
Spatial Econometrics Revisited:  A Case Study of Land Values in Roanoke County 

 

Ioannis K. Kaltsas 
European Investment Bank 

100 Boulevard Konrad 
Adenauer 

L-2940 Luxembourg 
Luxembourg 

Email: KALTSAS@EIB.ORG 
Tel: 352 43794662 

Darrell J. Bosch 
Dept of Ag & Applied Econ 

Virginia Tech 
Blacksburg, VA 24061 
Email:  bosch@vt.edu 
Phone:  540-231-5265 

Anya McGuirk 
Dept of Ag & Applied Econ 

Virginia Tech 
Blacksburg, VA 24061 

Email:  mcguirk@vt.edu  
Phone:  540-231-6301 

 
 

 

 

 

 

May 2005 

 

 

Paper prepared for presentation at the American Agricultural Economics Association 

Annual Meeting, Providence, Rhode Island, July 24-27, 2005. 

 

Keywords:  misspecification tests, spatial autocorrelation, residential settlement, urban sprawl  

JEL code:  Q24 

 

Copyright 2005 by Ioannis Kaltsas, Darrell Bosch, and Anya McGuirk.  All rights reserved.  Readers may make 

verbatim copies of this document for noncommercial purposes by any means, provided that this copy right notice 

appears on all such copies. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6407639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

 

Spatial Econometrics Revisited:  A Case Study of Land Values in Roanoke County 

Abstract:  Omitting spatial characteristics such as proximity to amenities from hedonic land 

value models may lead to spatial autocorrelation and biased and inefficient estimators.  A spatial 

autoregressive error model can be used to model the spatial structure of errors arising from 

omitted spatial effects.  This paper demonstrates an alternative approach to modeling land values 

based on individual and joint misspecification tests using data from Roanoke County in Virginia.  

Spatial autocorrelation is found in land value models of Roanoke County.  Defining 

neighborhoods based on geographic and socioeconomics characteristics produces better 

estimates of neighborhood effects on land values than simple distance measures.  Implementing a 

comprehensive set of individual and joint misspecification tests results in better correction for 

misspecification errors compared to existing practices.  
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Introduction 

Traditionally, economists have constructed hedonic functions to capture the relative 

importance of land attributes affecting land values (Xu, Mittelhammer, and Barkley). Recent 

studies emphasize a growing consensus regarding the need to incorporate spatial characteristics 

such as proximity to amenities as explicit variables (Can and Megboludge; Basu and Thibodeau).  

However, some spatial features may be omitted from the model (Bockstael and Bell; Irwin; 

Fleming) causing the underlying error of the regression to be spatially autocorrelated.    Spatial 

autocorrelation due to omitted spatial features causes least squares estimators to be biased and 

inefficient, making inference based on them invalid (Basu and Thibodeau).  Consequently, it is 

important to determine the source of autocorrelation in order to correctly specify the model.   

A spatial autoregressive error model can be used to model the spatial structure of errors 

arising from omitted spatial effects (Anselin 1988; Anselin and Kelejian).  According to Anselin 

(1988) the spatial autoregressive component corrects predicted values by an estimate of the 

prediction error’s relationship to nearby observations and thus mimics the behavior of real estate 

appraisers.  The influence of nearby properties on land value is determined using an exogenously 

determined weight matrix.   

Basu and Thibodeau argue that a spatial autoregressive model may be misspecified when 

the observed spatial dependence is caused by factors other than omitted variables.  Sometimes 

the chosen functional form does not adequately allow for heterogeneity over space, and the 

estimated parameters are unstable usually varying by location. For example, most land value 

models assume that the functional form is the same for both developed and vacant land parcels 

(Beaton).  However, developed and undeveloped land parcels may follow different stochastic 

processes.  Part of the observed spatial autocorrelation in the residuals may be attributed to this 
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structural instability.  Anselin (1988) suggests that the problem of distinguishing the sources of 

observed spatial autocorrelation is highly complex and proposes testing structural stability before 

creating an autoregressive model.  The assumptions of normality and heteroskedasticity should 

also be tested before testing the model for spatial autocorrelation (Anselin 1988; Anselin and 

Kelejian).  The premise of this approach is that by first verifying the assumptions of normality, 

heteroskedasticity and correct functional form, researchers may ensure that spatial dependence is 

the source of autocorrelation and that incorporation of spatial structure results in correct model 

specification.  

Although the proposed ideas are better than past approaches of dealing with possible 

spatial autocorrelation—there are still problems with how this approach is currently implemented 

and, even more fundamentally, with its basic premise.  To date, most spatial econometric studies 

examine only a subset of the testable statistical assumptions underlying the model estimated 

(Anselin 1999).  The problem with this partial approach is that the statistical inferences drawn 

from a model are generally only valid if all the assumptions underlying the model are valid.  The 

possibility of invalid inference is further exacerbated by the fact that the assumptions that are 

tested are usually examined one at a time, despite the fact that most of the tests conducted are 

only valid if all remaining assumptions underlying the model are correct (Spanos). For example, 

most tests of parameter stability assume the right functional form is specified, the model errors 

are not autocorrelated, the conditional variance is homoskedastic, etc.  If any of these other 

assumptions (maintained hypotheses) are not valid, incorrect inferences may be drawn, in this 

example, from the parameter stability test.  Alston and Chalfant illustrate just how much we can 

be misled by misspecification test results when the remaining model assumptions are not valid. 

Their Monte Carlo experiments show that one can incorrectly conclude that a model suffers from 
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parameter instability 100 percent of the time, when the real problem is something completely 

different.  Other authors have shown similar problems when testing other model assumptions 

(see for example Bera and Jarque; Ghali; Lahiri and Egy; and Savin and White).  The implication 

of this research is that if a model does indeed suffer from spatial dependence, tests conducted to 

ensure that all other assumptions are valid are likely to be unreliable.  Thus, there is no way to 

ensure that all the other model assumptions are correct before focusing on the autocorrelation 

assumption as suggested in the literature.   

McGuirk, Driscoll, and Alwang suggest a way around this circularity problem.  They 

suggest that all possible model assumptions need to be tested.  To examine the model 

assumptions, they suggest the use of both individual and joint tests. Once the battery of tests has 

been conducted, they illustrate how the results should be interpreted as a group to decide the 

most likely source(s) of misspecification.  Basically they observe that one should never conclude 

based on the results of a single test that the assumption being examined is or is not valid and they 

show how the size of the respective p-values of the various tests can provide some hints 

regarding the most likely source(s) of misspecification.  Once the most likely source(s) of 

misspecification have been identified, they suggest “fixing” the likely problem(s)--but before 

concluding that the model is well-specified, the new model must be subjected to the full battery 

of tests again.  Only when the “fix” leads to a model that passes all misspecification tests can one 

conclude that all the tested underlying assumptions are satisfied.  In this approach to model 

respecification, model fit (R2) plays no  role in the decision process.  McGuirk and Driscoll 

illustrate that high fitting power does not guarantee a model’s statistical validity.  Thus, while 

spatial autoregressive corrections often improve model fit, the corrected model may or may not 

be an improvement over the original model in terms of the relevance of the underlying statistical 
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assumptions (statistical validity).  Only the results from the battery of misspecification tests on 

this new model can indicate whether it is statistically valid.  

