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ORACALLY EFFICIENT TWO-STEP ESTIMATION OF
GENERALIZED ADDITIVE MODEL ∗

By Rong Liu1, Lijian Yang2,3 and Wolfgang K. Härdle4

1University of Toledo, 2Soochow University, 3Michigan State University,
4Humboldt-Universität zu Berlin

Generalized additive models (GAM) are multivariate nonpara-
metric regressions for non-Gaussian responses including binary and
count data. We propose a spline-backfitted kernel (SBK) estimator
for the component functions. Our results are for weakly dependent
data and we prove oracle efficiency. The SBK techniques is both com-
putational expedient and theoretically reliable, thus usable for ana-
lyzing high-dimensional time series. Inference can be made on com-
ponent functions based on asymptotic normality. Simulation evidence
strongly corroborates with the asymptotic theory.

1. Introduction. An effective semiparametric regression tool for high
dimensional data is the additive model introduced by Hastie and Tibshirani
(1990), which stipulates that

(1.1) E (𝑌 ∣X) = 𝑚 (X) ,𝑚 (X) = 𝑐+
∑𝑑

𝛼=1𝑚𝛼 (𝑋𝛼)

for a response 𝑌 and a predictor vector X = (𝑋1, ..., 𝑋𝑑)
T. When a data

set
{
𝑌𝑖,X

T
𝑖

}𝑛
𝑖=1

= {𝑌𝑖, 𝑋𝑖1, ..., 𝑋𝑖𝑑}𝑛𝑖=1 of size 𝑛 is observed which follows

model (1.1), unknown component functions {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=1 can be estimated
via kernel, B spline and smoothing spline with a univariate convergence
rate. This fact together with the interpretability of the functions has not
only led to a remedy of the “curse of dimensionality”, but also led to in-
creased practical applications of additive models. A list of articles on addi-
tive models and related works include, among others, Stone (1985), Stone
(1994), Huang (2004) and Xue and Yang (2006a) for B spline methods;
Tjøstheim and Auestad (1994), Linton and Nielsen (1995), Linton (1997),
Fan et al. (1998), Yang et al. (1999), Xue and Yang (2006b) and Yang et al.
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“Economic Risk”, by NSF awards DMS 0706518, 1007594 and by a Credit Rating Grant
from the National University of Singapore Risk Management Institute.
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2 R. LIU, L. YANG AND W. K. HÄRDLE

(2006) for kernel methods; and more recently, spline-backfitted kernel (SBK)
smoothing methods of Wang and Yang (2007), Wang and Yang (2009),
Liu and Yang (2010) and Ma and Yang (2011), the spline-backfitted spline
(SBS) smoothing method of Song and Yang (2010).

Certain types of responses 𝑌 , however, such as binary or Poisson re-
sponses, are much more appropriately described by GAMs. In the GAM
framework, the data

{
𝑌𝑖,X

T
𝑖

}𝑛
𝑖=1

are generated according to

(1.2) E (𝑌 ∣X = x) = 𝑏′ {𝑚 (x)} ,

with 𝑚 (x) of additive structure as in (1.1), and a given function 𝑏′ which re-
lates 𝑚 (x) to the conditional variance function 𝜎2 (x) = Var (𝑌 ∣X = x) via
the equation 𝜎2 (x) = 𝑎 (𝜙) 𝑏′′ {𝑚 (x)}, in which 𝑎 (𝜙) is a nuisance param-
eter that quantifies overdispersion. The inverse of 𝑏′ is called the link func-
tion. For binary responses, one commonly takes (𝑏′)−1 (𝑥) = log {𝑥/ (1− 𝑥)},
the logistic link to conduct logistic regression, while for Poisson regression,
(𝑏′)−1 (𝑥) = log 𝑥, the log link. If one takes (𝑏′)−1 (𝑥) = 𝑥, the identity link,
model (1.2) becomes model (1.1).

Model (1.2) has its origin in the special case where the probability density
function of 𝑌𝑖 conditional on X𝑖 with respect to a fixed 𝜎-finite measure
forms an exponential family

𝑓 (𝑌𝑖 ∣X𝑖, 𝜙) = exp [{𝑌𝑖𝑚 (X𝑖)− 𝑏 {𝑚 (X𝑖)}} /𝑎 (𝜙) + ℎ (𝑌𝑖, 𝜙)] .

For the theoretical development in this paper, however, it is not necessary
to assume that the data

{
𝑌𝑖,X

T
𝑖

}𝑛
𝑖=1

comes from such exponential family,
but only that the conditional variance and conditional mean are linked by
the following equation

Var (𝑌 ∣X = x) = 𝑎 (𝜙) 𝑏′′
[(
𝑏′
)−1 {E (𝑌 ∣X = x)}

]
.

We can also write model (1.2) in the usual regression form

(1.3) 𝑌𝑖 = 𝑏′ {𝑚 (X𝑖)}+ 𝜎 (X𝑖) 𝜀𝑖

for conditional white noise 𝜀𝑖 that satisfies E (𝜀𝑖∣X𝑖) = 0, E
(
𝜀2𝑖 ∣X𝑖

)
= 1. For

identifiability, one requires that

(1.4) E {𝑚𝛼 (𝑋𝛼)} = 0, 1 ≤ 𝛼 ≤ 𝑑

for unique additive representations of 𝑚 (x) = 𝑐+
∑𝑑

𝛼=1𝑚𝛼 (𝑥𝛼). As in most

works on nonparametric smoothing, estimation of the functions {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=1
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is conducted on compact sets. Without lose of generality, let the compact
set be 𝝌 = [0, 1]𝑑.

Methods for the generalized additive model (1.2) are much less developed
in comparison to the additive model (1.1), see for instance, the B spline
method of Stone (1986) and Xue and Liang (2010), the kernel method of
Linton and Härdle (1996) and Yang et al. (2003), and the two-stage meth-
ods of Horowitz and Mammen (2004) and Horowitz et al. (2006). Generally
speaking, the proposed kernel methods are too computationally intensive
for high dimension 𝑑, thus limiting their applicability to a small number of
predictors. On the other hand, B spline methods provide only convergence
rates but no asymptotic distributions, so no measures of confidence can be
assigned to the estimators. In the case of the additive model (1.1), the SBK
method of Wang and Yang (2007) combines the advantages of both kernel
and spline methods and the result is balanced in terms of theory, computa-
tion, and interpretation. The basic idea of the SBK method for the additive
model (1.1) is to first project the data with B-splines into a space of func-
tions with additive structure and then to apply kernel smoothing to the
projected objects.

In this paper we extend the SBK method to model (1.2). The desired aim
is to achieve orcale efficiency. If all the nonparametric functions of the last
𝑑 − 1 variables, {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=2 and the constant 𝑐 were known by an “ora-
cle”, one could simply plug these in and estimate the only unknown functions
𝑚1 (𝑥1) by maximizing the log-likelihood function with kernel weights com-
puted from variable𝑋1. This estimator of𝑚1 (𝑥1) is called “oracle smoother”
or “infeasible estimator”, and it does not suffer from the “curse of dimen-
sionality” since the smoothing operation involves w.l.o.g. only 𝑋1. The pro-
posed SBK method pre-estimates functions {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=2 and constant 𝑐
by linear splines and then use these estimates as proxies for the unknown
functions {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=2 and constant 𝑐. The main contribution is proving
that the error caused by this approximation is uniformly negligible of order
𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
. Consequently, the SBK estimator is uniformly (over the

data range) asymptotically equivalent to the “oracle smoother”, automati-
cally inheriting all oracle efficiency properties of the latter. Our proof relies
on “reducing bias by undersmoothing” and “averaging out the variance”,
accomplished with the joint asymptotics of kernel and spline functions for
realizations of geometrically strongly mixing time series. These results are es-
tablished under substantially greater technical difficulty than existng works
on additive model such as Wang and Yang (2007), Wang and Yang (2009),
Liu and Yang (2010), Ma and Yang (2011), and Song and Yang (2010). The
additional complication is due to the lack of decomposition of spline esti-
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mation error into the sum of a bias and a noise term when the link function
(𝑏′)−1 is nonlinear.

A similar result was proved in Horowitz and Mammen (2004) for i.i.d.
rather than dependent data and only pointwise rates instead of uniform rates
were derived. It is also worth emphasizing that although Horowitz and Mammen
(2004) had used the B-spline estimator for the first stage in simulation, their
proof is valid only for using the orthogonal series estimator in stage one.
Another major contribution of this paper is establishing that the spline-
backfitted estimator of the additive constant 𝑐 is within an negligible error
of order 𝒪𝑝

(
𝑛−1/2

)
of the infeasible estimator and thus also oracally effi-

cient. As far as we know, our estimator of the additive constant 𝑐 is the only
one which has an asymptotic distribution with 𝑛−1/2 rate.

The paper is organized as follows. In Section 2 we discuss the assump-
tions of the model (1.2). In Section 3, we introduce the oracle smoother or
infeasible estimator for 𝑚1 (𝑥1) and for 𝑐, and state their asymptotics. In
Section 4 we introduce the SBK estimator for 𝑚1 (𝑥1) and spline-backfitted
estimator for 𝑐 and present their asymptotic oracle efficiencies by showing
that they differ from their infeasible counterparts only negligibly. In Section
5 we describe implementation steps of the estimators. In Section 6 we apply
the methods to simulated and real examples. All technical proofs are given
in the Appendix.

2. Model assumptions. Following Stone (1985), p. 693, the space of
𝛼-centered square integrable functions on [0, 1] is

ℋ0 =
{
𝑔 : E {𝑔 (𝑋𝛼)} = 0,E

{
𝑔2 (𝑋𝛼)

}
< +∞} .

Next define the model space ℳ, a collection of functions on ℝ𝑑 as

ℳ =
{
𝑔 (x) = 𝑐+

∑𝑑
𝛼=1 𝑔𝛼 (x) ; 𝑔𝛼 ∈ ℋ0

}
,

in which 𝑐 is finite constant. The constraints that E {𝑔𝛼 (𝑋𝛼)} = 0, 1 ≤ 𝛼 ≤ 𝑑
ensure unique additive representation of 𝑚𝛼 as expressed in (1.4), but are
not necessary for the definition of space ℳ. In what follows, denote by E𝑛

the empirical expectation, E𝑛 𝜑 =
∑𝑛

𝑖=1 𝜑 (X𝑖) /𝑛. We introduce two inner
products onℳ. For functions 𝑔1, 𝑔2 ∈ ℳ, the theoretical and empirical inner
products are defined respectively as ⟨𝑔1, 𝑔2⟩ = E {𝑔1 (X) 𝑔2 (X)}, ⟨𝑔1, 𝑔2⟩𝑛 =
E𝑛 {𝑔1 (X) 𝑔2 (X)}. The corresponding induced norms are ∥𝑔1∥22 = E 𝑔21 (X),
∥𝑔1∥22,𝑛 = E𝑛 𝑔

2
1 (X). More generally, we define ∥𝑔∥𝑟𝑟 = E 𝑔𝑟 (X) .

Throughout the paper, for any compact interval [𝑎, 𝑏], we denote the space
of 𝑝-th order smooth function as 𝐶(𝑝)[𝑎, 𝑏] =

{
𝑔∣𝑔(𝑝) ∈ 𝐶 [𝑎, 𝑏]

}
, and the class
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of Lipschitz continuous functions for constant 𝐶 > 0 as Lip ([𝑎, 𝑏] , 𝐶) =
{𝑔∣ ∣𝑔 (𝑥)− 𝑔 (𝑥′)∣ ≤ 𝐶 ∣𝑥− 𝑥′∣ , ∀𝑥, 𝑥′ ∈ [𝑎, 𝑏]}. We mean by “∼” both sides
having the same order as 𝑛 → ∞. For any vector x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑑)T,
we denote the supremum and 𝑝 norms as ∣x∣ = max1≤𝛼≤𝑑 ∣𝑥𝛼∣ and ∥x∥𝑝 =(∑𝑑

𝛼=1 𝑥
𝑝
𝛼

)1/𝑝
. In particular, we use ∥x∥ to denote the Euclidean norm.

We need the following Assumptions on the data generating process.

(A1) The additive component functions 𝑚𝛼 ∈ 𝐶(1) [0, 1] , 1 ≤ 𝛼 ≤ 𝑑 with
𝑚1 ∈ 𝐶(2) [0, 1], 𝑚′

𝛼 ∈ Lip ([0, 1] , 𝐶𝑚) = 2 ≤ 𝛼 ≤ 𝑑 for some constant
𝐶𝑚 > 0.

(A2) The inverse link function 𝑏′ satisfies: 𝑏′ ∈ 𝐶2 (ℝ) , 𝑏′′ (𝜃) > 0, 𝜃 ∈ ℝ
while for a compact interval Θ whose interior contains 𝑚

(
[0, 1]𝑑

)
,

𝐶𝑏 > max𝜃∈Θ 𝑏′′ (𝜃) ≥ min𝜃∈Θ 𝑏′′ (𝜃) > 𝑐𝑏 for constants 𝐶𝑏 > 𝑐𝑏 > 0.
(A3) The conditional variance function 𝜎2 (x) is measurable and bounded.

The errors {𝜀𝑖}𝑛𝑖=1 satisfy E (𝜀𝑖∣ℱ𝑖) = 0, E
(
∣𝜀𝑖∣2+𝜂

)
≤ 𝐶𝜂 for some

𝜂 ∈ (1/2, 1] and the sequence of 𝜎-fields
ℱ𝑖 = 𝜎 {(X𝑗) , 𝑗 ≤ 𝑖; 𝜀𝑗 , 𝑗 ≤ 𝑖− 1} for 𝑖 = 1, . . . , 𝑛.

(A4) The density function 𝑓 (x) of (𝑋1, ..., 𝑋𝑑) is continuous and

0 < 𝑐𝑓 ≤ infx∈𝝌 𝑓 (x) ≤ supx∈𝝌 𝑓 (x) ≤ 𝐶𝑓 < ∞.

The marginal densities 𝑓𝛼 (𝑥𝛼) of 𝑋𝛼 have continuous derivatives on
[0, 1] as well as the uniform upper bound 𝐶𝑓 and lower bound 𝑐𝑓 .

(A5) Constants 𝐾0, 𝜆0 ∈ (0,+∞) exist such that 𝛼 (𝑛) ≤ 𝐾0𝑒
−𝜆0𝑛 holds for

all 𝑛, with the 𝛼-mixing coefficients for
{
Z𝑖 =

(
XT

𝑖 , 𝜀𝑖
)}𝑛

𝑖=1
defined

as

𝛼 (𝑘) = sup
𝐵∈𝜎{Z𝑠,𝑠≤𝑡},𝐶∈𝜎{Z𝑠,𝑠≥𝑡+𝑘}

∣P (𝐵 ∩ 𝐶)− P (𝐵) P (𝐶)∣ , 𝑘 ≥ 1.

Assumptions (A1), (A2) and (A4) are standard in the GAM literature,
see Stone (1986), Xue and Liang (2010), while Assumptions (A3) and (A5)
are the same for weakly dependent data as in Wang and Yang (2007),
Liu and Yang (2010). Assumption (A2) implies that a compact interval 𝐴
exists whose interior contains 𝑚1 ([0, 1]) and that Θ’s interior contains

𝐴+𝑚 1

(
[0, 1]𝑑−1

)
where𝑚 1 (x 1) = 𝑐+

∑𝑑
𝛼=2𝑚𝛼 (𝑥𝛼) with 𝑥 1 = (𝑥2, ..., 𝑥𝑑).

