This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 6, number 4 Volume Author/Editor: NBER

Volume Publisher:

Volume URL: http://www.nber.org/books/aesm77-4
Publication Date: October 1977

Chapter Title: Models of Rail Road Passenger-Car Requirements in the Northeast Corridor: An Application of SeESAME

Chapter Author: Judith Gertler, Judith Gertler, Howard Simkowitz
Chapter URL: http://www.nber.org/chapters/c10523
Chapter pages in book: (p. 367-398)

MODELS OF RAIIROAD PASSIENGER-CAR RIQUIRIMENTS IN THE NORTHEAST CORRIDOR: AN APPIICATION OF: SESAME

By Robert Fourer,* Judith B. Gerteer, \dagger
and Howard J. Simkowitat

H'i consider a general problem of determining optimal car allocations given a fixed schedule and prodeterminted deniands. Requirements for car movements are modeled as a sel of lintar constraints having a transshipmem structure, and allernatise linear objectives are formulated 1 arious optimization techniques are de seloped for onc or more objectives and properties of the set of optimal solutions are demonsirated. The model and optimization techmeptes are applied to projected rail service in the Northeast Corrider Boston. dicw York. Philadulphia. Washingtum): derivation of a s:hedule and demands are cxplamed. and results of a number of optimiza. tiams and analyses are displayed.

In 1973 Congress passed the Regional Railroad Reorganization Act. which became law on January 2, 1974. This complex picce of legislation called upon the U.S. Department of Transportation to improve passenger rail service in the Northast Corridor, which extends from Boston, through New York and Philadelphia, to Washington, D.C. Subscquent planning for the improved service included engincering studies, financial analyses, and demand projections [1,2,6].

The research described herein began as an attempt to determine the minimum number of passenger cars required to serve the Northeast Corridor, given previously-determined schedules and estimates of demand. This is naturally viewed as a problem of constrained optimization. When the constraints imposed by demand and operating practices were expressed mathematically as equations and inequalities, the problem was seen to be an instance of a fairly gencral transshipment structure, as described in Section 1 of this paper. Such a structure is not specific to the Northeast Corridor, or to the novement of train cars (an application to locomotive requirements, for example, is given in $\$ 1.7$). In addition, the constraints may be regarded as a fairly simple linear program, to which a feasible solution is casily found by standard methods.

Further analysis revealed that minimizing cars is but one of several
Models and computer routines described in this renort were developed at the Computer Restarch Center of the National Burealu of Econumic Rescarch, under contract DOT-TSC-1179-1 from the Transportation Systems Center. U.S. Department of Transportation.

* National Burcau of Econonic Research. Computer Research Center for Economies and Management Science. 575 Technologs, Squarce, Cambridge. MA 02139.
+Transportation Systems Center, U.S. Department of Tramsportation. Kemball Square. Cambridge, MA 02142.

desirable objectives and that cath such objective may be viewed ats at measure of cost of a particular kind: operating cost per mile. For example or capital cost. Consequently, it was necessary to develop an approach an minimizing the "total cost" associated with two or more objectives, give li a knowledge of the costs relative magnitudes. This work is described in Section 2: much of it is applicable to linear programs generally. Merconer. the desired optimal solutions can be found by use of a standard parametric algorithm commonly employed in linear programming.

The remainder of this paper describes how the transshipment mode was used to investigate rail service in the Northeast Corridor. For parposes of demonstration a hypothetical cate representing service on a busy day in 1982 was chosen as a basis for analysis. Base data for this case were estimated by the means described in Section 3. These data were incorporated in an appropriatic instance of the model. Which was solved and analad by use of NBER S SESAME interactive linear programming system [3,7.8] and supporting computer routines. Details of this bate run. and some numerical results. are given in Section 4.

The base run was not intended as a thorough analysis of 198 ? Corrdor service but as a test case to prepare the way for farther analyses. Compilation of the base data. For example. led to development of techniques that are now available for more extensive studies. Output from the base rim revealed some special properties of the Corridor network which in turn might be exploited in subsequent models (see. for example. §4.5 below).

In addition, application of the model requires an integrated set of interactive computer routines. These were developed and tested for the base run and are available to others va the NBERNET and TYMNET networks. Instructions for use of the computer routines are given in [5].

1. Forvletation of the Model

It is desired to allocate "cars" of some sort in a transport network, subject to a fixed schedule and known demands for service. This section specifies the nature of such a network and the requirements that must be met by any feasible allocation of cars. To keep the discussion reasonably concrete, the model is described in terms of the railroad network that motivated it.

An informal statement of the problem ocapices $\$ 1.1$. The constraints are then formulated more precisely, first as at transshipment network ($\$ \$ 1.21 .3$), then as a linear program ($\$ 1.4$) to which the simplex method may be applied.

The remainder of the section is concerned with extensions of the
original problem to model corridor serviee with turnatiound delays (81.5). upper limits on train sizes ($\$ 1.6$), and loeomotive requirements ($\$ 1.7$).

§1.1. Statomon of the Constiaines

A uniform fleet of passenger cars provides railroad service to a set of cities. Service is offered by means of a set of sehedaled "trains", cach eomprising one or more cars and rumning between a given pair of eities. At any given tince, each ear in the fleet is either part of some currently running train, or is sitting in storage at one of the cities.

