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A BAYESIAN ALTERNATIVE TO GENERALIZED 
CROSS ENTROPY SOLUTIONS FOR 

UNDERDETERMINED ECONOMETRIC MODELS 

Thomas Heckelei, Ron Mittelhammer, Torbjoern Jansson 

Abstract 
This paper presents a Bayesian alternative to Generalized Maximum Entropy 

(GME) and Generalized Cross Entropy (GCE) methods for deriving solutions to 
econometric models represented by underdetermined systems of equations. For 
certain types of econometric model specifications, the Bayesian approach provides 
fully equivalent results to GME-GCE techniques. However, in its general form, the 
proposed Bayesian methodology allows a more direct and straightforwardly inter-
pretable formulation of available prior information and can reduce significantly the 
computational effort involved in finding solutions. The technique can be adapted to 
provide solutions in situations characterized by either informative or uninformative 
prior information. 

Keywords: Underdetermined Equation Systems, Maximum Entropy, Bayesian Pri-
ors, Structural Estimation, Calibration. 
JEL-classification: C11, C13, C51 

1 Introduction 
In 1996, GOLAN, JUDGE AND MILLER published a book on “Maximum Entropy 
Econometrics” introducing Generalized Maximum Entropy (GME) and Generalized 
Cross Entropy techniques (GCE) to a wider range of applied econometricians. These 
estimation approaches were attractive to empirical modelers mainly for two reasons: 
First, they allow empirical specification and estimation of underdetermined models, 
i.e. models where the number of unknowns is larger than the number of equations, a 
capability not provided by classical solution techniques. Second, prior information on 
model unknowns can be included in a technically straightforward way, making esti-
mates potentially more efficient in a mean square error sense, or at least more “plau-
sible” for model simulation, interpretation, and analysis subsequent to estimation. 

Since their introduction, a notable number of applications of GME and GCE have 
appeared in the empirical economics literature. A significant area of application re-
lates to balancing large raw data sets using accounting identities and prior information 
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to fill gaps and reconcile conflicting data sources. The techniques allow setting ranges 
for missing data values and provide a means of differentiating the reliability of vari-
ous sources in the balancing process (e.g. ROBINSON, CATTANBO AND EL-SAID 2000; 
BRITZ AND WIECK 2002, ROBILLIARD AND ROBINSON 2003). A related line of work 
deals with allocating input quantities to outputs from data on total input use and prior 
information on the input-output relationships (e.g. LENCE AND MILLER 1998a and b, 
LÉON ET AL. 1999). Calibration of simulation models to base year quantities and the-
ory-consistent parameter sets is often done using entropy methods (e.g. PARIS AND 
HOWITT 1998; WITZKE AND BRITZ 1998; PARIS 2001) and a fairly new but increas-
ingly important area is the spatial disaggregation of technological and economic data 
(HOWITT AND REYNAUD 2003). However, GME and GCE applications are not re-
served for data recovery and calibration issues, and have been employed in attempts 
to better solve traditional estimation problems or analyze new ones (e.g. GOLAN, 
JUDGE AND PERLOFF 1996; OUDE LANSINK 1999; ZHANG AND FAN 2001; ARNDT, 
ROBINSON AND TARP 2002; HECKELEI AND WOLFF 2003). In essence, any economic 
model characterized by a vector of M equations in  K > M unknowns, say ( ) =g z 0 , 
is an underdetermined model that can be solved through the use of  GME or GCE 
techniques. 

Despite the growing number of applications, GME and GCE techniques are argua-
bly subject to at least three difficulties, the first being the specification and interpreta-
tion of prior information imposed via the use of discrete support points and a corre-
sponding reference prior probability distribution on that support. In fact, the actual 
prior information ultimately imposed is a rather complicated composite of the choice 
of support points, the choice of reference prior probabilities on support points, and 
their interaction with the criterion of maximum entropy or minimum cross entropy in 
determining the final estimated subject probabilities on the support points. A second 
issue – connected to the first – relates to challenges in characterizing the nature of the 
estimation objective that is actually being used to combine prior and data information, 
with attendant difficulties in evaluation of the estimation results by the scientific 
community. Thirdly, the entropy approach introduces additional variables (the prob-
abilities linked to the supports) and equations (adding up constraints for the probabili-
ties) to the estimation process, which leads to a potential computational challenge 
especially for large data balancing applications. We elucidate as well as address these 
issues in the sections ahead. 

The overall objective of this paper is to introduce a Bayesian alternative to GME 
and GCE techniques that allows for a direct and straightforwardly interpretable for-
mulation of prior information and a clearly defined estimation objective while also 
reducing computational demands considerably when estimating an underdetermined 
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economic model. The specific objectives are reflected in the organization of the re-
maining sections of the paper, which is as follows. Section 2 reviews the GME-GCE 
approach in the context of estimating an underdetermined linear model without noise. 
We clarify the interpretation of the effective prior information imposed as being a 
combined effect of supports, reference probabilities on supports, and the solution for 
the subject probabilities via the maximum entropy criterion. Section 3 introduces a 
formulation of the underdetermined linear model estimation problem using a Bayes-
ian approach that is fully equivalent to GME-GCE, where the underdetermined model 
equations and the data together represent the “Likelihood” information and all prior 
information is represented in terms of a prior density on model unknowns. This ap-
proach is then extended to solving general systems of underdetermined equations. In 
section 4, the approach is extended to accommodate the situation where the prior 
information is uninformative over the relevant parameter space. Section 5 provides 
illustrative applications, followed by concluding remarks. 

