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Abstract 
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1. Introduction 

Heckelei and Mittelhammer (2002) introduced a semiparametric methodology, the 

"Simultaneous Equations Bayesian Bootstrap" (SEBB), for Bayesian analysis of simultaneous 

equations that replaces the usual explicit specification of a parametric likelihood function with a 

bootstrapped representation of the likelihood of the parameters. Their methodology is based on 

simulated distributional mappings from the error distribution to the parameters of the model. The 

method is a completely computer-driven, simulation-based method for conducting Bayesian 

estimation and inference that fully avoids the oftentimes very difficult and even intractable 

derivations attendant to more complex Bayesian problems involving flexible combinations of 

prior distributions and likelihood functions. Moreover, the approach obviates the need for any 

specific functional specification of the likelihood function, thus eliminating the possibility of 

misspecification of the model in this regard and imparting a degree of model specification 

robustness to the analysis.  

In this paper, a new full-rank distributional mapping from the error distribution to the 

parameters of the model is presented. This new full-rank mapping is more efficient in terms of 

information completeness because the projection from the error to the parameters is based on a 

full rank projection matrix rather than one of less-than-full rank, as was the mapping used by 

Heckelei and Mittelhammer (2002). 

The paper is structured in the following way: First, the concept of a Bayesian Data 

Information Mapping (BDIM) is presented, which identifies a semiparametric analogue to the 

mapping of error distributions to parameters that occurs in standard parametric Bayesian 

contexts.  Then a brief review of the relation between reduced form and structural parameter 



distributions within the Bayesian paradigm is given. Third, the theory underlying the algorithm 

for obtaining posterior distributions of structural parameters using outcomes from an ignorance 

based posterior distribution of reduced form parameters is described. Fourth, a computational 

approach is described that allows for generating outcomes from the posterior distributions of 

structural parameters based on sample data. Finally, the functionality of the approach is 

illustrated by an empirical application to a Japanese meat demand system, providing a 

substantive illustration of the semiparametric technique and allowing a comparison of empirical 

results to both the previous semiparametric method suggested by Heckelei and Mittelhammer 

(2002) and to a Classical 3SLS estimation of parameters. 

 

2. Bayesian Bootstrap Multivariate Regression (BBMR) Reconsidered and Extended 

This section provides the methodological background underlying the semiparametric Bayesian 

analysis of the Japanese meat demand model presented later in the paper. Although the general 

concepts follow recent publications, several new contributions are made in this methodological 

section of the paper:  

1)  The BBMR approach introduced by Heckelei and Mittelhammer (2003) is 

motivated in a new and more elegant fashion based on the idea of a simultaneous 

mapping of error distributions to location and scale parameters.  

2)  The BBMR is extended from a multivariate regression setting characterized by 

identical regressor matrices across equations, as is typical in unrestricted reduced form 

specifications, to the case where regressor matrices differ by equations, as is often 

encountered in the specification of simultaneous systems of equations.  



3)  The method is modified to accommodate exact linear restrictions on model 

parameters. 

2.1 Simultaneous BBMR Mapping 

 Consider the multivariate regression model with m equations given by 

(2.1)     =  + ,Y X Π V

where Y is a (n×m) matrix of observations on m endogenous variables, X is a (n×k) matrix of 

observations on k exogenous variables, Π is a (k×m) matrix of regression coefficients, and V is a 

(n×m) matrix representing iid outcomes of a 1×m disturbance vector =V[i,.], i = 1,…,n, 

having some joint density function with mean  vector 0 and covariance matrix Σ.  Ιt is 

assumed that the covariance matrix Σ and the parameter matrix  are not functionally related.   

iV

(g | ,0 Σi )
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Π

Begin with the probability distribution of the residual vector and consider the transition to the 

likelihood function for the parameters, as is standard in Bayesian analyses of the linear model. 

