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 The GWSS also carries strains of xylella fastidiosa that threaten California citrus, alfalfa, almonds, stone
1

fruits and ornamentals – a total of some $27.0 billion in market value (UCANR).  
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Introduction

Estimates of the economic damage caused by invasive species of all types in the U.S. are

alarming high.  Moreover, without appropriate policy responses on a macro-level and

management techniques on a micro-level, these costs are sure to grow as the U.S. agricultural

economy becomes more interrelated with other global players.  At one extreme, Pimentel, et al.

(2000) estimate the total economic loss to invasive species at $137.0 billion per year.  One

species alone, the glassywing sharpshooter, which is a vector for Pierce’s disease, threatens to

destroy the entire $3.3 billion California grape industry (UCANR).   Besides the environmental1

damage cited by Eiswerth and Johnson (2002), invasive species impose both direct and indirect

costs on commercial crop production.  Direct losses include reductions in yield, lower quality,

higher costs of chemical mitigation strategies, and a diversion of management time and attention. 

Indirect losses, on the other hand, include the government resources used in large-scale

eradication programs, quarantines placed on US products by other countries, export sales that are

lost outright when importers have alternative sources for the same product, damage to the

environment and fragile ecosystems from the potential overuse of pesticides and consumer

rejection of products deemed to be “unnatural” because they have been genetically modified or

chemically treated to resist pests.  Rigorous economic analysis has helped growers mitigate both

direct and indirect damage in an efficient way, but the market for pest risk management is far

from complete. 
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Economic optimization models designed to recommend insecticide application rates and

thresholds are typically based on dynamic solution concepts such as maximizing the present

value of profit from a given orchard or crop (Regev, Guiterrez and Feder, 1976; Babcock,

Lichtenberg and Zilberman, 1992; Hof, 1998; Marsh, Huffaker and Long, 2000; Eiswerth and

Johnson; for example).  Such models compare the marginal present value of reducing pest

damage with the marginal cost of using either biological or chemical control techniques to

suggest an optimal solution.  This line of research has played an important role in the pest

management literature because optimization models allow growers to control specific sources of

economic risk in a profit-maximizing way.  However, the profit-maximizing level of control is

almost certainly not total eradication of the pest, or total elimination of all economic damage.  

As a result, even growers who adhere to optimal pest control strategies are still subject to

some financial risk.  Insurance is not the answer.  It is well-known that private insurance markets

in agriculture fail for reasons of moral hazard, adverse selection and the high correlation of risks

borne by growers.  Moreover, government subsidized insurance, particularly for speciality crops,

has a history of low participation and excessively high budget costs (Knight and Coble, 1997;

Richards and Manfredo, 2003).  Many economists emphasize the role of public policy in

mitigating the economic damage caused by invasive species (Carter, Chalfant and Goodhue,

2004).  Costly government intervention, however, is not the only solution and may, in fact, be

less efficient than a market-based one.  This study presents a new way growers can mitigate the

financial risk from invasive pests by transferring it to others through market-traded instruments

known as insect derivatives.   



 This is another example of a swap.  An option contract would involve the right, but not the obligation, to
2

either buy (call) or sell (put) the underlying index at a fixed value (the strike price).  A call option, for example,

would rise in value if the index rises above the strike price, while a put option would rise if the index falls.  A grower

who buys a call option would be protected in the event that the pest population grows. 
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Insect derivatives, or “bug options,” represent a market-based means for growers to

transfer risk to others who may profit from higher insect populations.  Derivatives are, in general

terms, contracts between two parties specifying a future exchange of money where the amount

depends on, or is derived from, the value of an underlying asset or index value.  A foreign

exchange swap is one example of a financial derivative.  In this type of swap, two counterparties

agree to exchange an amount of money that depends upon the relative value of two currencies or

interest rate swaps, where the amount depends on the difference between a variable rate, such as

the London Interbank Offering Rate (LIBOR), and a fixed rate.  Weather derivatives are another

recent innovation where the amount of money that changes hands is determined by the

cumulative value of a temperature index such as cooling-degree days (CDD) relative to an agreed

“strike” value that is usually set at an historical, long term average (Richards, Manfredo and

Sanders, 2004).  

