
Identifying the Set of SSD-Efficient
Mixtures of Risky Alternatives

Francis McCamley and James B. Kliebenstein

Target MOTAD and other direct utility-maximization models provide one way of
computing SSD-efficient mixtures. These models are appropriate when the utility
function is known and can also be used to identify part of the set of SSD-efficient
mixtures even when the utility function is not known. However, they do not always
identify all SSD-efficient mixtures. A grid method was proposed by Bawa, Lindenberg,
and Rafsky. A third approach, which extends the work of Dybvig and Ross, is
presented here. It is illustrated by applying it to data from Anderson, Dillon, and
Hardaker.
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Historically, mean-variance and mean-abso-
lute deviations criteria have been used to
choose appropriate mixtures of risky produc-
tion and/or marketing activities. These criteria
were used in spite of the fact that they are not
always consistent with expected utility theory.
More recently, methods which are consistent
with expected utility theory have been pre-
sented.

Some of these methods are, or can be re-
garded as, direct utility-maximization ap-
proaches. Examples include the Target MO-
TAD model presented by Tauer and by Watts,
Held, and Helmers; the safety-first model pre-
sented by Atwood, Watts, and Helmers (1985a,
b); Porter's mean-target semivariance model;
and the direct utility-maximization techniques
discussed by Kroll, Levy, and Markowitz and
by Lambert and McCarl. Direct utility-maxi-
mization methods are most appropriate when
the utility function and its parameters are
known or can be approximated reasonably well.
They have the advantage of providing unique
solutions or small sets of solutions.

When the utility function and its parameters

Francis McCamley is an associate professor of agricultural eco-
nomics at the University of Missouri. James B. Kliebenstein is an
associate professor of agricultural economics at Iowa State Uni-
versity.

Contribution from the Missouri Agricultural Experiment Station
Journal Series No. 10138.

Review comments by three anonymous reviewers are appreci-
ated.

are not well known, it may be appropriate to
identify all solutions associated with a larger
class of utility functions. This may mean ap-
plying stochastic dominance criteria. Unfor-
tunately, as Cochran has noted, stochastic
dominance techniques are not well developed
for problems involving mixtures of alterna-
tives.

A few theoretical results have been pub-
lished. Hadar and Russell (1971, 1974) and
Russell and Seo presented several sets of con-
ditions under which diversification is optimal
for risk averters. It has also been shown that
there are conditions under which specializa-
tion is optimal (Hadar and Russell 1971; Had-
ar and Seo; McCarl et al.). Dybvig and Ross
discussed properties of the portfolio efficient
set but did not present a method for identifying
it.

Direct utility-maximization techniques can
be used to identify subsets of the first (FSD)
and second (SSD) degree stochastic domi-
nance-efficient mixtures. For example, Tauer
has shown that unique Target MOTAD solu-
tions are SSD efficient and has suggested that
a large portion of the SSD-efficient set can often
be found by Target MOTAD. Although Target
MOTAD can identify a large portion, and
sometimes all, SSD-efficient mixtures, it can-
not always identify all SSD-efficient mixtures.
Other direct utility-maximization techniques
seem to share this limitation.

An alternative approach has been proposed
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by Bawa, Lindenberg, and Rafsky. They sug-
gest that their stochastic dominance algorithm
could be used to approximate stochastic dom-
inance-efficient sets of portfolios by using a fine
grid on the space of feasible portfolios. Their
approach could be extended to deal with the
more general mixture problems considered by
agricultural economists, but it might not be
cost effective. Even when the number of ob-
servations (states of nature) is not very large,
a rather small grid size and, therefore, a large
number of lattice points would be required to
control sampling errors. However, for many
mixture problems in agricultural economics,
only a small proportion of the lattice points
would belong to the stochastic dominance-ef-
ficient set. This suggests using something other
than a uniform grid system.

A third approach is discussed in this article.
By extending the work of Dybvig and Ross,
necessary and sufficient conditions for SSD ef-
ficiency are obtained. The relationship be-
tween these conditions and an extension of the
Target MOTAD model is mentioned. Then, a
simple search procedure for identifying all SSD-
efficient mixtures is presented and demon-
strated.

requirements, and b is a vector of resource
levels. The constraints on activity levels are

(2)

(3)

Ax - b, and

x > 0.