Given the linear model structure (2.1) underlying the data generating process, the probability 

distribution of the random vector V can be thought of as being transferred to the random 

vector Y X , where the Jacobian of this type of transformation is always the identity matrix 

and is thus immaterial in the transfer. In effect, the argument, V, of the residual density function 

is replaced by the argument  in establishing the joint probability density function of the 

random sample Y, and in defining the likelihood function of the parameters. Specifically,  

− Π

−Y XΠ
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by the direct substitution of  for V. This step in the process of defining the likelihood 

function is a dimension preserving transformation from (the dimension of V) to  (the 

dimension of Y).  

−Y XΠ

n mR n mR

In making the subsequent transition to the likelihood function, one engages in a dimension-

reducing transformation whereby the function  of the nm elements in Y is changed 

to a function of the (km + m(m+1)/2) arguments in , leading to the likelihood function 

(g | , ,Y X Π Σ
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For further motivation consider a modified version of (2.1) defined as 

(2.4)   ( )  
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where the rows of the (n×m) matrix of residuals, U, are iid outcomes from a probability 

distribution g |  having a mean vector of  0 and a covariance matrix of I. The density of V( ,0 Ιi i 

=V[i,.] = U[i,.]T is then g(Vi | 0,T'T) for any conformable T with full column rank, and the 

(m×m) matrix Τ is a matrix for which , so that V′Τ ΤΣ = i = U[i,.]Τ~ g(Vi | 0,Σ) ∀i.  

Now consider the admissible values of  and T. Note that in the absence of prior information to 

the contrary, the values of  and T are clearly coincident with the value of V = UT that satisfies 

the relationship , given the data Y and X. This implies that one can view the 

likelihood weighting on  as being coincident with the PDF weighting on the value of U, 

say U , that corresponds to  and T. That is, 

Π

Π
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( , Π
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Moreover, the joint posterior density of (  can then be represented in the form )

0

)
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where we are temporarily considering the case where an improper prior  

(2.7)  ( )p cΠ ∝ >Π

is being used to convey ignorance regarding the values of the unknown  parameters of the 

model, p  denotes the prior on T (which could also be improper), and we are assuming that 

prior information on Π  and T are independent. 

Π

( )T T

Now suppose that we have an outcome of the matrix U. Then, any solution  to the 

matrix equation is necessarily expressible uniquely via an application of the 

generalized inverse of given by 
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Using the partitioned inverse and substituting  for Y in the process, where Π and  are 

the least squares estimates of regression coefficients and residuals, yields the following 

mappings from U to  and T: 

ˆ +XΠ V ˆ V̂

Π
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where . The expression in (2.9) is fully functionally equivalent to the 

BBMR results presented by Heckelei and Mittelhammer (2003), but in their paper the result is 

derived via a two-step procedure that first conditions  on the value T, and then mixes the 

conditioned  values over the T values implied by the representation of T in equation (9).

( ) 1
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−′= −M I X X X X

Π

′
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The resulting posterior automatically incorporates the standard ignorance prior on { given 

by 

Π, Σ

( ) (m 1) / 2− +∝Π Σ Σp , (for a formal proof, see Heckelei and Mittelhammer, 2003) so that the Π’s 

generated by mapping U’s into the parameters via (9) can be interpreted as outcomes from the 

marginal posterior distribution of Π. For example, under the special case of a normal error 

distribution, the implied posterior distribution for Π coincides identically with the matrix-t 

posterior implied by a full parametric Bayesian analysis under the assumption of a multivariate 

normal error distribution, as demonstrated by Heckelei and Mittelhammer (2003).  

Note that the conceptual development to this point provides an important practical 

contribution to computational parametric Bayesian methodology with considerable empirical 

relevance. In particular, one can construct a generic algorithm based on the preceding sampling 

strategy that allows sampling from an ignorance prior-based posterior distribution of the 

regression parameters associated with any given residual density, and the likelihood function that 

it implies, only assuming that the regression and covariance matrix parameters are functionally 

independent of one another. No case-by-case analytical derivations of posterior distributions for 

inference purposes are necessary – the procedure allows sampling from the posterior in any case. 