2 Prior information in GME-GCE approaches 
The principles of GME (later extended to GCE) estimation as introduced by GOLAN, 
JUDGE AND MILLER (1996) and discussed further in MITTELHAMMER, JUDGE AND 
MILLER (2000) are briefly reviewed here in the linear model context without noise to 
provide a conceptual foundation and identify notation for use in later sections. Within 
this basic model context, we elucidate the actual nature of the prior information that is 
implicitly used in the GME and GCE approaches. 

Consider the underdetermined linear regression model, without noise, given by 

 =y Xβ  (1) 

where y is a T-dimensional column vector of observations on the dependent variable, 
X is a T×K matrix of observations on independent regressors with T<K, and β is a K-
dimensional column vector of unknown parameters. The values of β cannot be 
uniquely identified with classical estimation techniques, such as ordinary least 
squares, because the number of observations is smaller than the number of parame-
ters. The basic GME approach is to “reparameterize” the vector of parameters β such 
that each element is expressed as an expectation of a discrete probability distribution. 
Let S be a block-diagonal K×KL matrix of support points, where L is the number of 
support points associated with each parameter, and let p be a corresponding KL×1 
vector of weights that have the properties of probabilities. The vector β can then be 
represented as 
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with [ ]'
k k1 k2 kL=s s s s"  such that sk1< sk2 < ... < skL. A reparameterized 

version of (2) is then given by 

 =y XSp  (3) 

which corresponds to the 'data constraints' of the GME approach. Realizing that the 
elements of each pk, k = 1,...,K sum to 1 consistent with their interpretation as having 
the properties of probabilities, equation (2) defines the admissible values for the ele-
ments of β as convex combinations of the corresponding support points sk, k = 1,...,K. 
This implies that the range of possible values for βk is given by the interval [sk1,skL]. 
The GME approach chooses among the infinite number of vectors p satisfying (3) so 
as to maximize the entropy criterion1 

 H[ ] ' ln= −p p p  (4) 

The objective function (4) attains an unconstrained maximum when all elements 
of p have the value 1/L, i.e. when the probabilities are uniform. Since the uniform 
distribution treats each outcome as equally likely one can view this distribution as the 
maximally uninformative distribution with respect to anticipating outcomes of a ran-
dom variable. Thus, the maximum value of entropy is uniquely associated with the 
maximally uninformative weight- probability distribution” (MITTELHAMMER, JUDGE 
AND MILLER 2000, E3: 8). However, the notion of “uninformative” probabilities has 
caused some confusion in some applications of GME in that it has been incorrectly 
interpreted as characterizing the prior probabilities associated with various possible 
values of the parameters in the GME problem formulation. We will address this issue 
in more detail shortly. 

The complete estimation problem can now be stated as 
                                                      
 
 
1 The value of ( )ij ijp ln p is defined to equal its limiting value of 0 when ijp 0=  
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where the last constraint ensures that the probabilities appropriately sum to one, with 
ι being a L×1 'summation vector', i.e. a conformable vector of ones. The values of β 
can be recovered after optimization by the definition given in (2). 

A crucial question for interpreting the results of the GME estimation approach is 
how one can interpret the notion of “uninformative” claimed above for the entropy 
criterion in the GME context. Of principal interest is the interpretation of the expecta-
tion of the probability distribution over the support points, since it is this expectation 
that represents the final estimate of the parameter vector β, as defined in (4). The 
probability distributions inherent in the solved value of p merely serves as a vehicle 
for the entropy criterion to choose particular values of the expectation that maximize 
entropy. Or as PRECKEL (2001, p. 375) states: “Thus, the role of the distribution is 
simply to serve as intermediary in expressing the desirability of the value of a pa-
rameter…”.  

Preckel reinterprets GME as minimizing a penalty function on these expectations 
subject to the data constraints, and compares the approach to the case of the penalty 
function implied by a least squares criterion. We instead conceptualize the GME-
implied weighting on expectations as the prior probability distribution in a Bayesian 
context. This prior density turns out to be a reflection of Preckel’s penalty function 
(see his equation (5), p. 368). 

For an explicit illustration of the implied prior, consider just one parameter βk 
from the linear model in (1) and suppose that only two support points sk1 and sk2 are 
used, i.e. L=2. Recalling that pk1 + pk2 = 1 we write the expectation of βk as 

 ( )k k1 k1 k1 k2E p s 1 p sβ = + −  (6) 

Solving for the probability as a function of kEβ  obtains 

 ( ) ( ) ( )k1 k k k2 k1 k2p E E s s sβ = β − −  (7) 

The component of the entropy criterion in (5) relating to the expectation of βk can 
then be expressed as 



