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Abstract

This paper focuses on the practice of serial correlation correcting of the Linear
Regression Model (LRM) by modeling the error. Simple Monte Carlo experiments are
used to demonstrate the following points regarding this practice. First, the common
factor restrictions implicitly imposed on the temporal structure of yt and xt appear to
be completely unreasonable for any real world application. Second, when one compares
the Autocorrelation-Corrected LRM (ACLRM) model estimates with those from the
(unrestricted) Dynamic Linear Regression Model (DLRM) encompassing the ACLRM,
there is no significant gain in efficiency! Third, as expected, when the common factor
restrictions do not hold the LRM model gives poor estimates of the true parameters
and estimation of the ACLRM simply gives rise to different misleading results! On
the other hand, estimates from the DLRM and the corresponding VAR model are very
reliable. Fourth, the power of the usual Durbin Watson test (DW) of autocorrelation
is much higher when the common factor restrictions do hold than when they do not.
But, a more general test of autocorrelation is shown to perform almost as well as the
DW when the common factor restrictions do hold and significantly better than the
DW when the restrictions do not hold. Fifth, we demonstrate that the simple F-test
suggested by Davidson and MacKinnon (1993) is quite powerful.
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1 Introduction
A key assumption underlying the Linear regression model (LRM) typically used in applied
econometric studies is that of no autocorrelation. The traditional way of handling the
LRM in cases where this assumption is false is to model the serial correlation explicitly
using some error autocorrelation formulation, say an AR(1) process, and then use GLS to
estimate the Autocorrelation-Corrected LRM (ACLRM). When one models the error term,
restrictions are implicitly imposed on the structure of the observable random variables
involved yt and xt. The implicit (testable) restrictions implied in the AR(1) —the common
factor restrictions—have been known for a long time (Sargan, 1964) yet they are still rarely
tested in applied econometric studies. Further, despite the serious warnings from Henry and
Mizon (1978), Sargan (1980), Spanos (1986, 1988), Hoover (1988), and Mizon (1995), inter
alia, the practice of autocorrelation correcting is still common. In fact, its use may even be
on the rise largely due to the increased use of spatial data which exhibit dependencies, and
‘advances’ in techniques for autocorrelation correcting systems of simultaneous equations,
panel data models, etc.

The primary objective of this paper is make a strong case against the tradition of
‘correcting’ for serial correlation by modeling the error.

2 ‘Correcting’ for serial correlation
The Linear Regression Model (LRM) has been the quintessential statistical model for
econometric modeling since the early 20th century with pioneers like Moore and Schultz;
see Morgan (1990). Yule (1921, 1926) scared econometricians away from regression by
demonstrating that when using time series data regression often leads to spurious results.
The first attempt to deal with the problem of regression with time series data was by
Cochrane and Orcutt (1949) who proposed extending the LRM to include autocorrelated
errors following a low order ARMA(p,q) formulation. They also demonstrated by simulation
that the Von Neuman ratio test for autocorrelation was not very effective in detecting
autocorrelated errors. Durbin and Watson (1950,1951) addressed the testing problem in
the case where the linear regression model:

yt = β>xt + ut, t ∈ T,(1)

where xt is a k × 1 vector, supplemented with an AR(1) error:
ut = ρut−1 + εt, |ρ| < 1, t ∈ T.(2)

Substituting (2) into (1) gives rise to:

yt = β>xt + ρyt−1 − ρβ>xt−1 + ut, t ∈ T,(3)

and the well known Durbin-Watson (D-W) test based on the hypotheses:

H0 : ρ = 0, vs. H0 : ρ 6= 0.(4)

Since then, the traditional econometric literature has treated this extension of the LRM
as providing a way to test for the presence of error autocorrelation in the data as well as
a solution to the misspecification problem if one rejects H0. That is, when the D-W test
rejects H0 the modeler adopts (3) as a way to ‘correct’ for serial correlation; the latter
model is then estimated using Feasible Generalized Least Squares (GLS); see inter alia
Green (2000).
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Sargan (1964) was the first to view (3) as a restricted version of a more general model:

yt = α1yt−1 + β>0 xt + β>1 xt−1 + ut, t ∈ T,(5)

known as the Dynamic Linear Regression Model (DLRM), where the restrictions take
the form:

H
(cf)
0 : β>1 − α1β

>
0 = 0.(6)

Sargan proposed a likelihood ratio test for testing these, so-called common factor restric-
tions, before imposing them. His proposal was further elaborated upon by Hendry and
Mizon (1978) and Sargan (1980). In an attempt to show the restrictive nature of (6),
Spanos (1988) investigated the probabilistic structure of the vector stochastic process {Zt,
t ∈ T}, where Zt := (yt,x>t )> that would give rise to such restrictions. It was shown that
the common factor restrictions arise naturally when {Zt, t ∈ T} is a Normal, Markov and
Stationary process:µ

Zt
Zt−1

¶
v N

µµ
0
0

¶
,

µ
Σ(0) Σ(1)>

Σ(1) Σ(0)

¶¶
, t ∈ T,

with a temporal covariance structure of the form:

Σ(1) = ρΣ(0).(7)

The sufficient conditions in (7) are ‘highly unrealistic’ because, as shown in Spanos (1988),
they give rise to a very restrictive VAR(1) model for the {Zt, t ∈ T} process of the form:

Zt = A
>Zt−1 +Et, Et v N(0,Ω), t ∈ T,

A =

µ
ρ 0
0 ρIk

¶
, Ω = (1− ρ2)Σ(0).

That is, yt and xt are mutually Granger non-causal and have identical AR(1) represen-
tations! Mizon (1995) elaborated on the sufficient condition and recommended that the
traditional way of ‘correcting for serial correlation’ is a bad idea; his paper is entitled “A
simple message to autocorrelation correctors: Don’t”. Unfortunately, that advice seems to
continue to be ignored by the recent traditional literature with dire consequences for the
reliability of inference based on such models.

The primary objective of this paper is to elaborate on Spanos (1988) by showing that
the temporal structure (7) is not just sufficient for the common factors restrictions, but
also necessary and proceed to illustrate the unreliability of inference when this is ignored.

3 A specification/respecification perspective
One possible reason why the empirical econometric practice continues to ignore the
warnings concerning the inappropriateness of the ‘serial correlation correction’ is that this
problem raises several methodological issues that have not been addressed adequately in
the literature. For instance, ‘why is it problematic to adopt the alternative hypothesis in
the case of a D-W test?’ It is generally accepted that there is no problem when one adopts
the alternative in the case of a t-test for the hypothesis:

H0 : β1 = 0, vs. H0 : β1 6= 0.(8)
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The purpose of this section is to address briefly these methodological issues in the context
of the Probabilistic Reduction framework; see Spanos (1986,1995).

Despite the apparent similarity between the D-W test and a significance t-test in terms
of the hypotheses being tested, the fact is that they are very different in nature. As argued
in Spanos (1998,1999), the D-W test is a misspecification test, but the later is a proper
Neyman-Pearson test. The crucial difference between them is that the D-W is probing
beyond the boundaries of the original model, the LRM, but the t-test is probing within
those boundaries. In a Neyman-Pearson test there are only two types of errors (reject the
null when true and accept the null when false) because one assumes that the prespecified
statistical model (LRM) contains the true model, and thus rejection of the null leaves only
one other choice, the alternative, because between them they span the original model. In
the case of a misspecification test one is probing beyond the boundaries of the prespecified
model by extending it in specific directions; the D-W test extends the LRM by attaching an
AR(1) error. A rejection of the null in a misspecification test does not entitle the modeler
to infer that the extended model is true; only that the original model is misspecified! In
order to infer the validity of the extended model one needs to test its own assumptions.
In the case of the D-W test, if the null is rejected one can only infer that the LRM is
misspecified in so far as the no autocorrelation assumption is rejected by the data and thus
the data exhibit some kind of dependence. However, the type of dependence present in the
data can only be established by thorough misspecification testing of alternative statistical
models which allow for such dependence. The alternative model involved in a D-W test (5)
is only of one of an infinite number of such models one can contemplate and so is (5); the
only advantage of the latter is that it nests the former and thus if (5) is misspecified so is
(3). Hence, in terms of respecifying the LRM to allow for temporal dependence the DLR
(5) is considerably more realistic than (3) because it allows for a much less restrictive form
of temporal dependence than (3) does.