Although the assumptions about the joint
probability distribution and about the rela-
tionship of net returns (for various states of
nature) to activity levels are somewhat spe-
cialized, they can be extended to approximate
more general situations. For example, Lam-
bert and McCarl show that constraints much
like (1) can approximate the joint density func-
tion of continuous random variables. As stat-
ed, the equations in (1) require net returns for
each state of nature to be a linear homogenous
function of enterprise activity levels, but this
requirement could be relaxed to deal with al-
ternative assumptions such as complementary
enterprises. It would also be relatively easy to
deal with the "additional penalty" case dis-
cussed by Robison and Lev or with increasing
marginal income tax rates. None of these ex-
tensions would require drastic changes in the
approach proposed in this article.

Conditions for DR Efficiency

Previous Work

Assumptions

Three of the assumptions adopted here are
similar to assumptions of the Target MOTAD
model. First, linear resource constraints are
assumed. Second, it is assumed that there are
s states of nature and therefore only s alter-
native levels of net return associated with a
given enterprise mixture. Third, for any state
of nature, the net return is a homogenous linear
function of the n element activity levels vec-
tor, x.

Other symbols are defined as follows: p de-
notes a row vector of probabilities associated
with s states of nature; C is a matrix of net
returns associated with the activities for the
various states of nature; Ci is the net return
per unit of activityj when the ith state of nature
occurs; and y is a vector of (total) net returns
for the various states of nature. Thus,

(1) y- Cx = 0.

Here, A is a matrix of resource or technical

One set of conditions for what Dybvig and
Ross call portfolio efficiency is relevant for the
class of problems discussed above. The effi-
ciency concept associated with this set of con-
ditions is called DR efficiency here to avoid
the implication that it is relevant only for port-
folio problems.

Dybvig and Ross' theorem 1 implies that a
net returns vector, yo, is DR efficient if, and
only if, there exists a vector, z°, which satisfies
the following conditions:
(4) zo'y° > zo'y for all y vectors which satisfy

(1), (2), and (3);

(5) z°pi _ zr/pj if y < yj for all i, j;
(6) z° > 0.
Dybvig and Ross developed these conditions
by considering the problem of maximizing the
expected value of a (weakly) concave utility
function. Within that context, zo can be inter-
preted as a support vector; zo can also be re-
garded as a vector of relative shadow prices
for the net returns associated with various states
of nature or as a generalized marginal expected
utilities vector. Thus, each z°/pi can be regard-
ed as a relative marginal utility. Conditions (4)
and (6) are necessary for vector maxima and,
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ious states of nature are fixed. Therefore, when
describing any net returns distribution, only
its y vector is mentioned. We regard an en-
terprise mixture, x°, as being SSD efficient if
the net returns vector, yo, associated with it is
SSD efficient.

A net returns vector, yo, is SSD efficient only
if it is DR-efficient. A simple example shows
that the converse is not true. Consider the net
returns matrix,

(7)

(Net Returns)

Figure 1. F2 functions for selected mixtures

therefore, FSD efficiency. For DR-efficiency,
condition (5) must also be satisfied. It ensures
that marginal utility is a nonincreasing func-
tion of net returns.

Properties of the Set of
DR-Efficient Vectors

Dybvig and Ross discussed the properties of
the efficient set for the perfect market case.
Even though the problem considered here is
different, two of their properties are relevant.
The DR-efficient set is connected and is the
union of a finite number of closed convex sub-
sets. This union need not be convex.

Each of the DR-efficient subsets is an inter-
section of the plane representing the feasible
set and the subset of the s-dimensional Euclid-
ian space, Rs, for which all y vectors share the
same rank order. The term rank order is used
in a weak sense since the boundaries (where
one or more "ties" exist in the elements of the
y vectors) of the subsets are included in the
"same rank order" subsets rather than separate
subsets.