Two requirements constrain the size and deployment of the fleet: : fixed schedule, and known demands for scheduled trains.

Fixed schedule. The sehedule lists all trains that depart in a chosen sehedule-period (a day, for example). During the schedule-period. every scheduled train must be run, carrying one or more cars.

It is assumed that each schedule-period is followed immediately by another, identieal sehedule-period. Moreover, the same service is to be provided in every sehedule-period: that is, the same sehedale must be run. with the same allocation of ears to cities and trains.

Each entry in the sehedule speeifies a eity of departure and a eity of arrival, and eorresponding departure and arrival times. In general, a train may arrive during the schedule-period (e.g. day) of departure, or during any subsequent period. For simplieity, however, it is assumed here that every train arrives either in the same period, or at an earlier time in the next period. (If the schedule-period is a day. this just says that a train arrives either the same day that it leaves, or the next day; and that every trip lasts less than 24 hours.)

A ear that arrives at eity c at time t is free to leave c in any seheduled train that departs at t or later. (Stopover delays at the arrival eity to discharge and board passengers, for example -...are considered part of the preceding trip, and are reflected by adjusting the arrival time in the sehedule accordingly.)

Demands. For each scheduled train there is a known demand which must be met; hence there is a minimum number of ears required in each train. A train may be larger than its minimbim size. however, if eiremostances require that extra (deadhead) ears be shifted from one city to another.

Table 1 shows a schedule and demands for a simple 2 -eity instance of this problem. Total demand from A te B requires 22 ears, while only 20 ears are required from B to A; consequently. in any feasible soiution at least 2 extra cars will have to be deadheaded from B to A so that the stock of ears at A does not run out.
1ABII: I

 A.od Arrinfy at $2(0)$ iha Nixi Dat.
CITY A w CITY B

Leave A	Airive B	D.mand	(ars requird (75 pass./ar)
$10: 00$	$13: 00$	398	6
$12: 00$	$15: 00$	177	3
$16: 00$	$19: 00$	259	4
$18: 00$	$21: 00$	557	7
$21: 00$	$24: 00$	121	2

CITY B to CITY A

Leave B	Arrive A	Demand	Cars required (75 puss ;ar)
9.00	12:00)	209	3
11:00	14:0)	280	t
$15: 00$	18:00	373	5
19:00	2こ:00	421	6
23:00	$2: 00$	90	2

§i.2. Formulation As a Transshipmem Network

The train schedule is conveniently represented as a directed network whose unit of flow is one car. Nodes of the network correspond to the potential arrival or departure times at cach city. Ares represent the move ment or storage of cars over time.

More specifically, partition the sehedule-period into τ uniform intervals beginning at times $0.1, \ldots, \quad$ - . (If the schedule-period is a day. time t couid be the beginning of the t th minute of the day.) Describe each train in the schedule by a departure city c, a departure time $t \in\{0 . .$. . $\tau-1\}$, an arrivalcity c^{\prime} and an arrival time $t^{\prime} \in\{0 \ldots \ldots \tau-1\}$. Clarr! the schedule may be made as precise as desired by choosing τ suflicients large.

Define one node in the network for cach time in cath city. If there ars 4 citics and 1440 partitioning times. for example. the network has 4×144 nodes.

Conncet the nodes by ares of two types. representing cars in storage and cars in trains. respectively:

Storage arcs. For cach city, run an are from the node for calch time : to the node for the next time $(t+1)$ mod τ. The flow along such an are represents cars held in storage at the city during the interval that begins at time f. (The last time. $\tau-1$. is connected to the first time. 0 . since the las
interval of any schedule-period is followed immediately by the first intervalof the next period.)

Train arcs. For each scheduled train, run an are from the node representing the eity and time of departure to the node for the city and time of arrival. Fiow along this are represents cars moving from one city to another in the seheduled train.

Flow around the network is constrained by the nature of the problem, in the following ways:

Conservation of flow. Since the flect size is fixed, the number of cars in storage during interval l at a given city must equal the number in storage in the interval immediately before, plus the number that arrived at time t, less the number that departed at t. Equivalently, the net flow at every node must be zero: the network is built entircly of transshipment nodes.

Nonnegativity. All flows must be nonnegative. This amounts to requiring that trains cannot move backwards in time.

Integrality. Since cars are indivisible units, all flows must be integral.

Satisfaction of demand. The flow on each train are must be greater than or equal to the number of cars needed to mect demand for the train. Demand thus places a lower limit on each are. These lower limits are what forec a positive flow around the network: they play the role of sourecs and sinks in more conventional transshipment-network formulations. (Indeed, an equivalent transshipment network without positive lower limits is easily constructed. One adds an appropriate sink for each departure at a node, and a source for cach arrival.)

The netw ork equivalent of Table I's example is shown in Figure 1.

\$1.3. Reducing the Network

If no trains arrive at or depart city c at time t, the node for c at l is connected to the rest of the network by only wo storage ares: an incoming are from the previous time, and an outgoing are to the following time. The flows on these two ares must be the same in order to satisfy the conservation constraint. Consequently. one may remove the node and replace the two ares with one. Other flows in the network are as before, and rernain feasible if they were previously so: hence this transformation leaves the set of feasible solutions essentially unch anged.