3. Oracle smoothers. We now introduce what is known as the oracle
smoother in Wang and Yang (2007) as a benchmark for evaluating the esti-
mators. If the last 𝑑−1 components {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=2 were w.l.o.g. known by an
“oracle”, then the only unknown component 𝑚1 (𝑥1) may be estimated by
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the following procedure. Define for each 𝑥1 ∈ [ℎ, 1− ℎ] a local log-likelihood
function 𝑙̃ (𝑎) = 𝑙̃ (𝑎, 𝑥1) , 𝑎 ∈ 𝐴 as

(3.1) 𝑛−1∑𝑛
𝑖=1 [𝑌𝑖 {𝑎+𝑚 1 (X𝑖 1)} − 𝑏 {𝑎+𝑚 1 (X𝑖 1)}]𝐾ℎ (𝑋𝑖1 − 𝑥1)

with 𝑚 1 (X𝑖 1) = 𝑐 +
∑𝑑

𝛼=2𝑚𝛼 (X𝑖𝛼) and define the oracle smoother of
𝑚1 (𝑥1) as

(3.2) 𝑚̃K,1 (𝑥1) = argmax𝑎∈𝐴 𝑙̃ (𝑎, 𝑥1) .

in which 𝐾ℎ (𝑢) = 𝐾 (𝑢/ℎ) /ℎ for a kernel function 𝐾 and bandwidth ℎ that
satisfy

(A6) The kernel function 𝐾 is a symmetric probability density, supported on
[−1, 1] and 𝐾 ∈ Lip ([−1, 1] , 𝐶𝐾) for some positive constant 𝐶𝐾 > 0.
A constant 𝑐ℎ > 0 exists such that the bandwidth ℎ = ℎ𝑛 satisfies
ℎ = 𝒪 (𝑛−1/5

)
, ℎ−1 = 𝒪 (𝑛1/5 (log 𝑛)𝑐ℎ

)
.

In what follows, we denote ∥𝐾∥22 =
∫
𝐾2 (𝑢) 𝑑𝑢, 𝜇2 (𝐾) =

∫
𝐾 (𝑢)𝑢2𝑑𝑢.

Denote the higher order error of 𝑚̃K,1 (𝑥1) as

𝑟K,1 (𝑥1) = 𝑚̃K,1 (𝑥1)−𝑚1 (𝑥1)− bias1 (𝑥1)ℎ
2/𝐷1 (𝑥1)

−𝑛−1∑𝑛
𝑖=1𝐾ℎ (𝑋𝑖1 − 𝑥1)𝜎 (X𝑖) 𝜀𝑖/𝐷1 (𝑥1) ,

with the scale function 𝐷1 (𝑥1) and bias function bias1 (𝑥1) defined as

(3.3) 𝐷1 (𝑥1) = 𝑓1 (𝑥1)E
{
𝑏′′ {𝑚 (X)} ∣𝑋1 = 𝑥1

}
,

bias1 (𝑥1) = 𝜇2 (𝐾)
[
𝑚′′

1 (𝑥1) 𝑓 (𝑥1)E
[
𝑏′′ {𝑚 (X)} ∣𝑋1 = 𝑥1

]
+𝑚′

1 (𝑥1) 𝑓 (𝑥1)
∂

∂𝑥1
E
[
𝑏′′ {𝑚 (X)} ∣𝑋1 = 𝑥1

]
−{𝑚′

1 (𝑥1)
}2

𝑓 (𝑥1)E
[
𝑏′′′ {𝑚 (X)} ∣𝑋1 = 𝑥1

]]
.(3.4)

THEOREM 1. Under Assumptions (A1)-(A6), as 𝑛 → ∞

sup
𝑥1∈[ℎ,1−ℎ]

∣𝑟K,1 (𝑥1)∣ = 𝒪𝑎.𝑠.

(
𝑛−1/2ℎ1/2 log 𝑛

)
.

In particular, sup𝑥1∈[ℎ,1−ℎ] ∣𝑚̃K,1 (𝑥1)−𝑚1 (𝑥1)∣ = 𝒪𝑎.𝑠.

(
log 𝑛/

√
𝑛ℎ
)
.
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THEOREM 2. Under Assumptions (A1)-(A6), for any 𝑥1 ∈ [ℎ, 1− ℎ],
as 𝑛 → ∞, the oracle kernel smoother 𝑚̃K,1 (𝑥1) given in (3.2) satisfies

√
𝑛ℎ
{
𝑚̃K,1 (𝑥1)−𝑚1 (𝑥1)− bias1 (𝑥1)ℎ

2/𝐷1 (𝑥1)
}

ℒ→ 𝑁
(
0, 𝐷1 (𝑥1)

−1 𝑣21 (𝑥1)𝐷1 (𝑥1)
−1
)

in which

(3.5) 𝑣21 (𝑥1) = 𝑓1 (𝑥1)E
{
𝜎2 (X) ∣𝑋1 = 𝑥1

} ∥𝐾∥22 .

The same oracle idea applies to the constant as well. Define the log-
likelihood function

𝑙̃𝑐 (𝑎) = 𝑛−1∑𝑛
𝑖=1 [𝑌𝑖 {𝑎+𝑚 𝑐 (X𝑖)} − 𝑏 {𝑎+𝑚 𝑐 (X𝑖)}] ,

where 𝑚 𝑐 (X) =
∑𝑑

𝛼=1𝑚𝛼 (𝑋𝛼). The infeasible estimator of 𝑐 is defined as
𝑐 = argmax𝑎∈𝐴 𝑙̃𝑐 (𝑎) . Clearly, 𝑙̃

′
𝑐 (𝑐) = 0.

THEOREM 3. Under Assumptions (A1)-(A5), as 𝑛 → ∞

𝑐− 𝑐 =
[
E 𝑏′′ {𝑚 (X)}]−1

𝑛−1∑𝑛
𝑖=1 𝜎 (X𝑖) 𝜀𝑖 +𝒪𝑎.𝑠

(
𝑛−1 (log 𝑛)2

)
.

Although the oracle smoother 𝑚̃K,1 (𝑥1) enjoys the desirable theoretical
properties in Theorems 1 and 2, it not useful statistics as its computation
is based on the knowledge of unavailable functions {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=2 and the
unknown constant 𝑐, the same can be said of 𝑐. These benchmarks, however,
motivate the spline-backfitted estimators that we will introduce in the next
section.

4. Spline-backfitted kernel estimators. In this section we describe
how the unknown functions {𝑚𝛼 (𝑥𝛼)}𝑑𝛼=2 and constants 𝑐 can be pre-
estimated by linear splines and how the estimates are used to construct
the SBK estimator. First, we introduce the space of linear splines defined
in Liu and Yang (2010). Let 0 = 𝜉0 < 𝜉1 < ⋅ ⋅ ⋅ < 𝜉𝑁 < 𝜉𝑁+1 = 1 denote a
sequence of equally spaced points, called interior knots, on interval [0, 1]. De-
note by 𝐻 = (𝑁 + 1)−1 the width of each subinterval

[
𝜉𝐽 , 𝜉𝐽+1

]
, 0 ≤ 𝐽 ≤ 𝑁

and denote the degenerate knots 𝜉−1 = 0, 𝜉𝑁+2 = 1. Assume that

(A7) The number of interior knots satisfies: 𝑁 ∼ 𝑛1/4 log 𝑛, i.e., 𝑐𝑁𝑛1/4

log 𝑛 ≤ 𝑁 ≤ 𝐶𝑁𝑛1/4 log𝑛 for some positive constants 𝑐𝑁 ,𝐶𝑁 .
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For 𝐽 = 0, . . . , 𝑁 + 1, define the linear B spline basis as

𝑏𝐽 (𝑥) = (1− ∣𝑥− 𝜉𝐽 ∣ /𝐻)+ =

⎧⎨⎩
(𝑁 + 1)𝑥− 𝐽 + 1
𝐽 + 1− (𝑁 + 1)𝑥

0

,
,
,

𝜉𝐽−1 ≤ 𝑥 ≤ 𝜉𝐽
𝜉𝐽 ≤ 𝑥 ≤ 𝜉𝐽+1

otherwise
,

the space of 𝛼-empirically centered linear spline functions on [0, 1] as

𝐺0
𝑛,𝛼 =

{
𝑔𝛼 : 𝑔𝛼 (𝑥𝛼) =

∑𝑁+1
𝐽=0 𝜆𝐽𝑏𝐽 (𝑥𝛼) ,E𝑛 {𝑔𝛼 (𝑋𝛼)} = 0

}
, 1 ≤ 𝛼 ≤ 𝑑,

and the space of additive spline functions on 𝝌 as

𝐺0
𝑛 =

{
𝑔 (x) = 𝑐+

∑𝑑
𝛼=1 𝑔𝛼 (𝑥𝛼) ; 𝑐 ∈ 𝑅, 𝑔𝛼 ∈ 𝐺0

𝑛,𝛼

}
,

which is equipped with the empirical inner product ⟨⋅, ⋅⟩2,𝑛. Define the log-

likelihood function 𝐿̂ (𝑔) = 𝑛−1
∑𝑛

𝑖=1 [𝑌𝑖𝑔 (X𝑖)− 𝑏 {𝑔 (X𝑖)}] , 𝑔 ∈ 𝐺0
𝑛, which

according to Lemma 14 of Stone (1986), has a unique maximizer with prob-
ability approaching 1. The multivariate function 𝑚 (x) is then estimated by
the additive spline function

𝑚̂ (x) = argmax𝑔∈𝐺0
𝑛
𝐿̂ (𝑔) .

Since 𝑚̂ (x) ∈ 𝐺0
𝑛, one can write 𝑚̂ (x) = 𝑐 +

∑𝑑
𝛼=1 𝑚̂𝛼 (𝑥𝛼) for 𝑐 ∈ ℝ and

𝑚̂𝛼 (𝑥𝛼) ∈ 𝐺0
𝑛,𝛼. Next define the log-likelihood function

(4.1) 𝑙̂ (𝑎) =
1

𝑛

𝑛∑
𝑖=1

[𝑌𝑖 {𝑎+ 𝑚̂ 1 (X𝑖 1)} − 𝑏 {𝑎+ 𝑚̂ 1 (X𝑖 1)}]𝐾ℎ (𝑋𝑖1 − 𝑥1)

where 𝑚̂ 1 (X𝑖 1) = 𝑐+
∑𝑑

𝛼=2 𝑚̂𝛼 (𝑋𝑖𝛼). Define the SBK estimator as:

(4.2) 𝑚̂SBK,1 (𝑥1) = argmax𝑎∈𝐴 𝑙̂ (𝑎) .

THEOREM 4. Under Assumptions (A1)-(A7), as 𝑛 → ∞, 𝑚̂SBK,1 (𝑥1)
is oracally efficient,

sup
𝑥1∈[0,1]

∣𝑚̂SBK,1 (𝑥1)− 𝑚̃K,1 (𝑥1)∣ = 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
.

Theorem 4 follows from (A.29), Lemmas A.15 and A.16. The following
corollary is a consequence of Theorems 1, 2 and 4.
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COROLLARY 1. Under Assumptions (A1)-(A7), as 𝑛 → ∞, the SBK
estimator 𝑚̂SBK,1 (𝑥1) given in (4.2) satisfies

sup
𝑥1∈[ℎ,1−ℎ]

∣𝑚̂SBK,1 (𝑥1)−𝑚1 (𝑥1)∣ = 𝒪𝑎.𝑠.

(
log 𝑛/

√
𝑛ℎ
)

and for any 𝑥1 ∈ [ℎ, 1− ℎ], with bias1 (𝑥1) as in (3.4) and 𝐷1 (𝑥1) in (3.3)

√
𝑛ℎ
{
𝑚̂SBK,1 (𝑥1)−𝑚1 (𝑥1)− bias1 (𝑥1)ℎ

2/𝐷1 (𝑥1)
}

ℒ→ 𝑁
(
0, 𝐷1 (𝑥1)

−1 𝑣21 (𝑥1)𝐷1 (𝑥1)
−1
)
.

Define next the spline-backfitted estimator 𝑐 = argmax𝑎∈𝐴 𝑙̂𝑐 (𝑎) with

𝑙̂𝑐 (𝑎) = 𝑛−1
∑𝑛

𝑖=1 [𝑌𝑖 {𝑎+ 𝑚̂ 𝑐 (X𝑖)} − 𝑏 {𝑎+ 𝑚̂ 𝑐 (X𝑖)}] in which 𝑚̂ 𝑐 (X𝑖) =∑𝑑
𝛼=1 𝑚̂𝛼 (𝑋𝑖𝛼). Similar to Theorem 4, the main result shows that the differ-

ence between 𝑐 and its infeasible counterpart 𝑐 is asymptotically negligible.

THEOREM 5. Under Assumptions (A1)-(A5) and (A7), as 𝑛 → ∞, 𝑐

is oracally efficient, i.e.,
√
𝑛 (𝑐− 𝑐)

𝑝→ 0 and hence

√
𝑛 (𝑐− 𝑐)

ℒ→ 𝑁
(
0, 𝑎 (𝜙)1/2

[
E 𝑏′′ {𝑚 (X)}]−1/2

)
.

5. Implementation. We implement our procedures with the following
rule-of-thumb number of interior knots

𝑁 = 𝑁𝑛 = min
(⌊

𝑛1/4 log𝑛
⌋
+ 1, ⌊𝑛/4𝑑− 1/𝑑⌋ − 1

)
which satisfies (A8), i.e. 𝑁 = 𝑁𝑛 ∼ 𝑛1/4 log 𝑛, and ensures that the number
of parameters in the linear least squares problem is less than 𝑛/4, i.e., 1 +
𝑑 (𝑁 + 1) ≤ 𝑛/4. For more discussion, see Portnoy (1997).

According to Corollary 1, the asymptotic distribution of the estimator
𝑚̂SBK,𝛼 (𝑥𝛼) depends not only on the functions bias𝛼 (𝑥𝛼) /𝐷𝛼 (𝑥𝛼) and
𝐷𝛼 (𝑥𝛼)

−1 𝑣2𝛼 (𝑥𝛼)𝐷𝛼 (𝑥𝛼)
−1, but also crucially on the choice of bandwidths

ℎ𝛼. Define the optimal bandwidth of ℎ𝛼, denoted by ℎ𝛼,opt, as the minimizer
of the asymptotic mean integrated squared errors (AMISE) of
{𝑚̂𝛼(𝑥𝑎), 𝛼 = 1, . . . , 𝑑}:

AMISE (𝑚̂𝛼) =

∫ [{
bias𝛼 (𝑥𝛼)ℎ

2
𝛼/𝐷𝛼 (𝑥𝛼)

}2
+𝐷𝛼 (𝑥𝛼)

−1 𝑣2𝛼 (𝑥𝛼)𝐷𝛼 (𝑥𝛼)
−1 / (𝑛ℎ𝛼)

]
𝑓𝛼 (𝑥𝛼) 𝑑𝑥𝛼.
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By letting 𝑑AMISE (𝑚̂𝛼) /𝑑ℎ𝛼 = 0, one obtains an optimal bandwidth
ℎ𝛼,opt:

ℎ𝛼,opt =

{
𝑛−1

∫
𝐷𝛼 (𝑥𝛼)

−1 𝑣2𝛼 (𝑥𝛼)𝐷𝛼 (𝑥𝛼)
−1 𝑓𝛼 (𝑥𝛼) 𝑑𝑥𝛼

4
∫ {bias𝛼 (𝑥𝛼) /𝐷𝛼 (𝑥𝛼)}2 𝑓𝛼 (𝑥𝛼) 𝑑𝑥𝛼

}1/5

,

which is approximated by

ℎ̂𝛼,opt =

{
𝑛−1

∑𝑛
𝑖=1𝐷𝛼 (𝑋𝑖𝛼)

−1 𝑣2𝛼 (𝑋𝑖𝛼)𝐷𝛼 (𝑋𝑖𝛼)
−1

4
∑𝑛

𝑖=1 {bias𝛼 (𝑋𝑖𝛼) /𝐷𝛼 (𝑋𝑖𝛼)}2
}1/5

,

where
𝐷𝛼 (𝑥𝛼) = 𝑓𝛼 (𝑥𝛼)E

[
𝑏′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼

]
and

𝑣2𝛼 (𝑥𝛼) = 𝑓𝛼 (𝑥𝛼)E
{
𝜎2 (X) ∣𝑋𝛼 = 𝑥𝛼

} ∥𝐾∥22 ,
bias𝛼 (𝑥𝛼) = 𝜇2 (𝐾)

{
𝑚′′

𝛼 (𝑥𝛼) 𝑓 (𝑥𝛼)E
[
𝑏′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼

]
+𝑚′

𝛼 (𝑥𝛼) 𝑓 (𝑥𝛼)
∂

∂𝑥𝛼
E
[
𝑏′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼

]
−{𝑚′

𝛼 (𝑥𝛼)
}2

𝑓 (𝑥𝛼)E
[
𝑏′′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼

]}
.