In the case of pest infestations, a grower would enter into a contract – an “insect

derivative” – with a chemical company that specifies the payment by the company to the grower

should pest populations exceed a certain agreed level.  If the population is below the agreed level,

then the contract would require the grower to pay the chemical company a similar amount.  Both

parties have an incentive to sign this contract because the chemical maker would otherwise suffer

lower revenues when pest populations are low and the grower would have relatively high

pesticide costs when populations rise.   In this example, both growers and chemical companies2
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are effectively managing their net income risk.  Although such a derivative seems a natural and

logical outgrowth of the normal course of agribusiness, there are several reasons why they have

not emerged to this point – reasons that careful academic research such as that proposed herein,

can help overcome.

The primary reason bug options do not currently exist is the lack of an agreed pricing

mechanism.  Therefore, the objective of this study is to develop a risk-neutral valuation method

for any species evolving within any well-defined agricultural region.  

By creating a relatively straightforward, economically justifiable way of pricing bug

options, this research will help ensure that insect derivatives become actively traded between

growers and their natural counterparties (chemical companies, insurance companies, nurseries,

and many others).   Growers, chemical suppliers and consumers in general each have an interest

in the outcome of this research.  First, growers will be able to plan more effectively, have greater

access to lower cost sources of capital, allocate existing capital more effectively, pay lower taxes,

on average, due to the fundamental convexity of tax schedules, or avoid the direct and indirect

costs of bankruptcy (Smithson, 1998).  Second, by trading insect derivatives, chemical

companies will have a means of raising capital for new product development, and smoothing the

revenue streams that derive from limited-use chemicals.  Third, to the extent that growers

substitute derivatives for other methods of insect management, active trading in insect

derivatives is expected to result in reduced levels of insecticides or other biologically harmful

control techniques.  Finally, if growers are able to trade instruments that rise in value with the

demand for pest control, then they will have an incentive to use the most efficient pest



 In 1994, Naranjo, et al. report B. tabaci was responsible for damaging 345,000 ha of cotton in Arizona
3

and Southern California, reducing total yield by 3.6 million kg. 
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management techniques available, thereby creating an “in the money” position with respect to the

insect derivative.

Developing a pricing model for insect derivatives also represents a significant advance in

option valuation.  To date, all financial derivatives have been uni-dimensional, meaning that they

price claims on financial assets whose benefit flows vary only with time.  Our concept of insect

derivatives, on the other hand, will be priced in two-dimensions, as the underlying “asset” (the

insect population) confers economic damages on growers that vary both through space and time. 

In this paper, we use recent developments in the fields of environmental economics (pollution

control and abatement technologies) and in renewable natural resource management (fish and

wildlife populations) to price contingent claims on insect populations that evolve geographically

and temporally.  We demonstrate the value of this method using field-trial data of Bemesia tabaci

(whitefly) populations in Arizona and California cotton (Naranjo, Chu and Henneberry, 1996).  3

The first section of the paper describes the Bemesia data used to demonstrate how insect

derivatives can be priced.  The second section lays out a bioeconometric model of insect

population growth, including separate models for both the deterministic part and a stochastic

process that forms the core of our pricing model.  This section also describes a simple model of

cotton yield that incorporates both insect population and control activities.  A third section

describes the risk-neutral valuation model and the particular assumptions that are made in

implementing it with the Bemisia example.  A final section provides the estimation results and

offers some general conclusions for the likelihood of an active insect management program.
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Empirical Model of Insect Population Growth

Insect Population Data

The data for this study consist of two years of experimental field-trial data on Bemesia tabaci

population growth and yield damage gathered by researchers based at the Western Cotton

Research Laboratory (WCRL) in Phoenix, AZ using cotton fields in Brawley, CA (Naranjo, Chu

and Henneberry).  Weekly counts of adult B. tabaci were collected each year over a 16-week

season for 11 different plots.  Plots correspond to various insecticide treatment intensities, from

no applications in a given week to 15 insecticide applications per week. By varying insecticide

treatment levels, we are able to study the impact of frequency and dose on population levels at

different times during the season.  Control efforts cause the data to exhibit greater variability than

would otherwise be the case, allowing us to more clearly identify the underlying population

diffusion process.  B. tabaci is a particularly nefarious pest in the U.S. Southwest as they tend to

travel large distances, reproduce quickly and impair yields significantly by depriving the plant of

vital nutrients.  At both locations, yield samples taken at harvest for each plot provide data

regarding the yield-injury relationship in cotton.  Table 1 provides a summary of the

experimental insect data. 

Bioeconometric Model of Insect Population Growth 

Insect populations at a particular location vary from week to week and from year to year. 