When all such "inactive" nodes are removed, there remains a net-

Figure 1 A network equivalent of the sample problem. The day is divided into $T=24$ inter vals. so that herc is a node at cach enty at cach hour
work of minimum size for the problem. Figure 2 shows a reduced network of this sort, for the problem of Figure 1. When the number of intervals r is quite large (the number of minutes in a day, for instance), reducing the network to active nodes is imperative if the network is to be kept to a manageable size. All eases run in the studies discussed later in this paper employed reduced networks.

It is possible to formulate the reduced problem direetly, in terms of finite subsets of active times, one subset for each eity, chosen from the interval $[0, \tau)$. To promote simplieity of notation, however, the results of the following sections are expressed in terms of unreduced networks.

\$1.4. Formulation as Limear Constraims.

Any network of the sort just outlined may be deseribed by an equisalent linear-programming (LP) model. To each are of the network there corresponds a structural variable, whose activity equals the ares flow. Conservation constraints on flows become linear equalities in the vari-

Figure 2 The reduced equivalent of the network in Figure 1.
ables, while common LP techniques can implicitly guarantee nonnegativity, integrality, and satisfaction of demand at every feasible basic solution.

To express the LP formally, define the following sets:
C the set of cities
$T=\{0, \ldots, T-1\} \quad$ the set of intervals inte which the seheduleperiod is divided
$S \subset\left\{\left(c, t, c^{\prime}, t^{\prime}\right): c \in C^{\prime}, c^{\prime} \in \mathcal{C} ; t \in T, t^{\prime} \in T ; c \neq c^{\prime}\right\}$
the schedule: each element represents a train that leaves city c at time t and arrives at eity c^{\prime} at t^{\prime}

Represent the demands by

$$
\begin{array}{ll}
d_{c c^{\prime}}\left[t, t^{\prime}\right]>0 \quad & \text { the smallest (integral) number of cars } \\
& \text { required to meet demand for train } \\
& \left(c, t, c^{\prime}, t^{\prime}\right) \in S
\end{array}
$$

Express the nodes of ihe network as:

$$
\mathfrak{A},[t] \text { for all c }(. t \in T
$$

The dircoled ares representing storage of unused cars are titen

$$
\boldsymbol{u}_{c}[t]: \mathbb{Q}_{i}[t]-\mathbb{Q}_{i}[(t+1) \bmod \tau] \quad \text { forall }: \in(\therefore, t \in T
$$

The ares representing movement of cars in trains are

$$
X_{c i}\left[t, t^{\prime}\right]: Q_{c}[t] \rightarrow \mathbb{Q}_{1}\left[t^{\prime}\right] \text { for all }\left(c, t, c^{\prime}, t^{\prime}\right) \in . S
$$

Definc an LP structural variable corresponding to cach arce, and rep. resenting the: flow over the are:

$$
\begin{array}{ll}
u_{i}[t] & \text { how over } U_{i}[t], \text { for all } c(, c, t \in T \\
x_{c i}\left[t, t^{\prime}\right] & \text { flow over } X_{c c}\left[t, t^{\prime}\right] \text { for all }\left(c, t, v^{\prime}, t^{\prime}\right) \in . S
\end{array}
$$

The constraints on network flow are expressed as follows:
Conservation of flow:

$$
\begin{array}{ll}
u_{c}[(t-1) \bmod \tau]+\sum_{\left(c_{1}, t_{1}, c, t\right) \in S} x_{t_{1} c}\left[t_{1}, t\right] \\
=u_{c}[t]+\sum_{\left(c, t, c_{2}, t_{2}\right) \in S} x_{c c_{2}}\left[t, t_{2}\right] & \text { for all } c \in c . t \in \tau
\end{array}
$$

Satisfaction of demand:

$$
x_{c c^{\prime}}\left[t, t^{\prime}\right] \geq d_{c c^{\prime}}\left[t, t^{\prime}\right] \quad \text { for all }\left(c, t, c^{\prime}, t^{\prime}\right) \in S
$$

Nomegativity:

$$
u_{c}[t] \geq 0
$$

for all $\mathcal{E} C . t \in T$
Integrality:

$$
\begin{aligned}
& u_{c}[t] \text { integral } \\
& x_{c c^{\prime}}\left[t, t^{\prime}\right] \text { integral }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for all } c \in C . t \in T \\
& \text { for all }\left(c, t, c^{\prime}, t^{\prime}\right) \in S
\end{aligned}
$$

Nonnegativity of the x variables is insured by satisfaction of demand.
Given that all $d_{c \cdot} \cdot\left[t, t^{\prime}\right]$ are integral. a fundamental property of tans. shipment problems guarantecs that every basic solution to the above LP is an integral solution. Consequently a feasible solution to the above prob-lem- and hence a feasible alfocation of cars to trams may be determined directly by application of the (phase 1) simplex method. Given atiy lincar objective function, the simplex method will also find an optimal feasible allocation.

Both satisfaction of demand and noncgativity express simple lowe bounds on the variables. Constraints of this sort are casily handled implicitly by the smplex method. Hence only the conservation-af- how equa. tions necd appear explicitly as rows in the I.P.