6 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

k k1 k1 k1 k1

k k2 k1 k2 k k2 k1 k2

k1 k k1 k2 k1 k k1 k2

H E p ln p 1 p ln 1 p

E s s s ln E s s s

s E s s ln s E s s

β = − − − −

= − β − − β − −

− − β − − β −

 (8) 

which defines the prior weight that the entropy criterion assigns to each possible 
value of the expectation of βk. The criterion is maximized if the distance of Eβk from 
the lower support point sk1 is equal to the distance of Eβk from the upper support point 
sk2, which coincides with pk1 = pk2 = 0.5, i.e. a uniform distribution over the supports, 
and a value for βk = (sk1+ sk2)/2. All other values of Eβk are assigned lower prior 
weights via ( )kH Eβ . A graphical illustration of the weight distribution is given in 
Figure 1, where we chose sk1 = 0 and sk2 = 10. 
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Figure 1. Prior weighting of parameter expectations based on the entropy criterion. 
Source: Maximum entropy calculations with sk1 = 0, sk2 = 10. 

The mathematical and graphical illustration above demonstrates that the use of the 
maximum entropy criterion implies different prior weights on the different possible 
outcomes, kEβ , of the GME estimator. These are prior weights in that they are inde-
pendent of any data information. The highest weight is given to the parameter expec-
tation that would be generated by a uniform probability distribution over the supports. 
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The GME approach is a special case of GCE, where the latter method allows de-
fining a reference probability distribution over the support points. Denoting the vector 
of reference distribution probabilities as q, the cross entropy criterion can be written 
as 

 ( ) ( )I , ′=p q p ln p q  (9) 

where p/q is to be interpreted as a vector with elements psk/qsk. The value of I(p,q) is 
smallest if all elements of the vector p are equal to the corresponding elements of the 
vector q. Consequently, an unconstrained minimization of the cross entropy measure 
over p will result in a probability distribution equal to q, and provides estimates of 
parameters according to expectations implied by the probabilities in q. The GME 
approach considered above is equivalent to an application of the GCE approach with 
a uniform reference distribution.  

The use of a non-uniform reference distribution leads to modifications in the im-
plicit prior weighting on parameter expectations under the GCE approach. Without 
repeating what amounts to a similar mathematical derivation to that in (6)-(8), we 
illustrate in Figure 2 the impact on the prior weights for the two support points exam-
ple above. The reference probabilities were chosen such that qk1 = 0.3 and qk2 = 0.7. 
Note that we reflected the cross entropy value – which is minimized rather than 
maximized as in the GME case – around 0.6 to make the graph more easily compara-
ble to Figure 1. In this case the highest cross-entropy weight is given to Eβk = 7, 
which would be the parameter estimate chosen by the GCE approach if data con-
straints render the value βk = 7 feasible. A general principle of GCE is illustrated by 
the two examples — the prior that is actually implied by the method places the high-
est prior weight on the expectation that is implied by the reference probability distri-
bution.  

In summary, the GME/GCE approaches imply the use of informative prior infor-
mation on parameters to be estimated. This is true, even if the reference distribution 
employed is uniform over the set of support points because the actual GME/GCE 
estimates are defined as expectations with respect to the discrete probability distribu-
tion used to reparameterize the parameters of interest. To solve underdetermined sys-
tems of equations, the use of prior information is unavoidable and by itself is not a 
caveat regarding the use of GME techniques. It is in fact this specific feature, i.e. the 
flexibility in formulating prior information, that makes the GCE/GME framework of 
analysis so interesting to applied modelers who seek plausible simulation models and 
consistent data sets. The prior information actually employed is, however, a result of 
interactions between chosen support points and the reference distributions on the cho-
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sen supports as well as the final weighting on support points implied by the maximum 
entropy criterion. The total effect of this interaction — especially for applications 
with many parameters and more than two support points — is not transparent. Fur-
thermore, the introduction of a set of probabilities for each parameter to be estimated 
increases the computational demand on solving complex problems, which renders 
some very complex data reconciliation and estimation exercises intractable with cur-
rently available hardware and optimization solvers. In the next section we develop a 
Bayesian alternative to the GME approach which allows a direct and transparent for-
mulation of prior information and potentially reduces the computational demand sig-
nificantly. 
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Figure 2.Prior weighting of parameter expectations with the cross-entropy criterion. 
Source: Minimum cross entropy calculations with sk1 = 0, sk2 = 10, and a reference 
distribution where qk1 = 0.3, qk2 = 0.7. 

 

3 A Bayesian approach to the solution of underdetermined systems 
To motivate the general concepts underlying the Bayesian alternative to GCE/GME 
we first reconsider the linear model without noise used in the previous section. We 
then extend the approach to a general system of underdetermined structural equations. 
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3.1 The Linear Model Revisited 
The Bayesian approach to parameter estimation treats model parameters as stochastic 
variables. In this context the method distinguishes between the prior density, p(β), 
summarizing prior information on parameters, the Likelihood function, L(β|y), repre-
senting information obtained from the data in conjunction with the assumed model, 
and the posterior density, h(β|y), which is the result of combining prior and data in-
formation based on Bayes' theorem. The relationship between these three elements 
can be expressed as (e.g. ZELLNER 1971, p.14) 

 ( ) ( ) ( )h p L∝β y β β y ,  (10) 

where the posterior density is proportional to the prior density multiplied by the Like-
lihood function. The posterior density allows drawing statistical inference about β 
using probability statements or by deriving point estimates that are optimal with re-
spect to some loss criterion. For example, the mean of the posterior (density) is the 
value which minimizes quadratic loss. 