However, the basic process driving insect counts consists of a deterministic and a stochastic

component.  Insect populations are constrained by several biological factors: (1) growth rates
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depend on the number of adults available to reproduce, (2) reproduction takes time, (3) the

environment has a finite capacity to support insect populations and (4) control activities, typically

through insecticides, tend to be quite effective in reducing population counts.  Given these facts,

entomologists typically model the deterministic part of insect population growth as an

exponential function common to virtually all bioeconomic growth models (Clark, 1990; Eiswerth

and Johnson):

1for the mean insect population (B ) growing at a rate "  in an environment with carrying capacitym

K. The differential equation (1) can be solved for the expected population level at any time, t,

which provides a convenient expression for the mean insect population:

where insecticide applications (c) reduce insect numbers according to the control function g and

0 0d represents the starting population value relative to carrying capacity: (K - B )/B .  In the

empirical application below, g is assumed to be quadratic in order to capture the likely

diminishing marginal returns to insecticide application.  Depending upon data availability, the

mean population may also be a function of temperature, host plant abundance, other non-

chemical abatement efforts, or predator population.   

(1)

(2)



 Note that Sunding and Zivin model population growth as a geometric Brownian motion. However, in our
4

model, the dependence of growth on existing population levels is captured through the mean function (2), so the

remaining variation is likely independent of current population levels. 
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Insect population growth is, however, not entirely deterministic.  Random variations from

the mean population level are assumed to be governed by a Brownian motion process: 

where : is the drift rate per unit of time, dt, s is the standard deviation of the process, and dz is

an increment of a standard Weiner process with zero mean and variance equal to dt.  As noted by

Sunding and Zivin, equation (1) captures several empirical regularities observed across insect

groups.   Namely, per-period changes in the population as well as the population itself are4

normally distributed, population levels are always non-negative, and short-run dynamics are

dominated by the volatility component whereas long-term dynamics are dominated by trend.  

It is not likely, however, that any trend away from the mean in (2) is likely to be sustained

over the long-run as insect populations cannot grow without bound, nor is it likely that they

disappear without some outside influence.  Therefore, the process in (3) is modified to include a

mean-reversion term so that:  

where 6 is the rate of reversion to the mean.  Further, insect populations are also subject to

periodic “spikes” or periods of rapid growth driven by environmental factors that are otherwise

not accounted for in the model.  We model these instances as jumps in the stochastic process

(3)

(4)
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(5)

(6)

estimated above (Merton, 1976; Jorion, 1989, Naik and Lee, 1990), so the most general form of

the population equation becomes:

where jumps occur according to a Poisson process q with average arrival rate 8 and a random

percentage shock, N.  The random shock, in turn, is assumed to be log-normally distributed with

mean ( - 0.5*  and variance, * .  The Poisson process q describes a random variable that assumes2 2

a value of 0 with probability 1- 8 and 1 with probability 8.  Estimates of (5) are obtained by

maximum likelihood estimation over the entire sample data set, using the likelihood function:

t t t t-1where we approximate the change of B  (dB ) with a discrete change: (B  - B ).  Richards,

Manfredo and Sanders (2004) demonstrate this method of estimation using a temperature process

for the Fresno Air Terminal.  

When pricing derivatives on “physical” quantities like insect populations or the weather,

the derivative value depends not only on forecasts of the underlying variable, but on its economic

value to the agents involved in its trade.  In the case of insects, traders must be able to estimate

the marginal impact of an increase in insect density on yields and, ultimately, crop revenue.  With

experimental data such as that used in the example described below, the USDA entomologists

were careful to ensure that growing conditions among plots were otherwise identical so
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differences in yield are solely attributable to variations in insect populations.  Yield is expected

to be concave in both insect population and control activities, so we specify yield as a simple

quadratic function of both: 

twhere D94 is a binary variable for the year 1994 (D94 = 1), ,  is an iid random error vector and

the remaining variables are as described above.  Because we do not have data on other inputs, all

of explanatory variables are either exogenous or determined by the researcher, so ordinary least

squares provides consistent estimates of all parameters.  Marginal revenue impacts are calculated

by multiplying the derivative of yield with respect to insect population by an expected output

price, which is assumed to be the long-term average market price in the application described

below.  