The problem of determining how to respecify a model, given the results from a battery of 

misspecification tests, is not necessarily straight forward if spatial autocorrelation is the main 

suspect. Typically the specification of the spatial structure in spatial econometric models is 

arbitrary; there are no rules to determine the spatial relationship among individual observations; 

and there is no clear way to test the structural validity of the exogenously determined spatial 

weight matrix.  Existing non-nested tests only select the weight matrix that maximizes the fitting 

power of the model.  Spatial weight matrices are typically constructed using mathematically 

computed distances and, thus, geographical proximity is the only criterion to account for 

neighborhood effects.  However, the size of neighborhoods might often be inappropriate for a 

given case study and proximity might not always be the best criterion for determining 

neighborhoods. In the approach advocated here and by McGuirk, Driscoll, and Alwang, the only 

real test of whether the spatial autocorrelation has been modeled adequately is whether or not the 

battery of misspecification tests performed on the respecified model indicate that the model 

satisfies all the testable assumptions underlying the model.  

The purpose of this paper is to address existing limitations of spatial modeling efforts in 

the context of modeling land values and to demonstrate this alternative approach based on 

individual and joint misspecification tests using data from Roanoke County in Virginia.  We first 

establish that there is spatial dependence in the values of land parcels in Roanoke County.  Then 

by implementing a comprehensive set of individual and joint misspecification tests suggested by 

Spanos and McGuirk, Driscoll, and Alwang we establish a statistically sound model, which is 

more reliable than models based on current spatial econometric practices.  
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Data 

The data were collected as part of an interdisciplinary effort to analyze the fiscal and 

environmental consequences of alternative residential development patterns using Roanoke 

County, Virginia as a case study (Diplas et al.; Bosch et al.).  A land value model was estimated 

to help researchers and policymakers evaluate the effects of alternative residential settlement 

forms on assessed land values and property tax receipts.   

A random sample of observations used to estimate the model was obtained from the 

Roanoke County Division of Planning and the Roanoke County Division of Tax and Assessment 

data base.  There were 1,844 transactions of vacant and non-vacant land parcels for the period of 

1996 to 1997.  Table 1 contains the descriptive statistics of variables used in estimating the land 

value model. The price of the parcels reflects the value of the land alone.  Prices of parcels with 

structures were computed by subtracting the assessed value of the structure from the parcel’s 

recorded transactions price.  The sample average price per square meter is $23.13 while the 

median is $3.   

Parcel area varies from 0.005 hectares (a parcel close to the urban fringe of Roanoke 

County) to 216 hectares (a parcel of steep and remote agricultural land).  Elevation of the center 

of the parcel is measured in meters above sea level.  Slope is the average slope of the parcel 

measured in geometric degrees.  There is a high correlation (r=0.68) between the slope of the 

parcel and its elevation.  Most of the developed parcels are located on relatively flat land with 

low elevation.  The soil quality of the land parcels was classified into three categories according 

to permeability.  More permeable soils are associated with lower flood risk and soil erosion.  The 

dummy variable representing Soil Quality 1 (3% of the parcels) is the less absorbing category of 

soil, while Soil Quality 2 (87% of the parcels) has an intermediate level of penetrability.   
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Point to point distances of parcels from shopping malls, the city of Roanoke and the town 

of Blacksburg are measured in meters. The minimum distance of the parcels to either of two 

urban centers is about 3 kilometers.  However, the town centers may be less important than 

shopping malls in terms of daily commuting. The Planning Department of Roanoke County 

(PDRC) estimates that several thousand consumers visit the two county malls daily.  

Additionally, these malls have become the center of development of hundreds of small 

businesses, which offer employment to thousands of Roanoke County residents. According to the 

PDRC, the development rates of the areas close to the shopping malls are expected to be the 

highest in the county for the next five years.    

About 5% of the parcels are located next to a major road, which may affect the land price 

negatively due to noise and air pollution.  More open space and easier access to natural amenities 

may also be captured by the population density of the census blocks in which the parcel belongs. 

The average population density of the sample is about 6 people per hectare.  The dummy 

variable for development indicates whether a parcel contains some type of construction (88% of 

the sample) or is undeveloped (12% of the sample).  The Coordinates X and Y identify the exact 

location of the center of each parcel and define the proximity and neighboring effects of parcels.  

Coordinate X increases in a west and northerly direction while coordinate Y increases in an east 

and northerly direction.  The year dummy variable indicates whether a parcel was sold in 1996 

(Year=0) or in 1997 (Year=1). According to the U.S. Bureau of Census, the average price of 

rural land in Roanoke County increased by 1.5% in 1997 relative to 1996.   

A Statistical Model Based on Spatial Independence 

The following model was created assuming that sample observations are not spatially correlated.   
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Log(Price) = A0 + A1[Log(Size)] + A2[Log(Size)]2 + A3[Log(Elevation)] + A4[Log(Elevation)]2 

+ A5(Soil1) + A6(Soil2) +A7(Population) + A8(Population)2 + A9[Log(Mall)] + A10[Log(Mall)]2 

+ A11[Log(Town)] + A12(Developed) + A13(Road) + A14(Year) + A15[Log(X)] + A16[Log(Y)] + 

A17Log(X)Log(Y)] + u      [1] 

where Price is parcel price per square meter; Size is parcel area; Elevation is average parcel 

elevation; Soil1 and Soil2 are dummy variables capturing soil quality; Population is the 

population density in the U.S. census block containing the parcel; Mall is minimum distance to 

an existing mall; Town is minimum distance to the closest town; Developed indicates whether 

the parcel is vacant; Road reveals whether the parcel is adjacent to a major Road; Year shows if 

the parcel was sold in 1996 or 1997; the Coordinates X and Y determine the exact location of the 

parcel; and u represents the error term.   

If one were to assume neither spatial autocorrelation nor any other misspecification 

problems, the OLS model explains approximately 80% of the variation in the land transaction 

prices (Table 2).  The value of a land parcel per square meter is expected to be lower for larger 

parcels.  Parcels, which already have some type of residential or commercial development, have 

higher transaction prices. Lower water permeability (and consequently higher flood risk) affects 

parcel value negatively, while a parcel sold in 1997 has a higher value than a similar parcel sold 

in 1996. A careful analysis of the non-linear relations of the model and the value range of the 

variables indicates that longer distance from the closest mall as well as higher elevation and 

lower population density affect land transaction prices positively but at a decreasing rate.  

