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Abstract

A test for heteroskedasticity within the context of classical linear regression can

be based on the difference between Wald statistics in heteroskedasticity-robust and

nonrobust forms. The resulting statistic is asymptotically distributed under the

null hypothesis of homoskedasticity as chi-squared with one degree of freedom. The

power of this test is sensitive to the choice of parametric restriction on which the

Wald statistics are based, so the supremum of a range of individual test statistics is

proposed. Two versions of a supremum-based test are considered: the first version,

easier to implement, does not have a known asymptotic null distribution, so the

bootstrap is employed in order to assess its behaviour and enable meaningful con-

clusions from its use in applied work. The second version has a known asymptotic

distribution and, in some cases, is asymptotically pivotal under the null. A small

simulation study illustrates the implementation and finite-sample performance of

both versions of the test.

JEL classification code: C12, C21.

Key Words: Heteroskedasticity testing; White test; Wald test; Supremum.
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Introduction

When testing for homoskedasticity in the context of classical regression, researchers

often lack information about the structure of the conditional variance of the depen-

dent variable. A number of tests in the literature can be gathered within a unifying

approach, under which homoskedasticity is nested in a continuous skedastic func-

tion of a linear combination of regressors functions. Such is the case, e.g., of the

well known Glejser (1969) and Godfrey (1978)/Breusch-Pagan (1979) tests, either

in their original versions or with subsequent robustness and small sample improve-

ments, as proposed by Koenker (1981), Godfrey (1996), Godfrey and Orme (1999),

Machado and Santos Silva (2000) or Im (2000).

Testing for homoskedasticity against a specific alternative is advantageous if the

latter coincides with the data generating process (DGP) in case of heteroskedas-

ticity. However, given the frequent lack of information about the variables causing

variance heterogeneity, a pure significance test of conditional homoskedasticity may

be preferable to more oriented procedures. In this respect, the White (1980) test

clearly constitutes the benchmark of an approach that assumes no formal structure

about the skedastic process.

As shown by Godfrey and Orme (1999), the fact that the White’s test can use

many degrees of freedom (df), even for parsimonious models, can have undesirable

consequences for the test size and power in small samples. Consequently, it seems

useful to try and devise testing procedures more conserving on df’s. One possibility

is to impose constraints on the coefficients of the artificial regression given in White

(1980, eq. 2), e.g., excluding squares and cross-products from this regression. Or,

for instance, a test with one df can be obtained by replacing White’s regressors with

the squared predicted value of the dependent variable (Anscombe, 1961).

As shown below, a heteroskedasticity test with one df also results by considering

the difference between Wald-type statistics for restrictions on regression parame-

ters, in heteroskedasticity-robust and nonrobust forms.(1) In line with the results of

Godfrey (1996, Appendix 1), the performance of this test is found to be sensitive to
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the choice of parametric restriction on which the Wald statistics are based. Like all

procedures that entail a reduction of the number of df’s used by the White’s test,

the approach incurs the risk of loss of generality relative to the latter and, e.g., the

loss of consistency against some heteroskedastic alternatives.

This loss of generality can be attenuated if one takes, as test statistic, the supre-

mum of several tests from a range of different parametric restrictions. In what

follows, two versions of this supremum-based approach are presented: the first ver-

sion, easy to implement through artificial OLS regressions, does not have a known

asymptotic null distribution, so the bootstrap is employed in order to assess its be-

haviour and enable meaningful conclusions from its use in applied work. The second

version has a known asymptotic distribution and, in some cases, is asymptotically

pivotal under the null. However, as illustrated in a brief Monte Carlo exercise, its

asymptotic distribution constitutes a poor approximation to the test distribution in

finite samples, so the bootstrap should also be used in this case. This small simula-

tion study indicates that, in some situations, the first version of the supremum-based

procedure can outperform conventional tests, including the White’s test.

1 Model and Notation

The regression model is yi = x′iβ + εi, i = 1, . . . , n, where {(x′i, εi) , i = 1, . . . , n}

denotes a sequence of independent not necessarily identically distributed (i.n.i.d.)

random vectors, such that xi (k × 1, k < n) and the scalar εi verify E (x′iεi) = 0.

The variables yi and xi are observable, while the error term, εi, is not. β denotes

a k × 1 vector of unknown parameters to be estimated. In this setting, conditional

heteroskedasticity is allowed for, generally expressed as

E
(
ε2i |xi

)
= σ2ω (x′i) ≡ σ2ωi, ωi > 0, i = 1, . . . , n, (1)

with σ2 > 0 and ω (x′i) denoting an unspecified, possibly parametric, skedastic

function of xi. It is assumed that the sequence {(x′i, εi) , i = 1, . . . , n} satisfies reg-

ularity conditions that permit the application of standard asymptotic theory. In
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particular, assumptions of the type given in White (1980) are adopted through-

out the present paper. In matrix notation, (1) can be written as E (εε′|X) =

σ2diag (ωi, i = 1, . . . , n) ≡ σ2Ω, where ε ≡ (ε1, . . . , εn)′ and X is the conventional

n×k full rank matrix of observations on the vector of covariates, x. As a convenient

normalization, let p limn→∞ n−1
∑n

i=1 ωi = 1.