Informative prior information on the Π parameters can be straightforwardly incorporated into 

posterior analyses using an importance sampling approach.  



A semiparametric version of the sampling methodology presented in the preceding section 

can be constructed through the use of a nonparametric representation of the residual distribution. 

We focus here on Efron’s bootstrap, but in principle sampling from any empirical distribution 

function-type representation of the residual distribution (e.g., kernel density, empirical 

likelihood) might also be considered. Bootstrapped outcomes from least squares residuals, 

appropriately transformed to residuals with an identity covariance matrix, represent 

approximations to outcomes from the empirical distribution function of U. These bootstrapped 

outcomes can be utilized for the outcomes of the errors in the sampling methodology outlined 

above. It is important to note that the bootstrap needs to preserve the covariance structure of the 

error by sampling complete rows from the matrix of least squares residuals. 

2.2 Incorporating Exact Restrictions on Parameters 

The Bayesian framework developed above can be straightforwardly extended to incorporate non-

degenerate prior distributions or inequality constraints using an importance sampling approach. 

However, the majority of econometric models derived from microeconomic theory require the 

imposition of equality restrictions. This is true for the Japanese meat demand model considered 

later in this paper. Consequently, the preceding BBMR approach is extended to impose g exact 

restrictions on Π. For this purpose we rewrite model (2.1) in stacked form to obtain 

(2.10)  
( ) ( ) ( ) ( )m

S S S S

vec vec vec= ⊗ +

⇔ = +

Y I X Π V

Y X Π V

where , , , and . Then the restrictions can 

be expressed as 

( )S vec≡Y Y ( )S m≡ ⊗X I X ( )S vec≡Π Π ( )S vec≡V V



(2.11) , S=r RΠ

where r is g×1 and R is g×km. Now note that the generalized inverse of the full row rank matrix 

R is given by 

(2.12) , ( ) 1−− ′ ′=R R RR

and using (2.12), we can rewrite ΠS in (2.11) as 

(2.13) , ( )S
− −= + −Π R r I R R h

where h is a km×1 vector that can be chosen arbitrarily. Substituting (2.13) into (2.10) and some 

algebraic rearrangement yields the equation system 

(2.14) . ( ) ( )S S S
− −− = − +Y X R r X I R R h VS

)
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A singular value decomposition of ( , given by , allows a transformation of the 

equation system to be defined as  
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where , , , the columns of are the eigenvectors 

associated with the km – g  unit eigenvalues of the idempotent matrix ,  and is a 

diagonal matrix with these unit eigenvalues on the diagonal, which is then clearly a km – g  

dimensional identity matrix,  . 

( )*
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The bootstrap procedure for sampling the residual distribution, suggested in the previous 

subsection, can now be applied to the transformed system (2.15).3 Subsequently, the 

bootstrapped outcomes of ξ can be transformed back to obtain restricted posterior outcomes of 

 as SΠ

(2.16) S *=Π P ξ . 

2.3 Extension to Systems with Varying Regressor Matrices 

The approach outlined in the previous two subsections can be straightforwardly generalized 

to a restricted (incomplete) simultaneous equation system such as the Japanese meat demand 

model employed below. The main conceptual difference is that each equation potentially has 

different regressor matrices such that the blocks of XS are not necessarily identical in values or 

dimension, and so for example in (10) the block diagonal matrix ( would need to be 

replaced by the appropriate block diagonal matrix containing the differing regressor matrices 

along the diagonal block. For example, consider an incomplete simultaneous system of equation 

with one structural equation and m-1 reduced form equations4 

)

1

m ⊗I X

(2.17)  
1 1 1 1 1

1 1 1

= + +

= +

y Y γ X β ε

Y XΠ V
 

The stacked form of this system, which would enter into the semiparametric mapping 

developed above, can be written as 

                                                 
3 One need to be aware, however, that the bootstrap sample of VS still needs to preserve the assumed covariance 
structure of the original system by sampling corresponding elements of all equations together. 
4 The Japanese meat demand model considered below is of this type with the exception that there are 5 structural 
equations. 
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From this point, the mapping of the residual distribution into parameters can proceed as 

described in sections 2.1 and 2.2. 