Current spatial econometric studies typically test for normality, homoskedasticity, and 

structural stability.  The Jacque-Bera test (Table 3) rejects the null hypothesis that the errors are 

normally distributed.  However, this test is very sensitive to outliers.  When 2% of the extreme 
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sample observations were dropped, the hypothesis of normality was not rejected.  The P-value of 

the White test (Table 3) supports the hypothesis of homoskedasticity.  Chow tests, conducted 

after ordering the observations by neighborhoods according to the numerical code of the 

Roanoke County Planning Commission, did not support the hypothesis of structural breaks at 

300, 600, 900, and 1,200 observations (not shown in the table).  Following the existing spatial 

econometric literature (Anselin 1988), we can conclude that if we find observed spatial 

autocorrelation in the econometric model then this spatial autocorrelation is the result of omitting 

relevant spatial characteristics.  

Testing for Spatial Independence 

The sample was subdivided into neighborhoods based on the classification scheme used by the 

Roanoke County Planning Commission.  The criteria used for this classification are geographic 

proximity of spatial units, level of economic development, and conventional and administrative 

definitions of neighborhoods from other departments of the local government.  The sample 

contains 164 neighborhoods, and each neighborhood contains an average of 12 land parcels 

included in the sample.  Neighborhoods vary in size with some close to Roanoke City having a 

diameter smaller than 0.3 Km, while neighborhoods at the borders of the Roanoke County are 

large enough to capture similar characteristics of remote parcels. These neighborhoods were used 

as spatial lags for our case study, and a weight matrix was developed with average values of land 

parcels in each defined neighborhood.  

Two tests were conducted of the hypothesis of no spatial autocorrelation in the land value 

model.  The Moran’s I test supports the existence of spatial autocorrelation. The statistic I equals 

0.928 and ZI equals 5.54, which supports rejection of the hypothesis of no spatial autocorrelation 

(P-value less than 0.001).  The following auxiliary regression was also used: 
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 u = Xb + kWu + ε       [2] 

where u and X are the residuals and explanatory variables of [1], b and k are the estimated 

coefficients, W is the weight matrix based on the number of parcels in the neighborhood, and ε is 

the error term of [2].  The null hypothesis is H0: k = 0 against H1: k ≠ 0. The F-test for H0 

provides evidence against the null hypothesis (F-statistic = 17.98, P-value less than 0.001). 

Consequently, both tests indicate spatial autocorrelation and that [1] is not well specified. 

Correcting for Spatial Autocorrelation 

While maximum likelihood techniques are often used to account for error spatial autocorrelation 

(Anselin 1988) the approach becomes problematic with large datasets because of difficulties in 

calculating eigenvalues of the spatial weight matrix (Pinkse and Slade; Kelejian and Prucha 

1999).  Alternative parametric and nonparametric estimation techniques have been proposed.   

Parametric Techniques 

Parametric techniques, which create an alternative autoregressive model using instrumental 

variables, are simple and require limited computing capacity compared to non-parametric 

techniques. Their major disadvantage is the arbitrary choice of instrumental variables.  Studies 

that use two or three stage least squares techniques (Land and Deane; Kelejian and Prucha, 1998) 

recognize that the efficiency of their instrumental variable estimator relies on the proper choice 

of the instruments.  Researchers (Land and Deane; Kelejian and Robertson; Kelejian and Prucha 

1998) suggest that two stage least squares (2SLS) estimators of the spatial autoregressive model 

are consistent and asymptotically normal.  Assume that the structure of the spatial autoregressive 

model is: 

Y = c W Y + X b + e      [3] 

and 
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W Y = k W X b + u      [4] 

where W is the weight matrix, c is the spatially autoregressive coefficient, WY is the spatial lag 

of land prices, WX is the set of instruments and e is a vector of error terms.  Anselin (1988) 

proves that the spatial lag term WY is always correlated with the error term.  Consequently, the 

spatial lag term should be treated as an endogenous variable and proper estimation methods 

should be used to account for endogeneity (OLS estimators will be biased and inconsistent due to 

simultaneity error).  Most spatial econometric studies (Kelejian and Prucha 1999) agree that a 

theoretically sound choice of an instrument for WY would include the set of lagged independent 

variables WX.  According to Anselin (1999), this spatial two stage least squares estimator is 

consistent and asymptotically normal, similar to the case of the standard two stage least squares 

estimator in time series initially proposed by Schmidt. 

Table 4 summarizes the spatial two stage least squares estimates for the land value model 

in Roanoke County. The signs and the values of almost all coefficients are similar to those of 

model [1].  Larger undeveloped parcels with impermeable soil, located far from a shopping mall 

and close to town center are expected to have lower transaction prices per square meter. A major 

highway attached to the lot or high population density also reduces land values. Transaction 

prices also increased in 1997 relative to the previous year.  Finally, the positive sign of WPRICE 

(average value of other parcels in the neighborhoods defined by the Roanoke County Planning 

Commission) indicates the value of a parcel will increase if land values of neighboring parcels 

increase.  This parametric model captures spatial dependence among prices in Roanoke County 

and its fitting power exceeds 81%. 

However, misspecification tests imply that the two stage least squares model violates 

fundamental statistical assumptions. The White test indicates that the error terms of the model 
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are not homoskedastic, despite the fact that homoskedasticity was satisfied in the initial model.  

The auxiliary regression test indicates that there is no support for the assumption of no spatial 

autocorrelation.   

Non-Parametric Techniques 

Non-parametric techniques can achieve values very close to the actual maximum 

likelihood estimates faster and with less computing capacity compared to maximum likelihood 

estimates (Anselin 1999; Bockstael and Bell; Kelejian and Prucha 1998).  The Generalized 

Moments Estimator (GME) developed by Kelejian and Prucha (1998) was estimated as part of 

this study.  GME is based on the three moments of the error term, u, which appears in the 

formulation of the traditional error autoregressive model: 

Y = X b + e        [5] 

and  

e = c We + u        [6] 

Due to limitations of space, we briefly summarize the results of the estimation.  The model 

explains about 88% of the variation in land value prices while the signs of almost all parameter 

coefficients remain the same as those in the two stage least squares model.  The only exception is 

that population density is statistically significant and higher population density leads to higher 

land transaction prices, after evaluating linear and non-linear terms for the range of data in 

Roanoke County.  However, misspecification tests indicated the presence of spatial 

autocorrelation, a nonnormal error distribution, and heteroscedasticity.  A more complete 

discussion is available in Kaltsas.   

An Alternative Approach  

The alternative approach to derive a statistically adequate model follows Spanos.  We conducted 
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a more comprehensive set of individual and joint misspecification tests on model [1].  Then an 

iterative procedure of respecification and testing led to the adoption of our final models. 