The following estimation methods for the terms𝑚′
𝛼 (𝑥𝛼),𝑚

′′
𝛼 (𝑥𝛼), 𝑓𝛼 (𝑥𝛼),

E
{
𝜎2 (X) ∣𝑋𝛼 = 𝑥𝛼

}
, E [𝑏′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼], E [𝑏′′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼] and

∂
∂𝑥𝛼

E [𝑏′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼] are proposed. The final bandwidth is denoted

as ℎ̂𝛼,opt.

1). The derivative functions 𝑚′
𝛼 (𝑋𝑖𝛼) and 𝑚′′

𝛼 (𝑋𝑖𝛼) are estimated as∑3
𝑘=1 𝑘𝑎̂𝛼,𝑙,𝑘𝑋

𝑘−1
𝑖𝛼 + 3

∑𝑁+3
𝑘=4 𝑎̂𝛼,𝑙,𝑘 (𝑋𝑖1 − 𝑡𝛼,𝑘−3)

2 and∑3
𝑘=2 𝑘 (𝑘 − 1) 𝑎̂𝛼,𝑙,𝑘𝑋

𝑘−2
𝑖𝛼 + 6

∑𝑁+3
𝑘=4 𝑎̂𝛼,𝑙,𝑘 (𝑋𝑖1 − 𝑡𝛼,𝑘−3) where {𝑎̂𝛼,𝑙,𝑘}𝑁+3

𝑘=0
maximize:∑𝑛

𝑖=1

[
𝑌𝑖

{∑3
𝑘=0 𝑎𝛼,𝑙,𝑘𝑋

𝑘
𝑖𝛼 +

∑𝑁+3
𝑘=4 𝑎𝛼,𝑙,𝑘 (𝑋𝑖𝛼 − 𝑡𝛼,𝑘−3)

3
}

−𝑏

{∑3
𝑘=0 𝑎𝛼,𝑙,𝑘𝑋

𝑘
𝑖𝛼 +

∑𝑁+3

𝑘=4
𝑎𝛼,𝑙,𝑘 (𝑋𝑖𝛼 − 𝑡𝛼,𝑘−3)

3

}]
where min𝑖𝑋𝑖𝛼 = 𝑡𝛼,0 < ⋅ ⋅ ⋅ < 𝑡𝛼,𝑁+1 = max𝑖𝑋𝑖𝛼.

2). E [𝑏′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼] is estimated as∑3
𝑘=0 𝑎̂

𝑘
𝛼,𝑙,𝑘𝑥

𝑘
𝛼 +

∑𝑁+3
𝑘=4 𝑎̂𝛼,𝑙,𝑘 (𝑥𝛼 − 𝑡𝛼,𝑘−3)

3 by minimizing

∑𝑛
𝑖=1

[
𝑏′′ {𝑚̂ (X𝑖)} −

{∑3
𝑘=0 𝑎𝛼,𝑙,𝑘𝑋

𝑘
𝛼 +

∑𝑁+3
𝑘=4 𝑎𝛼,𝑙,𝑘 (𝑋𝛼 − 𝑡𝑘−3)

3
}]2

,
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∂

∂𝑥𝛼
E [𝑏′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼] and E [𝑏′′′ {𝑚 (X)} ∣𝑋𝛼 = 𝑥𝛼] are estimated by∑3

𝑘=1 𝑘𝑎̂
𝑘
𝛼,𝑙,𝑘𝑥

𝑘−1
𝛼 + 3

∑𝑁+3
𝑘=4 𝑎̂𝛼,𝑙,𝑘 (𝑥𝛼 − 𝑡𝛼,𝑘−3)

2 and∑3
𝑘=0 𝑎̂

𝑘
𝛼,𝑙,𝑘𝑥𝛼 +

∑𝑁+3
𝑘=4 𝑎̂𝛼,𝑙,𝑘 (𝑥𝛼 − 𝑡𝛼,𝑘−3)

3 by minimizing∑𝑛
𝑖=1

[
𝑏′′′ {𝑚̂ (X𝑖)} −

{∑3
𝑘=0 𝑎𝛼,𝑙,𝑘𝑋

𝑘
𝛼 +

∑𝑁+3
𝑘=4 𝑎𝛼,𝑙,𝑘 (𝑋𝛼 − 𝑡𝑘−3)

3
}]2

.

3). E
{
𝜎2 (X) ∣𝑋𝛼 = 𝑥𝛼

}
is estimated by∑3

𝑘=0 𝑎̂
𝑘
𝛼,𝑙,𝑘𝑥𝛼 +

∑𝑁+3
𝑘=4 𝑎̂𝛼,𝑙,𝑘 (𝑥𝛼 − 𝑡𝛼,𝑘−3)

3 by minimizing

∑𝑛
𝑖=1

([
𝑌𝑖 − 𝑏′ {𝑚̂ (X𝑖)}

]2 − {∑3
𝑘=0 𝑎𝛼,𝑙,𝑘𝑋

𝑘
𝛼 +

∑𝑁+3
𝑘=4 𝑎𝛼,𝑙,𝑘 (𝑋𝛼 − 𝑡𝑘−3)

3
})2

.

4). The density function 𝑓𝛼 (𝑥𝛼) is estimated by 𝑛−1
∑𝑛

𝑖=1𝐾ℎ𝛼 (𝑋𝑖𝛼 − 𝑥𝛼)
with the rule-of-the-thumb bandwidth ℎ𝛼.

6. Examples. We have applied the estimation procedure described in
the previous section to both simulated (Example 1 and 2) and real (Example
3) data.

6.1. Example 1. The data are generated from the model

P(𝑌 = 1∣X = x) = 𝑏′
{
𝑐+

∑𝑑
𝛼=1𝑚𝛼 (𝑋𝛼)

}
, 𝑏′ (𝑥) =

𝑒𝑥

1 + 𝑒𝑥

with 𝑑 = 5, 𝑐 = 0,𝑚1 (𝑥) = sin (𝜋𝑥), 𝑚2 (𝑥) = Φ (3𝑥) and 𝑚3 (𝑥) = 𝑚4 (𝑥) =
𝑚5 (𝑥) = 𝑥, where Φ is the standard normal distribution function. The
predictors are generated by transforming the following vector autoregression
(VAR) equation for 0 ≤ 𝑎, 𝑟 < 1,

𝑋𝑡𝛼 = Φ
(√

1− 𝑎2𝑍𝑡𝛼

)
, 2 ≤ 𝑡 ≤ 𝑛, 1 ≤ 𝛼 ≤ 𝑑

Z𝑡 = 𝑎Z𝑡−1 + 𝜺𝑖, 𝜺𝑖 ∼ 𝑁 (0,Σ) , 2 ≤ 𝑡 ≤ 𝑛,Σ = (1− 𝑟) I𝑑×𝑑 + 𝑟1𝑑1
T
𝑑 ,

with stationary Z𝑡 = (𝑍𝑡1, ..., 𝑍𝑡𝑑)
T ∼ 𝑁

{
0,
(
1− 𝑎2

)−1
Σ
}
, 1𝑑 = (1, ..., 1)T

and I𝑑×𝑑 is the 𝑑 × 𝑑 identity matrix. Higher values of 𝑎 correspond to
stronger dependence among the observations, and in particular, if 𝑎 = 0,
the data are i.i.d. The 𝑟 controls the correlation of the 𝑋𝑡1 and 𝑋𝑡2. In this
study, we have experimented with two cases: 𝑟 = 0, 𝑎 = 0; 𝑟 = 0.5, 𝑎 = 0.5
to cover various scenarios. For 𝛼 = 1, ..., 𝑑, let 𝑥𝑖𝛼,min, 𝑥

𝑖
𝛼,max denote the

smallest and largest observations of the variable 𝑥𝛼 in the 𝑖 -th replication.
The component functions {𝑚𝛼}𝑑𝛼=1 are estimated on sample values.
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Denoting the estimator of 𝑚𝛼 in the 𝑘-th sample as 𝑚̂SBK,𝛼,𝑘 and 𝑋𝑡𝛼,𝑘

accordingly. We define the (mean) integrated squared error (ISE and MISE):

ISE(𝑚̂SBK,𝛼,𝑘) = 𝑛−1∑𝑛
𝑡=1 {𝑚̂SBK,𝛼,𝑘(𝑋𝑡𝛼,𝑘)−𝑚𝛼(𝑋𝑡𝛼,𝑘)}2 ,

MISE(𝑚̂SBK,𝛼) =
1

100

∑100
𝑘=1 ISE(𝑚̂SBK,𝛼,𝑘).

In order to show the SBK estimator’s efficiency relative to the ”oracle
smoother” 𝑚̃K,𝛼 (𝑥𝛼), define the empirical relative efficiency of 𝑚̂SBK,𝛼 (𝑥𝛼)
with respect to 𝑚̃K,𝛼 (𝑥𝛼) as

EFF𝛼 =

[ ∑𝑛
𝑡=1 {𝑚̃K,𝛼 (𝑥𝛼)−𝑚𝛼(𝑋𝑡𝛼)}2∑𝑛

𝑡=1 {𝑚̂SBK,𝛼(𝑋𝑡𝛼)−𝑚𝛼(𝑋𝑡𝛼)}2
]1/2

.

Tables 1 and 2 show EFF (⋅) and std {EFF (⋅)}, which are the means
and standard deviations of the MISEs and EFFs of 𝑚̂SBK,𝛼 and 𝑚̃K,𝛼 for
𝛼 = 1, 2. It is apparent that the SBK estimator performs as good as the
oracle estimator, see Theorem 4.

(Insert Table 1 about here)
(Insert Table 2 about here)

6.2. Example 2. Using the same model in Example 1 but with a higher
dimension 𝑑 = 10, where 𝑚𝛼 (𝑥) = sin (𝜋𝑥), 𝛼 = 1, ..., 10 and data are
generated the same way. We have run 100 replications for sample size 𝑛 =
500, 1000, 1500, 2000. The MISEs of EFFs of 𝑚̂SBK,1 and 𝑚̃K,1 are shown
in Table 3. As expected, increases in sample size reduce MISE for both
estimators and across all combinations of 𝑟 and 𝛼 values.

(Insert Table 3 about here)
The convergence properties are displayed in Figure 1 (a) showing the

kernel density estimator of the simulated efficiencies for 𝛼 = 1 and sample
sizes 𝑛 = 500, 1000, 1500, 2000 for 𝑟 = 0, 𝑎 = 0. The vertical line at
efficiency = 1 is the standard line for the comparison of 𝑚̂SBK,1 and 𝑚̃K,1.
One can clearly see that the center of the density plots is moving towards
the standard line 1.0 with a narrower spread when sample size increases,
which confirms the result of Theorem 4. The basic graphic pattern of Figure
1 (b) with 𝑟 = 0.5, 𝑎 = 0.5 is similar to that for the i.i.d case, though with
slightly slower convergent and slightly poorer efficient.

(Insert Figure 1 about here)
To have an impression of the actual function estimates, for 𝑟 = 0, 𝑎 = 0

and 𝑟 = 0.5, 𝑎 = 0.5 with sample size 𝑛 = 500, 1000, 1500, 2000, we have
plotted the SBK estimators and their 95% pointwise confidence intervals
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(three dotted lines), oracle estimators (dashed lines) for the true functions
𝑚1 (solid lines) in Figures 2 and 3. The results are satisfactory and show that
the theory works in practice, and that performance improves with increasing
sample size.

(Insert Figure 2 about here)
(Insert Figure 3 about here)

6.3. Example 3. We have applied the estimation to the dataset comes
from the credit reform database provided by the Research Data Center
(RDC) of the Humboldt Universität zu Berlin. After we exclude the miss-
ing values, it contains financial information from 18610 solvent (𝑦 = 0) and
1000 insolvent (𝑦 = 1) German companies. The time period ranges from
1997 to 2002 and in the case of the insolvent companies the information
was gathered 2 years before the insolvency took place. For more details, see
Härdle et al. (2010). The financial ratios we use are showed in Table 4.

(Insert Table 4 about here)
In order to satisfy (A4), we make following transformation:𝑋𝑖𝛼 = 𝐹𝑛𝛼 (𝑍𝑖𝛼),

𝛼 = 1, ..., 8, where 𝐹𝑛𝛼 is the empirical cdf for the data {𝑋𝑖𝛼}𝑛𝑖=1 . We mea-
sure the quality of the estimation by Accuracy Ratio (AR), which is the
ratio of two areas. The first one is the area between the Cumulative Accu-
racy Profile (CAP) curve and the diagonal line, and the second one is the
area between the perfect model CAP curve and the diagonal. The second
area is close to 1/2 in this example, so we have AR ≈ 2

∫ 1
0 CAP (𝑥) 𝑑𝑥− 1.

As a result, our model has the AR value 62.66%. We can also estimate
the functions 𝑚𝛼 (𝑥) for 𝑋𝛼. For example, if we are interested in the effects
of Ebit/Total Assets and log (Total Assets), we can obtain the estimations
for 𝑚3 (𝑥) and 𝑚8 (𝑥), which are showed in Figure 4.

(Insert Figure 4 about here)
It is not a surprise that the estimation for 𝑚8 (𝑥) decreases as 𝑥 value in-

creases. It means that a company with more Total Assets has smaller prob-
ability of insolvent. While as 𝑥 value increases, the estimation for 𝑚3 (𝑥)
increases for most part but decreases at the end. So generally, those compa-
nies with higher Ebit/Total Assets ratio have more probability of insolvent.
But it looks like that those companies with extremely high Ebit/Total Assets
ratio have less probability of insolvent. It is an interesting topic to figure out
the reason.

APPENDIX A: APPENDIX SECTION

A.1. Preliminaries. In the proofs that follow, we use “𝒰” and “𝒰” to
denote sequences of random variables that are uniformly “𝒪” and “𝒪 ” of
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certain order.

LEMMA A.1. (Sunklodas (1984), Theorem 1) Let {𝜉𝑖}𝑛𝑖=1 be an 𝛼-
mixing sequence with E 𝜉𝑛 = 0. Denote 𝑑𝛿 = max1≤𝑖≤𝑛

{
E ∣𝜉𝑖∣2+𝛿

}
, 0 <

𝛿 ≤ 1, 𝑆𝑛 =
∑𝑛

𝑖=1 𝜉𝑖, 𝜎2
𝑛

def
= E𝑆2

𝑛 ≥ 𝑐0𝑛 for some 𝑐0 ∈ (0,+∞). If
𝛼 (𝑛) ≤ 𝐾0 exp (−𝜆0𝑛), 𝜆0 > 0, 𝐾0 > 0, then 𝑐1 = 𝑐1 (𝐾0, 𝛿), 𝑐2 = 𝑐2 (𝐾0, 𝛿)
exist such that

(A.1) Δ𝑛 = sup
𝑧

∣∣P{𝜎−1
𝑛 𝑆𝑛 < 𝑧

}− Φ(𝑧)
∣∣ ≤ 𝑐1

𝑑𝛿
𝑐0𝜎𝛿

𝑛

{
log
(
𝜎𝑛/𝑐

1/2
0

)
/𝜆
}1+𝛿

for any 𝜆 with 𝜆1 ≤ 𝜆 ≤ 𝜆2, where

𝜆1 = 𝑐2

{
log
(
𝜎𝑛/𝑐

1/2
0

)}𝑏
/𝑛, 𝑏 > 2 (1 + 𝛿) /𝛿;𝜆2 = 4 (2 + 𝛿) 𝛿−1 log

(
𝜎𝑛/𝑐

1/2
0

)
.

LEMMA A.2. (Bernstein’s inequality, Bosq (1998), Theorem 1.4) Let
{𝜉𝑖} be a zero mean real valued process, and suppose that there exists 𝑐 >
0 such that for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, 𝑘 ≥ 3, E ∣𝜉𝑖∣𝑘 ≤ 𝑐𝑘−2𝑘!E 𝜉2𝑖 < +∞,𝑚𝑟 =
max1≤𝑖≤𝑛 ∥𝜉𝑖∥𝑟 , 𝑟 ≥ 2. Then for each 𝑛 > 1, integer 𝑞 ∈ [1, 𝑛/2], each 𝜀 > 0
and 𝑘 ≥ 3

P
{∣∣∣∑𝑛

𝑖=1
𝜉𝑖

∣∣∣ > 𝑛𝜀
}
≤ 𝑎1 exp

(
− 𝑞𝜀2

25𝑚2
2 + 5𝑐𝜀

)
+ 𝑎2 (𝑘)𝛼

([
𝑛

𝑞 + 1

]) 2𝑘
2𝑘+1

where

𝑎1 = 2
𝑛

𝑞
+ 2

(
1 +

𝜀2

25𝑚2
2 + 5𝑐𝜀

)
, 𝑎2 (𝑘) = 11𝑛

(
1 +

5𝑚
2𝑘/(2𝑘+1)
𝑘

𝜀

)
.