One might wonder why the simultaneous nature of the random variables in the system 

specification does not require a different approach when mapping residual outcomes to 

parameters. This actually follows from the fact that in the Bayesian paradigm, the data are 

treated as fixed at their observed sample values. Consequently, the principle connection between 

the equations of a simultaneous equation system is the correlation of the errors across equations, 

which is fully represented by the approach. 

 

3. Semiparametric Bayesian Analysis of Japanese Meat Demand 

As a widely used systems approach for modeling consumption behavior for product groups, 

the LA/AIDS technique was chosen to estimate the parameters of the Japanese meat demand 

system. It combines the best of the theoretical features of both the Rotterdam and Translog 

models with the ease of estimation of the Linear Expenditure System (LES) in terms of allowing 

adding up, homogeneity and symmetry conditions to be imposed easily through linear 

restrictions on the parameters of the model. Moreover, the LA/AIDS provides an arbitrary first 

order approximation to any demand system, satisfies the axioms of choice exactly, and 

aggregates perfectly over consumers under certain conditions (Deaton and Muellbauer 1980a,b). 

The AIDS has been used extensively to test the economic theory of the consumer.  



 This application of the robust BDIM mapping analysis utilizes a linearized AIDS 

(LAIDS) model of Japanese meat demand, as originally specified by Hayes, et. al. (1990). The 

share equations of the system can be written as  

(3.1)   ∑ =++=
j

ijijii mjiPEpw ,,...,1,),/log(log βγα

where is the share of group expenditure allocated to product i,  is the price of product j, E 

is the per capita expenditures on all five meats, and denotes Stone’s price 

index.  

iw jp

logj )exp(∑=
j jpwP

 Additivity, homogeneity and symmetry define linear exact restrictions on the parameters 

of the LAIDS share equations implied by the utility maximization objective. Referring to the 

notation in equation (4.1) they are expressed as 

(3.2)   ∑ ∑ ∑ ===
i i i

iiji ,0;0;1 βγα

(3.3)   ∑ =
j

ij ,0γ

(3.4)   ,jijiij ≠∀= γγ

respectively. Provided that equations (3.2), (3.3), and (3.4) hold, the estimated demand functions 

add up to the total expenditure (3.2), are homogenous of degree zero in prices and income (3.3), 

and satisfy Slutsky symmetry (3.4) (Deaton and Muellbauer 1980b, p.314).  

 Hayes, et. al. (1990) estimated this model using Japanese expenditure and price data from 

1965 to 1986 relating to five different meat groups: Wagyu beef, import quality beef, pork, 

chicken and fish. These meat groups are denoted by i = 1, 2, 3, 4, 5, respectively, in the model 

specification above. The empirical analysis in this paper follows and updates the line of analysis 

by Hayes, et. al. (1990), with the data set now spanning the years 1965 to 1999. Because the 



meat expenditure shares (wi) sum to one, the covariance matrix for the meat demand system 

composed of all five individual expenditure share equations is singular, so one of the equations is 

dropped to make the system equations estimable. In particular, the fish share equation was 

chosen for deletion in this study and the parameters for this equation were eventually recovered 

via symmetry, homogeneity and adding up constraints as expressed in (3.2)-(3.4). The 

application of an iterative estimation procedure makes the results invariant to the choice of 

equation for deletion (Barten 1969).  