Let b denote the OLS estimator of β, providing residuals ei ≡ yi − x′ib, i =

1, . . . , n. The usual (homoskedasticity-valid) and heteroskedasticity-robust covari-

ance matrix estimators for b are denoted, respectively, by

V̂1 ≡ s2

(
n∑

i=1

xix
′

i

)
−1

= s2 (X ′X)
−1 ,

V̂2 ≡

(
n∑

i=1

xix
′

i

)
−1( n∑

i=1

e2ixix
′

i

)(
n∑

i=1

xix
′

i

)
−1

= (X ′X)
−1

(X ′DeX) (X ′X)
−1 ,

with De denoting an n × n diagonal matrix with typical diagonal element e2i , i =

1, ..., n, and s2 ≡ n−1
∑n

i=1 e
2
i .

The White’s test is a test of the null hypothesis (H0) that consists of the nonre-

dundant restrictions of

p lim
n−→∞

n
(
V̂1 − V̂2

)
= 0,

equivalent, under standard assumptions, to p limn−→∞ n−1
∑n

i=1 (e2i − s2) xix
′

i = 0.

White’s “direct test for heteroskedasticity” is obtained as nR2 from the regression

of e2i on a constant term and the nonredundant terms in xix
′

i, where R2 denotes the

usual coefficient of determination. As is well known, this statistic is asymptotically

distributed under H0 as chi-squared with, at most, k (k + 1) /2 df’s.

Next, consider a vector function, r (β), where r (·) : Rk → R
j denotes a vector

of j (< k) functionally independent, continuously differentiable, functions of β. The

set of j × 1 vector of restrictions, r (β) = 0, will henceforth be termed auxiliary

restriction. Let R (β) ≡ ∂r (β) /∂β′, the j × k Jacobian of r (β) with respect to β.

Functional independence in r (β) ensures full row rank of R (β) for all β.

Define the n× j matrix T ≡ X (X ′X)−1 R (b)′. Then, the Wald statistics associ-

ated with the test of the auxiliary restriction, in nonrobust (WNR) and robust (WR)
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forms can be written, respectively, as

WNR ≡ r (b)′
[
R (b) V̂1R (b)′

]
−1

r (b) = r (b)′
(
s2T ′T

)
−1

r (b) ,

WR ≡ r (b)′
[
R (b) V̂2R (b)′

]
−1

r (b) = r (b)′ (T ′DeT )
−1

r (b) .

The following definitions will also be used in the ensuing text:

ΣX
(k×k)

≡ p lim
n→∞

(
n−1X ′X

)
,

ΞX
(k×k)

≡ p lim
n→∞

(
n−1X ′DeX

)
= σ2p lim

n→∞

(
n−1X ′ΩX

)
,

with existence of probability limits ensured by White’s (1980) Assumptions 2 and

3, and the last equality shown by White (1980, Theorem 1)]. The j × j matrices

ΣT and ΞT are analogously defined, with T replacing X. In addition consider

Mn ≡ n−1X ′X = n−1
n∑

i=1

xix
′

i,

γ1
(k×1)

≡ Σ−1
X R (β)′ Σ−1

T r (β) , γ2
(k×1)

≡ Σ−1
X R (β)′ Ξ−1T r (β) , (2)

c1 (b)
(k×1)

≡ (X ′X)
−1

R (b)′ (T ′T )
−1

r (b) , (3)

c2 (b)
(k×1)

≡ (X ′X)
−1

R (b)′ (T ′DeT )
−1

r (b) ,

αi ≡ γ′1xix
′

iγ2, ᾱ ≡ n−1
n∑

i=1

αi = γ′1Mnγ2,

ai ≡ c1 (b)′ xix
′

ic2 (b) , ā = n−1
n∑

i=1

ai = c1 (b)′Mnc2 (b) .

2 Difference Between Wald Statistics

The following Lemma can be established:

Lemma 1 If the auxiliary restriction is false, that is, r (β) 
= 0 at the true value

of the regression parameters, then, under Assumptions 1, 2(b), 3(b), 5-7 in White

(1980), if εi is independent of xi and homoskedastic, ∀i,

1

υ

[
n−1/2s2 (WR −WNR)

]2 D
−→ χ21,
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where υ ≡ n−1
∑n

i=1E
[
(σ2 − ε2i )

2
(αi − ᾱ)2

]
and χ21 denotes the chi-squared distri-

bution with one df.

A feasible statistic can be obtained by replacing υ with the consistent estmator

v ≡ n−1
n∑

i=1

[(
s2 − e2i

)
(ai − ā)

]2
.

Then, a test statistic, asymptotically distributed under H0 as a chi-squared random

variable (rv) with one df, results as

[s2 (WR −WNR)]
2

∑n
i=1 [(s2 − e2i ) (ai − ā)]

2 . (4)

If, in Lemma 1, Assumption 7 of White (1980) is replaced with the assumption

that the εi are homokurtic, ∀i [E (ε4i ) = µ4, ∀i], the test can be performed through

a simplified procedure, as stated in the next Remark.

Remark 1 If r (β) 
= 0, a “direct test” of H0 can be obtained, as in White (1980,

eq. 2), from the OLS regression e2i = ζ0 + ζ1ai + residuals. Under Assumptions 1,

2(b), 3(b), 5 and 6 in White (1980), if εi is independent of xi, homoskedastic and

homokurtic, ∀i, a procedure that is asymptotically equivalent to the test that results

from (4) is the test of γ1 = 0 using the standard R2 statistic from this regression.

Formally,

nR2 D
−→ χ21. (5)

Special cases of interest of the above results are stated as Corollaries.

Corollary 1 If r (·) is a scalar function (j = 1), then (4) and (5) are valid test

statistics, whether r (β) = 0 is true or false.