4 Revisiting the Common Factor Restrictions
Consider the Linear Regression Model (LRM):

yt = β>xt + ut,

with an AR(m) error process:

ut = ρ1ut−1 + ρ2ut−2 + ...+ ρmut−m + εt, εt v NIID(0,σ2), t ∈ T,(9)

the most typical formulation being an AR(1). Substituting the AR(m) model of the error
into the main model yields:

yt = β>xt +
mX
i=1

ρi

h
yt−i − β>xt−i

i
+ εt, t ∈ T.(10)

Thus, the AR(m) error formulation is simply a restricted version of the Dynamic Linear
Regression Model (DLRM):

yt = β>0 xt +
mX
i=1

h
αiyt−i + β>i xt−i

i
+ vt, vt v NIID(0,σ2), t ∈ T.(11)

The specific common factor restrictions for (11) viewed in the context of (10) are:

β0αi = −βi, i = 1, ...,m.
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To understand the implications of these common factor restrictions in terms of the
parameters of the joint distribution underlying the regression model (11), we make use of
Theorem 1 in Spanos and McGuirk (2002).

Theorem 1. Consider the Linear Regression Model:

yt = γ0 + γ01xt + ut, ut v NIID(0,σ2), t ∈ T,
where xt is a kx1 vector. Under the assumptions E(ut|Xt) = 0 and E(u2t |Xt) = σ2

the model parameters (γ0, γ1,σ
2) are related to the primary parameters of the stochastic

process {Zt, t ∈ T} :

E(Zt) := µ =

µ
µ1
µ2

¶
, Cov(Zt) := Σ =

µ
σ11 σ>21
σ21 Σ22

¶
,

where Zt ≡ (yt,X>t ) via:
γ0 = µ1 − γ01µ2 and γ1 = Σ

−1
22 σ21.

In the case of the unrestricted dynamic linear regression model (11) with m = 1,
assuming for simplicity that all variables are in mean deviation form, Zt := (yt,X

>
t ),

x>t := (yt−1, xt, xt−1), xt is a scalar. {Zt, t ∈ T} is a second order stationary process, the
primary parameters defining the process are:

E(Zt) := µ =


0
0
0
0

 ; Cov(Zt) := Σ =


σ11(0) σ11(1) σ12(0) σ12(1)
σ11(1) σ11(0) σ12(1) σ12(0)
σ12(0) σ12(1) σ22(0) σ22(1)
σ12(1) σ12(0) σ22(1) σ22(0)

(12)

where σ11(i) = Cov(yt, yt−i), σ12(i) = Cov(yt, xt−i) = Cov(yt−i, xt), and σ22(i) =

Cov(xt, xt−i), i = 0, 1. Further the model parameters of the unrestricted dynamic linear
regression model are (α1,β0,β1,σ

2) and these parameters are related to the primary
parameters via the following system of equations:

β =

 α1
β0
β1

 =

 σ11(0) σ12(1) σ12(0)
σ12(1) σ22(0) σ22(1)
σ12(0) σ22(1) σ22(0)

−1 σ11(1)
σ12(0)
σ12(1)

(13)

σ2 = σ11(0)−
¡
σ11(1) σ12(0) σ12(1)

¢  α1
β0
β1

 .
When the common factor restriction holds, α1 = ρ and β=

¡
ρ β0 −ρβ0

¢>
. It is

instructive to solve this (restricted) non-linear system of 4 equations for σ11(0), σ11(1),
σ12(0), σ22(1).1 The solution yields:

σ11(1) = σ12(1)β0 +
ρσ2

1−ρ2 ,(14)

σ11(0) = σ12(0)β0 +
σ2

1−ρ2 ,(15)

1This system of equations was solved using a combination of Matlab (symbolics toolkit) and Mathematica.
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σ22(1) = σ12(1)/β0,(16)

σ22(0) = σ12(0)/β0.(17)

Note that (16)-(17) taken together indicate:

σ22(1)

σ22(0)
=

σ12(1)

σ12(0)

and thus, the common factor restrictions imply Cov(xt, xt−1) = λV ar(xt) and
Cov(yt, xt−1) = Cov(yt−1, xt) = λCov(yt, xt), where λ is simply an unknown constant
of proportionality.