Necessary and Sufficient Conditions for
SSD Efficiency

Ordinarily, the description of a probability dis-
tribution involves (at least implicitly) a set of
possible outcomes and the associated proba-
bilities, p. In this article, only the y vectors
differ among alternative probability distribu-
tions; the probabilities associated with the var-

C [80 1001C l00 80 '

Assume equiprobable states of nature, a single
resource constraint such as

(8) X, + X2 < 1

and a nonnegativity constraint such as (3).
Clearly, all feasible mixtures for which the

sum of xl and x2 equals one yield net returns
vectors which are DR-efficient. Each of these
net return vectors is "supported" by the vec-
tor, z° = (1 1)', which satisfies conditions (4)
through (6). However, only one of the DR-
efficient net return vectors is SSD efficient. It
is the one for which both x, and x2 equal one-
half.

This is illustrated graphically in figure 1.
There, AC is the relevant portion of the graph
of the F2 function when xl equals one and x2
equals zero (or vice versa);1 BC is the analo-
gous portion of the F2 function's graph when
both x, and x2 equal one-half. The F2 graphs
associated with other DR-efficient mixtures are
strictly betwen the two F2 graphs shown when
T is between 80 and 100.

Stronger Conditions

A y vector can be DR efficient without being
SSD efficient because condition (5) permits
marginal utility to be a nonincreasing function
of net returns. That is, z°/p, can equal zj/pj even
when y7 is less than yj. A stronger condition
can be obtained by requiring marginal utility
to be a strictly decreasing function of net re-
turns and replacing condition (5) with

(5') zI/pi > zj/pj if y' < y for all i, j.

1 F2 (T) is the area to the left of T under the cumulative distri-
bution function. The assumptions in this article imply that the
CDFs are step functions, and the F2 functions are piecewise linear
functions of T.

88 July 1987



McCamley and Kliebenstein

Conditions (4), (5'), and (6) are necessary and
sufficient for SSD efficiency. 2

Linear Programming Formulations

Determining whether conditions (4), (5'), and
(6) are satisfied involves solving any one of
several similar saddlepoint problems. The la-
grangians for these saddlepoint problems are
the same as those associated with appropri-
ately formulated pairs of linear programming
problems. One pair of these linear program-
ming problems is described in detail. Useful
variations are also discussed briefly.'

The Dual

ow prices for the resources to be large enough
to guarantee that, at the margin, the value (in
marginal utility terms) of the resources used
by each activity (or enterprise) is at least as
large as the expected marginal utility (of net
returns) associated with that activity. Ine-
qualities (11) through (13) ensure that (5') and
(6) are satisfied.3 Since these constraints re-
quire w (and z) to be positive, w is included
in (14) (and z is excluded) merely to make the
dual fully compatible with our preferred pri-
mal specification.

The Primal

The primal problem can be derived directly
from the dual. It is

Our statement of the dual assumes that the
states of nature have been permuted so that
the elements of yo are in ascending order and
that there are no ties among these elements.
The first of these assumptions is trivial and
merely simplifies the notation. The second is
somewhat less trivial; it is relaxed later.

The dual is

(9) minimize v'b

subject to

(10) A'v- C'z_ 0

(11) z - pjwj= O

(12) wj- wj, 1

(13)

(14)

2 wjpJ)y
j=l

for j= 1, 2,..., s

forj = 1,2,..., s - 1

w > 1

v, w > 0.

(15)
s

maximize : tj,
j=l

subject to

(16)

(17)

(18)

(19)
(20)

tj - t- -pjyj < -PjY7
forj = 2, 3, . . ., s

tl - ply -- -ply{

y - Cx = O

Ax < b

x, t > 0.

In stating the primal, it is both convenient and
appropriate to let x and y be the primal vari-
ables (vectors) associated with dual constraints
(10) and (11), respectively. This choice makes
it obvious that (18) and (19) are the same as
(1) and (2).

In this formulation, v is the shadow price vec-
tor for the resource constraints; z has an in-
terpretation similar to that for z° and w is a
vector of marginal utilities whose elements are
related to z and p as shown in (11).

Relationship of Dual to Necessary and
Sufficient Conditions

The objective function (9) is related to (4). The
inequalities in (10) require the imputed shad-

2 Dybvig and Ross's theorem 1 assumed the class of strictly
monotonic (increasing), (weakly) concave utility functions. Their
table 1 indicates that condition (5') is implied by the class of strictly
increasing, strictly concave utility functions. This class is slightly
more general than the class of functions associated with SSD ef-
ficiency in Bawa's article.