When scalar affine auxiliary restrictions are employed, further results can be ob-

tained, enabling computation of the test through simplified procedures using com-

mon econometrics packages.
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Corollary 2 If r (·) is a scalar affine function, write θ ≡ r (β) = Rβ − r, with R a

row k-vector of constants and r a scalar; then

(i) The test statistics (4) and (5) are asymptotically pivotal.

(ii) Let θ = R1β1 + R2β2 − r, where R and β are partitioned into conformable

(k−1)-vectors (R1 and β1) and scalars (R2 and β2); let xi be conformably partitioned

as

(
x′i1

... xi2

)
′

and let x∗i1 ≡ xi1 − (xi2/R2) R′

1; then, the statistic referred to in (5)

can also be computed as nR2 from the OLS regression

e2i = ζ0 + ζ1u
2
i + residuals, (6)

where ui denotes the i-th OLS residual from the regression of xi2 on x∗i1.

The proposed test is consistent whenever heteroskedasticity causes the two ver-

sions of theWald-type statistic to diverge. Specifically, this approach tests the signif-

icance of n−1/2
∑n

i=1 (s2 − e2i ) ai, which, under standard assumptions, is Op

(
n−1/2

)
if

n−1
∑n

i=1 xix
′

iε
2
i and σ2Mn are not asymptotically equivalent. The following Lemma

presents the asymptotic distribution of the test under a sequence of local alternative

hypotheses.

Lemma 2 Under the sequence of local alternatives H1 : E (ε2i |xi) = σ2ω
(
n−1/2z′iη

)
,

with zi and η denoting l-vectors of, respectively, functions of xi and unknown para-

meters, ω (0) ≡
[
ω
(
n−1/2z′iη

)]
η=0

= 1 and ω′ (0) ≡
[
dωi/d

(
n−1/2z′iη

)]
η=0


= 0,

1

υ

[
n−1/2s2 (WR −WNR)

]2 D
−→ χ21 (λ) , λ ≡ µ2/υ,

where

µ ≡ −σ2ω′ (0) limn→∞E
[
(αi − ᾱ)

(
n−1/2z′iη

)]

and χ21 (λ) denotes the noncentral chi-squared distribution with one df and noncen-

trality parameter λ.

The numerator in the noncentrality parameter can be seen to increase (decrease)

as the covariance between zi and αi increases (decreases) in absolute value. This

indicates that the choice of r (β) can affect the performance of the test in finite
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samples. Ideally, r (β) should be selected so as to achieve a high value of λ in case of

heteroskedasticity. However, this can obviously be difficult, in view of the frequent

lack of information about the structure of heteroskedasticity.(2)

3 Supremum of Differences Between Wald

Statistics

The sensitivity of the test performance to the particular auxiliary restriction may

be attenuated if one uses as test statistic the supremum of different statistics [from

either (4), (5) or (6)], obtained from a range of parametric restrictions. Presumably,

the supremum of such a range is positively influenced by the more powerful tests

against the unknown skedastic alternative, which tend to produce higher statistics.

Let this test be named “sup-r test”.

Clearly, the statistics from particular auxiliary restrictions are not independent

under H0, which makes it difficult to obtain the null distribution of the supremum.

Therefore, the bootstrap should be used, so as to approximate this distribution

and to perform the sup-r test. Alternatively, one can consider the supremum of

orthogonalised statistics, whose limit null distribution can be established, due to

asymptotic independence. To this effect, consider, first, m auxiliary restrictions

rg (β) = 0, g = 1, ...,m, and corresponding robust and nonrobust Wald statistics,

W
(g)
R , W

(g)
NR, and define α

(g)
i and α(g) analogously as, respectively, αi and α, for each

auxiliary restriction rg (β) = 0. The next Lemma constitutes the basis for a modified

version of the sup-r test.

Lemma 3 Let wd ≡
(

W
(1)
R −W

(1)
NR W

(2)
R −W

(2)
NR · · · W

(m)
R −W

(m)
NR

)
′

, the m-

vector of Wald statistics differences; assume that the functions rg (·) are functionally

independent and that rg (β) 
= 0, g = 1, ...,m at the true value of the parameters β.

Define the m×m matrix Υ with typical element

n−1
n∑

i=1

E
{(

σ2 − ε2i
)2 [

α
(g)
i − α(g)

] [
α
(h)
i − α(h)

]}
, g, h = 1, . . .m. (7)
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Let the symmetric positive definite (pd) matrix Ψ ≡ Υ−1/2 denote the square root of

the matrix Υ−1. Then, under Assumptions 1, 2(b), 3(b), 5-7 in White (1980), if εi

is independent of xi and homoskedastic, ∀i,

Ψ× n−1/2s2wd
D
−→ N (0m, Im) , (8)

where N (0m, Im) denotes the m-variate standard normal distribution (with 0m a null

m-vector and Im the identity matrix of order m).

Lemma 3 implies that the standardized Wald statistics differences are asymp-

totically independent under homoskedasticity. From this result one can obtain the

asymptotic distribution of the supremum of those differences, as formally stated in

the next Corollary.

Corollary 3 Partition Ψ into its m column vectors, Ψ =
[

Ψ1 · · · Ψm

]
. Under

H0 and White’s (1980) Assumptions,

n−1s4 sup
{

(Ψ′

1wd)
2
, . . . , (Ψ′

mwd)
2
}

D
−→ Cm,

where Cm denotes the chi-squared distribution with one df, raised to power m.