3.1 Data Description 

 The expenditure and price data were assembled from a variety of yearbooks and reports 

published by the Japanese ministry of Agriculture, Forestry, and Fisheries. Retail prices for pork 

and chicken meat are from the Annual Report on the Family Income and Expenditure Survey. 

Retail fish prices, from the same data resource, are calculated as averages of fresh and salted fish 

prices weighted by the proportional consumption levels of each fish type. Retail Wagyu and 

dairy beef prices are calculated by multiplying the respective wholesale prices by a markup 

coefficient of 2.1156, where the data source for these wholesale prices is Statistics of Meat 

Marketing and Meat Statistics in Japan. 

 Additionally, since the LA/AIDS model employed here only serves as a subsystem of a 

larger market model, a reduced form necessary for iterative 3SLS estimation does not exist and 

was replaced by regressing right hand side endogenous variables on instrumental variables. Note 

that the four remaining share equations are regarded as the structural equations in this model. For 

further details on the data underlying the instrumental variables, readers are referred to Hayes, et. 

al. (1990).  



3.2 Robust Bayesian Analysis of the LAIDS Model 

 Two different Bayesian mappings of the restricted structural form coefficients were 

calculated with symmetry, homogeneity and adding up constraints enforced. These include the 

3SLS reduced form (3SLS-RF) mapping, the details of which can be found in Heckelei (1995), 

and the full rank BBRES mapping described above.  

 To elucidate the application of the methodology underlying these two mappings, rewrite 

the LA/AIDS of Japanese meat demand in matrix notation as  

(4.5)   35= +W 1 α Z Uδ +

where W is a (35×5) matrix of budget shares, 1  is a (35×1) vector of 1’s,  α is a (1×5) vector of 

intercept terms,  denotes a Hadamard (elementwise) product, Z is a (35×6) matrix of right 

hand side endogenous variables consisting of l and ln(E/P)), δ is a (6×5) 

matrix of parameters(consisting of the values of γ  and ), and U is a (35×5) 

matrix of structural errors. The projection of all right hand side endogenous variables of the 

LA/AIDS subsystem (prices and expenditure), Z, through the instrument space represented by X 

constitutes the relevant reduced form representation that completes the specification of the 

system.  

35

n( ), 1 ,..., 5iP i =

ij 1,, =jiiβ 5...,,

 In brief, we describe the posterior 3SLS reduced form mapping employed by Heckelei 

1995,  which is related to similar mappings by Zellner, Bauwens and van Dijk (1988) for 

normally distributed errors. It involves bootstrapping reduced form parameters via the BBMR 

algorithm presented in section 2.1 (see also Heckelei and Mittelhammer, 2003). Those are then 

used to construct values of the right hand side endogenous variables of the structural equations, 

just as one would do in an explicit 2SLS or 3SLS classical procedure. For each outcome of 

reduced form parameters, and corresponding updated endogenous variables, a classical iterative 



restricted 3SLS estimation of the structural parameters is obtained. The collected outcomes of 

those parameters for all bootstrap samples represent outcomes from this posterior mapping.  

Symmetry and homogeneity restrictions for the remaining four equations (recall the share 

equation for fish has been deleted) model can be formulated as , where R and r are 

a matrix and a vector with dimensions 10×28 and 10×1, respectively, representing 6 symmetry 

and 4 homogeneity restrictions for the 28 coefficients contained in the demand system. Those 

restrictions are imposed for all results presented below but their use is here illustrated for the 

Bayesian 3SLS-RF mapping. The first iteration of the restricted 3SLS-RF mapping procedure is 

given by 

vec( ) =R rδ

(4.6)  R3SLS R 2SLS 1 2SLSvec( ) '( ') ( vec( ))−= + −
^ ^
CR R CR r Rδ δ δ

where 

  1
*b *b

ˆ ˆ[ ]−=C Z Z−1Ω ,

) / n

  being the updated Z from the BBMR algorithm, *b 4 * *, with= ⊗Z I Z Z

  2SLS 2SLS
* *

ˆ ( ) '(= − −W Z W ZΩ δ δ

where is a 2SLS-Bayesian-mapping used to construct an appropriate starting value. In 

subsequent iterations, the updated values of C  and  replace the corresponding values in 

previous iterations and act as new starting values until convergence is achieved.  