Denote the theoretical inner product of 𝑏𝐽 and 1 with respect to the 𝛼-th
marginal density 𝑓𝛼 (𝑥𝛼) as 𝑐𝐽,𝛼 = ⟨𝑏𝐽 (𝑋𝛼) , 1⟩ =

∫
𝑏𝐽 (𝑥𝛼) 𝑓𝛼 (𝑥𝛼) 𝑑𝑥𝛼 and

define the centered B spline basis 𝑏𝐽,𝛼 (𝑥𝛼) and the standardized B spline
basis 𝐵𝐽,𝛼 (𝑥𝛼) as

𝑏𝐽,𝛼 (𝑥𝛼) = 𝑏𝐽 (𝑥𝛼)− 𝑐𝐽,𝛼
𝑐𝐽−1,𝛼

𝑏𝐽−1 (𝑥𝛼) , 𝐵𝐽,𝛼 (𝑥𝛼) =
𝑏𝐽,𝛼 (𝑥𝛼)

∥𝑏𝐽,𝛼∥2
, 1 ≤ 𝐽 ≤ 𝑁 +1,

so that E𝐵𝐽,𝛼 (𝑋𝛼) = 0, E𝐵2
𝐽,𝛼 (𝑋𝛼) = 1.

LEMMA A.3. (Wang and Yang (2007), Theorem A.2) Under Assump-
tions (A1)-(A5) and (A7), one has:
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(i) Constants 𝑐0 (𝑓), 𝐶0(𝑓), 𝑐1 (𝑓) and 𝐶1(𝑓) exist depending on the marginal
densities 𝑓𝛼 (𝑥𝛼) , 1 ≤ 𝛼 ≤ 𝑑, such that 𝑐0 (𝑓)𝐻 ≤ 𝑐𝐽,𝛼 ≤ 𝐶0 (𝑓)𝐻 and

(A.2) 𝑐1 (𝑓)𝐻 ≤ ∥𝑏𝐽,𝛼∥22 ≤ 𝐶1(𝑓)𝐻.

(ii) uniformly for 𝐽, 𝐽 ′ = 1, ..., 𝑁 + 1

E
{
𝐵𝐽,𝛼 (𝑋𝑖𝛼)𝐵𝐽 ′,𝛼 (𝑋𝑖𝛼)

}
∼

⎧⎨⎩
1 𝐽 ′ = 𝐽

−1/3 ∣𝐽 ′ − 𝐽 ∣ = 1
1/6 ∣𝐽 ′ − 𝐽 ∣ = 2
0 ∣𝐽 ′ − 𝐽 ∣ > 2

E
∣∣𝐵𝐽,𝛼 (𝑋𝑖𝛼)𝐵𝐽 ′,𝛼 (𝑋𝑖𝛼)

∣∣𝑘 ∼
{

𝐻1−𝑘 ∣𝐽 ′ − 𝐽 ∣ ≤ 2
0 ∣𝐽 ′ − 𝐽 ∣ > 2

, 𝑘 ≥ 1.

LEMMA A.4. (De Boor (2001), p.149) A constant 𝐶∞ > 0 exists such
that for any 𝑚 ∈ 𝐶1 [0, 1] with 𝑚′ ∈ Lip ([0, 1] , 𝐶∞), there is a function

𝑔 ∈ 𝐺
(0)
𝑛 [0, 1] such that ∥𝑔 −𝑚∥∞ ≤ 𝐶∞𝐻2.

LEMMA A.5. (Wang and Yang (2007), Lemma A.2) Constants 𝑐0, 𝐶0 >
0 exist such that for any 𝝀 =(𝜆0, 𝜆𝐽,𝛼)

T
1≤𝐽≤𝑁+1,1≤𝛼≤𝑑 ∈ ℝ1+𝑑(𝑁+1),

𝑐0

(
𝜆2
0 +

∑2
𝐽,𝛼 𝜆

2
𝐽,𝛼

)
≤
∥∥∥𝜆0 +

∑
𝐽,𝛼 𝜆𝐽,𝛼𝐵𝐽,𝛼

∥∥∥2
2
≤ 𝐶0

(
𝜆2
0 +

∑2
𝐽,𝛼 𝜆

2
𝐽,𝛼

)
.

LEMMA A.6. (Xue and Yang (2006a), Lemma A.4) Under Assump-
tions (A2), (A4) and (A6), as 𝑛 → ∞, the uniform supremum of the rescaled
difference between ⟨𝑔1, 𝑔2⟩2,𝑛 and ⟨𝑔1, 𝑔2⟩2 is

𝐴𝑛 = sup
𝑔1,𝑔2∈𝐺(0)

𝑛 [0,1]

∣∣∣⟨𝑔1, 𝑔2⟩2,𝑛 − ⟨𝑔1, 𝑔2⟩2
∣∣∣

∥𝑔1∥2 ∥𝑔2∥2
= 𝒪𝑎.𝑠.

(
log 𝑛

𝑛1/2𝐻1/2

)
.

A.2. Oracle smoothers.

LEMMA A.7. Under Assumptions (A1)-(A6), as 𝑛 → ∞,

sup
𝑥1∈[ℎ,1−ℎ]

∣∣∣𝑙̃′ {𝑚1 (𝑥1)} − bias1 (𝑥1)ℎ
2 − 𝑛−1∑𝑛

𝑖=1𝐾ℎ (𝑋𝑖1 − 𝑥1)𝜎 (X𝑖) 𝜀𝑖

∣∣∣
= 𝒪𝑎.𝑠.

(
𝑛−1/2ℎ1/2 log 𝑛

)
where bias1 (𝑥1) is defined in (3.4).
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Proof. According to (3.1) and (1.3), 𝑙̃′ {𝑚1 (𝑥1)} is

𝑛−1∑𝑛
𝑖=1

[
𝑌𝑖 − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}

]
𝐾ℎ (𝑋𝑖1 − 𝑥1)(A.3)

= 𝑛−1∑𝑛
𝑖=1

[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}+ 𝜎 (X𝑖) 𝜀𝑖

]
𝐾ℎ (𝑋𝑖1 − 𝑥1)

Let 𝜉𝑖,𝑛 = 𝜉𝑖,𝑛 (𝑥1) = 𝜉𝑖,𝑛,1 + 𝜉𝑖,𝑛,2 in which

𝜉𝑖,𝑛,1 (𝑥1) =
[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}

]
𝐾ℎ (𝑋𝑖1 − 𝑥1)

−E
[[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}

]
𝐾ℎ (𝑋𝑖1 − 𝑥1)

]
,

(A.4) 𝜉𝑖,𝑛,2 = 𝜉𝑖,𝑛,2 (𝑥1) = 𝜎 (X𝑖) 𝜀𝑖𝐾ℎ (𝑋𝑖1 − 𝑥1) .

Then according to (A.3), one can rewrite 𝑙∗′ {𝑚1 (𝑥1)} as

𝑛−1∑𝑛
𝑖=1 𝜉𝑖,𝑛 + E

[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}

]
𝐾ℎ (𝑋𝑖1 − 𝑥1) .

The deterministic term is

E
[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}

]
𝐾ℎ (𝑋𝑖1 − 𝑥1)

=

∫
𝝌

[
𝑏′ {𝑚 (u)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (u 1)}

]
ℎ−1𝐾

(
𝑢1 − 𝑥1

ℎ

)
𝑓 (u) 𝑑u

=

∫
𝝌

[
𝑏′′ {𝑚 (𝑥1,u 1)} {𝑚1 (𝑢1)−𝑚1 (𝑥1)}

+
1

2
𝑏′′′ {𝑚 (𝑥1,u 1)} {𝑚1 (𝑢1)−𝑚1 (𝑥1)}2 + 𝒰

(
ℎ2
)]

ℎ−1𝐾

(
𝑢1 − 𝑥1

ℎ

)
𝑓 (𝑢1,u 1) 𝑑𝑢1𝑑u 1+𝒰

(
ℎ2
)

=

∫
[0,1]𝑑−1

∫
[−1,1]

[
𝑏′′ {𝑚 (𝑥1,u 1)}

{
ℎ𝑣1𝑚

′
1 (𝑥1) +

(ℎ𝑣1)
2

2
𝑚′′

1 (𝑥1) + 𝒰
(
ℎ2
)}

+
1

2
𝑏′′′ {𝑚 (𝑥1,u 1)}

{
ℎ𝑣1𝑚

′
1 (𝑥1) + (ℎ𝑣1)

2𝑚′′
1 (𝑥1) + 𝒰

(
ℎ2
)}2
]

𝐾 (𝑣1)

{
𝑓 (𝑥1,u 1) + ℎ𝑣1

∂𝑓 (𝑥1,u 1)

∂𝑥1
+ 𝒰 (ℎ2)} 𝑑𝑣1𝑑u 1+𝒰

(
ℎ2
)

which equals

ℎ2
∫
[−1,1]

𝑣21𝐾 (𝑣1) 𝑑𝑣1

{
𝑚′′

1 (𝑥1) 𝑓1 (𝑥1)

2

∫
[0,1]𝑑−1

𝑏′′ {𝑚 (𝑥1,u 1)} 𝑓 (u∣𝑥1) 𝑑u 1

+𝑚′
1 (𝑥1)

∫
[0,1]𝑑−1

𝑏′′ {𝑚 (𝑥1,u 1)} ∂𝑓 (𝑥1,u 1)

∂𝑥1
𝑑u 1

}
+𝒰
(
ℎ2
)
.
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= ℎ2𝜇2 (𝐾)
{
𝑚′′

1 (𝑥1) 𝑓 (𝑥1)E
[
𝑏′′ {𝑚 (X)} ∣𝑋1 = 𝑥1

]
+𝑚′

1 (𝑥1)
∂

∂𝑥1

[
𝑓 (𝑥1)E

[
𝑏′′ {𝑚 (X)} ∣𝑋1 = 𝑥1

]]
−{𝑚′

1 (𝑥1)
}2

𝑓 (𝑥1)E
[
𝑏′′′ {𝑚 (X)} ∣𝑋1 = 𝑥1

]}
+𝒰
(
ℎ2
)

= bias1 (𝑥1)ℎ
2+𝒰

(
ℎ2
)
.

Using the above

E 𝜉2𝑖,𝑛,1 = ℎ−2

∫
[0,1]𝑑

[
𝑏′ {𝑚 (u)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (u 1)}

]2
𝐾

(
𝑢1 − 𝑥1

ℎ

)2

𝑓 (u) 𝑑u+𝒰 (ℎ4)
= ℎ−1

∫
[0,1]𝑑−1

∫
[−1,1]

[
𝑏′ {𝑚 (𝑥1 + ℎ𝑣1,u 1)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (u 1)}

]2
𝐾 (𝑣1)

2 𝑓 (𝑥1 + ℎ𝑣1,u 1) 𝑑𝑣1𝑑u 1+𝒰 (ℎ4)
= ℎ−1

∫
[0,1]𝑑−1

∫
[−1,1]

[
𝑏′′ {𝑚 (𝑥1,u−1)}

{
ℎ𝑣1𝑚

′
1 (𝑥1) + 𝒰 (ℎ2)}]2

𝐾 (𝑣1)
2 {𝑓 (𝑥1,u 1) + 𝒰 (ℎ)} 𝑑𝑣1𝑑u 1+𝒰 (ℎ4) = 𝒰 (ℎ) .

Note that sup𝑥1
∣𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}∣ ≤ 𝐶𝑏ℎ whenever

𝐾ℎ (𝑋𝑖1 − 𝑥1) ∕= 0, hence E
∣∣𝜉𝑖,𝑛,1∣∣𝑘 ≤ (2𝐶𝑏ℎ)

𝑘−2 E 𝜉2𝑖,𝑛,1 so applying Lemma

A.2 implies that sup𝑥1∈[ℎ,1−ℎ]

∣∣𝑛−1
∑𝑛

𝑖=1 𝜉𝑖,𝑛,1
∣∣ = 𝒪𝑎.𝑠.

{
ℎ1/2𝑛−1/2 log 𝑛

}
. □

LEMMA A.8. Under Assumptions (A2), (A4)-(A6), as 𝑛 → ∞

sup
𝑥1∈[ℎ,1−ℎ]

∣∣∣𝑙̃′′ (𝑚1 (𝑥1)) +𝐷1 (𝑥1)
∣∣∣ = 𝒪𝑎.𝑠.

(
log 𝑛/

√
𝑛ℎ
)
,

where 𝐷1 (𝑥1) is defined in (3.3).

Proof. See Liu et al. (2011). □

LEMMA A.9. Under Assumptions (A1) to (A3), (A5) and (A7), a
constant 𝐶 exists such that, as 𝑛 → ∞

sup
𝑥1∈[ℎ,1−ℎ]

∣∣Cov (𝜉𝑖,𝑛, 𝜉𝑗,𝑛)∣∣ ≤ 𝐶ℎ
− 1+𝜂

2+𝜂𝛼 (𝑗 − 𝑖)
𝜂

2+𝜂 for 𝑖 ∕= 𝑗
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Proof. According to Davydov’s inequality, for 1
𝑝+

1
𝑞 +

1
𝑟 = 1, Cov

(
𝜉𝑖,𝑛, 𝜉𝑗,𝑛

)
is bounded by

𝐶2 {2𝛼 (𝑗 − 𝑖)}1/𝑝 ∥∥𝜉𝑖,𝑛,1 + 𝜉𝑖,𝑛,2
∥∥
𝑞

∥∥𝜉𝑗,𝑛,1 + 𝜉𝑗,𝑛,2
∥∥
𝑟

≤ 𝐶2 {2𝛼 (𝑗 − 𝑖)}1/𝑝
(∥∥𝜉𝑖,𝑛,1∥∥𝑞 + ∥∥𝜉𝑖,𝑛,2∥∥𝑞)(∥∥𝜉𝑗,𝑛,1∥∥𝑟 + ∥∥𝜉𝑗,𝑛,2∥∥𝑟)

Let 𝑞 = 𝑟 = 2 + 𝜂, 𝑝 = 1 + 2/𝜂, where 𝜂 takes value in the (A3), then one

has
∥∥𝜉𝑖,𝑛,1∥∥𝑞 = 𝒰

(
ℎ
− 1

2+𝜂

)
and

∥∥𝜉𝑖,𝑛,1∥∥𝑞 = 𝒰
(
ℎ
− 1+𝜂

2+𝜂

)
. Cov

(
𝜉𝑖,𝑛,𝑙′ , 𝜉𝑗,𝑛,𝑙′′

) ≤
𝐶ℎ

− 1+𝜂
2+𝜂𝛼 (𝑗 − 𝑖)

𝜂
2+𝜂 for some constant 𝐶. □

Proof of Theorem 1 and Theorem 2. The Mean Value Theorem
ensures the existence of a 𝑚̄1 (𝑥1) between 𝑚̃K,1 (𝑥1) and 𝑚1 (𝑥1) such that

𝑙̃′ {𝑚̃K,1 (𝑥1)} − 𝑙̃′ {𝑚1 (𝑥1)} = 𝑙̃′′ {𝑚̃1 (𝑥1)} {𝑚̃K,1 (𝑥1)−𝑚1 (𝑥1)}

Note that 𝑙̃′ {𝑚̃K,1 (𝑥1)} = 0 yielding

(A.5) 𝑚̃K,1 (𝑥1)−𝑚1 (𝑥1) = − 𝑙̃′ (𝑚1 (𝑥1))

𝑙̃′′ (𝑚̄1 (𝑥1))
.