  

Pricing Insect Derivatives

An insect derivative is a contingent security based on the value of an underlying insect

population index.  If the derivative is specifically an option, then it will have a positive intrinsic

value if the actual realized population is higher (lower) than the agreed strike level for a call (put)

option.  By buying an insect call option, a grower may be able to effectively protect himself or

herself from financial loss should an insect population rise above the strike level.  There are five

essential elements that form any insect derivative: (1) the underlying insect population index, (2)

the length of time of the contract prior to expiration, (3) the location for where the underlying

insect population is reported (e.g., farm, orchard, experiment station or larger aggregation of

(7)
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farms), (4) the dollar value attached to each unit of the underlying index (marginal loss in

revenue attributable to an additional insect), and (5) the strike population index value.  At the

agreed expiration date of the option, a holder of a call option will receive payment if the insect

population index is greater than the strike price, and the holder of a put option will receive

payment if the insect population index is less than the strike price.  The amount of payment is

equal to the level of insect populations that are greater (less) than the strike price multiplied by

some notional value dollar value per unit of the underlying insect population index.  In the case

where the option is not exercised, the option buyer will forfeit his option premium.  Sellers of

options, or option writers, receive a premium for providing this option to the option buyer.  

As explain in the introduction, the proper pricing of such an instrument is critical for its

successful trade.  Indeed, if these derivatives are mispriced in the market place, traders will not

be attracted to the contract and leading to liquidity problems.  As well, there is likely to be

abnormally large bid-ask spreads that could hamper liquidity of the market.  While insect

derivatives are likely only to be traded only over-the-counter, it is still critical that appropriate

pricing models be used.  If the insect population represents a hedgeable risk, or one that growers

can transfer by trading an underlying futures contract, then it would be possible to price an insect

option using a traditional, no-arbitrage, Black-Scholes pricing model.  However, as in the case of

weather derivatives (Richards, Manfredo and Sanders), insect populations are not tradable assets. 

Without an effective hedge, we must consider the role of the market price of risk and devise a

way of estimating its impact on derivative prices.  

Fortunately, because insect populations are not likely to be correlated with the market

portfolio, we can use the risk-neutral valuation model of Cox, Ingersoll and Ross (1985) and
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(8)

proceed by following a three-stage algorithm.  First, we “risk neutralize” the insect population

process by estimating the process defined in (5) and removing all dynamics that are explainable

by changes in the mean, by mean reversion or by jump processes.  The remaining random

tvariation is then a martingale, Q, and dz becomes dv, where v  is a Q-Weiner process (Alaton, et

al.).  Second, we form an expectation of the intrinsic value of the derivative under the Q measure

defined by our risk-neutralized process.  Third, we discount the expected payoff value back to the

current date at the risk-free rate.  This discounted expected payoff is the market equilibrium price

of the derivative.  More formally, given a constant market price of risk, a constant rate of interest,

r, and assuming each contract pays one dollar per unit of insect population, the martingale that

defines the underlying index becomes:

where dv is now a Q-Wiener process (Alaton, et al) and R is the market price of risk.  Hull

(2002), however, argues that if the underlying is indeed statistically independent of the market

portfolio, then the market price of risk is zero.  Because this is likely to be case for localized

insect populations, we set R = 0 in (8) and proceed to price the derivative using the risk free

discount rate. 

To demonstrate the third step of the pricing algorithm, we consider the specific case of a

call option.  The expected payoff to a call option is given by: , where 

is the strike population value. This expectation must be found under Q-measure.  Taking the

expectation and discounting to the present from T at the rate r gives a call-option value of:



 The mean and variance found under Q-measure include the market price of risk and jump terms, but their
5

specific form are not material here.  They have been derived, however, and are available from the authors. 
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n nwhere :  and F  are the mean and variance, respectively, of the insect process and M is the

standard normal distribution function.   The value of a put option, or any other derivative where5

the payoff can be similarly defined, can be found the same way.  With these prices, therefore,

traders in the market can be fully confident that the market price reflects full economic value to

both buyers and sellers – or that they are equivalent to an “actuarially sound” premium in

insurance terminology.  

Results and Discussion

Recall that the objective of this study is to design an insect derivative and to develop and

implement a model that can be used to arrive at a market value for any variation of the

instrument we create.  Because this objective involves several steps, our discussion of the results

considers each in turn: (1) estimates of the deterministic insect population function, (2) estimates

of the stochastic process that drives variation from the mean, (3) estimates of the impact of

Bemesia tabaci on cotton yields, and (4) estimates of an example insect derivative, herein

defined as a call option on Bemesia tabaci at the Brawley, CA research station. 