Table 3 summarizes the results of a set of individual and joint misspecification tests for 

the land value model [1].  Table 3 contains two tests for linearity, which indicate that non-linear 

(squared and cross-product) variables are not essential for the land value model.  The Ramsey 

test also confirms that the functional form of the model is adequate for our data.  The ARCH test 

provides no support for the null hypothesis that there is no second-order spatial dependence. 

Thus, the residual terms of the land value model seem to exhibit first (of the means) and second 

(of the variance) order spatial dependence.  The joint mean tests in Table 3 confirm that the 

hypotheses of linearity, structural stability and no spatial dependence do not hold jointly. 

Similarly, the joint variance test indicates the hypotheses of homoskedasticity, structural stability 

and second order dependence are not supported by our data.  The parcels are ordered by 

neighborhood and then by development status (undeveloped parcels and then developed parcels), 

while developed parcels are also ordered using the assessed value of the construction on the 

parcels. Both individual and joint misspecification tests (ARCH, Chow, First Joint Mean and 

Joint Variance tests) indicate that there is no support for existence of breaks in the structure of 

[1].  Despite the evidence of structural stability, parameters (b and σ2) may vary across 

neighborhoods as indicated by the results of both individual and joint misspecification tests 

(Fixed Effects from Neighborhoods and Second Joint Mean Test) for the null hypothesis that 

parameters vary across neighborhoods.   

The above test results indicate that spatial autocorrelation is probably the most serious 

problem in [1].  In the First Joint Mean Test for the hypotheses of linearity, no spatial 

autocorrelation and structural stability, spatial autocorrelation has the lowest P-value in the joint 
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test.  Similarly, second order dependence seems to be the main reason for the rejection of the 

joint hypothesis in the joint variance test.  At the same time the low P-values of the no 

neighborhood fixed effects hypothesis and the joint hypothesis of no spatial autocorrelation and 

no neighborhood fixed effects provide evidence against the hypothesis that parameters are stable 

across neighborhoods (Second Joint Mean Test).  In the joint mean test of no spatial 

autocorrelation and no neighborhood fixed effects, rejection of both individual hypotheses leads 

to rejection of the joint hypothesis.  

Given that missing neighborhood specific variables are often the source of spatial 

autocorrelation (Anselin 1999), a set of neighborhood dummies were added to [1].  After 

estimating the fixed effects land value model to account for neighborhood effects, we retested 

the model using the same set of misspecification tests.  The fixed effects model accounts for 

neighborhood effects by deducting from all variables their average values within each 

neighborhood.  Neighborhoods are those defined by the Planning Department in Roanoke 

County.  The resulting model showed an improvement in the P-value (Auxiliary Regression and 

Joint Mean Test) of the hypothesis of no spatial autocorrelation.  The P-value of the ARCH test 

also improved; however, there was still significant evidence of second order dependence.  The 

Chow tests using the same ordering (by development status, assessed value of constructions, and 

by neighborhood) indicated the existence of structural breaks.  In the Joint Mean Test, we 

examined the joint hypothesis of linearity, no spatial autocorrelation and structural stability.  The 

results indicated no support for this joint hypothesis probably due to lack of support for the 

structural stability hypothesis.  Similarly, lack of support for structural stability was probably the 

reason for the low P-value in the joint variance test.  Given the results of the joint tests, structural 

instability seemed to be the major source of misspecification in the fixed effects model.  
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In the fixed effects model there was strong evidence for a structural break between 

developed and undeveloped parcels.  The P-value of the Chow test for n = 213 corresponding to 

the vacant parcels was close to zero.  Plots of recursive OLS estimates indicated substantial 

change in the magnitude of coefficient estimates for several variables after the first 213 

observations of the vacant parcels.  Plots also indicated the possibility of structural instability in 

the developed parcels when they were ordered according to the assessed value of their 

construction.  Almost all plots had some type of “jump” around the 750th observation, when the 

assessed value of the construction was about $60 per square foot.  Land parcels with expensive 

construction may follow a different stochastic process than parcels with inexpensive 

constructions.  

In addition, window OLS (estimating the value of coefficients for observations 214 until 

750 and comparing them with the values of the same coefficients for observations 751 until 

1803) did not support the hypothesis that the parameter estimates for developed parcels are the 

same before and after the 750th observation.  This lack of support was demonstrated by the low 

P-value of the Chow forecast test. The Chow forecast test estimated the fixed effects model for 

the subsample of the observations 214 until 750, and then examined the difference between 

actual and predicted land values for the observations 751 to 1804.  In order to deal with the 

problem of structural instability, these results suggest dividing the sample into vacant and 

developed parcels as well as into two subgroups of developed parcels.  The first group contains 

parcels with inexpensive construction (an assessed value below $60 per square foot), while the 

second group has parcels with expensive construction (an assessed value of $60 per square foot 

or higher).   
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Developed Parcels 

Models [7] and [8] were estimated for developed parcels with expensive and inexpensive 

construction, respectively.  For simplicity, neighborhood effects are not reported. 

Log(Price) = A1[Log(Size)] + A2[Log(Size)]2 +A3[Log(Size)]3 + A4[Log(Elevation)] + 

A5(Population) + A6(Soil1) + A7(Soil2) + A8[Log(Mall)] + A9[Log(Town)] + A10(Road) + 

A11(Year) + A12[Log(X)] + A13[Log(Y)]  + A14[Log(X)][Log(Y)] + u [7]    

   

Log(Price) = A1[Log(Size)] + A2[Log(Elevation)] + A3(Population) + A4(Soil1) + A5(Soil2) + 

A6[Log(Mall)] +A7[Log(Mall)] + A8[Log(Town)] + A9(Road) + A10(Year) + A11[Log(X)] + 

A12[Log(Y)]  + A13[Log(X)][Log(Y)] +  u         [8] 

 

Table 5 contains the results of misspecification tests for models [7] and [8], respectively.  The P-

values of individual and joint misspecification tests indicate that there is adequate support for all 

the underlying model assumptions.  The Jacque-Bera test provides adequate support for the 

assumption of normality in developed parcels while linearity is also supported by the P-values.  

The Ramsey RESET test provides additional evidence that the data support the choice of the 

functional form.  Both individual (White Test) and joint (Joint Variance Test) tests provide 

evidence for the acceptance of the homoskedasticity assumption.  Relatively high P-values for 

the auxiliary regression confirm that spatial autocorrelation does not exist in this model, while 

ARCH test results also indicate that there is no second order dependence.  In addition, Chow 

tests at break points of n = 200, 400 and 800 and the Joint Mean Test provide support for the 

structural stability of the model.  There is also support for the assumption of homoskedasticity, 

coming from the White Test and the Joint Variance Test.  
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The OLS estimates for models [7] and [8] are presented in Table 6.  Coefficient estimates 

that are significantly different from zero for at least one of the two models are shown.  The 

estimated models do not contain the variables “Road” and “LogX*LogY”, because their 

coefficients are statistically equal to zero in both models as indicated by the F-statistics reported 

for the redundancy test in Table 5. The omission of these variables does not alter the conclusions 

of the misspecification tests.   