Relation to Usual SSD-Efficiency Test

The relationship between the primal and the
usual test for SSD efficiency becomes some-
what more apparent when (16) and (17) are
replaced with equivalent constraints. The vari-
able tj_ can be eliminated from any inequality
in (16) by adding the inequalities in (16) for
whichj is smaller and then adding (17). Doing
this and changing the sign of the resulting in-
equalities (by multiplying by -1) shows that
(16) and (17) imply

The choices of right-hand side values for (12) and (13) affect
the optimal value of (9). This is not a problem since the critical
question is whether (9) is zero or positive.
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(21)
j J

2 PkYk - tj Pk k
k=l k=l

for j= 1, 2, ... , s.

The inequalities in (21) are all equalities when
the objective function in (15) is maximized.
Thus, (21) also implies (16) and (17).

The difference between the sums in the jth
constraint of (21) equals the difference between
the (usual SSD criterion) F2 functions for y and
yo when the elements of both y and yo are in
ascending order and the F2 functions are eval-
uated at any income level, T, which is no
smaller than either yj or yj and no larger than
either yj+, or y+ ,. (Substitute infinity for y+1

and yj 1 when j equals s.)
At first glance, the conditions under which

the inequalities in (21) are related to the dif-
ferences in the F2 functions may seem too re-
strictive to be very useful. Fortunately, there
are two mitigating considerations. The state-
ment of the conditions could be weakened. Of
more importance to an intuitive understand-
ing is that for mixture problems of the sort
considered here, the conditions are satisfied for
a critical subset of the feasible y vectors. It is
possible to show that an income vector, yo,
may be dominated by one or more feasible y
vectors only if it is dominated by a feasible y
vector which is very "close" to yo. If a y vector
is sufficiently close to yo, its elements will have
the same rank ordering as those of y, and the
difference between the pairs of sums in the
various constraints of (21) will accurately rep-
resent the difference in the SSD cumulative
functions for most (and in a limiting sense, all)
relevant T values.4

Thus, in effect, the primal program simply
answers a question which is appropriate for
any SSD efficiency test. That is, is there another
feasible y vector whose F2 graph lies on or
below that for yo at all values of T and strictly
below the F2 graph for yo at some value of T?
If not, then the optimal value of the objective
function (for the dual and both versions of the
primal) is zero and yo is SSD efficient. If yo is
dominated, the optimal value of the objective
function is positive. A positive objective func-
tion value means that yo is dominated, but it
does not always mean that it is dominated by

the particular y vector which is part of the
primal solution.

An Alternative Test Criterion

Although the obvious test criterion is the value
of the objective functions in (9) or (15), the
optimal y vector is a more sensitive indicator.
Because it may be necessary (due to the fact
that linear programming algorithms produce
very precise rather than exact solutions) to per-
turb the right-hand sides of (16) and (17) to
obtain feasible solutions, a small positive ob-
jective function value may be obtained even
when yo is SSD efficient. It is possible to de-
termine the effect of perturbations on the ob-
jective function. However, it is usually simpler
to look at the optimal y vector. It tends to be
very different from yo when yo is not SSD ef-
ficient.

Modifications When There Are Ties in
the Elements of y

The linear programming formulations pre-
sented above assumed that no two elements
of yo are the same. Relaxing this assumption
requires minor changes. When there are one
or more ties among the elements of yo, then
thejth inequality in dual constraint (12) would
be replaced by either

(12')

or

(12")

Wi - W 1

j > 1.

In (12'), k is the smallest integer for which yk
is greater than yj. If no integer, k, satisfies this
requirement, then (12") is used. Note that when
there are no ties (12') is the same as the jth
inequality in (12).

Corresponding changes are required in the
primal. Replace (16) with either

(16')

or

(16")

tj - tk - PjYj < -Pj -Y

In (16'), k is the largest integer for which yk is
smaller than yj. If no positive integer, k, sat-
isfies this requirement, use (16") instead of(16').

4 The intuitive argument presented here provides the basis for
a more rigorous proof of the proposition that yo is SSD efficient if
and only if the optimal value of (15) is zero. This proof as well as
proofs of certain statements about characteristics of the SSD ef-
ficient set are sketched in McCamley and Kliebenstein (1987).