2SLSδ

ˆ Ω̂

 

3.3 Empirical Results  

 The estimated intercept, price, and expenditure parameters obtained from estimating the 

Japanese meat demand system using the Classical 3SLS estimator, and the Bayesian 3SLS-RF 

and full rank BBRES methods, are presented in Table 1, along with standard deviations 



corresponding to the parameters. Note that for the two Bayesian methods, the means of the 

marginal posterior distributions of the parameter estimates are reported, which represent the best 

Bayesian estimates of the parameters under a quadratic loss criterion. The standard deviations 

reported for the Bayesian estimates correspond to the standard deviations of the marginal 

posterior distributions. Thus, the interpretation of Bayesian estimates and standard deviations are 

markedly different than the results reported for the Classical 3SLS approach. 

 The interpretation of the parameter estimates themselves is less intuitive than interpreting 

elasticities implied by them, which we do ahead. However, in the way of comparison between 

the various parameter estimation results, at least two general patterns emerge. First of all, the 

3SLS and 3SLS-RF results are notably more similar in magnitude and signs compared to the 

BBRES results. Secondly, the full rank BBRES Bayesian estimates, and the estimates generated 

by the 3SLS-RF, are overall quite similar in posterior precision in the sense that the spread of the 

marginal posterior distribution about the posterior means is generally similar, with only isolated 

instances where one of the methods exhibits a somewhat smaller posterior standard deviation 

than the other. Given that BBRES is a full rank mapping, whereas the 3SLS-RF is less than full 

rank, it appears that data information leakage in this particular empirical instance is quite minor. 

While not directly comparable because of the difference in interpretation between the Classical 

and Bayesian paradigms, it is also noteworthy that the BBRES precision, in terms of apparent 

spread around parameter estimates, is notably less than the apparent spread of the Classical 3SLS 

estimates. 

  The mean level price elasticity estimates implied by the three estimation methods are 

presented in Table 2. The formula used is based on Chalfant’s method of calculating the 

elasticities, and the direct price elasticities are indicated in the table in bold font. All of the direct 



price elasticities calculated by either Bayesian method have the correct negative signs, and the 

magnitudes of the elasticities appear to be plausible. However, the import quality beef elasticity, 

which is quality comparable to beef quality in the United States, appears to be somewhat high, 

being in the elastic range, for the 3SLS-RF results. Likewise, the direct price elasticity for 

chicken, being nearly elastic, appears to be also on the high side in the 3SLS-RF results. In both 

of these cases, the BBRES results appear to be more defensible. Comparing the Classical 3SLS 

results to the Bayesian results, the Classical pork direct price elasticity estimate has a wrong sign 

and a very large variance. Also, the Wagyu beef direct price elasticity appears to be 

unreasonably small, given the high priced, luxury good nature of the commodity. 

 The expenditure elasticities implied by the three estimation methods are presented in 

Table 3. The expenditure elasticity on Wagyu beef is negative, and a priori of the wrong sign for 

both the 3SLS and Bayesian 3SLS-RF estimation methods. Only the full rank BBRES Bayesian 

procedure produced the a priori correct positive sign on the expenditure elasticity for this luxury 

good, although even the BBRES estimate appears to be somewhat low. Of the remaining 

expenditure elasticities, the elasticities for IQ Beef, Chicken, and Fish are very similar in 

magnitude across all of the estimation procedures, and the BBRES Pork expenditure elasticity is 

lower than the elasticity estimates of the other two methods by only a relatively small amount. 