It turns out that the common factor restrictions also imply Cov(yt, yt−1) = λV ar(yt).
To see this note that (14)-(15), in conjunction with (16)-(17) imply:

ρ =
σ11(1)− σ12(1)β0
σ11(0)− σ12(0)β0

=
σ11(1)− λσ12(0)β0
σ11(0)− σ12(0)β0

.(18)

Further, the (messy) equation for ρ found by expanding (13) simplifies nicely when one
substitutes in λσ12(0) for σ12(1) and λσ22(0) for σ22(1). These simplifications yield:

ρ =
λσ12(0)

2 − σ11(1)σ22(0)

σ12(0)2 − σ11(1)σ22(0)
(19)

Setting the expressions for ρ in (18) and (19) equal to each other, and solving for σ11(1)
yields:

σ11(1) = λσ11(0)(20)

or Cov(yt, yt−1) = λV ar(yt). Further, substituting (20) into (19) and simplifying yields:

λ = ρ.

Thus, the common factor restrictions imply identical temporal structure between the
observable random variables in the sense that:

Cov(xt, xt−1) = ρ Cov(xt, xt); Cov(yt, yt−1) = ρ Cov(yt, yt);(21)

Cov(yt, xt−1) = Cov(yt−1, xt) = ρ Cov(yt, xt).

The conditions (21) are identical to those given in Spanos (1988) as sufficient for the
common factor restrictions to hold. The derivations above, however, show that they are
also necessary.

More insight can be gained into the restrictiveness of (21), by deriving the vector
autoregressive model (VAR) model based on D(Zt|Zt−1;ψ) which is derivable directly from
D(Z1,Z2, ...,ZT ;φ). Taking into account the restrictions in (21), Σ of (12) can be simplified
as follows:

Cov(Zt) := Σ =


σ11(0) ρσ11(0) σ12(0) ρσ12(0)
ρσ11(0) σ11(0) ρσ12(0) σ12(0)
σ12(0) ρσ12(0) σ22(0) ρσ22(0)
ρσ12(0) σ12(0) ρσ22(0) σ22(0)

(22)

From this variance-covariance matrix we can use the theorem above to show that the
model parameters underlying the VAR(1) model:

Zt = A
>Zt−1 +Et,Et v NIID(0,Ω)(23)
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are related to the primary parameters in (22) via:

A> =
µ

σ11(0) σ12(0)
σ12(0) σ22(0)

¶−1µ
ρσ11(0) ρσ12(0)
ρσ12(0) ρσ22(0)

¶

Ω =

µ
σ11(0) σ12(0)
σ12(0) σ22(0)

¶
−
µ

ρσ11(0) ρσ12(0)
ρσ12(0) ρσ22(0)

¶
A>

which simplify to:

A =

µ
ρ 0
0 ρ

¶
, Ω = (1− ρ2)

µ
σ11(0) σ12(0)
σ12(0) σ22(0)

¶
.

These derivations confirm that the sufficient conditions Σ(1) = ρΣ(0),are also necessary in
the case of k = 1.

5 Monte Carlo Simulations
In an attempt to illustrate the restrictive nature of ‘correcting for serial correlation’ by
modeling the error, we consider a number of Monte Carlo experiments. These experiments
relate to the linear regression model and departures from the no autocorrelation assumption.
All experimental results reported are based on 10,000 replications of sample sizes T = 25
and T = 50.

5.1 Experiment 1 - Linear Regression with temporal dependence
In Experiment 1 we generate data with two very similar implied Dynamic Linear
regression Models (1A-1B). They differ by only one model parameter, β1,the parameter
on xt−1.