Through appropriate interpretation of its components, the GME approach to esti-
mating the parameters of the underdetermined linear model given in the previous 
section can be subsumed within the Bayesian formalism. For the case of two support 
points, using (8) and suppressing the GCE/GME expectation operator henceforth by 
simply representing the resultant estimator by β , the GME optimization problem can 
be represented as 

 
( ) ( ) ( ) ( ) { } ( )

K

k
k 1

max h p L H I
=

=
⎧ ⎫⎡ ⎤⎪ ⎪∝ ∝ β⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑
β y Xββ y β β y β: β

 (11) 

where ( )AI β is the standard indicator function that takes the value 1 when ∈β Α and 
equals 0 otherwise. If H(βk) is chosen according to (8), the optimal value for β will be 
equal to the optimal Eβ = Sp obtained in the GME solution, with an analogous result 
holding for GCE with H(βk) defined appropriately. In the Bayesian context, the objec-
tive function can be interpreted as the joint posterior density of the model parameters, 
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( )h β y , defined via a prior density defined by ( ) ( )
K

k
k 1

p H
=

∝ β∑β  2 that is multiplied 

by a likelihood function that assigns zero weights to values of β that do not satisfy the 
linear model constraints =y Xβ  and a positive constant weight to the values of β 
that are compatible with the data and the linear model relationship.3 This implies zero 
posterior density weights for the values of β not satisfying the constraints and differ-
ential posterior weighting according to the prior (density) for all other values of β. 
The value of β that maximizes h(β|y) is the mode of the posterior distribution of β,  
which leads to the Highest Posterior Density (HPD)-estimate of β.4  

The preceding interpretation of GCE/GME within the Bayesian formalism sug-
gests a general Bayesian alternative to the entropy approach that has three useful 
characteristics: (1) it can be formulated such that it is fully equivalent to the 
GCE/GME approach if support point choice and implicit weighting by the entropy 
criterion are appropriately represented, (2) the prior information on unknowns can be 
transparently formulated by assigning any appropriate prior density p(β) directly to 
the unknowns, and (3) the optimization model has a smaller number of variables and, 
for an appropriate choice of the prior density functions, can be less computationally 
demanding.  

                                                      
 
 

2 The function ( )
K

k
k 1

H
=

β∑  would need to be scaled appropriately to integrate to unity in order to be 

interpreted as a proper density, but this scaling is irrelevant for the outcome of the maximization.  
3 In the classical case of a linear model with noise, the Likelihood function would also have the error 

variance as an argument and would imply some continuous differential weighting according to the as-

sumed error distribution. All that can be learned from the current model (the underdetermined data 

constraints, without noise) is which parameter vectors satisfy the data constraints and which do not, 

which motivates the dichotomous nature of the likelihood weighting in this case.  
4 Using the mode of the posterior for estimation was suggested before in the context of well-posed esti-

mation problems, for example by DeGroot (1970), who called the estimator “generalized maximum 

likelihood”. More frequently used terms are “maximum a-posteriori estimator” and “posterior mode 

estimator”. In accordance with the Bayesian confidence intervals we prefer the HPD-estimator. 
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Having motivated the Bayesian alternative with a basic underdetermined linear 
model example, we now turn to a more general treatment of the Bayesian solution to 
underdetermined systems and the connection to entropy-based approaches. 

3.2 General Structural Equation System 
The general mathematical problem now being addressed is one where there are M 

equations, represented in vector function form as g(z) = 0, involving an unknown 
(K×1) vector argument z, with M < K, so that the system of equations underdeter-
mines the unknown vector z.5 Thus, in the absence of any additional information, and 
assuming the original equation system g(z) = 0 is consistent so that at least some solu-
tion actually exists, then indeterminacy implies that there is generally an infinite 
number of solution vectors that solve the system of equations. 

One method of obtaining a unique solution to the system of equations is to choose 
z so as to optimize an extremum metric v(z), subject to the constraints that g(z) = 0. 
So long as there exists a unique optimum of v(z) within the feasible space of z values 
determined by z∈Ψ = {z: g(z) = 0}, a unique solution to the original equation system 
can be identified. In general terms, such a solution could be represented as 

 ( ) ( ){ }* arg max v s.t. g= =zz z z 0  (12) 

where it is assumed without loss of generality that maximization is the type of optimi-
zation pursued. 

In fact any extremum metric v(z) that exhibits an optimum within the feasible 
space z∈Ψ defines a possible solution to the equation system. There is thus a problem 
of deciding which metric to optimize, which in turn determines which solution from 
among a generally infinite number will be chosen as the solution to the original equa-
tion system. In general, any of the solutions in Ψ can be obtained given an appropri-
ate corresponding choice of extremum metric v(z). Thus, the solution obtained to a 
system of equations in this way is only defensible to the extent that the extremum 
metric used to obtain that solution is defensible. Before returning to this issue we 
discuss some necessary conditions for the solution. 