 

4.  Summary and Conclusions 

 Viewing the empirical results holistically across all commodities, across direct price and 

expenditure elasticities, and in terms of the precision of the information associated with the 

empirical results, it would appear that the BBRES methodology provides arguably the most a 

priori defensible and useful results. We note that all of the empirical Bayesian results reported in 



this paper have been based on the use of an ignorance prior for the parameters of the demand 

system. It would be a simple matter to incorporate informative prior information on the 

parameters of the demand system (over and above the exact Neoclassical restrictions already 

imposed) through the use of an importance-sampling scheme that would lead to weighted 

average posterior means and posterior standard deviations. The Bayesian bootstrapping 

methodology is very flexible in this regard, while adding very little to the computational 

difficulties of calculating posterior moments. On the other hand, adding prior information, even 

in simple inequality form, provides both a computational and interpretational challenge within 

the Classical paradigm.  

 Overall, this paper demonstrated that Bayesian analysis of an econometric model 

containing multiple equations, exact restrictions, and a relatively large number of unknown 

parameters is relatively straightforward using the notion of Bayesian data information mappings. 

The approach relegates complicated analytical Bayesian posterior analyses to a relatively 

straightforward exercise in computer simulation. Moreover, adding the step of bootstrapping 

residuals in the process of simulating the error distribution imparts a distributional robustness to 

the Bayesian approach, making the assumption of a parameter family of densities for the residual 

term unnecessary, and making the Bayesian analysis a semiparametric one. Research is ongoing 

in this area to generalize the approach to models characterized by more complicated error 

generating processes, and to nonlinear mappings. 

  



Table 1. Parameter Estimates for the Japanese Meat Demand System 

 Classical 3SLS 3SLS-RF  BBRES 

Share Estimate Std. Err. 
Posterior 

Mean 
Posterior 
Std. Dev. 

Posterior 
Mean 

Posterior 
Std. Dev. 

Wagyu Beef      1α  0.682 0.113 0.593 0.095 0.334 0.090 

11γ  0.045 0.065 0.012 0.041 -0.008 0.034 

12γ  0.038 0.044 0.045 0.020 -0.014 0.017 

13γ  -0.031 0.166 -0.032 0.020 0.014 0.024 

14γ  -0.026 0.118 -0.012 0.010 0.018 0.015 

15γ  -0.026 0.053 -0.013 0.016 -0.010 0.013 

1β  -0.142 0.027 -0.121 0.022 -0.061 0.021 
IQBeef               2α  0.130 0.101 0.109 0.067 0.090 0.076 

21γ  0.038 0.058 0.045 0.020 -0.014 0.017 

22γ  -0.005 0.039 -0.015 0.018 0.006 0.013 

23γ  -0.090 0.147 -0.070 0.014 -0.031 0.015 

24γ  -0.007 0.105 -0.016 0.007 -0.035 0.008 

25γ  0.065 0.047 0.057 0.009 0.074 0.008 

2β  -0.004 0.024 0.001 0.016 0.005 0.018 
Pork                   3α   -0.762 0.172 -0.659 0.136 -0.412 0.113 

31γ  -0.031 0.099 -0.032 0.020 0.014 0.024 

32γ  -0.090 0.067 -0.070 0.014 -0.031 0.015 

33γ  0.214 0.251 0.133 0.034 0.091 0.042 

34γ  -0.001 0.179 0.042 0.022 0.016 0.030 

35γ  -0.092 0.080 -0.073 0.013 -0.090 0.013 

3β  0.216 0.040 0.192 0.032 0.135 0.026 
Chicken             4α  -0.241 0.061 -0.202 0.044 -0.214 0.052 

41γ  -0.026 0.035 -0.012 0.010 0.018 0.015 

42γ  -0.007 0.024 -0.016 0.007 -0.035 0.008 

43γ  -0.001 0.090 0.042 0.022 0.016 0.030 

44γ  0.048 0.064 0.012 0.016 0.036 0.021 

45γ  -0.014 0.029 -0.027 0.007 -0.034 0.008 

4β  0.076 0.014 0.066 0.010 0.069 0.012 
Fish                   5α  1.191 0.160 1.158 0.100 1.202 0.145 