Lemma A.8, Lemma A.7 and (A.5) then imply Theorem 1.
Let 𝑆𝑛 = 𝑆𝑛 (𝑥1) =

∑𝑛
𝑖=1 𝜉𝑖,𝑛, where 𝜉𝑖,𝑛 is defined as (A.4). Note that

E𝑆𝑛 = 0 and 𝑙̃′ {𝑚1 (𝑥1)} = 𝑆𝑛/𝑛+ 𝑏 (𝑥1)ℎ
2 + 𝒰

(
ℎ2
)
.

𝛾 (𝑘) = 𝛾 (𝑘, 𝑥1) = Cov
(
𝜉𝑖,𝑛, 𝜉𝑖+𝑘,𝑛

)
𝜎2
𝑛 = E𝑆2

𝑛 = Var (𝑆𝑛) = Var
(∑𝑛

𝑖=1 𝜉𝑖,𝑛
)

=
∑𝑛

𝑖=1 Var
(
𝜉𝑖,𝑛
)
+
∑𝑛

𝑖∕=𝑗 Cov
(
𝜉𝑖,𝑛, 𝜉𝑗,𝑛

)
= 𝑛Var

(
𝜉𝑖,𝑛
)
+ 𝑛

∑
1≤∣𝑘∣≤𝑛−1

(
1− ∣𝑘∣

𝑛

)
𝛾 (𝑘)

= 𝑛Var
(
𝜉𝑖,𝑛
)
+ 𝑛𝐴𝑛,

where

Var
(
𝜉𝑖,𝑛
)
= ℎ−1𝑓1 (𝑥1)E

{
𝜎2 (X) ∣𝑋1 = 𝑥1

} ∥𝐾∥22 + 𝒰 (ℎ4) .
According to Lemma A.9, one has

∣𝛾 (𝑘)∣ = ∣∣Cov (𝜉𝑖,𝑛, 𝜉𝑖+𝑘,𝑛

)∣∣ ≤ 𝐶ℎ−
1+𝜂
2+𝛿 𝛼 (𝑘)

𝜂
2+𝜂 .
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Hence

∣𝐴𝑛∣ =
∣∣∣∑1≤∣𝑙∣≤𝑛−1 𝛾 (𝑘)

∣∣∣
≤ ∑

1≤∣𝑙∣≤𝑛−1

(
1− ∣𝑘∣

𝑛

)
ℎ
− 1+𝜂

2+𝜂 {𝐾0 exp (−𝜆0𝑘)}
𝜂

2+𝜂

≤ 𝐾0ℎ
− 1+𝜂

2+𝜂
∑

1≤∣𝑙∣≤𝑛−1 exp {−𝜆0𝑘𝜂/ (2 + 𝜂)} ,

so a constant 𝐶1 exists such that𝐴𝑛 ≤ 𝐶1ℎ
− 1+𝜂

2+𝜂 , and therefore𝐴𝑛/Var
(
𝜉𝑖,𝑛
)→

0 as 𝑛 → ∞. Since 𝜎2
𝑛 ∼ 𝑛Var

(
𝜉𝑖,𝑛
) ≥ 𝑐0𝑛 when 𝑛 is large, according to

(A.1) in Lemma A.1, constants 𝑐1 and 𝑐2 exist such that for some 0 < 𝜂 ≤ 1

(A.6) Δ𝑛 = sup
𝑧

∣∣P{𝜎−1
𝑛 𝑆𝑛 < 𝑧

}− Φ(𝑧)
∣∣ ≤ 𝑐1

𝑑𝜂
𝑐0𝜎

𝜂
𝑛

{
log
(
𝜎𝑛/𝑐

1/2
0

)
/𝜆
}1+𝜂

for any 𝜆 with 𝜆1 ≤ 𝜆 ≤ 𝜆2, where

𝜆1 = 𝑐2

{
log
(
𝜎𝑛/𝑐

1/2
0

)}𝑏
/𝑛, 𝑏 > 2 (1 + 𝜂) /𝜂;𝜆2 = 4 (2 + 𝜂) 𝜂−1 log

(
𝜎𝑛/𝑐

1/2
0

)
.

For 𝜂 in (A3), set 𝜆 = 4 (2 + 𝜂) 𝜂−1 log
(
𝜎𝑛/𝑐

1/2
0

)
, then by (A6), the 𝑑𝜂 in

(A.6) is

𝑑𝜂 = max
1≤𝑖≤𝑛

(
E
∣∣[𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚1 (𝑥1) +𝑚 1 (X𝑖 1)}+ 𝜎 (X𝑖) 𝜀𝑖

]
𝐾ℎ (𝑋𝑖1 − 𝑥1)∣2+𝜂

)
= max

1≤𝑖≤𝑛

{
E ∣𝐶𝑏ℎ+ 𝜎 (X𝑖) 𝜀𝑖∣2+𝜂 ∣𝐾ℎ (𝑋𝑖1 − 𝑥1) ∣2+𝜂

}
≤ 𝐶𝐶𝛿𝐶𝜂

{
E ∣𝐾ℎ (𝑋1 − 𝑥1) ∣2+𝜂

}
= 𝒪

{
ℎ−(1+𝜂)

}
,

i.e., Δ𝑛 = 𝒪 {ℎ−(1+𝜂)/𝜎𝜂
𝑛

}
= 𝒪 {𝑛(1+𝜂/2)/5−𝜂/2

}
= 𝒪 (𝑛1/5−2𝜂/5

)→ 0 when

1/2 < 𝜂 ≤ 1. So 𝑆𝑛/𝜎𝑛
ℒ→ 𝑁 (0, 1), then

𝑛
[
𝑙∗′ {𝑚1 (𝑥1)} − bias1 (𝑥1)ℎ

2
]
/
√

𝑛ℎ−1𝑣21 (𝑥1)
ℒ→ 𝑁 (0, 1) ,

where 𝑣21 (𝑥1) is defined in (3.5). According to Theorem 1, one has as 𝑛 → ∞,

sup𝑥1∈[ℎ,1−ℎ]

∣∣∣𝑙̃′′ {𝑚1 (𝑥1)} − 𝑙̃′′ {𝑚̄1 (𝑥1)}
∣∣∣→ 0 because

sup𝑥1∈[ℎ,1−ℎ] ∣𝑚1 (𝑥1)− 𝑚̄1 (𝑥1)∣ → 0. Then according to Slutsky’s theorem:

√
𝑛ℎ
[{𝑚̃K,1 (𝑥1)−𝑚1 (𝑥1)}𝐷1 (𝑥1)− bias1 (𝑥1)ℎ

2
]→ 𝑁

(
0, 𝑣21 (𝑥1)

)
.
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where 𝐷1 (𝑥1) is defined in (3.3). □
Proof of Theorem 3. According to the Mean Value Theorem, a con-

stant 𝑐 between 𝑐 and 𝑐 exists such that (𝑐− 𝑐) 𝑙̃′′𝑐 (𝑐) = 𝑙̃′𝑐 (𝑐)−𝑙̃′𝑐 (𝑐) = −𝑙̃′𝑐 (𝑐),
where −𝑙̃′′𝑐 (𝑐) = 𝑛−1

∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)} > 𝑐𝑏 > 0 according to (A2)

and where 𝑚 𝑐 (X) =
∑𝑑

𝛼=1𝑚𝛼 (𝑋𝛼) and then the infeasible estimator is
𝑐 = argmax𝑎∈𝐴 𝑙̃𝑐 (𝑎) . Clearly, 𝑙̃

′
𝑐 (𝑐) = 0 and

𝑙̃′𝑐 (𝑐) = 𝑛−1∑𝑛
𝑖=1

[
𝑌𝑖 − 𝑏′ {𝑐+𝑚 𝑐 (X𝑖)}

]
= 𝑛−1∑𝑛

𝑖=1 𝜎 (X𝑖) 𝜀𝑖 = 𝒪𝑎.𝑠

(
𝑛−1/2 log 𝑛

)
by Bernstein’s Inequality. Similarly, 𝑙̃′′𝑐 (𝑐) = −𝑛−1

∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)}
converges to −E 𝑏′′ {𝑚 (X)} almost surely at the rate of 𝑛−1/2 log 𝑛. These
imply that ∣𝑐− 𝑐∣ = 𝒪𝑎.𝑠.

(
𝑛−1/2 log𝑛

)
and plugging it into

(𝑐− 𝑐) = −𝑙̃′𝑐 (𝑐) /𝑙̃′′𝑐 (𝑐), Theorem 3 is proved. □

A.3. Spline backfitted kernel estimators. In this section, we present
the proof of Theorem 4. We write any 𝑔 ∈ 𝐺0

𝑛 as 𝑔 = 𝝀TB (X𝑖) with vec-
tor 𝝀 =(𝜆0, 𝜆𝐽,𝛼)

T
1≤𝐽≤𝑁+1,1≤𝛼≤𝑑 ∈ 𝑅𝑁𝑑 where 𝑁𝑑 = (𝑁 + 1) 𝑑 + 1 is the

dimension of the additive spline space 𝐺0
𝑛, and

B (x) = {1, 𝐵1,1 (𝑥1) , ..., 𝐵𝑁+1,𝑑 (𝑥𝑑)}T ,

its standardized basis. We denote with a slight abuse of notation
𝐿̂ (𝑔) = 𝐿̂ (𝝀) = 𝑛−1

∑𝑛
𝑖=1

[
𝑌𝑖𝝀

TB (X𝑖)− 𝑏
{
𝝀TB (X𝑖)

}]
, which yields the

gradient and Hessian formulae

∇𝐿̂ (𝝀) = 𝑛−1∑𝑛
𝑖=1

[
𝑌𝑖B (X𝑖)− 𝑏′

{
𝝀TB (X𝑖)

}
B (X𝑖)

]
,

∇2𝐿̂ (𝝀) = −𝑛−1∑𝑛
𝑖=1 𝑏

′′
{
𝝀TB (X𝑖)

}
B (X𝑖)B (X𝑖)

T .

The multivariate function 𝑚 (x) is estimated by an additive spline func-
tion

𝑚̂ (x) = 𝑚̂0 +
∑𝑑

𝛼=1 𝑚̂𝛼 (𝑥𝛼) = 𝝀̂
T
B (x) ,

𝝀̂ =
(
𝜆̂0, 𝜆̂𝐽,𝛼

)T
1≤𝛼≤𝑑

1≤𝐽≤𝑁+1

= argmax𝝀 𝐿̂ (𝝀) .

Lemma 14 of Stone (1986) ensures that with probability approaching 1, 𝝀̂

exists uniquely and that ∇𝐿̂
(
𝝀̂
)
= 0. In addition, Lemma A.4 and (A1)

provide a vector 𝝀̄ and an additive spline function 𝑚̄ such that

(A.7) 𝑚̄ (x) = 𝝀̄
T
B (x) , ∥𝑚̄−𝑚∥∞ ≤ 𝐶∞𝐻2.

We first establish technical lemmas before proving Theorems 4 and 5.
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LEMMA A.10. Under Assumptions (A1)-(A5) and (A7), as 𝑛 → ∞∣∣∣∇𝐿̂
(
𝝀̄
)∣∣∣ = 𝒪𝑎.𝑠.

(
𝐻2 + 𝑛−1/2 log 𝑛

)
,∥∥∥∇𝐿̂

(
𝝀̄
)∥∥∥ = 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1/2𝑛−1/2 log 𝑛

)
.

Proof.

∇𝐿̂
(
𝝀̄
)

= 𝑛−1∑𝑛
𝑖=1

[
𝑌𝑖B (X𝑖)− 𝑏′

{
𝝀̄
T
B (X𝑖)

}
B (X𝑖)

]
= 𝑛−1∑𝑛

𝑖=1

[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚̄ (X𝑖)}+ 𝜎 (X𝑖) 𝜀𝑖

]
B (X𝑖)

The first element of the above vector is
1
𝑛

∑𝑛
𝑖=1 [[𝑏

′ {𝑚 (X𝑖)} − 𝑏′ {𝑚̄ (X𝑖)}] + 𝜎 (X𝑖) 𝜀𝑖], which is𝒪𝑎.𝑠.

(
𝐻2 + 𝑛−1/2 log 𝑛

)
according to Lemmas A.4 and A.2. The other elements can be written as

𝑛−1∑𝑛
𝑖=1

[
𝜉𝑖,𝐽,𝛼,𝑛 + E

[
𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}

]
𝐵𝐽,𝛼 (𝑋𝑖𝛼) + 𝜎 (X𝑖) 𝜀𝑖𝐵𝐽,𝛼 (𝑋𝑖𝛼)] ,

where

𝜉𝑖,𝐽,𝛼,𝑛 =
[
𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}

]
𝐵𝐽,𝛼 (𝑋𝑖𝛼)

−E
[[
𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}

]
𝐵𝐽,𝛼 (𝑋𝑖𝛼)

]
.

According to (A.2) and (A.7), one has∣∣E [𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}
]
𝐵𝐽,𝛼 (𝑋𝑖𝛼)

∣∣
≤ E

∣∣𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}
∣∣ ∣𝑏𝐽,𝛼 (𝑋𝑖𝛼)∣

∥𝑏𝐽,𝛼∥2
≤ 𝑐 ∥𝑚− 𝑚̄∥∞ max

1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

∥𝑏𝐽,𝛼∥−1
2 max

1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

E ∣𝑏𝐽,𝛼 (𝑋𝑖𝛼)∣

= 𝒪
(
𝐻2 ×𝐻−1/2 ×𝐻

)
= 𝒪

(
𝐻5/2

)
,

for some constant 𝑐 and likewise for any 𝑘 ≥ 2

E
∣∣𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}

∣∣𝑘 ∣𝐵𝐽,𝛼 (𝑋𝑖𝛼)∣𝑘

≤ 𝑐𝑘−2 ∥𝑚− 𝑚̄∥𝑘−2
∞ max

1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

∥𝑏𝐽,𝛼∥−(𝑘−2)
2 max

1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

E
∣∣∣𝑏𝑘−2

𝐽,𝛼 (𝑋𝑖𝛼)
∣∣∣

×E
∣∣𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}

∣∣2 𝑏2𝐽,𝛼 (𝑋𝑖𝛼)

∥𝑏𝐽,𝛼∥22
≤

(
𝑐𝐻5/2

)𝑘−2
E
∣∣𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}

∣∣2 𝑏2𝐽,𝛼 (𝑋𝑖𝛼)

∥𝑏𝐽,𝛼∥22
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and

E
[
𝑏′ {𝑚 (𝑋𝑖𝛼)} − 𝑏′ {𝑚̄ (𝑋𝑖𝛼)}

]2
𝐵2

𝐽,𝛼 (𝑋𝑖𝛼)

≤ 𝑐 ∥𝑚− 𝑚̄∥2∞ max
1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

∥𝑏𝐽,𝛼∥−2
2 max

1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

E
∣∣𝑏2𝐽,𝛼 (𝑋𝑖𝛼)

∣∣ = 𝒪 (𝐻4
)
.

Using these bounds and applying Lemma A.2, one has
∣∣𝑛−1

∑𝑛
𝑖=1 𝜉𝑖,𝐽,𝛼,𝑛

∣∣ =
𝒪𝑎.𝑠.

(
𝐻2𝑛−1/2 log 𝑛

)
and

𝑛−1 ∣∑𝑛
𝑖=1 𝜎 (X𝑖) 𝜀𝑖𝐵𝐽,𝛼 (𝑋𝑖𝛼)∣ = 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
.