The average covariance matrixΥ can be estimated by the matrix V with elements

Vgh ≡ n−1
n∑

i=1

(
s2 − e2i

)2 [
a
(g)
i − a(g)

] [
a
(h)
i − a(h)

]
, g, h = 1, . . .m,

with a
(g)
i defined analogously as ai, for each auxiliary restriction rg (β) = 0, g =

1, ...,m. Given the continuity of the square root function, defined on the set of

positive definite matrices (see, e.g., Horn and Johnson, 1999, Ch. 7.2), the elements

of Ψ can be estimated by the corresponding elements of the (matrix) square root

of V −1 (name it P ). Partition P as
[

P1 · · · Pm

]
; the statistics obtained by

replacing Ψ with P in (8) are asymptotically independent normal, so

n−1s4 sup
{

(P ′

1wd)
2
, . . . , (P ′

mwd)
2
}

(9)

constitutes a feasible test statistic corresponding to the rv in Corollary 3.
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Let swd denote the observed value of this version of the sup-r statistic and let

C−1
m (ξ), ξ ∈ (0, 1), denote the ξ × 100% quantile of the chi-squared distribution

with one df. Then, H0 is rejected at the α × 100% nominal significance level if

swd > C−1
m

[
(1− α)1/m

]
.

The following Corollaries are analogous to Corollaries 1 and 2(i) above:

Corollary 4 If the functions rg (·), g = 1, ...,m, are scalars, then Pn−1/2s2wd only

depends on β through the values of Rg (β) [not directly through the values of rg (β),

g = 1, ...,m].

Corollary 5 If the functions rg (·), g = 1, ...,m, are scalar affine, then, under H0,

n−1s4 sup
{

(P ′

1wd)
2
, . . . , (P ′

mwd)
2
}

is an asymptotically pivotal statistic.

Given the result of Beran (1988) on the use of the bootstrap with asymptotically

pivotal statistics, the bootstrap can be employed here in conjunction with m scalar

affine auxiliary restrictions, so as to achieve more reliable control over the perfor-

mance of this version of the sup-r test in finite samples. Meanwhile, the statistics

referred to in (4), (5) or (6) are not (even asymptotically) independent for different

auxiliary restrictions, under H0. As is well known, for dependent rv’s t1, ..., tm,

Pr (sup {t1, ..., tm} ≤ t) = Pr (t1 ≤ t, ..., tm ≤ t) 
=
∏m

g=1
Pr (tg ≤ t) ,

which raises the issue of the dependence structure of the tg, upon which their joint

distribution also depends. Thus, the null distribution of the supremum of statistics

from (4), (5) or (6) is not invariant to the type of dependence among individual

tests, which means that the corresponding test statistic is not asymptotically piv-

otal. Thus, even though the bootstrap can be employed in conjunction with these

statistics, it does not yield an asymptotic refinement, when compared with first-order

asymptotic approximation results.
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4 Monte Carlo Illustration

A brief simulation exercise now illustrates the implementation and behaviour of the

proposed tests. The data are generated by

yi = β0 + β1xi1 + β2xi2 + εi, i = 1, . . . , n, (10)

with parameters set to one and regressors obtained as independent random vectors

from a bivariate normal distribution with zero mean vector, unit marginal variances,

and correlation 0.65. The disturbances εi are iid draws from one of the following

distributions: standard normal, N(0, 1), Student’s t with five df’s, t5, and chi-

squared with two df’s, χ22. In each case εi is transformed to have zero mean and one

of the following conditional variances:

Homoskedasticity: H0 : V (εi|xi1, xi2) = 1.

Heteroskedasticity: H1 : V (εi|xi1, xi2) = (1 + 4x2i2)/ 5.

H2 : V (εi|xi1, xi2) =
[
1 +

∑2
l=1 (4− l) x2il

]/
6.

H3 : V (εi|xi1, xi2) = exp (xi1 + xi2 − 1.65).

Under H1 and H2 the conditional variance is specified as in Machado and Santos

Silva (2000); both specifications result from random variation of the slope coeffi-

cients, a frequent cause for heteroskedasticity in empirical applications. Under H1,

V (β2) = 4 and, under H2, V (βl) = 4− l, l = 1,2, with different weights attributed

to x1 and x2. Under H3 the skedastic function depends on regressors levels, rather

than their squares. In all cases E [V (εi|xi1, xi2)] = 1.

The following tests are considered: the “studentized” form of the Breusch-Pagan

test, due to Koenker(1981) (denoted as B-P/K); the White’s test (W); a test com-

puted as nR2 from the regression of e2i on an intercept and the square of the depen-

dent variable fitted value (Anscombe, 1961) (A); two tests based on the difference

between Wald statistics for each of the following scalar affine auxiliary restrictions:

r1 (β) ≡ β0 + β1 + β2 = 0 (r1) and r2 (β) ≡ β1 + β2 = 0 (r2); a test based on the

difference between Wald statistics for the joint auxiliary restriction r (β) = 0, where

r (β) ≡ [r1 (β) , r2 (β)]′ (rc); and, finally, two forms of the sup-r test, based on the

auxiliary restrictions r1 (β) = 0 and r2 (β) = 0 [sup-rA — supremum of nR2 statistics
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from the r1 and r2 tests; sup-rB — test based on the statistic sup
{

(P ′

1wd)2 , (P ′

2wd)2
}
,

with wd =
(

W
(1)
R −W

(1)
NR W

(2)
R −W

(2)
NR

)
′

and P1 and P2 as defined in (9)]. The

statistics B-P/K, W, r1, r2 and sup-rB are asymptotically pivotal under the null

hypothesis.