Experiment 1A - Primary parameters
E(Yt) = 2, V ar(Yt) = 1.115, Cov(Yt, Yt−1) = 0.446, Cov(Yt,Xt−1) = −.678,
E(Xt) = 1, V ar(Xt) = 1, Cov(Xt,Xt−1) = 0.6, Cov(Yt,Xt) = −.269,

giving rise to an Unrestricted Dynamic Linear regression Model (UDLRM) model:

yt = 1.037 + 0.6yt−1 + 0.7xt − 0.9369xt−1, σ2 = 0.4;<2 = 0.641.(24)

Experiment 1B - Primary parameters2

E(Yt) = 2, V ar(Yt) = 1.115, Cov(Yt, Yt−1) = 0.669, Cov(Yt,Xt−1) = .42,
E(Xt) = 1, V ar(Xt) = 1, Cov(Xt,Xt−1) = 0.6, Cov(Yt,Xt) = .70,

giving rise to the Restricted Dynamic Linear regression Model (RDLRM) model:

yt = 0.52 + 0.6yt−1 + 0.7xt − 0.42xt−1, σ2 = 0.4;<2 = 0.641.(25)

Note that the true regression model in 1B is considered ‘restricted’ because it can also
be written as:

yt = 1.3 + 0.7xt + ut, ut = 0.6ut−1 + vt, t ∈ T.(26)

2Experiments 1A and 1B are also similar in the sense that Det(Σ) = 0.16.
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That is, for experiment 1B, the common factor restrictions implicitly imposed by an error
AR(1) process hold.

We begin our simulation, as a typical modeler would and estimate the Normal, linear
regression (LRM):

yt = α0 + β0xt + ut, t ∈ T,
We test for first order autocorrelation using the typical Durbin-Watson (D-W) test, and by
running auxiliary regressions of ût on (i) ût−1 and xt, (ii) yt−1, xt−1, and xt, and (iii) only
ût−1. These three autocorrelation misspecification tests cover the gambit of tests usually
implemented in applied work. The LRM simulation results for Experiments 1A (UDLRM)
and 1B (RDLRM) are reported in Tables 1A-1B.

The results in tables 1A-B suggest that the temporal dependence would be detected at
a reasonably high percentage in both cases (UDLRM and RDLRM). Interestingly, despite
the similar fit of the two models (based on R 2), the dependence is detected more often
in the UDLRM case. Not surprisingly, given our discussions above, the D-W test is most
likely to detect temporal dependence departures in the RDLRM, while the most general
auxiliary regression test (ût on yt−1, xt−1, and xt) performs best in the UDLRM.

Table 1A - True: UDLRM // Estimated: LRM (OLS)
T=25 T=50

True Mean Std Mean Std

α̂0 1.037 1.6109 0.3611 1.6978 0.2456
β̂0 0.70 0.3887 0.2939 0.3023 0.2229
σ̂2 0.40 1.0754 0.4174 1.1766 0.3105
R2 0.641 0.1556 0.1426 0.0975 0.0940

t-statistics Mean % reject (.05) Mean % reject (.05)
τα0 =

α̂0−α0
σ̂α0

1.9335 0.459 3.0109 0.816

τβ0 =
β̂0−β0
σ̂β0

-1.4208 0.332 -2.5235 0.634

Misspecification Test Statistic % reject (.05) Statistic % reject (.05)

Durbin-Watson 0.9315 0.877 0.8559 0.997
ût−1 (with xt) 10.8535 0.768 25.057 0.991
yt−1, xt−1(with xt) 21.948 0.984 0.488 1.00
ût−1 9.00 0.794 23.271 0.992

Tables 1A-1B also illustrate that in the case of the UDLRM the estimators of α0,
β0, and σ2 are badly biased and any inference associated with these parameters will be
invalid. Further, these problems are accentuated as T → ∞. In contrast, yet consistent
with theory, β̂0 in the RDLRM appears unbiased, while σ̂2 is biased. Interestingly, α̂0 is
a reasonably good estimator of the intercept in the AR(1) model (26), where the common
factor restrictions are imposed, and a biased estimator of the intercept in the general model
formulation (25) where α0 = 0.52, even though the errors have not been modeled as an
AR(1) process.
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Table 1B- True: RDLRM // Estimated: LRM (OLS)
T=25 T=50