Assume that the equation system of g(z) = 0 is a collection of functionally inde-
pendent equations, so that the equations effectively determine M of the zi’s as a func-
                                                      
 
 
5 The elements of z are not restricted to model parameters. They could also represent unknown variable 

values in a data reconciliation exercise where data are measured with errors or not observed at all. 
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tion of the remaining K-M zi-values. It is not necessary, conceptually, that explicit 
solutions exist for M of the variables in terms of the other K-M variables, but only 
that solutions exists. The solution might only be implicitly defined (which would then 
require numerical solution techniques). It is apparent that a general necessary condi-
tion for an extremum solution to exist is that v(z) for ∈z Ψ  be informative, i.e. non-
constant, in at least K-M of the variables in the vector z.  Among other things, this 
means that v(z) cannot be uniform (or “uninformative” in prior distribution parlance) 
in more than M of the zi arguments.6 We note that there are other conditions that 
might be necessary in any given application, because depending on the nature of the 
equations in the system, it may be that informative information would have to exist 
on a specific as opposed to an arbitrary subset of z arguments given the solution space 
to g(z) = 0. It should also be noted that if v(z) is informative on precisely K-M vari-
ables in the z vector, then the solution can be trivial in the sense that unconstrained 
optimization of the v(z) metric in these K-M dimensions could be pursued independ-
ent of the equation system g(z) = 0 to determine K-M of the unknowns. The remain-
ing arguments in the z vector could then be solved based on the relationships among 
the zi’s determined by the equation system. 

Given that the data information serves only to narrow the feasible space of solu-
tions for the unknowns and is otherwise uninformative, a useful and defensible choice 
for the extremum metric, v(z), is the additional prior information held by the analyst, 
which summarizes the available non-data information on z. If pi(zi) represents general 
prior distribution weights on the possible solution values for the ith component of the 
z vector, and if the prior weightings of the different components are considered to be 
independent, then the optimization metric used to obtain a solution to the equation 
system could be specified as 

 
( ) ( ) ( )

K

i i
i 1

v p p z
=

= = ∏z z
 (13) 

as example of which was given in (11). In the absence of independence, p(z) can rep-
resent any joint prior distribution on potential solution values z. 

                                                      
 
 
6 Given this observation, it is clear that the GME approach to solving underdetermined systems works 

because it “automatically” implies a non-uniform prior weighting with respect to the variable of inter-

est.  
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Now consider Bayes' rule applied to the problem of solving the equation system 
for z. In the absence of any information that would link z values to data and allow a 
likelihood function to be specified, the likelihood function would be considered unde-
termined or undefined. In this case, the Bayesian posterior and prior on the z vector 
would be identical and the maximization of the prior v(z) = p(z) would yield the 
maximum of the posterior. But in the current problem context the system of equations 
g(z) = 0 in effect constrains the support of the posterior h(z) to z∈Ψ={ }: ( ) = z g z 0 . 
The Likelihood function in this case can be interpreted as an indicator function ( )Iψ z  
that assigns weights of 1 to admissible values of z and 0 otherwise (It is straightfor-
ward to introduce non-dichotomous likelihood weightings if the model specification 
supports such information. Such a case will be illustrated in the applications section). 
The posterior is then in the form 

 ( ) ( ) ( )h p I∝z z zψ . (14) 

Consequently, the argument that maximizes the prior probability p(z) subject to the 
constraint z∈Ψ (or g(z) = 0) will provide a Bayesian highest posterior density (HPD) 
solution to the equation system. 

3.3 Solutions for Uninformative Priors 
For reasons discussed earlier, the HPD approach to solving the system of equations 
cannot be applied in cases where the prior weighting on solution values is not suffi-
ciently informative, i.e. p(z) cannot be uniform in more than M of the zi arguments as 
the optimum will not be unique. However, in this case, solving for the posterior mean, 
which is the posterior risk-minimizing Bayesian estimate under quadratic loss, will 
generally be possible as long as the uniform distribution is proper in the sense of inte-
grating to 1. This will follow naturally if the prior support space is a priori compact, 
so that there is indifference among values of z within a hyperrectangle of values hav-
ing finite boundaries. In the extreme case of no informative prior information at all, 
the values in the support space defined by the equation system. ( ){ }:Ψ = =z g z 0 , 
are all equally likely, so that the Bayes' posterior mean solution would be the mean of 
z from among all equally likely values in this support space. A computational method 
of finding such a solution would be to draw uniform random outcomes of z from Ψ, 
forming their sample mean, and for large enough simulated sample sizes, the sample 
mean would converge in probability (or almost surely) to the true mean by the weak 
(strong) law of large numbers. 

In some cases, the posterior mean solution might be identifiable analytically. For 
example, consider again the underdetermined linear model without noise, 
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 y = Xβ 

where X is a T × K matrix, with T < K and rank (X) = T. Since rank (X) is smaller 
than the number of columns, an infinite number of solutions exist for β. These solu-
tions will form a hyperplane in ℜK, which can be described by a linear function of the 
form 

 β = β0 + Bξ (15) 

where B is a K × (K – T) matrix that is a basis for the subspace of solutions to the 
homogeneous model 0 = Xβ, and ξ is an arbitrary (K – T) vector. This follows from 
the following results: 

Lemma 1: Any solution β* to the inhomogeneous linear model y = Xβ can be 
written as the sum of a particular solution β0 to the inhomogeneous model plus some 
solution β1 to the homogeneous linear model 0 = Xβ (e.g. DE LA FUENTE 2000, p. 
197). 