51γ  -0.026 0.053 -0.013 0.016 -0.010 0.013 

52γ  0.065 0.047 0.057 0.009 0.074 0.008 

53γ  -0.092 0.080 -0.073 0.013 -0.090 0.013 

54γ  -0.014 0.029 -0.027 0.007 -0.034 0.008 

55γ  0.067 0.075 0.056 0.009 0.060 0.012 

5β  -0.145 0.038 -0.138 0.023 -0.147 0.034 



2.  Price Elasticities for the Japanese Meat Demand System 
 

Classical R3SLS 3SLS-RF BBRES 

 
Price 

Elasticity 
Standard 

Error 

Posterior 
Mean of 

Price 
Elasticity 

Posterior 
Standard 
Deviation 

Posterior 
Mean of 

Price 
Elasticity 

Posterior 
Standard 
Deviation 

Wagyu beef - Wagyu beef -0.263 0.876 -0.757 0.419 -1.041 0.466 
IQ beef 0.695 0.577 0.523 0.207 -0.100 0.231 

Pork -0.081 2.200 -0.077 0.181 0.323 0.311 
Chicken -0.184 1.557 -0.006 0.098 0.310 0.194 

Fish 0.722 0.697 0.552 0.189 0.332 0.209 
IQ beef  - Wagyu beef 0.369 0.578 0.796 0.365 -0.138 0.169 

IQ beef -1.044 0.372 -1.268 0.327 -0.949 0.130 
Pork -0.867 1.434 -1.259 0.231 -0.302 0.132 

Chicken -0.068 1.009 -0.296 0.119 -0.348 0.080 
Fish 0.651 0.453 1.026 0.236 0.685 0.138 

Pork - Wagyu beef -0.272 0.627 -0.255 0.107 0.020 0.148 
IQ beef -0.654 0.371 -0.411 0.074 -0.256 0.087 

Pork 0.027 1.476 -0.515 0.172 -0.609 0.241 
Chicken -0.112 1.017 0.122 0.117 0.026 0.171 

Fish -1.246 0.459 -0.916 0.131 -0.964 0.123 
Chicken -  Wagyu beef -0.374 0.426 -0.198 0.111 0.152 0.177 

IQ beef -0.179 0.279 -0.217 0.077 -0.504 0.099 
Pork -0.165 1.067 0.310 0.250 0.047 0.353 

Chicken -0.509 0.754 -0.928 0.181 -0.652 0.254 
Fish -0.667 0.337 -0.679 0.100 -0.862 0.128 

Fish -    Wagyu beef -0.027 0.544 0.001 0.030 0.002 0.023 
IQ beef 0.141 0.473 0.117 0.016 0.157 0.014 

Pork -0.119 0.442 -0.084 0.022 -0.114 0.022 
Chicken -0.002 0.510 -0.025 0.013 -0.038 0.013 

Fish -0.736 0.354 -0.762 0.033 -0.746 0.049 
 



3. Expenditure Elasticities for the Japanese Meat Demand System 
 
 Classical R3SLS Bayesian 3SLS BBRES 

 
Expenditure Standard 

Elasticity Error 

Posterior 
Mean of 

Expenditure 
Elasticity 

Posterior 
Standard 
Deviation 

Posterior 
Mean of  

Expenditure 
Elasticity 

Posterior 
Standard 
Deviation 

Wagyu beef -0.889 0.354 -0.610 0.297 0.177 0.284 
IQ beef 0.958 0.230 1.004 0.151 1.048 0.173 

Pork 2.257 0.235 2.114 0.188 1.783 0.156 
Chicken 1.895 0.171 1.782 0.122 1.820 0.144 

Fish 0.743 0.067 0.757 0.041 0.739 0.060 
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