\$1.5. Corridor Service and Timaround Delavs

A "corridor" is a set of cities related by a directional ordering that is complete. transitive, and irreflexive. In other words. the cetics of a corrider may be indexed $i_{i}, i_{2} \ldots . i_{n}$. such that c_{i} is in the given ditcetion fioni $c_{\text {, }}$ If and only if $i>j$. The Northeast Corridor is a corrider in this sense. ordered by the relation "north of".

Every train in a corridor must run in the ordering direction. or in the: opposite direction. For convenience. these directions are here called north and south: they could just as well be cast and west. or dockwise and counterclockwise. Trains are thus labeled north bound or southbonnd. accordingly.

In the initial formalation. stopover delay at the arrival city is implicit in the schedule and therefore it is the same for every car in a train. Within a corridor. however. it is reasonable to specify that the stopover delay for a car that changes direction is some number of intervals greater than the delay for a car that continues in the same direstion along the corridor. Thus cars in a train from say, Philadelphia to New York may continue to move north. after a minimal stop. in a train from New York to Boston: but cars in the Philadelphia-New York traim that are to be taken off and sent back to Philadelphia are delayed in New York for a sontewhat longer time. A similar "turmaround delay" is encountered in resuming service after one end of the corridor (say. Boston) is reached.

Turnaround delays camot be modeled by simply adjusting the schedule becaluse in general, some cars in a tram indy continue in the same direction. while others are detached and turned around. A simple and feasible approach. however is to duplicate the original network. creating two separate but similar parts: onc for northbound trains. and one for southbound trains. Ares connecting the two parts are added to represent cars being turned around.

Specifically, partition the schedule into two sets S^{5} and S^{s} of northbound and southbound trains. respeetively. For the northbound trains. construct a full network as before:

$$
\begin{aligned}
& a_{c}^{N}[t] \\
& \text { for all } c \in C, t \in T \\
& \text { (nodes representing potential arrival and } \\
& \text { departure times of northbound trains) } \\
& \mathcal{U}_{c}^{N}[t]: \mathbb{Q}_{i}^{N}[t] \rightarrow \mathbb{Q}_{c}^{N}[(t+1) \bmod \tau] \quad \text { for all } c \in \mathcal{C} . t \in T \\
& \text { (ares representing umused northbound cars } \\
& \text { in storage at cach city and tince) } \\
& X_{c i} \cdot\left[t . t^{\prime}\right]: \mathbb{Q}_{c}^{N}[t] \rightarrow \mathbb{Q}_{c^{\prime}}^{N}\left[t^{\prime}\right] \quad \text { for all }\left(c^{\prime} . t, c^{\prime} . t^{\prime}\right) \in S^{N} \\
& \text { (arcs represconting cars moving in northbound trains) }
\end{aligned}
$$

In the same way. define a separate network for southbound trains:

$$
\begin{aligned}
& Q_{i}^{S}[t] \\
& \mathcal{U}_{i}^{s}[t]: \boldsymbol{a}_{i}^{S}[t]=\operatorname{as}_{c}[(t+1) \bmod r] \quad \text { for all } c(\cdot(;, t \in T
\end{aligned}
$$

Represent the number of intervals required to change a cars direction by δ Comect the northbound and southbound networks by two sets of ares that represent unused cars in storage that are being torned around:

$$
\begin{aligned}
& \mathcal{U}_{c}^{N S}[t]: Q_{c}^{N}[t] \rightarrow Q_{c}^{S}[(t+\delta) \bmod \tau] \quad \text { for all } c \in \mathbb{C} \cdot t \in T \\
& \text { (ares representing formerly northbound cars. in } \\
& \text { storage at time } t \text { that will be switehed to run } \\
& \text { south } \delta \text { intervals later) } \\
& \mathcal{U}_{i}^{\mathrm{SN}}[t]: \mathbb{Q}_{i}^{\mathrm{S}}[t] \sim \mathbb{Q}_{c}^{\mathrm{N}}[(t+\delta) \bmod \tau] \quad \text { for all } c \in(. t \in T \\
& \text { (ares representing formerly southbound ciars. in } \\
& \text { storage at time that will be switehed to run } \\
& \text { north } \delta \text { intervals later) }
\end{aligned}
$$

The construction of these connceting ares guarantees that northbound cars reaching city 6 at time t must wat at least δ intervals before they can be incorporated in a southbound train.

The constraints on this expanded nework are analogoms in every respect to those on the original une: llow must be conserved at all nodes. all flows must be nonnegative and integral. and demand must be satisfied along the \mathscr{X}^{N} and \mathscr{X}^{s} arcs. As before, the network has a transshipment structure, and can be modeled by a linear program all of whose basic solution are integral.

For practical purposes, one can apply the methods of this section to the reduced network of $\$ 1.3$, to produce separate reduced northbound and southbound networks having a reduced set of connecting ares.

The corridor model is not fundamentally limited the case of a single, fixed turnaround delay. Onc could casily incorporate a set of delays that vary with time, city, or dircetion. by making appropriate changes to the definitions of the $\mathcal{U}^{N s}$ and $\mathcal{U}^{5 v}$ ares. Extensions of these methods might also be applied to sets of citics that are not corridors.