True Mean Std Mean Std

α̂0 0.52 1.320 0.2382 1.3104 0.1671
β̂0 0.70 0.6810 0.2216 0.6896 0.1610
σ̂2 0.40 0.5512 0.1696 0.5855 0.1255
R2 0.641 0.4237 0.1717 0.4307 0.1297

t-statistics Mean % reject (.05) Mean % reject (.05)
τα0 =

α̂0−α0
σ̂α0

3.733 0.919 5.1127 0.997

τβ0 =
β̂0−β0
σ̂β0

-0.1266 0.163 -0.0950 0.168

Misspecification Test Statistic % reject (.05) Statistic % reject (.05)

Durbin-Watson 1.0699 0.743 0.9370 0.980
ût−1 (with xt) 8.1093 0.607 21.175 0.958
yt−1, xt−1(with xt) 5.491 0.576 12.112 0.941
ût−1 6.195 0.633 19.011 0.961

Suppose that, on the basis of the D-W tests in 1A and 1B, the modeler decided to
‘correct’ the apparent autocorrelation problem by adopting the alternative of an LRM
with an AR(1) error model (see (3)). Tables 2A-2B give simulation results for the models
re-estimated using an iterative Cochrane-Orcutt correction (EGLS). As expected, for the
RDLRM case, where the common factor restrictions hold, inferences regarding β0 and α∗0,
the intercept in (26), are reliable. In contrast in the UDLRM, though the EGLS estimators
seems to do better than the OLS estimators of the LRM, both are still biased and the
extent of the bias increases with T .

Tables 2A-2B also report the results a modeler would likely obtain if the common factor
restrictions imposed by implementing EGLS are tested. The first test is the approximate
F-test recommended in Davidson and MacKinnon (1993) and the second is the more
theoretically appealing Likelihood ratio (LR) test (see Spanos, 1986). The last test is
a Wald test of the restrictions implicitly imposed on the VAR(1) model by the AR(1) error

formulation (see above). Specifically, we test the restriction that A =

µ
ρ 0
0 ρ

¶
, in (23)

estimated using Iterative Seemingly Unrelated Regression.
When the common factor restrictions do not hold, all three of these tests have

particularly good power. Somewhat surprisingly the more appealing LR test is the least
powerful of all. When the common factors do hold (RDLRM), the actual size of the
approximate F-test is close to the nominal size and the actual size of the Wald test is
high yet it does approach the nominal as T increases. For the LR, the actual size is low
and does not improve with T. To see the extent to which the size distortions affect the
results, we also report the empirically adjusted percentage of rejections for both the Wald
and LR tests. As can be seen, the LR test, still underperforms relative to the other 2 tests.
What is encouraging from a practical point of view, is the ability of the easy to implement
approximate F-test to detect when the common factor restrictions do not hold.

Also, of interest, in terms of the claims of this paper is the estimator of ρ in the VAR(1).
Specifically, it is on interest to see how this estimator of ρ differs from that obtained using
iterative Cochrane-Orcutt. The last row in Tables 2A and 2B, report the mean and standard
deviations of ρ̂. As illustrated, in the RDLRM, where the common factor restrictions hold,



10

the (fully restricted) VAR(1) estimator of ρ̂ easily outperforms the EGLS estimator. To
illustrate more clearly the differences in these two estimators, figure 1, presents the two
associated smoothed histogram of ρ̂.

Table 2A- True: UDLRM // Estimated: LRM (EGLS)
T=25 T=50

True Mean Std Mean Std

α̂0 1.037 1.2035 0.8025 1.1962 0.6130
β̂0 0.70 0.7897 0.1983 0.8044 0.1321
ρ̂ 0.6830 0.1856 0.7442 0.1056
σ̂2 0.40 0.6101 0.1384 0.6160 0.0903

t-statistics Mean % reject (.05) Mean % reject (.05)
τα0 =

α̂0−α0
σ̂α0

0.3665 0.025 0.3666 0.004

τβ0 =
β̂0−β0
σ̂β0

0.4619 0.086 0.7709 0.1138

τρ =
ρ̂
σ̂ρ

5.42 0.940 8.54 0.999

AR(1) Test Statistic % reject (.05) Statistic % reject (.05)

Com. Factor F-test 14.497 0.931 27.992 0.999
Com. Fact.—LR test 5.387 0.705 (0.787)∗ 10.073 0.985 (0.998)∗

Com. Fact.—VAR 20.40 0.918 (0.884)∗ 34.464 0.999 (0.997)∗

Rest. VAR(1) Mean Std. Mean Std.