Relationship to Target MOTAD

Since every Target MOTAD solution which is
unique in the sense defined by Tauer is SSD
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efficient, it is apparent that these solutions also
satisfy the necessary and sufficient conditions
for SSD efficiency presented in this article. The
converse is not true. However, if the Target
MOTAD model were extended to include s -
1 targets, then the set of Target MOTAD so-
lutions associated with unique y vectors would
be identical to the set of SSD-efficient solu-
tions. Despite the relationship between the
multiple Target MOTAD model and SSD ef-
ficiency, use of a multiple Target MOTAD for-
mulation does not appear to be a cost effective
way of identifying the set of SSD-efficient y
vectors.

Properties of the SSD-Efficient Set

Conditions (4), (5'), and (6) and the equivalent
linear programming formulations permit de-
termining the SSD-efficiency status of a spe-
cific y vector and/or its associated mixture(s)
without explicitly knowing or considering any
other feasible y or x vector. This can be useful.
Of more significance is the fact that two prop-
erties of the SSD-efficient set make it possible
to identify the entire SSD-efficient set by de-
termining the SSD-efficiency status of a finite
number of vectors.

Subsets

As is the case for the set of DR-efficient y
vectors, the SSD-efficient set is the union of a
finite number of closed convex subsets. How-
ever, the characteristics of these subsets differ
in two ways from those discussed by Dybvig
and Ross. One difference reflects the fact that
the set of feasible y vectors is not usually a
hyperplane but a more general convex poly-
hedron.5 Each DR-efficient y vector lies on the
surface of this polyhedron. Each DR-efficient
subset is the intersection of a proper face of
the polyhedron and a "same rank order" sub-
set of Rs. Proper faces include vertices and
edges as well as those portions of the surface
which might intuitively be thought of as being
faces.6

Although the set of SSD-efficient y vectors
is a subset (sometimes improper) of the set of

5 We assume that the polyhedron is bounded. (The phrase, con-
vex polytope is sometimes used to denote a bounded polyhedron.)
It appears that this assumption could easily be relaxed.

6 Stoer and Witzgall's definitions of a face and a proper face are
assumed here.

DR-efficient y vectors, the set of subset can-
didates is larger for SSD efficiency than for DR
efficiency. The example associated with (7) and
(8) illustrates the need to include additional
subsets. The reader can verify that the only
SSD-efficient y vector belongs to two DR-ef-
ficient subsets but is not, by itself, a DR-effi-
cient subset.

To differentiate the additional subset can-
didates associated with SSD efficiency from
those also associated with DR efficiency, they
will be called "tie" subsets. Although there will
typically be several "tie" subset candidates for
most problems, their role is ordinarily very
limited. An example presented later will dem-
onstrate that the SSD efficiency status of"tie"
subsets is often so obvious that they do not
even need to be explicitly evaluated.

Subset candidates satisfy a type of "all or
nothing" relationship. If a strictly "interior" y
vector of a subset candidate is SSD efficient,
then the entire subset is SSD efficient. That is,
all "interior" and all "boundary" vectors are
SSD efficient. As demonstrated by the example
above, it is possible for one or more of the
boundaries of a subset candidate to be SSD
efficient even though the balance of the subset
is not SSD efficient. Note that the collection
of subset candidates is defined so that these
boundaries are, in turn, separate subset can-
didates. This permits us to adopt the conven-
tion of regarding a subset candidate as being
SSD efficient when all of its vectors are SSD
efficient and SSD inefficient (or not SSD effi-
cient) when at least one of its y vectors is not
SSD efficient.

Connectedness

The SSD-efficient set is connected. Connect-
edness simplifies identifying the SSD efficient
set. If yl and y2 belong to a conected set, then
there exists a continuous path within the set
which "connects" them (Murty, p. 466).