\$1.6. Upper Limits on Train Sizes

The model developed so far insures only that cach train is allocated cough cars. Onc may also wish to specily that it is not allocalted too many. For example, the number of cars in a train could be limited to twice the number needed to meet demand. (o) keep load factors at reasonabli
levels. Stations' platform lengths might also dictate some absolute bound on train sizes.

Upper limits are casily incorporated in the linear programs of \$1.4 or \$1.5. Deline

$$
h_{c c^{\prime}}\left[t, t^{\prime}\right] \geq d_{c \cdot} \cdot\left[t, t^{\prime}\right]
$$

as the maximum feasible size of the train $\left(c, t, c^{\prime}, t^{\prime}\right) \in S$. Then the constraints on the x variables in the linear program are angmented to

$$
d_{c c^{\prime}}\left[t, t^{\prime}\right] \leq x_{c c^{\prime}}\left[t, t^{\prime}\right] \leq h_{c c^{\prime}}\left[t, t^{\prime}\right]
$$

for all $\left(c, t, c^{\prime}, t^{\prime}\right) \in S$.
Upper limits of this sort do not destroy the model's transshipment structure. Hence all basic solutions are still integral, and the simplex method may be applied as before. Morcover, the augmented constraints on the x variables are still simple bounds that can be handed implicitly by the simplex method; the number of explicit rows in the $L P$ is unchanged.

§I.7. Modeling Locomotive Requirements

In general, the number of locomotives required to haul a seheduled train depends on the number of cars assigned to the train. Since the number of cars may vary between feasible solutions, so may the number of locomotives.

By judicious choice of upper limits $\left.h_{c c}\left[!, t^{\prime}\right](\xi) .6\right)$, however, one may be able to restrict the size of each train $\left(c, t, c^{\prime}, t^{\prime}\right) \in S$ so that its requirement for locomotives, $e_{c c^{\prime}}\left[t, t^{\prime}\right]$, is fixed. Then the flow of locomotives may be modeled in exactly the same way as the flow of cars. One simply replaces car demands $d_{c c} \cdot\left[t, t^{\prime}\right]$ in $\$ \$ 1.1-1.5$ by the locomotive demands $e_{c c} \cdot\left[t, t^{\prime}\right]$. Upper limits on the number of locomotives pulling cach train may also be imposed, in the manner of $\$ 1.6$.

Any of the optimization techniques described in section 2 may be applied to the locomotive-demand case. Many of the results expressed in terms of cars are also meaningful in terms of locomotives.

Application of these ideas to locomotive requirements in the Northcast Corridor is described in $\$ 4.7$.

2. Objective Functions

A feasible set of car allocations for the problem formulated in the preceding section . if such a set exists -... may be determined by application of the simplex algorithm, phase 1. Given that a feasible allocation exists, the next step is to seck an allocation that optimizes some functional in the
x and a variables. This paper is concerncel with functionals of one particularlv usetial and tractable sort: Inear objective functions related to costs.

Minimizing cost is a natural ohjective for any planang model. Since section I's network model, in particular faes the lewe of service and requires that all demands be met, cost is the principal erterion of difference between feasible allocations. In addition. certain classes of minmum-cos solutions may be charatctized in particularly revealing ways.

Lincar functionals have a purdy practical justification: they may be minimized by straightforward application of the simplex method. Fortunately, several reasonable measures of cost are proportional to linear functionals, as shown in $\$ 2.1$.

Approaches to minimizing more than one lincar cost objective are discussed in $\$ 2.2$. The case of two objectives is devecioped in $\$ \$ 2.3$ 2.4 and the results ate applied in $\$ 2.5$ to two objectives of particular interest.

For convenience of exposition, the schedule-period is hereafter taken to be a day. A set of solution activitics of the x and u variables is written (\mathbf{x}, \mathbf{u}), and the valuc of a functional Z at the solution is $Z(\mathbf{x}, \mathbf{u})$.

\$2.1. Linear Functionals Representing Costs

There is more than one sort of cost associated with railroad service. and consequently one may devise a number of lincar forms that are proportional to cost of some sort. Threc functionals of particular interestassociated with capital. operating. and switching costs, respectively are formulated as follows:

Capital cost. The daily cost of amortizing the passenger-car ficet. here refered to as the "eapital cost", may be considered proportional to the number of cars in the flect. Hence minimizing fleet size serves to minimize capital cost.

The number of cars is casily represented by a linear form. Pick any time $\iota^{*} 0 \leq t^{*} \leq \tau-1$, and sum (a) the number of cars in storage at each city in interval t^{*}, and (b) the number of ears in each train that is in transit during interval t^{*}. This sum is the total number of cars in the system at t^{*}. For a feasible solution, this sum must be the same at any t^{*} since cars may not enter or leave the system. For convenience. take $\boldsymbol{t}^{*}=\tau-1$: then the capital-cost objective is a linear combination

$$
Z_{\mathrm{CAR}}=\sum_{c \in C} u_{c}[r-1]+\sum_{\substack{(, t, t, c) \\ i, t}} x_{c r}\left[t, i^{\prime}\right]
$$

The first sum covers all cars in storage during interval $\tau-1$. The latter counts cars in only those trains which depart during one day and arrive the next: these are exactly the trains that are in transit during the lats interval. $\tau-1$, of the day.