ρ̂ 0.5743 0.1415 0.6358 0.932

Table 2B- True: RDLRM // Estimated: LRM (EGLS)
T=25 T=50

True Mean Std Mean Std

α̂∗0 = α̂0(1− ρ̂) 1.30 1.3082 0.3095 1.3039 0.1489
β̂0 0.70 0.6914 0.1698 0.6963 0.1148
ρ̂ 0.60 0.4748 0.2080 0.5395 0.1289
σ̂2 0.40 0.3814 0.0418 0.3912 0.0201

t-statistics Mean % reject (.05) Mean % reject (.05)

τα0 =
α̂0−α∗0
σ̂α0

0.0338 0.017 0.0171 0.959

τβ0 =
β̂0−β0
σ̂β0

-0.0573 0.085 -0.0344 0.06

τρ =
ρ̂−ρ
σ̂ρ

-0.529 0.128 -0.3996 0.076

AR(1) Test Statistic % reject (.05) Statistic % reject (.05)

Common Factor F-test 1.481 0.076 1.2271 0.065
Com. Fact.—LR test 0.7041 0.012 0.560 0.005
Com. Fact.—VAR 4.316 0.141 3.65 0.098
ρ̂ (VAR) 0.5028 0.1298 0.5537 0.0866
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Fig. 1: Histograms of estimators of ρ

Given the superiority of the fully restricted VAR(1) estimator of ρ̂, we run additional
simulations to explore the properties of this estimator as fewer and fewer of the restrictions
of the VAR(1) were imposed. The results from these simulations are reported in Tables 3A-
3B. As, one would expect, given the analytical results above, the estimator of ρ̂ becomes less
efficient (and more biased) as the number of restrictions imposed are reduced. Interestingly,
the estimator of ρ̂ from each VAR scenario analyzed seems to outperform the EGLS
estimator.

Table 4A - Experiment 1, T=25
True: RDLRM True: UDLRM
Summary Statistics for ρ̂ (ρ = 0.6) Test of Restrictions

Model-Restrictions // Test∗ Mean Std Min Max Mean % reject (.05)

EGLS-CF // F-test 0.4748 0.2080 -0.4434 1.0845 14.497 0.931
VAR-r1 // Wald χ2(1) 0.4834 0.1809 -0.3552 0.9249 11.559 0.747
VAR-r2 // Wald test χ2(2) 0.4887 0.1564 -0.1700 0.9285 12.585 0.802
VAR-r3 // Wald test χ2(3) 0.5028 0.1298 -0.0689 0.8901 20.40 0.918
∗VAR Restrictions: r1: xt−1 = 0 in yt;r2: r1 & yt−1 = 0 in xt;r3:r2 & xt−1 in xt and yt−1
in yt same parm. GLS-Common Factor restrictions (CF)

Table 4B- Experiment 1, T=50
True: RDLRM True: UDLRM
Summary Statistics for ρ̂ (ρ = 0.6) Test of Restrictions

Model-Restrictions // Test∗ Mean Std Min Max Mean % reject (.05)

EGLS-CF // F-test 0.5395 0.1289 -0.0564 1.0164 27.992 0.999
VAR-r1 // Wald χ2(1) 0.5414 0.1228 -0.0767 0.8632 20.318 0.975
VAR-r2 // Wald test χ2(2) 0.5454 0.1033 -0.0134 0.8572 21.291 0.984
VAR-r3 // Wald test χ2(3) 0.5537 0.0866 0.1331 0.8328 34.464 0.999
∗VAR Restrictions: r1: xt−1 = 0 in yt;r2: r1 & yt−1 = 0 in xt;r3:r2 & xt−1 in xt and yt−1
in yt same parm. GLS-Common Factor restrictions (CF)
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The last two tables of simulation results summarize the implications of estimating an
unrestricted DLRM (tables 5A-5B). These tables indicate that estimation results are very
accurate and the usual t-tests are reliable, whether or not the common factor restrictions
hold. That is, even in the RDLRM case, estimating the DLRM would yield very reliable
inferences. In fact, a comparison of the EGLS results with these unrestricted DLRM results,
for the RDLRM case, suggests no advantage to using EGLS even when the restrictions
hold! Given the unrealistic nature of the common factor restrictions, and the potential
for unreliable inferences when the restrictions do not hold, estimation of error AR(1) type
models is not recommended!

