.8048 0.7910 5.0296 6.1452 0.7874 15.734 5.1167 0.7832 17.328 4.2211

  90.0,0 dr 0.8941 3.8153 2.4093 0.8999 0.0013 2.2949 0.8999 0.0013 2.2949 0.9148 25.460 0.0038 0.9030 1.0024 0.4797

  95.0,0 dr 0.9404 18.348 0.0738 0.9466 2.3903 0.0906 0.9535 2.6307 0.0173 0.9718 117.92 0.0001 0.9607 25.911 0.4497

  99.0,0 dr 0.9815 58.368 -------- 0.9856 17.222 -------- 0.9927 8.1204 -------- 0.9982 102.93 -------- 0.9975 81.237 --------

    90.0,90.0 drdl 0.7850 13.847 2.5517 0.8127 10.215 1.9715 0.7901 6.0767 2.5761 0.7984 0.1637 1.5154 0.7938 2.3998 0.0049

    80.0,80.0 drdl 0.5762 23.537 6.7427 0.6033 0.4433 6.4401 0.5776 20.861 4.7653 0.5826 12.616 4.7942 0.5767 22.563 2.2540

1 the table presents the estimations for the corresponding Bernoulli parameters and the associated chi-squared statistics for unconditional coverage and independence. The critical values for
the chi-squared distribution are 2.706, 3.841, 5.024, 6.635 and 10.828 with the associated p-values being 0.10, 0.05, 0.025, 0.01 and 0.001.