Operating cost. Costs proportional to the number of car-miles run in a day, here called "operating costs", are another logical eandidate for
 day is equal to the lincar form

Note that at any feasibic solution $Z_{\text {mar }}$ is also a sum of integral multiples of the distances $m_{\text {ce }}$. Moreover, when the cities form a corridor ($\$ 1.5$), $Z_{\text {mut }}$ is a sum of integral multiples of the round-trip distances:

$$
m_{i_{i} c_{j}}+m_{c_{i} c_{i},} \quad i<j
$$

since conservation of the flow of cars requires that the number of cars ran north from c_{i} to c_{j} during a day is the same as the number run south from c_{j} to c_{i}.
$Z_{\text {mine }}$ is also closely related to load factor. Given fixed demands. it is reasonable to try to maximize system load factor in order to minimize the cost of providing service. By definition. system load factor is

$$
\begin{aligned}
Z_{1 . r} & =\frac{\text { passenger-miles } / \text { day }}{\text { seat-miles } / \text { day }} \\
& =\frac{(\text { passenger-miles } / \text { day }) /(\text { scats } / \text { car })}{\text { car-miles } / \text { day }}
\end{aligned}
$$

Since both passenger-miles/day and seats/car are fixed by the problem. $Z_{1.1}$ is inversely proportional to car-miles/daty $=$ Zames $^{\text {a }}$. Hence minimizing operating cost is equivalent to maximizing the system load factor.

Switching cost. For the corridor model of $\$ 1.5$, one may postulate an extra fixed "switching" cost incurred each time a car"s dircetion is reversed. The umber of car-reversals in a day is counted by the following lincar form:

$$
Z_{\text {TURN }}=\sum_{r \in c, r \in r} u_{c}^{\mathrm{NS}}[t]+\sum_{c \in C, t \in T} u_{c}^{\mathrm{SN}}[t]
$$

The first term sums all northbound cars turned south, and the second all southbound cars turned north.

\$2.2 Combining Measures of Cost

It was shown in $\$ 2.1$ that there are several reasonable "costs" that are proportional to linear functionals in the u and x variables. As a consequence, no solution that merely minimizes onc of these functionals is entirely satisfactory. For example, an allocation that minimizes the number
of cars (capital cost) may nonctheless cmploy them inellicicntly. ramair them more than the minimum car-miles/day (operating cost).

Some means is neceled therefore. of optinaising with respect to mon than one cost objective. Two methods suggest themselves. combining ob. jectives so that they are minimized smaltancously, and ordering objectives so that they may be minimied stlecessinet!.

Combiaing objectives. Any n objcctive functions $Z_{1} . Z_{2} \ldots \ldots Z_{n}$ can be combined by choosing factors $p_{1}, p_{2}, \ldots, p_{n}>0$, and minimizing the lincar combination

$$
Z=p_{\mathrm{i}} Z_{1}+p_{2} Z_{2}+\cdots+p_{n} Z_{n}
$$

Minimizing Z tends to minimize cach of the Z_{i}. The value of Z_{i} at min ζ is, however, gencrally greater than min Z_{i}; ihe extent of the discrepancy depends on the size of p_{i} with respect to the other factors.
Z has a natural interpretation when there is some cost proportional to cach Z_{i}. Let p_{i} be the constant of proportionality. so that $p_{i} Z_{1}$, is the cost (in dollars. say) corresponding to any given level of Z_{i}. (If Z_{i} is car-miles/day. for example. p_{1} could be operating expense in dollars/carmile.) Z is thus at "total variable cost" lor the system. and minimizing Z. can be scen as minimizing total cost.

The difficulty with this approach lies in determining true values lor the constants p_{i}. Even small changes to the p_{i} can produce significant differences in the solution to min Z : yet. especially when a hypothetical system is being modeled. costs are often poorly known and the $p_{\text {, can }}$ be determined only to within a wide tokrance. Hence it is necessary to trat the p_{i} as somewhat variable, and to find solutions for ranges of their values. (An efficient and exhaustive way of doing this when total cost is the sum of two costs is described in the following section.)

Ordering objectives. Another approach is to rank the objuctives. minimizing Z_{i} subject to Z_{1}, \ldots, Z_{i-1} being fixed at their previously attained values. Onc first computes min Z_{1}, the absolute minimum value of Z_{1}; then min $Z_{2} \mid Z_{1}$, the minimum valuc of Z_{2} given $Z_{1}=\min Z_{1}$: then min $Z_{3}\left|Z_{2}\right| Z_{1}$. the minimum value of Z_{3} given $Z_{2}=$ min $Z_{2} \mid Z_{1}$ and $Z_{1}=\min Z_{1}$: and so forth. In gencrat. min $Z_{i}\left|Z_{i-1}\right| \cdots \mid Z_{1}$ is greater than the absolute min Z_{i}, and the discrepancy tends to become: greater as i does.

A solution to min $Z_{2} \mid Z_{1}$ is found, in cfficit, by adding a ncw equality constraint ($Z_{1}=\min Z_{1}$). The original problem's pure transshipment structure is thus violated. Nevertheless. an optimal integral solution is guarantecd by the following Proposition.

Proporition 1.* For any linear forms $Z_{1}, Z_{2} \ldots . Z_{n}$. there is an intcgral basic solution to min $Z_{n}\left|Z_{n-1}\right| \cdots \mid Z_{1}$.