The fixed effects land value model for parcels with expensive construction explains about 

73% of the variation in land transaction prices (Table 6).  Parcel size is an important determinant 

of land value in this group.  Larger land parcels are associated with higher land values per square 

meter.  Higher elevation is associated with higher land values, while weaker evidence indicates 

that impermeable soils are associated negatively with land values.  Higher elevation and soil 

permeability are indicators of lower flood risk.  Roanoke County has experienced several floods 

in the last fifty years (Roanoke County Planning Department).  The model results indicate that 

lower flood risk areas have higher land values. Land parcels far from the two major malls are 

less expensive perhaps due to the shopping facilities, entertainment amenities, and other services 

provided.  The average price of land parcels sold in 1997 was higher than in 1996.  

  The OLS fixed effects land value model for the non-expensive construction parcels 

explains about 65% of the variance in land transaction prices.  The significance of variables 

differs between models for expensive and inexpensive construction.  In the inexpensive 

construction group, larger parcels have lower land value per square meter.  Lack of soil 

permeability to water (and consequently higher flood risk as indicated by the Soil1 and Soil2 

dummies) is expected to lower land prices.  The sign of the elevation parameter is positive but 

not statistically significant.  There is weak evidence that population density may lower land 
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prices in relatively inexpensive areas.  The negative sign of population density may reflect the 

willingness of the residents in Roanoke County to live in less populated areas and enjoy open 

space amenities.  The negative relationship of land values with distance from the nearest town 

reflects the effects of distance to amenities and lesser residential and commercial development 

potential.  The quadratic term of the distance to the nearest town indicates that the parcel value 

increases at a decreasing rate when a parcel is closer to the town center. The importance of 

location is also reflected by the statistical significance of the coordinate X, which locates the 

parcel from southeast to northwest in Roanoke County. The price of lots sold in 1997 was higher 

than those sold during the previous year. 

Undeveloped Parcels 

The fixed effects model [9] was estimated for the group of undeveloped parcels.   

Log(Price) = A1[Log(Size)] + A2[Log(Size)]2 + A3[Log(Elevation)] + A4(Population) + 

A5(Soil1) + A6(Soil2) + A7[Log(Mall)] + A8[Log(Town)] + A9(Road) + A10(Year) + 

A11[Log(X)] + A12[Log(Y)]  + A13[Log(X)][Log(Y)] +  u       [9] 

Individual and joint misspecification tests provide support for the assumptions of linearity, 

homoskedasticity and structural stability.  Low P-values were reported for the Jacque-Bera test 

suggesting possible violation of the normality assumptions.  However, when some observations 

(less than 1%) were excluded from the sample, the P-value of the Jacque-Bera tests exceeded 

0.1, and provided support for the assumption of normality.  However, the Auxiliary Regression, 

ARCH and the Joint Mean and Variance tests have low P values indicating that the assumptions 

of no first and second order spatial dependence are violated.  This subgroup of parcels is 

probably less homogeneous than the two subgroups of developed parcels. 

Following Spanos (1986) we estimated a fixed effects model for the vacant parcels, 
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which also allows spatial lags of the dependent and independent variables.  Parcels were ordered 

by neighborhood.  Table 5 indicates that by adding spatial lags in model [9] there is an obvious 

improvement in the statistical validity of the model.  There is still strong support for the 

assumptions of linearity, homoskedasticity and structural stability, while P-values of Auxiliary 

Regression and Joint Means tests are also high indicating support for the no spatial 

autocorrelation assumptions (both first and second order, respectively).  However, there is still 

limited support for the hypothesis of no second order spatial dependence (ARCH test).  The 

coefficients of Year and LogX*LogY and their respective spatial lags are not statistically 

different from zero, and the joint F-test recommends dropping these variables from the model.  

The final model estimated is [10] and model estimates are shown in Table 7.   

Log(Price) = A1[Log(Size)] + A2[Log(Size)]2 + A3(Soil1) + A4(Soil2) + A5[Log(Mall)] + 

A6[Log(Town)] + A7(Year) + A8[Log(X)] + A9[Log(Y)] + A10(Road) + A11[WLog(Price)]  + 

A12[WLog(Size)]  + A13(WSoil1) + A14(WSoil2) + A15[WLog(Town)] + A16(WYear) + 

A17[WLog(X)] + A18[WLog(Y)] + A19(WRoad)    + u         [10] 

Parcel size is again a significant determinant of land prices, while there is some weak 

support for a quadratic relation between parcel size and land price.  The quadratic form indicates 

that the value of the parcel per square meter decreases at a declining rate with increases in parcel 

size.  Higher land values should be expected for parcels which are closer to the shopping malls, 

but far from town centers.  Land value is also lower when the parcel is next to a major road.  The 

importance of the parcel location is also underlined by the statistical significance of X and Y.  

The Year variable again has a positive sign but its value is not statistically important.  Finally, 

spatial lags are used in addition to fixed neighborhood effects to control for spatial 

autocorrelation.  The coefficients of spatial lags are larger than the coefficients of the respective 
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explanatory variables implying that neighborhood hedonic characteristics may have stronger 

effects on a parcel’s value than the characteristics of that parcel.  The signs of spatial lags are 

consistent with the signs of their respective explanatory values. For example, an increase in the 

size of a parcel and increases in the sizes of the parcels in a neighborhood affect in the same 

direction the price of the land parcel.  The high R2 value of 0.95 suggests that spatial lags capture 

additional variation of the dependent variable in this case study.  However, the high R2 value 

would have no meaning if the model were not well specified. 

Discussion and Conclusions 

While the possibility of spatial autocorrelation in cross-sectional models is widely accepted, 

current spatial econometric approaches may overlook important factors contributing to observed 

spatial autocorrelation.  Typically current approaches examine the assumptions of normality, 

heteroskedasticity, and structural stability to make sure that observed spatial error autocorrelation 

is not due to misspecification problems other than omission of relevant spatial variables.  If these 

assumptions are satisfied, a spatial error autoregressive model is used to correct for spatial 

dependence.  However, current spatial econometric studies often test only a subset of 

assumptions; test assumptions sequentially; base judgments about model adequacy on fitting 

power; and arbitrarily specify model spatial structure.  This study finds that reliability of model 

estimates is enhanced by basing estimates on a comprehensive set of individual and joint 

misspecification tests proposed by Spanos.   