The test denoted as rc is computed as nR2 from the regression referred to in

Remark 1. It is noted that, as required by Lemma 1, the artificial restriction r (β) =

0 is false. The r1 and r2 tests are computed as nR2 from (6); the corresponding

auxiliary restrictions rg (β) ≡ θ = 0, g = 1, 2, yield the following reparameterizations

of model (10):

r1 : yi = β1 (1− xi2)+β2 (xi1 − xi2)+θxi2+εi; r2 : yi = β1+β2 (xi1 − xi2)+θxi2+εi.

Then, the term ui in (6) denotes the OLS residual from the regression of xi2 on,

respectively,

x∗i1 ≡ (1− xi2, xi1 − xi2)
′ , [r1 (β) = 0] ; x∗i1 ≡ (1, xi1 − xi2)

′ , [r2 (β) = 0] .

Tables 1 and 2 contain percentages of rejections for the eight tests at the 5%

nominal significance level, based on 10000 replications of samples with size n = 100

and with regressors newly drawn at each replication.(3) Results in Table 1 estimate

the size of the tests, both from asymptotic and bootstrap critical values. Following

Hodoshima and Ando (2007), the nonparametric residual bootstrap is used, with

499 bootstrap resamples and residuals in each bootstrap resample multiplied by
√

n/ (n− 3).(4) An asterisk flags cases for which 5% lies outside a 95% confidence

interval for the true rejection probability of the null. Computations were performed

with TSP v.4.5 (Hall and Cummins, 1999).

The bootstrap seems to provide better control over the significance level than

asymptotic theory in several cases of asymptotically pivotal Koenker-type tests

[namely, W with t5 and χ22 errors, r1 and r2 with N (0, 1) and t (5) errors]. This

appears to be in line with Beran (1988) as well as the results and reccomendations

of Godfrey and Orme (1999) and Godfrey, Orme and Santos Silva (2006) on the use

of the nonparametric bootstrap for such tests. Results for the A test also indicate
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a better performance of the bootstrap [with N (0, 1) and t5 errors]. Under all null

error distributions this is also the case for the rc test and, especially, the sup-rB

test, found to severely overreject the null on the basis of critical values from the

asymptotic distribution (C2). The null asymptotic distribution of the sup-rA test is

not known so the bootstrap is used in this case (a simulation-based approach is not

useful, because the error distribution is supposed unknown by the researcher).

Table 1 — Percentage of Rejections at the 5% Nominal Level, under Homoskedasticity

Error Distribution N(0, 1) t5 χ22

Test asy boot asy boot asy boot

B-P/K 4.91 5.27 4.89 5.22 6.09∗ 5.59∗

W 5.40 5.60∗ 6.88∗ 5.68∗ 8.50∗ 6.34∗

A 4.41∗ 5.09 4.50∗ 5.31 5.01 5.40

r1 4.41∗ 5.12 4.27∗ 5.09 4.93 5.21

r2 4.42∗ 5.41 4.50∗ 5.43∗ 4.63 5.47∗

rc 4.20∗ 5.17 3.82∗ 5.10 4.00∗ 5.04

sup-rA − 5.31 − 5.28 − 5.52∗

sup-rB 9.36∗ 5.33 7.38∗ 4.34∗ 7.39∗ 4.22∗

∗: 5% rejection probability outside 95% confidence interval.
Values refer to either asymptotic critical values (columns “asy”)
or bootstrap critical values (columns “boot”).

Table 2 presents estimates of the probability of rejection of the null hypothesis

under H1 through H3. All percentages are computed with reference to bootstrap-

based critical values: although size estimates in Table 1 do not afford a clear-cut

choice, this option seems preferable to using asymptotic critical values in the ma-

jority of cases considered in the exercise.

Even within a succint study such as the present one, the low power of the sup-rB

test is noteworthy. Use of the sup-rA version seems clearly preferable, competing

in equal terms with conventional tests under H1 (W) and H3 (B-P/K and A), and

outperforming them in the remaining cases. The rejection percentages for this test

are positively influenced by the most powerful of r1 and r2 tests, the performance

14



of which (in line with theoretical predictions) looks quite sensitive to the particular

form of heteroskedasticity. It is interesting to note the contrast between the power

of the sup-rA test and that of the rc test, which appears to be attracted by the

least powerful of r1 and r2 tests (or performs even worse than either of these, under

H3). The sup-rA procedure thus seems the best choice among the different tests

involving differences between Wald-type statistics and, quite often, among all the

tests considered in the exercise.