Table 2 presents estimates of the deterministic part of the insect growth model.  In this

model, carrying capacity is allowed to vary from one year to the next because we cannot

(9)
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otherwise control for the temperature, the amount of vegetation or other factors that may

influence the maximum supportable population.  However, the results in table 2 show that the

maximum supportable population in 1993 was 19.639 insects per cm , but the maximum2

population in 1994 does not differ significantly.  The rate of growth was also initially allowed to

differ between the two years but, perhaps due to the relatively small number of time-series

observations available for each plot, the estimation procedure could not identify two separate

growth rates.  Therefore, we maintain an assumption throughout that the rate of population

growth in both years averages approximately 12.6% per week.  Next, estimates of the control

function suggest that insecticide applications were subject to diminishing marginal returns each

year.  However, insecticide appears to have been significantly more effective during 1994, where

the marginal effect (evaluated at sample means) was 1.081 fewer insects per application, versus

0.901 fewer in 1993.  Finally, for reasons of either weather, lack of predators or some other factor

that we could not measure, the average population in 1994 was fully 30.8 more insects per leaf

than in 1993.    

[table 2 in here]

After removing the deterministic mean from the observed insect series, we then estimated

three alternative stochastic processes in an attempt to explain the remaining, random variation. 

Starting with the simplest, most parsimonious model, we estimated: (1) a simple Brownian

motion (BM), (2) a Brownian motion with mean-reversion (BM-MR), and (3) a mean-reverting

Brownian motion with discrete, Poisson-distributed jumps (BM-MR-J).  Table 3 shows the

parameters from each model and the results from testing among the competing models.  Because

each is nested within the more complicated alternative, likelihood ratio (LR) tests suffice for
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model selection.  For the first comparison (BM verus BM-MR), the resulting LR statistic is chi-

square distributed with 1 degree of freedom.  At a 5% level, the critical chi-square value is 3.84,

while the test statistic value is 197.84, so we clearly reject the BM model in favor of the BM-

MR.  Second, the LR test statistic used to compare the BM-MR and BM-MR-J models has a

critical value of 7.82 while the estimated LR chi-square value is 26.58, again suggesting rejection

of the more parsimonious model.  Based on these results, therefore, we expect a drift rate away

from the underlying trend of approximately 1 insect per leaf per week. Deviations from trend

tend to return to the mean at a rate of 37.0% per week.  Further, we expect to observe jumps in

insect numbers of 43.45 insects per week approximately 20% of the time.  Clearly, jumps this

large and frequent are a dominant characteristic of the process driving Bemesia growth, so will be

a major factor in pricing any derivative written for them.

[table 3 in here]

Because the BM-MR-J model was found to dominate the others, we use this model to

form expectations of Bemisia numbers at contract expiry.  In order to assign an economic value

to each population level, however, it is first necessary to estimate the marginal impact of an

infestation on cotton yields.  The yield model results are shown in table 4 below.  Based on

sample average population values, the marginal effect of an additional adult Bemisia throughout

the growing season is a loss of 4.656 kg / ha.  Using the long-term average price for cotton of

$1.32 / kg, this implies that each additional adult costs cotton growers approximately $6.03 per

ha.  We use this value to determine the price of an option to transfer the implied economic risk to

a third party. Notice also from this table that growers can reduce the damage from any given
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population level by spraying insecticide, but their ability to do so is subject to sharply

diminishing marginal returns.  

[table 4 in here]

Finally, table 5 provides estimates of the price of a call option written on Bemisia

numbers at the Brawley experiment station.  Because the strike price is a significant element of

the option contract that is subject to negotiation between both parties, we provide option value

estimates for a range of strike-population levels.  Given that the average population value over

the sample period is 8.72 adults per leaf, we expect that all concentrations above this value will

generate a positive call option value.  Further, the higher the strike price, the less financial

“insurance” insect options provide their holder.  As a result, we expect lower option values the

higher the strike price.  The results in table 5 show this to be the case.  Specifically, if a grower

expects significant economic damage if insect counts rise above 20 adults per leaf, then buying a

call option for protection at any realized population above this level will cost $86,051.  Because

this price is fully justifiable on economic grounds, both the grower and counterparty (eg. an

insecticide company) will agree to this price and will enter the option contract willingly. 