Table 3A- True: UDLRM // Estimated: UDLRM (OLS)
T=25 T=50

True Mean Std Mean Std

α̂0 1.037 1.1643 0.2785 1.0998 0.1833
β̂0 0.70 0.6997 0.1669 0.6995 0.1138
α̂1 = ρ̂ 0.60 0.5217 0.1447 0.5635 0.0901
β̂1 -0.937 -0.9069 0.1854 -0.9265 0.1211
σ̂2 0.40 0.3982 0.0432 0.3995 0.0203
R2 0.641 0.6858 0.0913 0.6910 0.0654

t-statistics Mean % reject (.05) Mean % reject (.05)
τα0 =

α̂0−α0
σ̂α0

0.3995 0.052 0.2885 0.037

τβ0 =
β̂0−β0
σ̂β0

-0.0039 0.057 -0.0049 0.049

τα1 =
α̂1−α1
σ̂α1

-0.4898 0.082 -0.3521 0.064

τβ1 =
β̂1−β1
σ̂β1

0.1531 0.069 0.0814 0.054

Table 3B- True: RDLRM // Estimated: UDLRM (OLS)
T=25 T=50

True Mean Std Mean Std

α̂0 0.52 0.7034 0.3270 0.6116 0.2048
β̂0 0.70 0.6958 0.1683 0.6985 0.1143
α̂1 = ρ̂ 0.60 0.4650 0.1909 0.5316 0.1248
β̂1 -0.42 -0.3290 0.2119 -0.3734 0.1440
σ̂2 0.40 0.3963 0.0439 0.3989 0.0207
R2 0.641 0.6053 0.1270 0.6196 0.0920

t-statistics Mean % reject (.05) Mean % reject (.05)
τα0 =

α̂0−α0
σ̂α0

0.4998 0.070 0.3706 0.0498

τβ0 =
β̂0−β0
σ̂β0

-0.0276 0.058 -0.0129 0.050

τα1 =
α̂1−α1
σ̂α1

-0.6420 0.096 -0.4800 0.072

τβ1 =
β̂1−β1
σ̂β1

0.4220 0.082 0.3130 0.068
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6 Conclusion
This main results of this paper can be summarized quite simply. First, the restrictions
implicitly imposed on the temporal dependence structure of yt and xt when an AR(1) error
formulation is adopted are completely unreasonable for any real world application. We
show that the conditions:

Cov(xt, xt−1) = ρ Cov(xt, xt); Cov(yt, yt−1) = ρ Cov(yt, yt);

Cov(yt, xt−1) = Cov(yt−1, xt) = ρ Cov(yt, xt)

are both necessary and sufficient in the one regressor case, and we show that the implied
VAR(1) model is absurdly restrictive. Second, when one compares the Autocorrelation-
Corrected LRM (ACLRM) model estimates with those from the (unrestricted) Dynamic
Linear Regression Model (DLRM) encompassing the ACLRM, there is no significant gain
in efficiency! Third, as expected, when the common factor restrictions do not hold the LRM
model gives poor estimates of the true parameters and estimation of the ACLRM simply
gives rise to different misleading results! On the other hand, estimates from the DLRM
and the corresponding VAR model are very reliable. Fourth, the power of the usual Durbin
Watson test (DW) of autocorrelation is much higher when the common factor restrictions
do hold than when they do not. But, a more general test of autocorrelation is shown
to perform almost as well as the DW when the common factor restrictions do hold and
significantly better than the DW when the restrictions do not hold. Fifth, we demonstrate
that the simple F-test suggested by Davidson and MacKinnon (1993) is quite powerful.
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