The lemma is then proved. □
Define the following matrices:

V = EB (X)B (X)T ,S = V−1,

V𝑛 = 𝑛−1∑𝑛
𝑖=1B (X𝑖)B (X𝑖)

T ,S𝑛 = V−1
𝑛

and similar matrices

V𝑏 = E 𝑏′′ {𝑚 (X)}B (X)B (X)T =

[
𝑣𝑏,00 𝑣𝑏,0,𝐽,𝛼

𝑣𝑏,0,𝐽 ′,𝛼′ 𝑣𝑏,𝐽,𝛼,𝐽 ′,𝛼′

]
𝑁𝑑×𝑁𝑑

(A.8) S𝑏 = V−1
𝑏 =

[
𝑠𝑏,00 𝑠𝑏,0,𝐽,𝛼

𝑠𝑏,0,𝐽 ′,𝛼′ 𝑠𝑏,𝐽,𝛼,𝐽 ′,𝛼′

]
𝑁𝑑×𝑁𝑑

,

For any vector 𝝀 ∈ ℝ𝑁𝑑 , denote

V𝑏 (𝝀) = E 𝑏′′
{
𝝀TB (X)

}
B (X)B (X)T

=

[
𝑣𝑏,00 (𝝀) 𝑣𝑏,0,𝐽,𝛼 (𝝀)

𝑣𝑏,0,𝐽 ′,𝛼′ (𝝀) 𝑣𝑏,𝐽,𝛼,𝐽 ′,𝛼′ (𝝀)

]
𝑁𝑑×𝑁𝑑

,

S𝑏 (𝝀) = V−1
𝑏 (𝝀) =

[
𝑠𝑏,00 (𝝀) 𝑠𝑏,0,𝐽,𝛼 (𝝀)

𝑠𝑏,0,𝐽 ′,𝛼′ (𝝀) 𝑠𝑏,𝐽,𝛼,𝐽 ′,𝛼′ (𝝀)

]
𝑁𝑑×𝑁𝑑

(A.9) V𝑛,𝑏 (𝝀) = −∇2𝐿̂ (𝝀) ,S𝑛,𝑏 (𝝀) = V−1
𝑛,𝑏 (𝝀) .

LEMMA A.11. Under Assumptions (A2) and (A4)

𝑐VI𝑁𝑑
≤ V ≤ 𝐶VI𝑁𝑑

, 𝑐SI𝑁𝑑
≤ S ≤ 𝐶SI𝑁𝑑

,(A.10)

𝑐V,𝑏I𝑁𝑑
≤ V𝑏 ≤ 𝐶V,𝑏I𝑁𝑑

, 𝑐S,𝑏I𝑁𝑑
≤ S𝑏 ≤ 𝐶S,𝑏I𝑁𝑑

.(A.11)
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Under Assumption (A2), (A4), (A5) and (A7), as 𝑛 → ∞ with probability
increasing to 1

(A.12) 𝑐VI𝑁𝑑
≤ V𝑛 (𝝀) ≤ 𝐶VI𝑁𝑑

, 𝑐SI𝑁𝑑
≤ S𝑛 (𝝀) ≤ 𝐶SI𝑁𝑑

(A.13) 𝑐V,𝑏I𝑁𝑑
≤ V𝑛,𝑏 (𝝀) ≤ 𝐶V,𝑏I𝑁𝑑

, 𝑐S,𝑏I𝑁𝑑
≤ S𝑛,𝑏 (𝝀) ≤ 𝐶S,𝑏I𝑁𝑑

.

Proof. For (A.10), see Lemma A.9 in Wang and Yang (2007), while
(A.12) follows from Lemma A.6. The statements (A.12) and (A.13) follow
from (A.10) and (A.12), together with the boundedness of 𝑏′′ in (A2). □

Define three vectors Φ𝑏,Φ𝑣,Φ𝑟 as

Φ𝑏 = (Φ𝑏,0,Φ𝑏,𝐽,𝛼)
T
1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

(A.14)

= −S𝑏𝑛
−1∑𝑛

𝑖=1

[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚̄ (X𝑖)}

]
B (X𝑖) ,

Φ𝑣 = (Φ𝑣,0,Φ𝑣,𝐽,𝛼)
T
1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

(A.15)

= −S𝑏𝑛
−1∑𝑛

𝑖=1 [𝜎 (X𝑖) 𝜀𝑖]B (X𝑖) ,

Φ𝑟 = (Φ𝑟,0,Φ𝑟,𝐽,𝛼)
T
1≤𝐽≤𝑁+1
1≤𝛼≤𝑑

(A.16)

= 𝝀̂− 𝝀̄−Φ𝑏 −Φ𝑣.

LEMMA A.12. Under Assumptions (A1)-(A5) and (A7), as 𝑛 → ∞∥∥∥𝝀̂− 𝝀̄
∥∥∥ = 𝒪𝑎.𝑠.

(
𝐻2 +𝐻−1/2𝑛−1/2 log 𝑛

)
,(A.17)

∥Φ𝑟∥ = 𝒪𝑎.𝑠.

(
𝐻−3/2𝑛−1 log 𝑛

)
,(A.18)

∥Φ𝑏∥ = 𝒪𝑎.𝑠.

(
𝐻2
)
, ∥Φ𝑣∥ = 𝒪𝑎.𝑠.

(
𝐻−1/2𝑛−1/2 log 𝑛

)
.(A.19)

Proof. The Mean Value Theorem implies that an 𝑁𝑑 × 𝑁𝑑 diagonal
matrix t exists whose diagonal elements are in [0, 1], such that for 𝝀̂

∗
=

t𝝀̂+(I𝑁𝑑
− t) 𝝀̄

∇𝐿̂
(
𝝀̂
)
−∇𝐿̂

(
𝝀̄
)
= ∇2𝐿̂

(
𝝀̂
∗)(

𝝀̂− 𝝀̄
)
.

Since, as noted before, that ∇𝐿̂
(
𝝀̂
)
= 0, the above equation becomes

𝝀̂− 𝝀̄ = −
(
∇2𝐿̂

(
𝝀̂
∗))−1∇𝐿̂

(
𝝀̄
)
.
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According to (A.9),

−∇2𝐿̂ (𝝀) = 𝑛−1∑𝑛
𝑖=1 𝑏

′′
{
𝝀TB (X𝑖)

}
B (X𝑖)B (X𝑖)

T = V𝑛,𝑏 (𝝀) ,

Lemma A.11 implies that with probability approaching 1

𝑐V,𝑏I𝑁𝑑
≤ −∇2𝐿̂

(
𝝀̂
∗) ≤ 𝐶V,𝑏I𝑁𝑑

.

Then (A.17) follows Lemma A.10. Furthermore,∥∥∥𝝀̂∗ − 𝝀̄
∥∥∥ = 𝒪𝑎.𝑠

(
𝐻3/2 +𝐻−1/2𝑛−1/2 log 𝑛

)
as well according to 𝝀̂

∗
’s defi-

nition. Note that Taylor expansion ensures that for any vector a ∈ ℝ𝑁𝑑

aT
{
∇2𝐿̂

(
𝝀̂
∗)−∇2𝐿̂

(
𝝀̄
)}

a

≤ ∥∥𝑏′′′∥∥∞ max
1≤𝑖≤𝑛

∣∣∣𝝀̂∗𝑇
B (X𝑖)− 𝝀̄

T
B (X𝑖)

∣∣∣aTV𝑛a

while by Cauchy Schwartz inequality

max
1≤𝑖≤𝑛

∣∣∣𝝀̂∗𝑇
B (X𝑖)− 𝝀̄

T
B (X𝑖)

∣∣∣
≤

∥∥∥𝝀̂∗ − 𝝀̄
∥∥∥ sup
x∈[0,1]𝑑

∥B (x)∥

= 𝒪𝑎.𝑠

(
𝐻3/2 +𝐻−1/2𝑛−1/2 log 𝑛

)
×𝒪

(
𝐻−1/2

)
= 𝒪𝑎.𝑠

(
𝐻 +𝐻−1𝑛−1/2 log 𝑛

)
.

Consequently, one has the following bound on the difference of two Hessian
matrices

sup
a∈𝑅𝑁𝑑

∥∥∥(∇2𝐿̂
(
𝝀̂
∗)−∇2𝐿̂

(
𝝀̄
))

a
∥∥∥ ∥a∥−1 = 𝒪𝑎.𝑠

(
𝐻 +𝐻−1𝑛−1/2 log 𝑛

)
.

Denote next

â = −
{
∇2𝐿̂

(
𝝀̂
∗)}−1∇𝐿̂

(
𝝀̄
)
= 𝝀̂− 𝝀̄

ā = −
{
∇2𝐿̂

(
𝝀̄
)}−1∇𝐿̂

(
𝝀̄
)

then ∥â∥ = 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1/2𝑛−1/2 log 𝑛

)
and so is ∥ā∥ by similar argu-

ments. Furthermore,

∇2𝐿̂
(
𝝀̂
∗)

(â− ā)=
{
∇2𝐿̂

(
𝝀̄
)−∇2𝐿̂

(
𝝀̂
∗)}

ā
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entails that

∥â− ā∥ = 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1/2𝑛−1/2 log 𝑛

)
×O𝑎.𝑠

(
𝐻 +𝐻−1𝑛−1/2 log 𝑛

)
= 𝒪𝑎.𝑠.

(
𝐻5/2 +𝐻−3/2𝑛−1 log2 𝑛

)
.

Using similar tricks, one can show that

∥ã− ā∥ = 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1/2𝑛−1/2 log 𝑛

)
×O𝑎.𝑠

(
𝐻2
)

= 𝒪𝑎.𝑠.

(
𝐻7/2 +𝐻3/2𝑛−1/2 log 𝑛

)
,

∥ã−Φ𝑏 −Φ𝑣∥ = 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1/2𝑛−1/2 log𝑛

)
×𝒪𝑎.𝑠

(
𝐻−1/2𝑛−1/2 log 𝑛

)
= 𝒪𝑎.𝑠.

(
𝐻𝑛−1/2 log 𝑛+𝐻−1𝑛−1 log2 𝑛

)
,

in which

ã =
[
𝑛−1∑𝑛

𝑖=1 𝑏
′′ {𝑚 (X𝑖)}B (X𝑖)B (X𝑖)

T
]−1∇𝐿̂

(
𝝀̄
)
.

Putting together the above proves (A.18). Lastly, almost surely

∥Φ𝑏∥ =
∥∥S𝑏𝑛

−1∑𝑛
𝑖=1

[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚̄ (X𝑖)}

]
B (X𝑖)

∥∥
≤ 𝐶S,𝑏

∥∥𝑛−1∑𝑛
𝑖=1

[
𝑏′ {𝑚 (X𝑖)} − 𝑏′ {𝑚̄ (X𝑖)}

]
B (X𝑖)

∥∥ = 𝒪𝑎.𝑠.

(
𝐻2
)

and

∥Φ𝑣∥ =
∥∥S𝑏𝑛

−1∑𝑛
𝑖=1 [𝜎 (X𝑖) 𝜀𝑖]B (X𝑖)

∥∥
≤ 𝐶S,𝑏

∥∥𝑛−1∑𝑛
𝑖=1 [𝜎 (X𝑖) 𝜀𝑖]B (X𝑖)

∥∥ = 𝒪𝑎.𝑠.

(
𝐻−1/2𝑛−1/2 log2 𝑛

)
,

which completes the proof of the lemma. □

LEMMA A.13. Under Assumptions (A1)-(A5) and (A7), as 𝑛 → ∞

∥𝑚̂− 𝑚̄∥∞ +
∑𝑑

𝛼=1
∥𝑚̂𝛼 − 𝑚̄𝛼∥∞ = 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1𝑛−1/2 log 𝑛

)
,

∥𝑚̂− 𝑚̄∥2,𝑛 + ∥𝑚̂− 𝑚̄∥2 = 𝒪𝑎.𝑠.

(
𝐻2 +𝐻−1/2𝑛−1/2 log 𝑛

)
,

∥𝑚̂−𝑚∥∞ +
∑𝑑

𝛼=1
∥𝑚̂𝛼 −𝑚𝛼∥∞ = 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1𝑛−1/2 log 𝑛

)
,

∥𝑚̂−𝑚∥2,𝑛 + ∥𝑚̂−𝑚∥2 = 𝒪𝑎.𝑠.

(
𝐻2 +𝐻−1/2𝑛−1/2 log 𝑛

)
.
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Proof. According to (A.17) and the definition of 𝑚̂ and 𝑚̄

∥𝑚̂− 𝑚̄∥∞ = sup
x∈[0,1]𝑑

∣∣∣𝝀̂T
B (x)− 𝝀̄

T
B (x)

∣∣∣ ≤ ∥∥∥𝝀̂− 𝝀̄
∥∥∥ sup
x∈[0,1]𝑑

∥B (x)∥

≤ 𝒪𝑎.𝑠.

(
𝐻2 +𝐻−1/2𝑛−1/2 log 𝑛

)
×𝒪

(
𝐻−1/2

)
= 𝒪𝑎.𝑠.

(
𝐻3/2 +𝐻−1𝑛−1/2 log 𝑛

)
.

The bound on ∥𝑚̂𝛼 − 𝑚̄𝛼∥∞ is similarly obtained. Next, Lemma A.11 implies

∥𝑚̂− 𝑚̄∥2,𝑛 + ∥𝑚̂− 𝑚̄∥2 ≤ 2𝐶V

∥∥∥𝝀̂− 𝝀̄
∥∥∥

= 𝒪𝑎.𝑠.

(
𝐻2 +𝐻−1/2𝑛−1/2 log 𝑛

)
.

Since ∥𝑚̄−𝑚∥∞ + ∥𝑚̄−𝑚∥2 + ∥𝑚̄−𝑚∥2,𝑛 = 𝒪 (𝐻2
)
by the definition in

(A.7), the Lemma follows. □
In the following denote

𝝎 (𝑥1) = {𝜔𝐽,𝛼 (𝑥1)}𝑁+1,𝑑
𝐽=1,𝛼=2 , 𝜔𝐽,𝛼 (𝑥1) = 𝑛−1

∑𝑛

𝑖=1
∣𝐵𝐽,𝛼 (𝑋𝑖𝛼)∣𝐾ℎ (𝑋𝑖1 − 𝑥1) .

LEMMA A.14. Under Assumptions (A1)-(A7), as 𝑛 → ∞,

(A.20) sup
𝑥1∈[0,1],2≤𝛼≤𝑑

1≤𝐽≤𝑁+1

∣𝜔𝐽,𝛼 (𝑥1)− E𝜔𝐽,𝛼 (𝑥1)∣ = 𝒪𝑎.𝑠.

(
log 𝑛/

√
𝑛ℎ
)

(A.21) sup
𝑥1∈[0,1]

∣𝝎 (𝑥1)∣ = sup
𝑥1∈[0,1],2≤𝛼≤𝑑

1≤𝐽≤𝑁+1,

∣𝜔𝐽,𝛼 (𝑥1)∣ = 𝒪𝑎.𝑠.

(
𝐻1/2

)
.

Proof. First, one computes

E𝜔𝐽,𝛼 (𝑥1) =

∫ ∫
𝐾ℎ (𝑢1 − 𝑥1) ∣𝐵𝐽,𝛼 (𝑢𝛼)∣ 𝑓 (𝑢1,𝑢𝛼) 𝑑𝑢1𝑑𝑢𝛼

=

∫ ∫
𝐾 (𝑣1)

∣𝑏𝐽,𝛼 (𝑢2)∣
∥𝑏𝐽,𝛼∥2

𝑓 (ℎ𝑣1 + 𝑥1, 𝑢𝛼) 𝑑𝑣1𝑑𝑢𝛼

=
(∥𝑏𝐽,𝛼∥2)−1

{∫ ∫
𝐾 (𝑣1) 𝐼𝐽+1,2 (𝑢2) 𝑓 (ℎ𝑣1 + 𝑥1, 𝑢2) 𝑑𝑣1𝑑𝑢2

+

(
𝑐𝐽+1,2

𝑐𝐽,2

)1/2 ∫ ∫
𝐾 (𝑣1) 𝐼𝐽,2 (𝑢2) 𝑓 (ℎ𝑣1 + 𝑥1, 𝑢2) 𝑑𝑣1𝑑𝑢2

}
.
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≤ ∥𝑏𝐽,𝛼∥−1
2

{∫ ∫
∣𝐾 (𝑣1) 𝑏𝐽 (𝑢𝛼)∣ 𝑓 (𝑥1 + ℎ𝑣1, 𝑢𝛼) 𝑑𝑣1𝑑𝑢𝛼

+
𝑐𝐽,𝛼

𝑐𝐽−1,𝛼

∫ ∫
∣𝐾 (𝑣1) 𝑏𝐽−1 (𝑢𝛼)∣ 𝑓 (𝑥1 + ℎ𝑣1, 𝑢𝛼) 𝑑𝑣1𝑑𝑢𝛼

}
.

The boundedness of the joint density 𝑓 and the Lipschitz continuity of the
kernel 𝐾 imply that a constant 𝑐2 > 0 exists such that∫ ∫

∣𝐾 (𝑣1) 𝑏𝐽−1 (𝑢𝛼)∣ 𝑓 (𝑥1 + ℎ𝑣1, 𝑢𝛼) 𝑑𝑣1𝑑𝑢𝛼 ≤ 𝐶𝐾𝑐2𝐻.