Lemma 2: β1 in lemma 1 can be written as Bξ, for some matrix B and any vector ξ 
of dimension (K – T). 

If there are uniform priors for at least K – T of the elements of β, then those priors 
constitute a hyperrectangle U in ℜK, and the posterior mean is the geometrical centre 
of the intersection between the solution hyperplane and the hyperrectangle U. We can 
then compute the posterior mean through a sequence of four steps that include first 
finding β0 , then computing the matrix B, next finding the intersection between the 
solution hyperplane and the prior hyper rectangle, and finally finding the center of the 
intersection. A specific algorithm for accomplishing these steps is as follows: 

Step 1. A particular solution β0 to the inhomogeneous system can be found by 
solving β0 = X+y, where X+ is the generalized inverse of X. 

Step 2. Since K > T and rank (X) = T, K – T columns of X, together forming the 
matrix X(i), can be written as linear combinations of the other T columns, which are 
kept in the T × T matrix X(−i). The coefficients of each of the K – T columns in X(i) 
can be chosen arbitrarily. If this is repeatedly done for each column in X(i), the follow-
ing expression is obtained, where the columns of B(i) are the arbitrary coefficient vec-
tors for X(i): 

 −X(i)B(i) = X(-i)B(-i) 

Choosing the (T − K) × (T − K) identity matrix for B(i), the above expression can be 
solved for B(-i) = −(X(i))-1X(i), and B can be obtained by vertical concatenation of B(i) 
and B(-i), keeping the rows in proper order. 

Step 3. Find the values of ξ for which the resulting β is inside the prior hyperrec-
tangle. This can be done by trial and error if the dimension of ξ is low, and numeri-
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cally by repeated linear programming (solving {min p′ξ: β0 + Bξ = β ∈ U}, with p 
being some permutation of (-1) and 1 of length K – T, for all such permutations) if the 
dimension is higher. The set of solutions will be the bounds of a hyperrectangle in ℜK 

– T. 
Step 4. Since β is linearly dependent on ξ, and β is uniformly distributed, the ex-

pected value of β is found by computing the geometrical mid point of the hyperrec-
tangle found in step 3. 

4 Illustrative Applications 
This section presents two illustrative applications of the HPD-estimator based on 
underdetermined problem specifications that are typical of applications for entropy 
estimators: Balancing of a Social Accounting Matrix (SAM) and a linear regression 
problem.  

4.4 Balancing a Social Accounting Matrix 
In 1994, GOLAN, JUDGE AND ROBINSON (GJR) used entropy based estimators to cre-
ate a consistent SAM. Variants of their approaches can be found in the empirical 
Computable General Equilibrium literature to prepare complete databases out of in-
complete and uncertain data information.  

The basic problem of balancing a SAM can be formulated as follows: find a 
square matrix of coefficients A and vectors x and y satisfying the equations 

 Ax = y (16) 

 A′ι = ι. (17) 

with ι the vector of ones of appropriate dimension. In general, information about the x 
and y are available from observable data, whereas the coefficient matrix A is difficult 
to obtain. A common situation is thus that x and y are given, and A needs to be de-
termined subject to the restrictions (16) and (17), possibly given some prior informa-
tion about A, perhaps in the form of the same matrix for another region or for the 
same region for a different period. We take the example studied by GJR and provide a 
Bayesian alternative. 

Table 1 in their paper provides the “true parameters”, 



16 

 

0.726 0.000 0.165 0.301 62 140
0.161 0.268 0.000 0.451 56 145

, ,
0.113 0.678 0.714 0.000 91 110
0.000 0.054 0.121 0.248 266 80

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A x y . 

The authors proceed to construct a (synthetic) prior for A by multiplying each entry in 
A by a random number drawn from a normal distribution, N(1, .05). They present the 
outcome 

 

0.730 0.000 0.172 0.278
0.159 0.259 0.000 0.480
0.111 0.688 0.694 0.000
0.000 0.053 0.135 0.243

o

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A , 

and estimate A with GCE using Ao as a prior. 
The GCE problem is  

 min  ( )′p ln p q   

 such that  , ( ), ,vec≥ = = =p 0 Sp A y Ax Aι 1 (18) 

where the prior probabilities q of the support point matrix S are selected so that 
o=Sq A , with vec(A) being the operator that reshapes the matrix A to a column 

vector by vertically concatenating respective columns, and p/q as in section 2 the 
vector whose ith element is pi/qi, Note that this approach requires the researcher to 
define a set of at least two (GJR use five) support points for each parameter, and also 
to define a corresponding set of prior probabilities such that the prior SAM is recov-
ered. GJR use the same support points for all elements of A, and choose q using an 
initial GME estimation of o=Sq A , which effectively doubles the computational 
effort needed to produce the final estimates of the A matrix. 