[^0]Sequential optimization has the advantage of requiring only a prefercritial ordering of costs, rather than a full determination of their echative sizes. It is disadvantageous primarily in being less gencral than the "total cos:" approach above. (The two approdehes are closely iclated, however, as shown below in \$2.4.)

\$2.3. The Case of Two Objective Finctions

When attention is restricted to tho cost objectives, the set of all possible allocations can be deseribed in a sinple way. Moreover, the representative optima are casily found by use of an algorithon for parametric programming on the objective.

Denote the wo objectives by Y and Z, and their respective expenses per unit by p_{y} and p_{7}. A total cost determined by Y and Z is thus $p_{Y} Y+$ $p, 7$. The minimum total cost is:

$$
\begin{aligned}
\min \left[p_{Y} Y+p_{Y} Z\right] & =p_{Y} \min \left[Y+\left(p_{I} / p_{Y}\right) Z\right] \\
& =p_{Y} \min [Y+\rho Z]
\end{aligned}
$$

where $\rho=p_{f} / p_{y}$ is the ratio of expenses per unit. Hence the minimum total cost is determieded entircly by the choice of ρ.

The set of all solutions that can minimize total cost, given some choice of ρ, is characterized in the following Proposition:

Proposition 2. Let Y and Z be objcctives for which min Y and min Z. are linitc. For any $\left(x^{*}, u^{*}\right)$, definc:

$$
R_{\mathbf{x}^{*}, 0^{*}}=\left\{k \geq 0 \mid\left(\mathbf{x}^{*}, \mathbf{u}^{*}\right) \text { minimizes } Y^{\prime}+k Z\right\}
$$

Then:
(a) There is a unique sequence

$$
0=\rho_{0}, \rho_{1}, \ldots, \rho_{n-1}, \rho_{n}=\kappa, \quad n \geq 1 ; \quad \rho_{t-1}<\rho_{i}, i=1, \ldots, n
$$

and there is a corresponding set of distinct basic solutions

$$
\left(\mathbf{x}_{i}^{*}, \mathbf{u}_{i}^{*}\right) \quad i=1, \ldots, n
$$

so that

$$
R_{x_{i} \cdot u_{i}^{*}}=\left[\rho_{i-1}, \rho_{1} \mid \quad i=1, \ldots, n\right.
$$

(b) for any solution ($\mathbf{x}^{*}, \mathbf{u}^{*}$) cxactly onc of the following holds:
(i) $R_{\mathrm{x}} \cdot \mathrm{u}^{*}=\phi$
(ii) $R_{\wedge} \cdot \mathrm{u}^{\cdot}=\left\{\rho_{i}\right\}, \quad$ for some $i \in\{0 \ldots, n-1\}$
(iii) $R_{x^{\cdot}, 0^{*}}=\left\{\rho_{i-1}, \rho_{i}\right\}, \quad$ for some $i \in\{1, \ldots, n\}$
(c) For cveryi $=1 \ldots \ldots n-1$.

$$
\begin{aligned}
& Y\left(\mathbf{x}_{1}^{*} \cdot \mathbf{u}_{1}^{*}\right) \cdot Y\left(\mathbf{x}_{1+1}^{*} \cdot \mathbf{u}_{1+1}^{*}\right) \\
& \nearrow\left(\mathbf{x}_{1}^{*} \cdot \mathbf{u}_{1}^{*}\right) \cdot /\left(\mathbf{x}_{1,1, \mathbf{u}_{1+1}^{*}}^{*}\right)
\end{aligned}
$$

What do the values $p_{\text {s }}$ signify? They are the critical ratios p / p_{1} d which the allocation of cars must change to maintatin optimal total cost Solong as ρ_{z} / p_{r} stays between some ρ_{1}, and ρ_{1}. however. a single allocation ($\mathbf{x}_{i}^{*} . \mathbf{u}_{i}^{*}$) is guarantecd optimal.

Another way of looking at things is to note that at critical poim $p_{K} / \rho_{Y}=\rho_{i}$.

$$
Y\left(\mathbf{x}_{1}^{*} \cdot \mathbf{u}_{1}^{*}\right)+\rho_{1} Z\left(\mathbf{x}_{1}^{*}, \mathbf{u}_{1}^{*}\right)=Y\left(\mathbf{x}_{i+1}^{*} \cdot \mathbf{u}_{1,1}^{*}\right)+\rho_{1} Z\left(\mathbf{x}_{\left.1,1, \mathbf{u}_{i+1}^{*}\right)}^{*}\right)
$$

which may be rewritten

$$
p_{r}\left|Y\left(\mathbf{x}_{1+1}^{*} \cdot \mathbf{u}_{i+i}^{*}\right)-Y\left(\mathbf{x}_{1}^{*} \cdot \mathbf{u}_{1}^{*}\right)\right|=p_{f}\left[\gamma\left(\mathbf{x}_{t}^{*} \cdot \mathbf{u}_{1}^{*}\right)-\gamma\left(\mathbf{x}_{1,1}^{*}, \mathbf{u}_{i}^{*}\right)\right)
$$

Proposition $2(c)$ says that changing from ($\left.\mathbf{x}_{1}^{*} . \mathbf{u}_{*}^{*}\right) 10\left(\mathbf{x}_{1,1}^{*} . \mathbf{u}_{1+1}^{*}\right)$ invoives a tradeofl: Z decrasiss while Y incrasces. At the critical point. the added cost from the incrase in f (keft side of above cquation) equals the coit saved by acercasing Z (right side). At $\rho<\rho_{i}$. the saved cost does not make up the added cost and so (x_{i}^{*}. \mathbf{u}_{i}^{*}) is preferable: at $\rho: \rho_{t}$, the saved cost more than makes up the added cost, and hence ($\mathbf{x}_{i, 1}^{*}, u_{i+1}^{*}$) in better.