Therefore

(A.22) sup
𝑥1∈[0,1]

∣E𝝎 (𝑥1)∣ = 𝒪
(
𝐻1/2

)
by Lemma A.3. Similarly, E𝜔𝐽,𝛼 (𝑥1)

𝑟 ∼ ℎ1−𝑟𝐻1−𝑟/2, hence E𝜔𝐽,𝛼 (𝑥1)
2 ∼

ℎ−1. According to Lemma A.2 and similar proof of Lemma A.5 inWang and Yang
(2007), one proves (A.20). Combining with (A.22), the lemma is proved. □

LEMMA A.15. Under Assumptions (A1)-(A7), as 𝑛 → ∞

sup
𝑥1∈[0,1]

∣∣∣𝑙̂′ {𝑚̃K,1 (𝑥1)}
∣∣∣ = 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
.

Proof. Note that 𝑙̃′ {𝑚̃K,1 (𝑥1)} = 0, thus 𝑙̂′ {𝑚̃K,1 (𝑥1)} = 𝑙̂′ {𝑚̃K,1 (𝑥1)} −
𝑙̃′ {𝑚̃K,1 (𝑥1)} equals

𝑛−1∑𝑛
𝑖=1

[
𝑏′ {𝑚̃K,1 (𝑥1) +𝑚 1 (X𝑖 1)} − 𝑏′ {𝑚̃K,1 (𝑥1) + 𝑚̂ 1 (X𝑖 1)}

]
𝐾ℎ (𝑋𝑖1 − 𝑥1)

= 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚̃K,1 (𝑥1) +𝑚 1 (X𝑖 1)} {𝑚 1 (X𝑖 1)− 𝑚̂ 1 (X𝑖 1)}
𝐾ℎ (𝑋𝑖1 − 𝑥1) +𝒪

[
1/𝑛

∑𝑛
𝑖=1 {𝑚 1 (X𝑖 1)− 𝑚̂ 1 (X𝑖 1)}2

]
.

Now Lemma A.13 together with (A7) imply:

1/𝑛
∑𝑛

𝑖=1 {𝑚 1 (X𝑖 1)− 𝑚̂ 1 (X𝑖 1)}2 = ∥𝑚 1 − 𝑚̂ 1∥22,𝑛 ≤ ∥𝑚− 𝑚̂∥22,𝑛
= 𝒪𝑎.𝑠.

(
𝐻4 +𝐻−1𝑛−1 log2 𝑛

)
= 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
.

This yields

(A.23) 𝑙̂′ {𝑚̃K,1 (𝑥1)} = 𝐼1 + 𝐼1 +𝒪𝑎.𝑠.

(
𝑛−1/2 log2 𝑛

)
,
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𝐼1 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚̃K,1 (𝑥1) +𝑚 1 (X𝑖 1)}
{𝑚 1 (X𝑖 1)− 𝑚̄ 1 (X𝑖 1)}𝐾ℎ (𝑋𝑖1 − 𝑥1) ,

𝐼2 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚̃K,1 (𝑥1) +𝑚 1 (X𝑖 1)}
{𝑚̄ 1 (X𝑖 1)− 𝑚̂ 1 (X𝑖 1)}𝐾ℎ (𝑋𝑖1 − 𝑥1) .

Applying standard kernel theory, the boundedness of 𝑏′′ and (A.4), one ob-
tains:

∣𝐼1∣ ≤ 𝐶𝑏
∑𝑑

𝛼=2 ∥𝑚𝛼 − 𝑚̄𝛼∥∞ 𝑛−1∑𝑛
𝑖=1𝐾ℎ (𝑋𝑖1 − 𝑥1)(A.24)

= 𝒪𝑎.𝑠.

(
𝐻2
)
𝑎.𝑠.

again by (A7) on 𝐻, while 𝐼2 = 𝐼2,𝑏 + 𝐼2,𝑣 + 𝐼2,𝑟 with

𝐼2,𝑏 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚̃K,1 (𝑥1) +𝑚 1 (X𝑖 1)} ×{
Φ𝑏,0 +

∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑Φ𝑏,𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)

}
𝐾ℎ (𝑋𝑖1 − 𝑥1) ,

𝐼2,𝑣 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚̃K,1 (𝑥1) +𝑚 1 (X𝑖 1)} ×{
Φ𝑣,0 +

∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑Φ𝑣,𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)

}
𝐾ℎ (𝑋𝑖1 − 𝑥1) ,

𝐼2,𝑟 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚̃K,1 (𝑥1) +𝑚 1 (X𝑖 1)} ×{
Φ𝑟,0 +

∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑Φ𝑟,𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)

}
𝐾ℎ (𝑋𝑖1 − 𝑥1)

where Φ𝑏,0,Φ𝑏,0,Φ𝑏,0,Φ𝑏,𝐽,𝛼,Φ𝑏,𝐽,𝛼,Φ𝑏,𝐽,𝛼 are defined in (A.14), (A.15) and
(A.16). ∣𝐼2,𝑏∣ is bounded by

𝐶𝑏𝑛
−1∑𝑛

𝑖=1

{
∣Φ𝑏,0∣+

∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑 ∣Φ𝑏,𝐽,𝛼∣ ∣𝐵𝐽,𝛼 (𝑋𝑖𝛼)∣

}
𝐾ℎ (𝑋𝑖1 − 𝑥1)

≤ 𝐶𝑏

[{
Φ2
𝑏,0 +

∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑Φ

2
𝑏,𝐽,𝛼

}]1/2 × [{𝑛−1∑𝑛
𝑖=1𝐾ℎ (𝑋𝑖1 − 𝑥1)

}2
+
∑

1≤𝐽≤𝑁+1,2≤𝛼≤𝑑

{
𝑛−1∑𝑛

𝑖=1 ∣𝐵𝐽,𝛼 (𝑋𝑖𝛼)∣𝐾ℎ (𝑋𝑖1 − 𝑥1)
}2]1/2

= 𝐶𝑏 × ∥Φ𝑏∥ × [𝒪𝑎.𝑠. (1) + (𝑁 + 1)× (𝑑− 1)×𝒪𝑎.𝑠. (𝐻)] ,

so

(A.25) ∣𝐼2,𝑏∣ = 𝒪𝑎.𝑠.

(
𝐻2
)

according to (A.17) and (A.21). Similarly

∣𝐼2,𝑟∣ = 𝒪𝑎.𝑠 (∥Φ𝑟∥) = 𝒪𝑎.𝑠.

(
𝐻−3/2𝑛−1 log𝑛

)
(A.26)

= 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
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𝐼2,𝑣 − 𝐼2,𝑣 = 𝒪𝑎.𝑠.

(
log 𝑛/

√
𝑛ℎ
)
×𝒪𝑎.𝑠.

(
𝐻−1/2𝑛−1/2 log 𝑛

)
(A.27)

= 𝒪𝑎.𝑠.

(
𝑛−1/2 log𝑛

)
by making use of (A7) on 𝐻 and (A6) on ℎ, where

𝐼2,𝑣 = Φ𝑣,0𝑛
−1∑𝑛

𝑖=1 𝑏
′′ {𝑚 (X𝑖)}𝐾ℎ (𝑋𝑖1 − 𝑥1) +

∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑

Φ𝑣,𝐽,𝛼𝑛
−1∑𝑛

𝑖=1 𝑏
′′ {𝑚 (X𝑖)}𝐵𝐽,𝛼 (𝑋𝑖𝛼)𝐾ℎ (𝑋𝑖1 − 𝑥1) .

Applying Lemma A.2, we have 𝐼2,𝑣 equals

Φ𝑣,0 E 𝑏′′ {𝑚 (X)}𝐾ℎ (𝑋1 − 𝑥1)(A.28)

+
∑

1≤𝐽≤𝑁+1,2≤𝛼≤𝑑Φ𝑣,𝐽,𝛼 E 𝑏′′ {𝑚 (X)}𝐵𝐽,𝛼 (𝑋𝛼)𝐾ℎ (𝑋1 − 𝑥1)

+𝒪𝑎.𝑠.

(
𝐻−1/2𝑛−1/2 log 𝑛

)
×𝑁

1/2
𝑑 ×𝒪𝑎.𝑠.

(
log 𝑛/

√
𝑛ℎ
)

= 𝐼2,𝑣,1 + 𝐼2,𝑣,2 +𝒪𝑎.𝑠.

(
𝑛−1/2 log2 𝑛

)
,

in which

𝐼2,𝑣,1 = Φ𝑣,0 E 𝑏′′ {𝑚 (X)}𝐾ℎ (𝑋1 − 𝑥1)

= E 𝑏′′ {𝑚 (X)}𝐾ℎ (𝑋1 − 𝑥1)𝑛
−1∑𝑛

𝑖=1 𝜎 (X𝑖) 𝜀𝑖{
𝑆0,0 +

∑
1≤𝐽≤𝑁+1,1≤𝛼≤𝑑 𝑆𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)

}
,

𝐼2,𝑣,2 =
∑

1≤𝐽≤𝑁+1,2≤𝛼≤𝑑Φ𝑣,𝐽,𝛼 E 𝑏′′ {𝑚 (X)}𝐵𝐽,𝛼 (𝑋𝛼)𝐾ℎ (𝑋1 − 𝑥1)

=
{
E 𝑏′′ {𝑚 (X)}𝐵𝐽,𝛼 (𝑋𝛼)𝐾ℎ (𝑋1 − 𝑥1)

}
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑

(Φ𝑣,𝐽,𝛼)
T
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑

=
∑

1≤𝐽≤𝑁+1,2≤𝛼≤𝑑 E 𝑏′′ {𝑚 (X)}𝐵𝐽,𝛼 (𝑋𝛼)𝐾ℎ (𝑋1 − 𝑥1)

𝑛−1∑𝑛
𝑖=1 𝜎 (X𝑖) 𝜀𝑖

{
𝑆𝐽,𝛼 +

∑
1≤𝐽 ′≤𝑁+1,1≤𝛼′≤𝑑 𝑆𝐽,𝛼,𝐽 ′,𝛼′𝐵𝐽 ′,𝛼′ (𝑋𝑖𝛼′)

}
= 𝑛−1∑𝑛

𝑖=1 𝜎 (X𝑖) 𝜀𝑖
∑

1≤𝐽≤𝑁+1,2≤𝛼≤𝑑 𝜇𝑏,𝑘,𝐽,𝛼 (𝑥1){
𝑆𝐽,𝛼 +

∑
1≤𝐽 ′≤𝑁+1,1≤𝛼′≤𝑑 𝑆𝐽,𝛼,𝐽 ′,𝛼′𝐵𝐽 ′,𝛼′ (𝑋𝑖𝛼′)

}
where 𝑆0,0, 𝑆𝐽,𝛼, 𝑆𝐽,𝛼,𝐽 ′,𝛼′ are the corresponding elements in the matrix S𝑏

defined in (A.8), and 𝜇𝑏,𝑘,𝐽,𝛼 (𝑥1) = E 𝑏′′ {𝑚 (X)}𝐵𝐽,𝛼 (𝑋𝛼)𝐾ℎ (𝑋1 − 𝑥1) ,

the supremum of which has the order 𝒪 (𝐻1/2
)
. Denote
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𝐷𝑛 = 𝑛𝜃0

(
1

2 + 𝜂
< 𝜃0 <

2

5

)
, 𝜀𝐷𝑛

𝑖,1 = 𝜀𝑖𝐼 {∣𝜀𝑖∣ > 𝐷𝑛}, 𝜀𝐷𝑛
𝑖,3 = E 𝜀𝑖𝐼 {∣𝜀𝑖∣ ≤ 𝐷𝑛},

𝜀𝐷𝑛
𝑖,2 = 𝜀𝑖𝐼 {∣𝜀𝑖∣ ≤ 𝐷𝑛} − 𝜀𝐷𝑛

𝑖,3 . Then 𝐼2,𝑣,2 = Λ1 + Λ2 + Λ3 where

Λ𝑘 =
∑

1≤𝐽≤𝑁+1,2≤𝛼≤𝑑 𝜇𝑏,𝑘,𝐽,𝛼 (𝑥1) (𝑥1)𝑛
−1∑𝑛

𝑖=1 𝜎 (X𝑖) 𝜀
𝐷𝑛
𝑖,𝑘{

𝑆𝐽,𝛼 +
∑

1≤𝐽 ′≤𝑁+1,1≤𝛼′≤𝑑 𝑆𝐽,𝛼,𝐽 ′,𝛼′𝐵𝐽 ′,𝛼′ (𝑋𝑖𝛼′)
}
, 𝑘 = 1, 2, 3.

With probability 1, Λ1 = 0 for large 𝑛. Next∣∣∣𝜀𝐷𝑛
𝑖,3

∣∣∣ = ∣−E 𝜀𝑖𝐼 {∣𝜀𝑖∣ > 𝐷𝑛}∣ ≤ E ∣𝜀𝑖∣2+𝜂

𝐷1+𝜂
𝑛

= 𝒪
(
𝐷−(1+𝜂)

𝑛

)
,

Λ3 ≤ 𝐶S𝑏

[∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑 𝜇

2
𝑏,𝑘,𝐽,𝛼 (𝑥1)∑

1≤𝐽 ′≤𝑁+1,1≤𝛼′≤𝑑

{
𝑛−1∑𝑛

𝑖=1𝐵𝐽 ′,𝛼′ (𝑋𝑖𝛼′)𝜎 (X𝑖) 𝜀
𝐷𝑛
𝑖,3

}2
]1/2

≤ 𝐶𝐷−(1+𝜂)
𝑛

[∑
1≤𝐽≤𝑁+1,2≤𝛼≤𝑑 𝜇

2
𝑏,𝑘,𝐽,𝛼 (𝑥1)∑

1≤𝐽 ′≤𝑁+1,1≤𝛼′≤𝑑

{
𝑛−1∑𝑛

𝑖=1𝐵𝐽 ′,𝛼′ (𝑋𝑖𝛼′)𝜎 (X𝑖)
}2]1/2

= 𝐷−(1+𝜂)
𝑛 𝒪𝑎.𝑠.

{(
𝑁𝐻𝑁 log2 𝑛/𝑛

)1/2}
= 𝐷−(1+𝜂)

𝑛 𝒪𝑎.𝑠.

{(
𝑁 log2 𝑛/𝑛

)1/2}
= 𝒪𝑎.𝑠.

(
𝑛−1/2

)
= 𝒪𝑎.𝑠.

(
𝑛−1/2 log𝑛

)
.

Lastly, denote Λ2 = 𝑛−1
∑𝑛

𝑖=1 𝜉𝑖, where

𝜉𝑖 =
∑

1≤𝐽≤𝑁+1,2≤𝛼≤𝑑 𝜇𝑏,𝑘,𝐽,𝛼 (𝑥1)𝜎 (X𝑖) 𝜀
𝐷𝑛
𝑖,2{

𝑆𝐽,𝛼 +
∑

1≤𝐽 ′≤𝑁+1,1≤𝛼′≤𝑑 𝑆𝐽,𝛼,𝐽 ′,𝛼′𝐵𝐽 ′,𝛼′ (𝑋𝑖𝛼′)
}
.

Then E 𝜉𝑖 = 0, and

Var (𝜉𝑖) = 𝝁T
𝑏 𝑐S𝑏 1 Var

⎛⎝{ 𝜎 (X𝑖) 𝜀
𝐷𝑛
𝑖,𝑘

𝐵𝐽 ′,𝛼′ (𝑋𝑖𝛼′)𝜎 (X𝑖) 𝜀
𝐷𝑛
𝑖,𝑘

}𝑁+1,𝑑

𝐽 ′=1,𝛼′=1

⎞⎠ST
𝑏 1𝝁𝑏 𝑐

≤ 𝐶𝜎𝐶
2
S𝐶V𝝁T

𝑏,𝑘 1𝝁
T
𝑏,𝑘 𝑐 = 𝒪 (1) .

Then Λ2 = 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
according to Bernstein’s Inequality. Then

𝐼2,𝑣,2 = 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
according to the orders of Λ1,Λ2 and Λ3. With

similar proof, we can show 𝐼2,𝑣,1 = 𝒪𝑎.𝑠.