5 Concluding Remark

The approach proposed in the present paper yields a test that, according to a limited

simulation study, seems to compete rather well with existing tests for heteroskedas-

ticity. The study is merely illustrative and, naturally, begs the question of the test

behaviour under more general circumstances. Meanwhile, the present methodology

suggests some topics for future research, including, among others, the use of the

proposed procedure within the general framework of the information matrix test.
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Table 2 — Percentage of Rejections at the 5% Nominal Level under Heteroskedasticity

Error Distribution N(0, 1) t5 χ22

H1: V (εi|xi1, xi2) =
(
1 + 4x2i2

)/
5

B-P/K 27.66 24.36 24.38

W 92.91 73.98 61.96

A 74.69 59.29 50.00

r1 56.41 44.69 38.78

r2 90.81 76.01 67.29

rc 58.68 46.67 40.75

sup-rA 88.06 72.76 62.20

sup-rB 18.50 12.15 13.87

H2: V (εi|xi1, xi2) = [1 +
∑2

l=1 (5− l) x2il]
/
6

B-P/K 28.53 25.50 24.73

W 91.67 72.24 58.12

A 81.80 64.46 53.54

r1 62.30 48.94 40.76

r2 95.36 82.19 72.44

rc 64.42 50.56 42.80

sup-rA 93.90 78.37 67.08

sup-rB 24.70 15.03 17.14

H3: V (εi|xi1, xi2) = exp(xi1 + xi2 - 1.65)

B-P/K 99.98 98.11 95.89

W 99.29 92.83 86.77

A 99.93 98.71 97.77

r1 99.98 99.19 98.36

r2 89.43 79.21 74.72

rc 82.36 75.96 74.42

sup-rA 99.94 98.35 96.62

sup-rB 70.58 57.82 50.36
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6 Proofs

Proof of Lemma 1. The scaled difference between Wald statistics can be succes-

sively written as

n−1/2s2 (WR −WNR) = n−1/2r (b)′
[
s2 (T ′DeT )

−1
− (T ′T )

−1
]
r (b) =

n−1/2r (b)′ (T ′T )
−1

T ′
(
s2In −De

)
T (T ′DeT )

−1
r (b) =

c1 (b)′
[
n−1/2X ′

(
s2In −De

)
X
]
c2 (b) = c1 (b)′

[
n−1/2

n∑

i=1

(
s2 − e2i

)
xix

′

i

]
c2 (b) =

c1 (b)′
[
n−1/2

n∑

i=1

(
s2 − e2i

)
(xix

′

i −Mn)

]
c2 (b) .

Generally speaking, under White’s Assumptions, ΣX = n−1X ′X + Op

(
n−1/2

)

and ΞX = n−1X ′DeX + Op

(
n−1/2

)
. Then,

ΣT ≡ p lim
n→∞

(
n−1T ′T

)
= R (β) Σ−1

X R (β)′ = n−1T ′T + Op

(
n−1/2

)
,

ΞT ≡ p lim
n→∞

(
n−1T ′DeT

)
= R (β) Σ−1

X ΞXΣ−1
X R (β)′ = n−1T ′DeT + Op

(
n−1/2

)
.

Also, from the definitions of γj and cj (b), j = 1, 2 [in (2) and (3), respectively],

cj (b) = γj + Op

(
n−1/2

)
. Under H0 and White’s Assumptions,

n−1/2
n∑

i=1

(
s2 − e2i

)
xix

′

i = Op (1)

(White, 1980, Theorem 2). From this result, one can write

n−1/2s2 (WR −WNR) = γ′1

[
n−1/2

n∑

i=1

(
s2 − e2i

)
(xix

′

i −Mn)

]
γ2+op (1) = δn+op (1) ,

where

δn ≡ γ′1

[
n−1/2

n∑

i=1

(
s2 − e2i

)
(xix

′

i −Mn)

]
γ2 = n−1/2

n∑

i=1

(
s2 − e2i

)
(αi − ᾱ) .

White (1980, Theorem 2) shows that, under homoskedasticity, the elements of

n−1/2
∑n

i=1 (s2 − e2i ) (xix
′

i −Mn) have limit normal distributions. Thus, provided

that γ1 
= 0 and γ2 
= 0 [implying r (β) 
= 0], under H0, δn
D
−→ N (0, limn→∞ υ),
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with

υ ≡ n−1
n∑

i=1

E
{[(

σ2 − ε2i
)
γ′1 (xix

′

i −Mn) γ2
]2}

=

n−1
n∑

i=1

E
{[(

σ2 − ε2i
)

(αi − ᾱ)
]2}
. (11)

Replacing γj with cj (b), j = 1, 2, and recalling the definition of ai, it immediately

follows that

n−1/2s2 (WR −WNR) = n−1/2
n∑

i=1

(
s2 − e2i

)
ai

= n−1/2
n∑

i=1

(
s2 − e2i

)
(ai − ā) = δn + op (1) ,

so n−1/2s2 (WR −WNR)
D
−→ N (0, limn→∞ υ) as well. Then the required result im-

mediately follows.

Proof of Remark 1. Remark 1 immediately follows from Corollary 1 of White

(1980).

Proof of Corollary 1. If r (·) is a scalar function, then T is a column

n−vector and ai = r (b)2 T 2(i)/ (T ′TT ′DeT ), where T(i) ≡ x′i (X
′X)−1R (b)′ denotes

the i-th element of T . Let T 2 ≡ n−1
∑n

i=1 T
2
(i); cancelling out constant terms, the

statistic in (4) becomes
[
n−1/2s2 (WR −WNR)

]2

v
=

[
∑n

i=1 (s2 − e2i ) ai]
2

∑n
i=1 (s2 − ε2i )

2
(ai − ā)2

=

[∑n

i=1
(s2 − e2i ) T 2(i)

]2

∑n

i=1
(s2 − e2i )

2
(
T 2(i) − T 2

)2 ,

which does not involve r (b).