Now construct an alternative Bayesian estimator for the same problem. The HPD 
framework allows the use of any prior distribution. Assume, for example, that the 
researcher had a-priori knowledge that the observed matrix Ao was generated as in 
GJR. Taking Ao as prior mean, and continuing to follow GJR, the corresponding prior 
density function would be vec(A) ~ N(vec(Ao),Σ), The covariance matrix Σ is set 
equal to a diagonal matrix with elements ( )2ovec( )0.05A , the square taken element-
wise. 
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Formulating the HPD estimator as discussed previously, taking natural logs, and 
restricting the objective function to the terms that are relevant for optimization leads 
to the following extremum estimation problem: 

 max
A

 o 1 ovec( ) vec( ) vec( ) vec( )−′
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦A A Ω A A  

 subject to =Ax y  (19) 

  =Aι 1   

For the synthetic data provided in GJR, GCE and HPD give very similar results, 
shown below (results for GCE as printed in GJR). Note that the HPD estimation tac-
itly assumed degenerate priors for x and y. The estimation is easily extended to en-
compass the fact that x and y are not known with certainty.  

 
0.732 0.000 0.168 0.298 0.731 0.000 0.167 0.299
0.155 0.251 0.000 0.456 0.157 0.248 0.000 0.456

,
0.114 0.697 0.702 0.000 0.112 0.699 0.702 0.000
0.000 0.052 0.129 0.246 0.000 0.053 0.131 0.245

GCE HPD

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A A

 

As can be seen from (19), the choice of a normal prior distribution results in a 
weighted least squares approach implying numerically desirable properties for large 
scale problems. Compared to GME or GCE approaches, explicit accounting for sup-
port points and adding up constraints for probabilities are unnecessary and infeasibili-
ties are less likely to lead to numerical problems. Other prior distributions can be 
flexibly accommodated and will be considered in the next example.  

4.5 Regression models 
In this section we consider an ill-posed linear regression model with and without 
noise, and characterized by three equations and four parameters. In total five cases are 
studied which are distinguished by the available prior information on parameters, and 
the type of estimation objective applied.  All cases have in common that there is prior 
information available only for two of the four parameters: 
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1. Uniform priors given bounds [u,v], with parameters estimated by posterior 
means; 

2.  Symmetric triangular distributed priors over the support [u,v] and application 
of the Bayesian HPD-estimator; 

3. GME estimation with [u,v] as range of support points and a uniform refer-
ence distribution, represented and solved equivalently as a Bayesian HPD-
estimator; 

4. Same as 2), but with priors distributed as Beta(2,2) between the bounds [u,v]; 

5. As in 4), but also including additive white noise; 

True parameters for the model without noise, y = Xβ, were chosen arbitrarily and the 
columns 2-4 of X were drawn from a normal distributions with means 20, 8 and 12 
and variances equal to ¼ of the means. By multiplication with the selected true pa-
rameters, the true y was obtained. The procedure resulted in the following numbers.  

 

10.0
1 20.733 8.656 8.830 42.180

0.5
, 1 17.827 7.443 13.619 , 43.697

1.5
1 20.001 6.715 12.596 42.668

1.0

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎣ ⎦

β X y  

In all five cases, the support of the prior densities for β2 and β3 is defined by the in-
terval 

0 0.868
( , )

0 2.903
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

u v . 

Note that the mid points between the bounds (u,v) are not equal to the true parameter 
values. 

Case 1: Since we are dealing with a linear system with (-1) degrees of freedom, 
the vector ξ in equation (15) is a scalar, and all feasible β lie on a line segment limited 
by (u,v). Following the steps indicated in section 4, choosing the second column of X 
for X(i), we obtain 
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0.1132 43.2306
0.7284 1.0000
1.8604 1.5735
1.2300 1.0054

ξ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

β  (20)  

for arbitrary ξ. In order for β2 and β3  to be within (u,v), it is required that ξ ∈ (-
0.7284, 0.1396). Since the uniform density indicates the same posterior density 
weight for all values for ξ in that interval and zero elsewhere, we can compute the 
posterior mean as the mid point of the interval, or ξ̂ = −0.2944. Inserting that value 
into the expression (20) gives us the point estimate β̂  of β:  

 

12.842
0.434ˆ
1.397
0.934

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

β . 

Case 2: Let the prior density for β2 and β3 have the same bounds as before, but 
now follow a symmetric triangular distribution, i.e. the mid point of the interval is 
favored. Now a unique posterior mode exists, and we may apply the HPD estimator. 
Since we strive to maximize the posterior, the piecewise linear formulation of the 
triangular density can be relaxed to three linear inequalities, each representing a side 
of the triangle. For ease of notation, we first introduce the subvector βp consisting of 
the elements (β2,β3) for which there are priors, the corresponding subset of probability 
densities pp, and the linear mapping g:[u,v] → [0,1]×[0,1]. Thus gk(βk) expresses βk in 
terms of the share of the distance from uk to vk, for k = 2,3. 

The HPD estimator is then 

 
,

max
p pp β 2 3p p   

 subject to βp being triangular distributed, i.e. 

 4 ( )p p≤p g β ,  4 4 ( )p p≤ −p g β ,  0p ≥p ,  

 and the data constraints, 

 y = Xβ 
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The outcome of the estimator is identical to the outcome of the posterior mean es-
timator and is not repeated here. 