The Set of SSD-Efficient Mixtures

The properties of the set of SSD-efficient mix-
tures (x vectors) are similar, but not identical,
to the set of SSD-efficient y vectors. Connect-
edness of the set of SSD-efficient y vectors im-
plies connectedness of the set of SSD-efficient
enterprise mixtures. The definition of the set
of subset candidates is similar to that given
earlier. That is, each subset candidate in mix-
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ture space is the intersection of a face of the
polyhedron of feasible mixtures with either a
subset of mixtures for which the elements of
Cx have the same (weak) rank ordering or a
subset of mixtures for which the elements of
Cx not only have the same rank ordering but
for which there is at least one tie among the
elements of Cx. One extension must be made.
For some "degenerate" problems, interior
mixtures which are not on any proper face of
the polyhedron can be SSD efficient. There-
fore, it may be necessary to consider subset
candidates lying in the interior of the poly-
hedron.

Search Strategies

The best strategy for identifying the SSD-ef-
ficient set is likely to vary from problem to
problem. The considerations discussed above
suggest some guidelines.

Identifying All SSD-Efficient y Vectors

First, it is appropriate to start by examining
the set of y vectors which maximize expected
net returns. At least one of these vectors must
be SSD efficient.

Second, the connectedness property means
that at each stage in the search procedure it is
appropriate to consider only those candidate
subsets which are "adjacent" to one or more
subsets already known to be SSD efficient.

Third, when there are several "adjacent"
subset candidates, it is appropriate to give
highest priority to examining those which lie
on higher-order intersections of the polyhe-
dron and its boundary planes. This exploits
the fact that the set of alternative marginal
utility vectors consistent with a higher-order
intersection is ordinarily larger than the set
associated with a lower-order intersection.
Thus, "adjacent" candidate subsets which lie
on an edge of the polyhedron are more prom-
ising than those lying on more general faces.

Fourth, it may be appropriate to determine
whether a face satisfies the vector-maximum
conditions, (4) and (6), before attempting to
determine whether any of the subset candi-
dates associated with that face are SSD effi-
cient. 7 Faces satisfy an all-or-nothing property

7 Our dual and primal formulations become tests for a vector
maximum if w,, is omitted from (11) of the dual and tj_, is omitted
from (16) in the primal.

with respect to conditions (4) and (6). That is,
if any interior vector of a face satisfies (4) and
(6), then the entire face satisfies conditions (4)
and (6). Of greater significance is the fact that
if any interior vector fails to satisfy conditions
(4) and (6), then none of the interior vectors
on that face satisfy conditions (4) and (6). This,
in turn, means that none of the interior vectors
on the face can be SSD efficient. Because a face
may include several subsets which are candi-
dates for SSD efficiency, finding that the in-
terior of the face fails to satisfy (4) and (6) may
preclude several tests for SSD efficiency.

Fifth, a candidate subset can be ignored if
any of the candidate subsets which comprise
its "boundaries" are known to be SSD ineffi-
cient.

Identifying All SSD-Efficient Mixtures

There are at least two ways of identifying the
set of SSD-efficient enterprise mixtures. One
way is to first identify all SSD-efficient y vec-
tors. When only one enterprise mixture is as-
sociated with each y vector, some of the in-
termediate calculations may, if preserved,
provide sufficient information to identify the
set of SSD-efficient enterprise mixtures. When
more than one enterprise mixture is associated
with some y vectors, additional calculations
may be required.

An alternative, but very closely related, ap-
proach finds the SSD-efficient mixtures more
directly. There seems to be little reason to pre-
fer one of these approaches to the other. The
second approach is chosen for the following
example simply because the graph of the fea-
sible set of enterprise mixtures can be more
easily presented in a way which can be under-
stood.8

An Example

The search strategy is illustrated by applying
it to an example from Anderson, Dillon, and
Hardaker (pp. 209-10). This example was cho-
sen because it has the smallest number of ac-
tivities (three) which allows some general
properties (e.g., nonconvexity) to be exhibited

8 Both feasible sets are three dimensional. However, the set of
feasible mixtures lies in an easily recognizable three-dimensional
space, while the set of feasible y vectors lies in a three-dimensional
subspace of a five-dimensional space.
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Oats)

Figure 2. Feasible crop mixes

and the largest number of activities which per-
mits graphical presentation of the feasible set.
For this article, each of the five states of nature
(observations) is assumed to be equally likely.
Figure 2 provides a perspective view of the
feasible set and some relevant subsets. Table
1 presents selected enterprise mixtures. Upper
case letters are used to identify vertices (cor-
ners) of the feasible set and/or its subsets. Low-
er case letters identify selected "interior" mix-
tures of some of the subsets.