The direct test can be obtained through the artificial regression of e2i on a con-

stant term and the regressor T 2(i), which is just ai rescaled. Now, if e denotes the n-

vector of OLS residuals, a common result has e = Mε, withM ≡ In−X (X ′X)−1X ′,

not involving β. As ei — and, hence, s2 — do not involve β, and T(i) only depends on

β through R (b), both statistics, in (4) and (5), converge in distribution to the chi-

squared distribution with one df, regardless of whether r (β) is zero or not [obviously,

r (·) should be differentiable in the parameter space of interest].
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Proof of Corollary 2. (i) If r (β) = Rβ − r, a scalar, then ∂r (β) /∂β′ = R,

a vector of constants not involving β. Thus, from Corollary 1, the test statistic

no longer depends on β and, consequently, it is asymptotically pivotal. (It is not

pivotal, because its finite sample distribution depends upon the error distribution.)

(ii) The result is a direct consequence of the fact that u2i in (6) is proportional to
[
x′i (X

′X)−1R′
]2
when r (·) is a scalar affine function. To see this, start by writing

the reparameterized model in matrix form as y∗ = X∗β∗ + ε, where

X ≡

[
X1

n×(k−1)

... x2
n×1

]
, x∗2 ≡ (1/R2) x2, y∗ ≡ y − x∗2, β∗ ≡ (β′1, θ)

′ ,

X∗ ≡

[
X∗

1

... x∗2

]
= XA, A

k×k
=


 Ik−1 0

− (1/R2) R1 1/R2


 ,

with θ and R defined in the main text and Ik−1 denoting the identity matrix of

order k − 1. Under the reparameterized model the auxiliary restriction becomes

θ = R∗β∗ = 0, R∗ ≡ RA.

The direct test can be computed as nR2 from the OLS regression of e2i on an

intercept and the regressor
[
x′i (X

′X)−1R′
]2
. In matrix form, the n-vector with

generic element x′i (X
′X)−1R′ can be written X (X ′X)−1R′. As A is invertible,

X (X ′X)
−1

R′ = XA (A′X ′XA)
−1

A′R′ = X∗ (X∗′X∗)
−1

R∗′.

The residuals from the original and reparameterized model (e∗) are equal, be-

cause

e∗ = M∗y∗ = My∗ = My − (1/R2) Mx2 = My = e,

where M∗ = I −X∗ (X∗′X∗)−1X∗′ = I −X (X ′X)−1X ′ = M and Mx2 = 0, since

M projects onto the space orthogonal to the space spanned by the columns of X.

Thus, the direct test can also be computed as nR2 from the OLS regression of e∗2i on

an intercept and the regressor
[
x∗′i (X∗′X∗)−1R∗′

]2
. From the definition of R∗ and

the usual formulae for the inverse of partitioned matrices, the n-vector with generic

element x∗′i (X∗′X∗)−1R∗′ is given by

X∗ (X∗′X∗)
−1

R∗′ = (x∗′2 M∗

1x
∗

2)
−1

M∗

1x
∗

2,
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where M∗

1 ≡ Ik−1 − X∗

1 (X∗′

1 X∗

1 )−1X∗′

1 and X∗

1 ≡ X1 − x∗2R1. This is proportional

to the vector of OLS residuals from the regression of x∗2 on X∗

1 , proportional, in

turn, toM∗

1x2, the n-vector of OLS residuals from the regression of x2 on X∗

1 . Thus,
[
x∗′i (X∗′X∗)−1R∗′

]2
and u2i are proportional, so the regression of e

2
i on an intercept

and
[
x′i (X

′X)−1R′
]2
and regression (6) yield the same nR2 statistic.

Proof of Lemma 2. With ω (0) = 1, a first-order Taylor expansion of ωi

around η = 0 leads to

ω
(
n−1/2z′iη

)
� ω (0) + ω′ (0) n−1/2z′iη = 1 + ω′ (0) n−1/2z′iη.

Thus, under H1 and White’s Assumptions, the elements of n−1/2
∑n

i=1 (s2 − e2i )

(xix
′

i −Mn) are asymptotically normal with means given by the elements of

limn→∞E
[(

σ2 − ε2i
)

(xix
′

i −Mn)
]

= −σ2ω′ (0) limn→∞E
[
(xix

′

i −Mn) n−1/2z′iη
]
.

It immediately follows that δn
D
−→ N (µ, υ), with

µ ≡ −σ2ω′ (0) limn→∞E
[
(αi − ᾱ)

(
n−1/2z′iη

)]

and υ defined in (11). Obviously, then, n−1/2s2 (WR −WNR)
D
−→ N (µ, υ) as well.

Standard results from Statistics ensure that, under the sequence H1,

1

υ

[
n−1/2s2 (WR −WNR)

]2 D
−→ χ21 (λ) ,

with noncentrality parameter λ ≡ µ2/υ.

Proof of Lemma 3. For each auxiliary restriction, rg (β) = 0, g = 1, ...,m,

write the corresponding element of the vector n−1/2s2wd as

n−1/2s2
[
W (g)
R −W (g)

NR

]
= δ(g)n + op (1) ,

where (in obvious notation)

δ(g)n ≡ n−1/2
n∑

i=1

(
s2 − e2i

)
γ
(g)′
1 (xix

′

i −Mn) γ
(g)
2 =

n−1/2
n∑

i=1

(
s2 − e2i

) [
α
(g)
i − α(g)

]
.
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Under White’s (1980) Assumptions and with homoskedastic errors independent

of xi, the multivariate Liapounov central limit theorem can be applied to the random

m-vector n−1/2
(
δ(1)n , . . . , δ(m)n

)
′

, that is,

Ψ× n−1/2
(
δ(1)n , . . . , δ(m)n

)
′ D
−→ N (0m, Im) ,

where the symmetric pd matrix Ψ is such, that Ψ2 = Υ−1 and Υ is the average

covariance matrix defined in (7). The existence of Ψ is ensured by the independence

of xi and εi and White’s Assumptions 5 and 6, guaranteeing that Υ is a pd matrix

with uniformly bounded elements for sufficiently large n. The asymptotic equiva-

lence between each n−1/2s2
[
W

(g)
R −W

(g)
NR

]
and δ(g)n then yields the statement in the

present Lemma.