In this study a land value model for Roanoke County was estimated using OLS.  Model 

results are summarized in Table 8, column 2.   The model was tested for spatial autocorrelation 

after testing for normality, heteroskedasticity and structural stability.  Given the presence of 

spatial autocorrelation, parametric and non-parametric estimation techniques were used to 
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account for spatial autocorrelation.  Anselin (1988) suggests that the researcher should try 

alternative weight matrices to account for neighborhood effects until the misspecification 

problem is solved.  However, the weight matrix used in this study relies on detailed 

neighborhood information provided by the Planning Department of Roanoke County. Results of 

the parametric and non-parametric models are shown in Table 8, columns 3 and 4, respectively.  

While both techniques achieved higher fitting power (based on R2) than the initial model, 

misspecification test results indicate that both models violate essential underlying statistical 

assumptions. Given these assumption violations, we conclude that current spatial econometric 

techniques do not adequately model land values.   

Ultimately three alternative models using OLS and fixed effects of neighborhoods were 

estimated to explain the variation in prices of undeveloped parcels, parcels with non-expensive 

construction, and parcels with expensive construction in Roanoke County.  These models satisfy 

the underlying statistical assumptions and, thus, provide more statistically reliable estimates than 

the models derived earlier using spatial weight matrices.  The study found there was no spatial 

dependence in the developed parcel markets but there was spatial dependence in the undeveloped 

parcel market.  Results are summarized in columns 5, 6, and 7 of Table 8.   

Table 8 illustrates several key differences among the models in terms of estimated 

impacts of hedonic attributes on land values.  First, the OLS, 2SLS, and GME models indicate 

that there is a quadratic relationship between parcel size and land value.  These three models 

agree that land value per square meter decreases with parcel size at a decreasing rate and the 

differences in estimated coefficients are small.  The alternative OLS fixed effects model was 

used to estimate different relationships between parcel size and value which vary by 

development status.  A negative linear relationship was estimated for developed parcels with 
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non-expensive construction meaning larger parcels have lower values per square meter.  

Quadratic relationships were estimated for undeveloped parcels and parcels with expensive 

construction.  Undeveloped parcel values per square meter declined with size while expensive 

parcel values per square meter increased with size.   

Second, the effects of elevation and soil, which are proxies for lower flood risk, vary by 

model.  The OLS, 2SLS, and GME models indicate that higher elevation increases the value of 

the parcel at a decreasing rate.  All three models indicate that impermeable soil qualities (Soil1 

and Soil2) are related to lower land values.  Elevation has mixed effects for the OLS fixed effects 

models increasing land values for expensive and inexpensive construction, but having no effects 

on undeveloped parcel values.  Impermeable soils reduce land values for expensive and 

inexpensive construction but have no effect on undeveloped parcel values.   

Third, with respect to population density, the initial OLS and GME models suggest that 

land values increase with higher population density but at a decreasing rate.  The 2SLS and the 

OLS fixed effects models for developed parcels indicate that increased population density is 

related to lower land values.  Population density is not significant in the OLS fixed effects model 

for undeveloped parcels.   

Fourth, the OLS, 2SLS, and GME models suggest that land values increase with 

distances from town and mall.  The OLS fixed effects models reach a different conclusion.  

Longer distance from a mall is related to lower land values for parcels with expensive 

construction and undeveloped parcels but higher values for parcels with non-expensive 

construction.  Longer distance from the nearest town is related to lower land value in the group 

of non-expensive parcels but higher values in the expensive construction parcels and 

undeveloped parcels.  
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Fifth, the OLS, 2SLS, and GME models indicate negative relationships between parcel 

value and location near a major highway.  The OLS fixed effects models also indicates a 

negative relationship for undeveloped parcels but no relationship for developed parcels.   

All models agree that land transaction prices were higher in 1997 than in 1996.  At least 

one of the location determinants of the parcels (X and Y) is significant in almost all models, 

indicating the importance of location even after accounting for neighborhood affects.   

The first three models yield relatively higher R2 values than the estimated models for 

developed parcels using the OLS fixed effects approach.  However, higher fitting power can be 

misleading if the model is not well-specified.  In addition, the models for developed parcels were 

estimated using smaller, more homogeneous samples and, thus, lower variability in the 

dependent variable is likely to cause a decline in the fitting power of the models.  

Davidson and Mackinnon conclude that in most cases models with apparently correlated 

residuals have other specification problems besides error autocorrelation.  Future research may 

indicate that this is also the case in cross-sectional studies that present spatial autocorrelation. 

More work is also needed to corroborate whether developing a statistically adequate model 

(Spanos) will make it unnecessary to include arbitrarily specified weight matrices to account for 

the influence of surrounding parcels.  In cases where spatial lags are needed, more research 

would be useful to examine how a simple linear distance performs as a spatial weight matrix 

relative to neighborhood boundaries based on socioeconomic and other geographic 

characteristics.  Finally, further research is needed on the use of a more complete set of 

misspecification tests to validate the choice of a weight matrix.  

Results of the study have implications for urban expansion to rural areas as well as 

government zoning policies.  Specifically, the study showed that the type of residential and 
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commercial development (expensive versus non-expensive construction) affects the stochastic 

process of land values in Roanoke County.  Changes in parcel size have different implications 

for land values according to their development status.  Smaller parcels may result in higher 

values and tax revenue per square meter in areas with non-expensive construction or 

undeveloped parcels while smaller parcels may have lower values on a per square meter basis in 

areas with expensive construction.  More research is necessary to examine how parcel size 

affects land value, an issue of importance to local governments concerned with the effects of 

development on fiscal revenues and costs and environmental quality. 
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Table 1 

Descriptive Statistics of Land Values and Explanatory Variables 

Variable 

 

Average Std. Dev. Minimum Maximum 

Price ($/m2)  23.13 18.08 0.02 133.40 

Area (m2) 8,546.53 75,202.91 56.97 2,165,233.00 

Elevation (m)  379.82 88.69 3.22 1,003.00 

Slope (degrees) 5.49 3.54 0.00 34.56 

Soil Qual. 1 0.03 0.17 0.00 1.00 

Soil Qual. 2 0.87  0.33 0.00 1.00 

Mall 1 (m)  8,861.89 4,281.51 2002.89 27,024.59 

Mall 2 (m) 9,246.60 4,774.35 435.92 27,483.35  

Roanoke (m) 8,828.68 3,818.12 3,395.87 28,794.36 

Blacksburg (m) 39,858.68 6,786.72 18,165.42 51,206.84 

Road 0.05 0.22 0.00 1.00 

Population (p/Ha) 5.90 4.60 0.05 18.65 

Developed 0.88 0.33 0.00 1.00 

Coord. Y 16,881.90 6,022.44 1.81 30,585.74 

Coord. X   24,888.27 6,766.91 0.15 36,626.16 

Year     0.49 0.50 0.00 1.00 
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Table 2 