(
𝑛−1/2 log 𝑛

)
. The lemma is proved

by putting together (A.23), (A.24), (A.25), (A.26), (A.27), (A.28) and the
above bound on 𝐼2,𝑣,2 and 𝐼2,𝑣,1. □
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LEMMA A.16. Under Assumptions (A1)-(A7), constants 𝑐, 𝐶 exist such

that 0 < 𝑐 ≤
∣∣∣−𝑙̂′′ (𝑎, 𝑥1)

∣∣∣ ≤ 𝐶 < ∞ 𝑎.𝑠. for 𝑎 ∈ 𝐴, 𝑥1 ∈ [0, 1].

Proof. According to (4.1), one has

𝑙̂′′ (𝑎) = −1/𝑛
∑𝑛

𝑖=1

[
𝑏′′ {𝑎+ 𝑚̂ 1 (X𝑖 1)}

]
𝐾ℎ (𝑋𝑖1 − 𝑥1) .

𝑐𝑏 ≤ 𝑏′′ {𝑎+ 𝑚̂ 1 (X𝑖 1)} ≤ 𝐶𝑏 and
sup𝑥1∈[ℎ,1−ℎ] ∣1/𝑛

∑𝑛
𝑖=1𝐾ℎ (𝑋𝑖1 − 𝑥1)− 𝑓 (𝑥1)∣ = 𝒪𝑎.𝑠. (1) imply the lemma.

□
Proof of Theorem 4. According to (4.1) and the Mean Value Theorem,

a 𝑚̄K,1 (𝑥1) between 𝑚̂SBK,1 (𝑥1) and 𝑚̃K,1 (𝑥1) exists such that

𝑙̂′ {𝑚̂SBK,1 (𝑥1)}− 𝑙̂′ {𝑚̃K,1 (𝑥1)} = 𝑙̂′′ (𝑚̄K,1 (𝑥1)) {𝑚̂SBK,1 (𝑥1)− 𝑚̃K,1 (𝑥1)} ,

Then according to 𝑙̂′ {𝑚̂SBK,1 (𝑥1)} = 0, one has

(A.29) 𝑚̂SBK,1 (𝑥1)− 𝑚̃K,1 (𝑥1) = − 𝑙̂′ {𝑚̃K,1 (𝑥1)}
𝑙̂′′ {𝑚̄K,1 (𝑥1)}

.

The theorem then follows from Lemmas A.15 and A.16. □
Proof of Theorem 5. The Mean Value Theorem implies the existence

of 𝑐′ between 𝑐 and 𝑐 such that 𝑐 − 𝑐 = −𝑙̂′𝑐 (𝑐) /𝑙′′𝑐 (𝑐′) ,where −𝑙̂′′𝑐 (𝑐′) =
𝑛−1

∑𝑛
𝑖=1 𝑏

′′ {𝑐′ + 𝑚̂ 𝑐 (X𝑖)} > 𝑐𝑏 > 0 according to (A6), then

𝑙̂′𝑐 (𝑐) = 𝑙̂′𝑐 (𝑐)− 𝑙̃′𝑐 (𝑐) = 𝑛−1∑𝑛
𝑖=1

[
𝑏′ {𝑐+𝑚 𝑐 (X𝑖)} − 𝑏′ {𝑐+ 𝑚̂ 𝑐 (X𝑖)}

]
= 𝑛−1∑𝑛

𝑖=1 𝑏
′′ {𝑐+𝑚 𝑐 (X𝑖)} {𝑚 𝑐 (X𝑖)− 𝑚̂ 𝑐 (X𝑖)}

+𝒪
[
1/𝑛

∑𝑛
𝑖=1 {𝑚 𝑐 (X𝑖)− 𝑚̂ 𝑐 (X𝑖)}2

]
= 𝐼 +𝒪𝑎.𝑠.

(
𝑁𝑑𝐻

4 +𝑁𝑑𝑛
−1 log 𝑛

)
,

by Lemma A.13, where 𝐼 = 𝐼1 + 𝐼2,

𝐼1 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)} {𝑚 𝑐 (X𝑖)− 𝑚̄ 𝑐 (X𝑖)} ,

𝐼2 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)} {𝑚̄ 𝑐 (X𝑖)− 𝑚̂ 𝑐 (X𝑖)} .
According to Lemma A.4, 𝐼1 = 𝒪𝑎.𝑠.

(
𝐻2
)
, while

𝐼2 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)} ×{∑
1≤𝐽≤𝑁+1,1≤𝛼≤𝑑

(
𝜆̂𝐽,𝛼 − 𝜆̄𝐽,𝛼

)
𝐵𝐽,𝛼 (𝑋𝑖𝛼)

}
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= 𝐼2,𝑏 + 𝐼2,𝑣 + 𝐼2,𝑟

where

𝐼2,𝑏 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)}
{∑

1≤𝐽≤𝑁+1,1≤𝛼≤𝑑Φ𝑏,𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)
}
,

𝐼2,𝑣 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)}
{∑

1≤𝐽≤𝑁+1,1≤𝛼≤𝑑Φ𝑣,𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)
}
,

𝐼2,𝑟 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑐+𝑚 𝑐 (X𝑖)}
{∑

1≤𝐽≤𝑁+1,1≤𝛼≤𝑑Φ𝑟,𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)
}
.

We have ∣𝐼2,𝑏∣ = 𝒪𝑎.𝑠.

(
𝑛−1/2

)
according to (A.17) and (A.21), see Liu et al.

(2011). Similarly

∣𝐼2,𝑟∣ = 𝒪𝑎.𝑠.

(
𝑁𝑑𝐻

7/2 +𝑁𝑑𝐻
−1/2𝑛−1 log 𝑛

)
= 𝒪𝑎.𝑠.

(
𝑛−1/2

)
.

We have 𝐼2,𝑣 = 𝐼2,𝑣+𝒪𝑎.𝑠.

(
𝑛−1/2

)×𝒪𝑎.𝑠.

(
𝑁

1/2
𝑑 𝑛−1/2 log 𝑛

)
×𝒪 (𝑁), where

𝐼2,𝑣 = 𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚 (X𝑖)}
{∑

1≤𝐽≤𝑁+1,1≤𝛼≤𝑑Φ𝑣,𝐽,𝛼𝐵𝐽,𝛼 (𝑋𝑖𝛼)
}

= −𝑛−1∑𝑛
𝑖=1 𝑏

′′ {𝑚 (X𝑖)}𝑛−1∑𝑛
𝑖′=1 𝜎 (X𝑖′) 𝜀𝑖′B

T (X𝑖′)S𝑏 𝑐B 𝑐 (X𝑖)

where S𝑏 𝑐 = S𝑏 (0𝑁𝑑−1, I𝑁𝑑−1)
T consists of columns 2 to 𝑁𝑑 of S𝑏 defined

in (A.8) and B 𝑐 (x) = {𝐵1,1 (𝑥1) , ..., 𝐵𝑁+1,𝑑 (𝑥𝑑)}T. So

𝐼2,𝑣 = −𝑛−1∑𝑛
𝑖′=1 𝜎 (X𝑖′) 𝜀𝑖′+𝑛−1∑𝑛

𝑖′=1 𝜎 (X𝑖′) 𝜀𝑖′𝑣𝑏,00 (𝑠𝑏,00, 𝑠𝑏,0,𝐽,𝛼)B (X𝑖′)

+𝒪𝑎.𝑠.

(
𝑛−1/2

)
by Liu et al. (2011). Putting the above together, and noticing that 𝑣𝑏,00 =
E 𝑏′′ {𝑚 (X)}, one has

𝑐− 𝑐 = 𝑇𝑛 + 𝒪𝑎.𝑠.

(
𝑛−1/2

)
,(A.30)

𝑇𝑛 = 𝑛−1∑𝑛
𝑖′=1 𝜎 (X𝑖′) 𝜀𝑖′

(
𝑠𝑏,00 − 𝑣−1

𝑏,00, 𝑠𝑏,0,𝐽,𝛼

)
B (X𝑖′) .(A.31)

According to (A.8) and matrix theory

S𝑏 =

(
𝑣−1
𝑏,00 + 𝑣−2

𝑏,00𝐵𝐹−1𝐵T −𝑣−1
𝑏,00𝐵𝐹−1

−𝑣−1
𝑏,00𝐹

−1𝐵T 𝐹−1

)
𝐵 = (𝑣𝑏,0,𝐽,𝛼) , 𝐹 =

(
𝑣𝑏,𝐽,𝛼,𝐽 ′,𝛼′

)−𝐵T𝐵𝑣−1
𝑏,00.

According to (A.11)

0 < 𝑐𝑉,𝑏 ≤ 𝑣𝑏,00 ≤ 𝐶𝑉,𝑏 < +∞
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𝑐𝑉,𝑏I𝑁𝑑−1 ≤
(
𝑣𝑏,𝐽,𝛼,𝐽 ′,𝛼′

) ≤ 𝐶𝑉,𝑏I𝑁𝑑−1

while the definition of B (X𝑖) implies that ∥𝐵∥∞ = 𝒪 (𝐻3/2
)
and hence

∥𝐵∥ = 𝒪 (𝐻). Thus a constant 𝑐𝐹 > 0 exists such that for sufficiently large
𝑛, 𝐹 ≥ 𝑐𝐹 I𝑁𝑑−1 and hence 𝐹−1 ≤ 𝑐−1

𝐹 I𝑁𝑑−1. Putting the above together
leads to

𝑠𝑏,00 = 𝑣−1
𝑏,00 + 𝑣−2

𝑏,00𝐵𝐹−1𝐵T = 𝑣−1
𝑏,00 +𝒪 (𝐻2

)
𝑠𝑏,0,𝐽,𝛼 = −𝑣−1

𝑏,00𝐵𝐹−1, ∥𝑠𝑏,0,𝐽,𝛼∥2 = 𝒪 (𝐻) .

Applying Cauchy-Schwartz inequality, ∣𝑇𝑛∣ is bounded by{(
𝑠𝑏,00 − 𝑣−1

𝑏,00

)2
+ ∥𝑠𝑏,0,𝐽,𝛼∥22

}1/2

×⎡⎣{𝑛−1∑𝑛
𝑖=1 𝜎 (X𝑖) 𝜀𝑖

}2
+
∑
𝐽,𝛼

{
𝑛−1∑𝑛

𝑖=1 𝜎 (X𝑖) 𝜀𝑖𝐵𝐽,𝛼 (𝑋𝑖𝛼)
}2⎤⎦1/2

= 𝒪 (𝐻)×𝒪𝑎.𝑠

(
𝑁1/2𝑛−1/2 log 𝑛

)
= 𝒪𝑎.𝑠

(
𝑛−1/2

)
.

This, together with (A.30) and (A.31) prove the Theorem. □
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𝑑 = 5 𝑛 MISE (𝑚̂SBK,1) MISE (𝑚̃SBK,1) EFF (𝑚̂SBK,1) std {EFF (𝑚̂SBK,1)}
𝜌 = 0,
𝑎 = 0.

500 0.0548 0.0600 1.1120 0.2741

𝑟 = 0.5,
𝑎 = 0.5.

500 0.1017 0.0944 1.0233 0.2796

Table 1
Example 1: the means and standard deviations of MISEs and EFFs of 𝑚̂SBK,1, 𝑚̃SBK,1

for 𝑑 = 5, 𝑛 = 500.

𝑑 = 5 𝑛 MISE (𝑚̂SBK,2) MISE (𝑚̃SBK,2) EFF (𝑚̂SBK,2) std {EFF (𝑚̂SBK,2)}
𝑟 = 0,
𝑎 = 0.

500 0.0179 0.0271 1.5032 0.8965

𝑟 = 0.5,
𝑎 = 0.5.

500 0.0365 0.4178 0.9977 0.4006

Table 2
Example 1: the means and standard deviations of MISEs and EFFs of 𝑚̂SBK,2, 𝑚̃SBK,2

for 𝑑 = 5, 𝑛 = 500.



𝑑 = 10 𝑛 MISE (𝑚̂SBK,1) MISE (𝑚̃K,1) EFF (𝑚̂SBK,1) std {EFF (𝑚̂SBK,1)}

𝑟 = 0,
𝑎 = 0.

500
1000
1500
2000

0.0965
0.0491
0.0298
0.0246

0.0701
0.0453
0.0331
0.0280

0.9868
1.0228
1.1021
1.1014

0.3813
0.2324
0.3123
0.2161

𝑟 = 0,
𝑎 = 0.5.

500
1000
1500
2000

0.0992
0.0453
0.0285
0.0259

0.0735
0.0440
0.0327
0.0282

0.9515
1.0489
1.0957
1.0801

0.3154
0.2741
0.2306
0.1823

𝑟 = 0.5,
𝑎 = 0.

500
1000
1500
2000

0.2318
0.1343
0.0756
0.0567

0.1373
0.0885
0.0605
0.0474

0.8732
0.9186
0.9294
0.9811

0.3122
0.4027
0.2493
0.2877

𝑟 = 0.5,
𝑎 = 0.5.

500
1000
1500
2000

0.2757
0.1389
0.0776
0.0593

0.1386
0.0899
0.0601
0.0485

0.8509
0.8950
0.9686
0.9885

0.3356
0.2731
0.2715
0.3050

Table 3
Simulated example 2: the MISEs and EFFs of 𝑚̂SBK,1, 𝑚̃K,1 for 𝑑 = 10, 𝑛 = 500, 1000,

1500, 2000.



Ratio No. Definition Ratio No. Definition

𝑍1 Net Income/Sales 𝑍5 Cash/Total Assets

𝑍2 Operating Income/Total Assets 𝑍6 Inventories/Sales

𝑍3 Ebit/Total Assets 𝑍7 Accounts Payable/Sales

𝑍4 Total Liabilities/Total Assets 𝑍8 log(Total Assets)

Table 4
Real data example 3: Definitions of financial ratios.



Rong Liu
Department of Mathematics,
University of Toledo,
Toledo, OH 43606, USA
E-mail: rong.liu@utoledo.edu

Lijian Yang
Center for Advanced Statistics and Econometrics Research,
Soochow University,
Suzhou 215006,
People’s Republic of China
and
Department of Statistics and Probability,
Michigan State University,
East Lansing, MI 48824, USA
E-mail: yang@stt.msu.edu

Wolfgang K. Härdle
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(a)

Efficiency of the 1-st estimator, r=0, a=0.5
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Efficiency of the 1-st estimator, r=0.5, a=0
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Efficiency of the 1-st estimator, r=0.5, a=0.5
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(d)

Fig 1. Plots of empirical distribution of relative efficiency of 𝑛 = 500 - dashed line,
𝑛 = 1000 - dotted line, 𝑛 = 1500 - thin solid line,𝑛 = 2000 - thick solid line for (a)
𝑟 = 0, 𝑎 = 0, (b) 𝑟 = 0, 𝑎 = 0.5, (c) 𝑟 = 0.5, 𝑎 = 0, (d) 𝑟 = 0.5, 𝑎 = 0.5.
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(a)

Confidence Level = 0.95, n = 1000
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(b)

Confidence Level = 0.95, n = 1500
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(c)

Confidence Level = 0.95, n = 2000
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(d)

Fig 2. Plots of 𝑚1(𝑥1) - solid line, 𝑚̃K,1(𝑥1) - dashed line, confidence bands and
𝑚̂SBK,1(𝑥1) - three dotted lines for 𝑟 = 0, 𝑎 = 0 and (a) 𝑛 = 500, (b) 𝑛 = 1000, (c)
𝑛 = 1500, (d) 𝑛 = 2000.
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(a)

Confidence Level = 0.95, n = 1000
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(b)

Confidence Level = 0.95, n = 1500
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(c)

Confidence Level = 0.95, n = 2000
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(d)

Fig 3. Plots of 𝑚1(𝑥1) - solid line, 𝑚̃K,1(𝑥1) - dashed line, confidence bands and
𝑚̂SBK,1(𝑥1) - three dotted lines for 𝑟 = 0.5, 𝑎 = 0.5 and (a) 𝑛 = 500, (b) 𝑛 = 1000,
(c) 𝑛 = 1500, (d) 𝑛 = 2000.
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Fig 4. Estimations for (a) 𝑚3(𝑥) and (b) 𝑚8(𝑥).
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