Case 3: Let (u,v) be support points for a GME estimation. Using the normalization 
g(βp) as before, the support points become (0,1), the probabilities of the supports be-

come p = 
( )

( )
p

p
vec

′⎛ ⎞⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟−⎣ ⎦⎝ ⎠

g β
1 g β

 and we may write the GME estimator as 

 max
pβ

 H 

= ( ) ( ) ( )p p p p( ) ( ) ( ) ( )
′⎡ ⎤′− + − −⎢ ⎥⎣ ⎦

g β ln g β 1 g β ln 1 g β   

 subject to y = Xβ  

  u ≤ βp ≤ v  

For the sake of illustration, we re-write this as a fully equivalent HPD estimation 
problem. Note that the GME problem is equivalent to maximizing eH (the maximum 
is maintained under monotonic transformation). Substitution and some algebra lead to 
the equivalent HPD problem 

 max  f2(β2)f3(β3)  

 subject to  y = Xβ  

  u ≤ βp ≤ v  

where ( ) ( ) ( )( ) ( )( )1g
kk

g
kkkk

kkkk g1cg)(f −ββ− β−β=β  (for k = 2,3) is a probability den-
sity function if the constant c is chosen properly (c ≈ 0.6 makes f integrate to unity, 
non-negative values are prevented by the mapping g and the bounds u ≤ βp ≤ v). We 
see that, interpreted in this way, the GME estimator is an instance of a HPD estima-
tor. The GME estimate of β is 
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12.586
0.440ˆ
1.406
0.940

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

β  

Case 4: The upper and lower bounds on two of the parameters make it natural to 
describe the estimates in terms of a fraction of the distance between the bounds (as 
expressed in the mapping g). In such cases the beta distribution is sometimes used. 
Let the distribution of βk for k = 2,3 be such that gk(βk) ~ beta(2,2). The HPD estimate 
of β with beta-distributed priors is identical to the GME estimate at least up to three 
decimal places in this case, and not repeated here. 

Case 5: In the previous cases we assumed that X and y were observable without 
noise. We now introduce white noise for y by adding iid errors drawn from N(0,1) 
whereas X is still assumed to be known with certainty. The resulting stochastic vector 
of left hand side variables is denoted by ys, and the outcome of a draw was 

 [ ]44.064 42.976 41.369s
′= + =y y e  

where e is an outcome of the error ε, and the system to estimate is ys = Xβ + ε. 
If we consider ε yet another parameter to determine, and introduce the prior in-

formation that errors were drawn from N(0,1) and still assume that β2 and β3 belong 
to the same beta distributions as in the previous example, the HPD estimator for β is 
found by solving the problem 

 
,

max
pβ ε

 ( ) ( )
4

b k k e i
k {2,3) i 1

h p g ( ) p
∈ =

= β ε∏ ∏  

 subject to u ≤ βp ≤ v  

  ys = Xβ + ε  

with pb(⋅) being the beta density function as in the previous example and pe(⋅) being 
the standard normal univariate density. A form more easily computed is obtained by 
recognizing that pb(x) = 6(x-x2)I(0,1)(x) and taking the logarithm of the objective func-
tion, which then becomes 
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 ( )
4

2 21
k k k k i2

k {2,3} i 1

max ln(h) ln g ( ) g ( )
∈ =

= β − β − ε∑ ∑  

The resulting estimate of β is [ ]ˆ 16.668 0.379 1.820 0.419 ′=β . 

4.6 Summary and Conclusions 
This paper presents a Bayesian alternative to the solution of underdetermined systems 
of equations. First, we reviewed the GME-GCE approach in the context of estimating 
an underdetermined linear model without noise and identified the effective prior in-
formation as a combined effect between supports, reference probabilities, and the 
entropy criterion. It was indicated that a “uniform distribution over supports” does not 
imply a “non-informative” prior on the parameter of interest, but rather a clear prior 
preferential weighting on estimation outcomes. In the suggested Bayesian alternative 
the underdetermined model equations and the data represent the “Likelihood” infor-
mation. Deviating from standard Likelihood functions of conventional models with a 
predefined family of distributions, the Likelihood implies a constant positive weight 
for all possible solutions of the model equations and a zero weight for infeasible val-
ues. All prior information is represented in a standard Bayesian way via prior prob-
ability densities on model parameters. Highest Posterior Density (HPD) estimates are 
obtained using an optimization algorithm. 

The Bayesian approach can be formulated to mimic the behavior of GME-GCE 
models perfectly. However, more interesting is its general structure allowing full 
flexibility in formulating directly and transparently the prior information held by the 
analyst. For a unique solution to exist, a certain amount of informative prior informa-
tion is necessary. However, if this is not the case, a solution based on the posterior 
mean can — at least conceptually — still be provided.  

The suggested approach lends itself easily to the type of problems currently solved 
with GME or GCE techniques. It has been successfully applied to large scale estima-
tion and calibration exercises (BRITZ, WITZKE AND HECKELEI 2004; JANSSON 2007). 
It facilitates the peer review of methodology and underlying assumptions by making 
the employed prior information directly visible. Further research could examine com-
putational approaches for generating posterior mean estimates under insufficient iden-
tifying prior information. 
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