Conclusions and Implications

In this study, we have shown that it is possible to design a financial instrument that could allow

growers to transfer the financial risk of insect damage to their crop.  Further, because data on

insect populations are readily available through pheremone traps or through rigorous scientific

experimentation, it is possible to value derivative contracts written for a specific crop and

location.  More importantly, perhaps, because insect numbers are independent of financial
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markets or other measures of broader economic performance, risk neutral valuation methods are

relatively simple and easy to use. 

Although we have shown that it is possible to design and price an insect derivative, future

research in this area should investigate issues of basis risk – or how an individual grower’s

exposure differs from that measured at an experiment station or other monitoring point – and

how this can impact his or her risk management strategy with insect derivatives.  In particular,

our valuation method addresses issues of spatial population variation only in an implicit way,

namely by estimating the population process at a specific place.  However, future research should

work to incorporate stochastic processes in the spatial dimension as well.  Second, more research

should be conducted using other insect species in order to determine whether the growth

processes estimated here are typical of insects in general, or if Bemesia represent somewhat of an

anomaly.  Third, before insect derivatives become widespread, there is still much work to be

done in designing institutions and markets that can facilitate their trade.  While weather

derivatives are still in their infancy, interest from energy firms and others in the trading industry

has lead to the development of a significant pool of interest in their trade.  Building similar

interest is necessary to bring insect derivatives from theoretical possibility to a tradable reality.     
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Table 1. Summary of Bemesia tabaci Trial Data: Brawley, CA, 1993 - 1994.

Random Parameter Values

N Mean Std. Dev. Min. Max.

Treatments (# per week) 358 8.637 4.174 0.000 15.000

Eggs (#/cm )2 358 7.640 19.879 0.000 136.280

Nymphs (#/cm )2 358 1.814 4.546 0.000 34.180

Adults (#/leaf) 358 8.720 17.933 0.000 128.050

Yield (kg/ha) 358 1,515.094 377.683 601.750 2,007.250

Fixed Parameter Values

Risk Free Rate 3.0%

Cotton Price ($/kg) 1.32

Days to Expiry 105
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Table 2. Insect Population Mean Function Estimates: MLE

Parameter Estimate t-ratio

0,1993K 19.639* 6.454

0,1994K 21.811 0.529

" 0.126* 11.633

11g 2.277* 3.017

12g 5.417* 4.230

21g -0.086 -1.714

22g -0.271* -3.226

1994 30.792* 7.292

LLF -1,375.011

2P 1,694.820

0,t In this table, the parameters are defined as follows: K  is the carrying capacity of the environment in year t, " is the
a

nmrate of growth, g  is the linear (m = 1) or quadratic (m = 2) control parameter in 1993 (n = 1) or 1994 (n = 2), and

1994 is a binary variable for the trials conducted in 1994.  The P  statistic compares the estimated log-likelihood2

function model to a null alterative and has a critical value of 15.51 with eight degrees of freedom at a 5% level of

significance.  For all parameters, a single asterisk indicates significance at a 5% level. 
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Table 3. Insect Stochastic Process Model Estimates: MLE

Model #1: Brownian Motion
(BM)a

Model #2: BM with Mean
Reversion (BM-MR)

Model #3: BM-MR with Jumps
(BM-MR-J)

Parameter Estimate t-ratio Parameter Estimate t-ratio Parameter Estimate t-ratio

1 2 3F 255.882* 12.991 F 141.762* 13.163 F 96.161* 11.746

1 2 3: 1.182 1.359 : 1.031 1.704 : 1.032* 3.961

2 36 0.728* 16.445 6 0.370* 6.183

38 0.193* 6.524

3* 28.143 1.511

3N 43.451* 8.455

LLF -1404.08 -1305.16 -1291.87

 In this table, a single asterisk indicates significance at a 5% level. 
a
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Table 4. Cotton Yield Model: OLS

Parameter Estimate t-ratio

Constant 464.931 5.092

tB -5.333 -4.391

tB 2 0.048 3.053

tX 197.252 1.943

tX 2 -7.551 -5.292

1994 290.745 6.721

R2 0.863
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Table 5. Insect Derivative Price Estimates

Strike Population Call Option Value - Vc Standard Deviation

20 $86,051.00 $12,934.00

25 $79,562.00 $11,619.00

30 $66,461.00 $11,811.00

35 $57,076.00 $11,686.00

40 $47,472.00 $11,513.00
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