Since only one enterprise mixture, mixture
A, maximizes net returns, it must be SSD ef-
ficient. It provides a logical starting point for
the process of identifying the SSD-efficient
mixtures.

Several subset candidates are adjacent to (in-
clude) A. Those associated with edges are most
likely to be SSD efficient. The mixtures on the
interior of edge AD fail to satisfy conditions
(4) and (6). Thus, apart from A, none of the
mixtures on AD are SSD efficient. Edges AB
and AC satisfy conditions (4) and (6). Thus,
the subsets on these edges will be examined
further.

The subset of mixtures on AB for which the
y-vector elements have the same rank order
as for mixture A (Y2 Y _ y4 _ y3 > y5) is
considered first. This subset, line segment AI,
is determined to be SSD efficient by evaluating
mixture a. Subset (line segment) IJ is found
to be SSD efficient by evaluating b. The "in-
terior" of subset JB is not SSD efficient be-
cause c is not. Mixtures I and J are "tie" sub-
sets. It was not necessary to test these subsets
explicitly for SSD efficiency because I and J
belong to other subsets already found to be
SSD efficient.

Table 1. Selected Enterprise Mixtures

Wheat Oats New Wheat
Identifier Xl X2 X3

........................................ (hectares) --------------------------------.------
A 1.33 4.00 6.67
B 0 3.20 8.00
C 8.00 4.00 0
D 0 5.33 6.67
E 0 0 8.00
F 0 12.00 0
G 8.00 0 0
H 0 0 0
I .67 3.60 7.33
J .28 3.37 7.72
K 2.52 4.00 5.48
L 4.71 4.00 3.29
a 1.00 3.80 7.00
b .50 3.50 7.50
c .20 3.32 7.80
d 2.00 4.00 6.00
e 4.00 4.00 4.00
f 7.00 4.00 1.00

Evaluation (in sequence) of mixtures d, e,
andf confirms that all five subset candidates
(AK, K, KL, L, and LC), and thus all mixtures
on edge AC, are SSD efficient. As was the case
for edge AB, it was not necessary to test ex-
plicitly the "tie" subsets represented by mix-
tures K and L.

Because the corer mixture, C, is SSD effi-
cient, it is appropriate to consider those edges,
CF and CG, connected to it which have not
yet been examined. The interiors of each of
these edges fail to satisfy conditions (4) and
(6).

It is possible to show that the set of SSD-
efficient mixtures has now been identified. The
known SSD-efficient set is completely "sur-
rounded" by mixtures which are either in-
feasible or SSD inefficient. The connectedness
property implies that no mixtures other than
those in the union of JA and AC can be SSD
efficient.

Even though this example is very simple, it
illustrates the advantages of exploiting the
properties of the SSD-efficient set. Only five
tests for a vector maximum and six tests for
SSD efficiency were required to identify the
SSD-efficient set.

Concluding Remarks

The approach proposed in this article extends
the work of Dybvig and Ross in three ways.
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Their efficiency conditions were revised slight-
ly to obtain conditions for SSD efficiency. Two
properties of the efficient set for their perfect
market case were modified to be consistent
with the conditions for SSD efficiency and with
problems which may include inequality con-
straints. The properties of the SSD-efficient set
were exploited to develop a procedure for iden-
tifying it.

For the example considered above, the set
of SSD-efficient mixtures is identical to the set
of(single) Target MOTAD solutions. As noted
earlier, this is not a general result. A more
general result is the fact that the set of SSD-
efficient mixtures includes rather diverse crop
mixes. This underscores the importance of
identifying the utility functions or risk pref-
erences of relevant decision makers. More pre-
cise knowledge of risk preferences may help
define an appropriate proper subset of the SSD-
efficient mixtures. For example, it has been
shown (McCamley and Kliebenstein 1986) that
applying a restricted version of the generalized
stochastic dominance criterion can reduce the
size of the efficient set of mixtures.

[Received October 1986; final revision
received March 1987.]
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