Proof of Corollary 3. Consider the components of them×1 vectorΨn−1/2s2wd,

(
Ψ′

1n
−1/2s2wd, . . . , Ψ′

mn−1/2s2wd
)′
.

According to Lemma 3, these components are asymptotically uncorrelated stan-

dard normal rv’s, so they are asymptotically independent. Thus, the corresponding

squared variables,
(
Ψ′

gn
−1/2s2wd

)2
, are asymptotically independent chi-squared with

one df. The desired result immediately follows from the well-known fact that, for

independent rv’s tg, g = 1, ...,m,

Pr (sup {t1, ..., tm} ≤ t) = Pr (t1 ≤ t, ..., tm ≤ t) =
∏m

g=1
Pr (tg ≤ t) .

Proof of Corollary 4. If the functions rg (·) are all scalar, then a
(g)
i =

rg (b)2 T 2g(i)/
(
T ′gTgT

′

gDeTg
)
[where all quantities are defined with reference to the

auxiliary restriction rg (β) = 0, analogously as before with reference to r (β) = 0].

Thus,

s2
[
W

(g)
R −W

(g)
NR

]
= rg (b)2 /

(
T ′gTgT

′

gDeTg
)∑n

i=1

(
s2 − e2i

)2
T 2g(i).

Define the m ×m diagonal matrix DR (b), with rg (b)2 /
(
T ′gTgT

′

gDeTg
)
as g-th

diagonal entry. Then, the matrix V can be written as

V = DR (b)×M ×DR (b) , (12)
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where M is m×m symmetric and pd for large enough n, with generic element

Mgh ≡
∑n

i=1

(
s2 − e2i

)2 [
T 2g(i) − T 2g

] [
T 2h(i) − T 2h

]
, g, h = 1, ...,m.

Given the definitions of Tg and Tg(i), g = 1, ...,m, it should be stressed that M de-

pends on β only through the derivatives of the functions rg (b), Rg (b) ≡ ∂rg (b) /∂b′

— not through the functions rg (·), g = 1, ...,m.

From (12),

V −1 = DR (b)−1 ×M−1 ×DR (b)−1 ,

where, obviously, DR (b)−1 is diagonal with g-th entry
(
T ′gTgT

′

gDeTg
)
/rg (b)2 , g =

1, ...,m. Thus, considering the symmetric square root matrix of M−1 (denoted as

PM),

V −1 = DR (b)−1 × PM2 ×DR (b)−1 =
[
DR (b)−1 PM

]2
= P 2,

from which P = DR (b)−1 PM , where PM depends on β only through the deriva-

tives Rg (b), g = 1, ...,m.

Then, finally, P × wd = PM ×
[
DR (b)−1wd

]
, which is an m-vector depending

on the auxiliary restrictions only through Rg (b), g = 1, ...,m: this is because the

functions rg (b) are canceled out in DR (b)−1wd. Thus, when all the functions rg (·),

g = 1, ...,m, are scalars, the vector Pn−1/2s2wd does not depend directly on the

value of the rg (β).

Proof of Corollary 5. If rg (β) = Rgβ − q, then Rg (b) = Rg, g = 1, ...,m

vectors of constants not involving b. Thus, M (and PM) are independent of b, the

only link of P × wd to β. Therefore P × wd is a vector of asymptotically pivotal

statistics. From Lemma 3, these statistics are asymptotically independent.

For independent rv’s, tg, g = 1, ...,m, Pr (sup {t1, ..., tm} ≤ v) =
∏m
g=1 Pr (tg ≤ t).

Thus, if every tg is asymptotically pivotal for all DGP’s in H0, then each Pr (tg ≤ t),

g = 1, ...,m — and so Pr (sup {t1, ..., tm} ≤ t) — is invariant under all DGP’s in

H0. Therefore, sup {P ′

1wd, . . . , P ′

mwd} is asymptotically pivotal because the P ′

gwd,

g = 1, ...,m, are asymptotically pivotal independent statistics. Obviously, this state-

ment applies to sup
{

(P ′

1wd)2 , . . . , (P ′

mwd)2
}
as well.
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Notes

(1) The idea is remotely inspired by the Hausman (1978) test, as applied to a test

statistic contrast rather than an estimator difference.

(2) Results allow an interpretation of the test as a check of the impact of het-

eroskedasticity on inferences about specific parameter restrictions. Failure to

reject the null leads to the conclusion that heteroskedasticity, if present, does

not affect WNR significantly. If a particular restriction is of interest, using the

test with that restriction can be useful. If the null is not rejected, then infer-

ence on that restriction may proceed with the nonrobust covariance estimate.

(3) At 1% and 10% levels results follow similar patterns, so they are omitted.

(4) This is “boot1” method in Hodoshima and Ando (2007). With the White’s

“direct” test under homoskedasticity, the approach is found by the authors to

work best, overall, among other bootstrap methods (including variants of the

wild bootstrap of Mammen, 1993, or Davidson and Flachaire, 2008).
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