OLS Estimates for the Land Value Model in Roanoke County 

Variable Coefficient Std. Dev. t-ratio 

Constant -17.46850 3.214461 5.434 

Log(Size) -0.483947  0.069485 6.964 

[Log(Size)]2  -0.030618  0.009440  3.243 

Log(Elevation)  0.337926 0.274165  1.233 

[Log(Elevation)]2 -0.106225  0.065750  1.616 

Soil1 -0.056682 0.019007 2.982 

Soil2 -0.091607 0.036173 2.532 

Population 0.004845 0.004217 1.149 

(Population)2 -0.000059 0.000023  2.571 

Log(Mall) 1.402944  0.417148  3.363 

[Log(Mall)]2 -0.220563  0.057922  3.808 

Log(Town) 0.250346 0.068201  3.671 

Developed 0.094025 0.015405  6.103 

Road -0.070932 0.022242  3.189 

Year 0.056391 0.009418 5.987 

LogX 4.190094 0.732566 5.719 

LogY 3.811132 0.695302 5.481 

(LogX)*(LogY) -0.930265  0.167058  5.569 

R2     0.809 

Adjusted R2  0.807 
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Table 3 

Misspecification Tests for the OLS Land Value Model 
Test Null Hypothesis Specification   P Value  
Jacque-Bera 
 

Residuals are normally 
distributed 

JB = (N-k)(4S2+ (K-3)2)/24 S is skewness, 
K is Kurtosis, and N-k are the degrees of 
freedom 

0.000000 

Linearity  
 

Redundancy of non-linear 
(squared) variables 

u = c + ax +bx2  u is the vector of residuals, 
c is a constant, x is the vector of variables
   

0.863646
  

Linearity  
 

Redundancy of non-linear 
(cross product) variables  

u = c + ax +by  u is the vector of residuals, 
u, c, and x as above and y is the vector of 
cross-product variables  

0.154613 

White  Homoskedasticity u2 = c + ax +bx2 + dy  u, c, and x as 
described above and y is the vector of cross-
product variables  

0.762358 

Auxiliary Regression 
 

No spatial autocorrelation 
(ordering according to 
neighborhoods) 

U = c + ax +bWu  u, c, and x as described 
above and W is the weight matrix 

0.000000 

Ramsey RESET 
 

Correctly specified functional 
form of the model 

U = c + ax +bm  u, c, and x as described 
above and m is the vector of fitted values of 
x 

0.932831 

ARCH  No second order dependence u2
z = c + au2

z-1 +bu2
z-2 +du3

z-3   u, c, and x as 
above and z is the ordering factor 

0.000000 

Chowa Existence of structural change 
 

F statistic based on the comparison of 
restricted and unrestricted sum of square 
residuals 

>0.2 
 

Fixed Effects  No neighborhood fixed effects u = c + aus  u, c defined as above, and us is 
the residual average of a neighborhood  

0.000000 

First Joint Meanb Linearity, no spatial auto-
correlation, structural stability. 

u = c + ax + bx2 + dWu + kT  u, x, and W as 
described above and T is a binary variable 
with 0 before the break point and 1 after 

0.000000 
 

Spatial        
Autocorrelation 

No spatial autocorrelation (in 
the joint mean test) 

u = c + ax + bx2 + kT  u, x, W, and T as 
described above 

0.000000 

Structural Stability Existence of structural change  u = c + ax + bx2 +dWu  u, x, and W as 
described above  

0.086541 

Linearityb Redundancy of non-linear 
variables 

u = c + ax + dWu + kT  u, x, W, and T as 
described above 

0.401531 

Joint Varianceb  Homoskedasticity, no second 
order dependence and 
structural stability. 

u2
z = c + ax + bx2 + du2

z-1 + kT  u, c,  x, W, 
z, and T as described above 

0.000000 
 

Second Order 
Dependence 

No dependence in residual 
variance (in joint var. test) 

u2
z = c + ax + bx2 + kT  u, c,  x, and T as 

described above 
0.000000 

Structural Stability Structural change (in joint 
variance test) 

u2
z = c + ax + bx2 + du2

z-1  u, c, x, and T as 
described above 

0.165318 

Homoskedasticity Homoskedasticity (in joint 
variance test) 

u2
z = c + ax + bx2 + du2

z-1 + kT  u, c, x, and 
T as described above  

0.555664 

Second Joint Mean  No spatial autocorrelation, no 
neighborhood fixed effects 

u = c + aus + bWu  u, c, us, and W defined 
as above 

0.000000 
 

Spatial 
Autocorrelation 

No spatial autocorrelation (in 
the joint mean test) 

U = c + aus  u, c,  and us as defined above 0.000000 

Fixed Effects  No neighborhood fixed effects 
(in the joint mean test) 

U = c + bWu  u, c, and W defined as above 0.000000 

aBreak points at n = 213 and n = 715. 
bBreak point at n = 213. 
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Table 4 

Spatial Two Stage Least Squares Estimates for the Spatial Autoregressive Land 

Value Model in Roanoke County 

Variable Coefficient Std. Dev. t-ratio 

Constant -14.025794 3.342787 4.201 

WPRICE  0.224864 0.021740 10.18 

Log(Size) -0.358954 0.073127 4.943 

[Log(Size)]2  -0.040581 0.009814 4.214 

Log(Elevation)  0.186547 0.282630 0.663 
[Log(Elevation)]2 -0.048758     0.067642    0.842 

Soil1 -0.030005 0.023742 1.672 

Soil2 -0.066687 0.037231 1.830 

Population -0.002354 0.004381 0.450  

(Population)2 -0.000186   0.000241 0.808 

Log(Mall) 0.835478     0.436488 1.894 

[Log(Mall)]2 -0.112562      0.060764     2.189 

Log(Town) 2.845821     0.621488      4.160 

Developed 0.135478 0.015608 8.157 

Road -0.058667 0.022836 2.653 

Year 0.053485 0.009699 5.442 

LogX 3.316587 0.755211 4.393 
LogY 3.026457  0.716423 4.217 

(LogX)*(LogY) -0.655475 0.172219 4.278 

pseudo R2    0.815   
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Table 5 
Misspecification Tests for Land Value Models for Developed and Undeveloped Parcels 

   P Values 
Test Null Hypothesis Specification   Expensive 

Construction 
Non-
expensive 
Construction 

Undevelope
d parcels 
with spatial 
lags 

Jacque-Bera 
 

Residuals are normally 
distributed 

JB = (N-k)(4S2+ (K-3)2)/24 S is the skewness, K is the Kurtosis, 
and N-k are the degrees of freedom 

0.377409 0.510699 0.000000 

Linearity  
 

Redundancy of non-linear 
(squared) variables 

u = c + ax +bx2  u is the vector of residuals, c is a constant, x is 
the vector of variables   

0.548247
  

0.863646
  

0.999761 

Linearity  
 

Redundancy of non-linear 
(cross product) variables  

u = c + ax +by  u is the vector of residuals, c is a constant, y is 
the vector of cross-product variables   

0.128269 0.154613 0.646551 

White (Hetero-
skedasticity 
squares)a 

Homoskedasticity  u2 = c + ax +bx2 + dy  u is the vector of residuals, c is a 
constant, x is the vector of variables, y is the vector of cross-
product variables 

0.092861 0.112854 0.863646 

Auxiliary 
Regression 
 

No spatial autocorrelation 
(ordering according to 
neighborhoods) 

u = c + ax +bWu  u is the vector of residuals, c is a constant, x is 
the vector of variables and W is the weighting matrix 

0.176971 0.425345 0.425345
 

Ramsey RESET 
 

Correctly specified functional 
form of the model 

u = c + ax +bz is the vector of residuals, c is a constant, x is the 
vector of variables and z is the vector of fitted values of x 
 

0.483672 0.932831 0.487500 
 

ARCH  No second order dependence u2
z = c + au2

z-1 +bu2
z-2 +du2

z-3   u is the vector of residuals, c is a 
constant, x is the vector of variables, z is the ordering factor 

0.084552 0.098172 0.001703 
 

Chowb Existence of structural change 
 

F statistic based on the comparison of restricted and unrestricted 
sum of square residuals 

>0.1 
 

>0.1 
 

0.394885 
 

Joint Meanb Linearity, no spatial 
autocorrelation and structural 
stability. 

u = c + ax2 +bWu + dT  u, x, and W as described above and T is 
a binary variable with 0 before the break point and 1 after  

>0.1 
 

>0.1 
 

0.163581 

Joint Varianceb Homoskedasticity, no second 
order dependence and 
structural stability. 

u2
z = c + ax2 + bu2

z-1 + dT  u, c,  x, W, z, and T as described 
above 

>0.1 
 

>0.05 
 

0.076762 
 

Redundancy  Variables “Road” and 
“LogX*LogY” are essential 
for the land value model. 

F-test comparing residual sums of squares for the land value 
model with and without these variables 
 

0.000000 
 

0.000001 0.000000 
 

aHypothesis test is for b = d = 0. 
bBreak points of n = 400 and n = 800 for the expensive construction group, n = 200 and n = 400 for the non-expensive construction group, and n = 100 for the 
undeveloped parcels. 
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Table 6 
OLS Estimates for the Fixed Effects Land Value Model for Observations in the 

Expensive and Non-expensive Construction Groups 
Variable Coefficient Std. Dev. t-ratio 

Expensive Construction Group   

Log(Size) -0.829923 0.021288 39.3 

[Log(Size)]2  0.056520 0.031224 1.37 

[Log(Size)]3 0.000737 0.040547 2.59 

Population -0.002805 0.003200 0.87 

Log(Elevation) 0.288472 0.167098 1.82 

Soil1 -0.020531 0.034965 0.58 

Soil2 -0.086192 0.049628 1.74 

LogX -0.109929 0.177109 0.62 

LogY  0.155010 0.128656 1.20 

Log(Mall) -0.192311 0.010076 1.97 

Log(Town) 0.024088 0.251096 0.09 

Year 0.044958 0.007231 6.21 

R2     0.7316 Adjusted R2 0.7286 

Non-expensive Construction Group   

Log(Size) -0.747182 0.027792 26.9 

Population -0.004161 0.002680 1.56 

Log(Elevation) 0.054530 0.070985 0.77 

Soil1 -0.102809 0.045168 2.27 

Soil2 -0.153847 0.078481 1.97 

Log(Town) -0.369564 0.183270 2.06 

[Log(Town)]2 -2.118983 0.855956 2.25 

Log(Mall) 0.019926 0.137524 0.14 

LogX 0.230214 0.035913 6.27 

LogY -0.097929 0.113661 0.85 

Year 0.061557 0.012926 4.76 

R2 0.6556 Adjusted R2 0.6497 
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Table 7 

OLS Estimates for the Fixed Effects Land Value Model for Undeveloped Parcels 

Variable Coefficient Std. Dev. t-ratio 

Log(Size) -0.695926 0.028389 24.5 

[Log(Size)]2 0.019661 0.012441 1.58 

Log(Mall) -0.313128 0.106184 2.95 

Log(Town) 1.722006 0.376349 4.57 

Road -0.210169 0.057640 3.64 

LogX 0.437769 0.139052 3.15 

LogY -0.195595 0.099372 1.97 

Year 0.023158 0.020734 1.12 

WLog(Price) -1.725382 0.075915 22.7 

WLog(Size) -1.197150 0.069400 17.2 

WLog(Town) 3.371006 0.844649 3.99 

WRoad -0.343883 0.085956 4.00 

WLogX 0.959943 0.423241 2.27 

WLogY -0.555855 0.272661 2.04 

WYear 0.084640 0.047181 1.79 

R2 0.9516 Adjusted R2 0.9482 
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Table 8 
Model Estimates for Land Values in Roanoke County 

 
   

OLS Fixed Effects Models 

Variable OLS 2SLS GME 
Expensive 
Construction 

Non-
Expensive 
Construction 

Undevel-
oped Parcels 

Constant -17.46850 -14.02579 -8.58745    
Log(Size) -0.48395 -0.35895 -0.31823 -0.82992 -0.74718 -0.69593 
[Log(Size)]2  -0.03062 -0.04058 -0.04704 0.05652  0.01966 
[Log(Size)]3    0.000737   
Log(Elevation) 0.33793 0.18655 0.41922 0.28847 0.05453  
[Log(Elevation)]2 -0.10623 -0.04876 -0.14528    
Soil1 -0.05668 -0.03001 -0.05906 -0.02053 -0.10281  
Soil2 -0.09161 -0.06669 -0.06158 -0.08619 -0.15385  
Population 0.00485 -0.00235 0.00998 -0.00281 -0.00416  
(Population)2 -0.00006 -0.00019 -0.00090    
Log(Mall) 1.40294 0.83548 1.77236 -0.19231 0.01993 -0.31313 
[Log(Mall)]2 -0.22056 -0.11256 -0.27594    
Log(Town) 0.25035 2.84582 2.13548 0.02409 -0.36956 1.72201 
Log(Town)2     -2.11898  
Developed 0.09403 0.13548 0.04761    
Road -0.07093 -0.05867 -0.14257   -0.21017 
Year 0.05639 0.05349 0.01458 0.04496 0.06156 0.02316 
LogX 4.19009 3.31659 4.12933 -0.10993 0.23021 0.43777 
LogY 3.81113 3.02646 3.75875 0.15501 -0.09793 -0.19560 
(LogX)*(LogY) -0.93027 0.17222 0.11878    
WLog(Price)  0.22486    -1.72538 
WLog(Size)      -1.19715 
WLog(Town)      3.37101 
WRoad      -0.34388 
WLogX      0.95994 
WLogY      -0.55586 
WYear      0.08464 
       
R2 0.8090 0.8154 0.8821 0.7316 0.6556 0.9516 

 