The eritical ratios $\rho_{\text {}}$ and solutions $\left(\mathbf{x}_{i}^{*}, \mathbf{u}_{*}^{*}\right)$ arc castly fond by applying the standard parametric algorithm to the objective. In conventional terms, Y is the "base ofjective" and Z the "change objective". The algorithm starts with a solution for min γ. and "parancter" p all 0 . Successive pivots cither keave ρ unchanged. or step it to a new critical value that is eneratly one of the critical ratios ρ_{i} : the basis just before the step to ρ, is $\left(\mathbf{x}_{i}^{*}, \mathbf{u}_{i}^{*}\right)$. The algorithm terminates when it finds a solution that is optimal for all parameter values greater than some critical value: this solution is $\left(\mathbf{x}_{n}^{*}, \mathrm{u}_{n}^{*}\right)$ and the critical value is ρ_{n-1}.

In some instances. the parametric algorithm identifics a supposed critical ratio p, such that

$$
\begin{aligned}
& \check{Y}\left(\mathbf{x}_{1}^{*} \cdot \mathbf{u}_{1}^{*}\right)=Y\left(\mathbf{x}_{1+1}^{*} \cdot \mathbf{u}_{*, 1}^{*}\right) \\
& Z\left(\mathbf{x}_{i}^{*} \cdot \mathbf{u}_{i}^{*}\right)=Z\left(\mathbf{x}_{i, 1}^{*}, \mathbf{u}_{i, 1}^{*}\right)
\end{aligned}
$$

This camot be a true critical ratio. however since the above cqualities violate Proposition 2(c). Indecd. these cqualities imply that both ($\mathbf{x}_{1}^{*} \cdot \mathbf{u}_{1}^{*}$) and $\left(x_{t+1}^{*} \cdot \mathbf{u}_{t+1}^{*}\right)$ minimize $\gamma+\beta \%$ for all ρ such that $\rho_{t}, \rho \rho \mu_{t-1}$ so that ρ_{1} is atctually not critical at all. Spurious ratios of this sort are a side aticit of degencracs in the lincar program.

\$2.4. Conditional Optima for the Case of Tw: Objectives

The solutions ($\mathbf{x}_{*}^{*}, \mu_{*}^{*}$) derived in Proposition 2 also have an interpretation in terms of min $\gamma \mid Y$, min $Y \mid \gamma$, and other conditionat optimat This is shown in the following Proposition:

Proposition 3. The solutions $\left(\mathbf{x}_{1}^{*}, \mathbf{u}_{1}^{*}\right)$ defined in Proposition 2 have the following propertics:
(a) $\left(\mathbf{x}_{1}^{*}, \mathbf{u}_{1}^{*}\right)$ minimizes f ($\mathbf{x}_{1}^{*}, \mathbf{u}_{1}^{*}$) minimizes $Z \mid Y$
(b) $\left(\mathbf{x}_{n}^{*}, \mathbf{u}_{n}^{*}\right)$ minimizes Z ($\mathbf{x}_{n}^{*}, \mathbf{u}_{n}^{*}$) minimizes $Y \mid Z$
(c) $\left(\mathbf{x}_{i}^{*}, \mathbf{u}_{i}^{*}\right)$ minimizes $Z \mid(Y+\rho Z)$ when $\rho_{i-1} \leq \rho<\rho_{i}$

$$
\text { for } i=1, \ldots, n
$$

($\mathbf{x}_{i}^{*}, \mathbf{u}_{i}^{*}$) minimizes $Y \mid(Y+\rho Z)$ when $\rho_{i-1}<\rho \leq \rho_{i}$

$$
\text { for } i=1, \ldots, n
$$

Proposition 3 (a) says that minimizing $Y \mid Z$ yields the best solution when $\rho=p_{Z} / p_{Y}$ is small enough. In other words, when p_{Y} is suflicicntiy targe relative to p_{2}, Y dominates the total cost: the best solution is one theat minimizes Y outright, then Z as much as possible. Proposition 3 (b) makes the equivalent statement for the case where $\rho=p_{Z} / p_{r}$ is sufficiently large that Z dominates total cost.

Note that if $n>2$ there is at least one middle region of ρ where the best solution minimizes neither Y nor Z absolutciy. When $n=2$, the optimal solutions for total cost minimize cither $Y \mid \varnothing$ (for $p \leq p_{1}$) or $Z \mid Y\left(\right.$ for $\left.\rho \geq \rho_{1}\right)$. When $n=1$, there is a single solution that minmizes both Y and Z absolutely, and hence minimizes any $Y+\rho ?$.

\$2.5. Tradeoffs between Capital and Operating Costs

Of special interest is application of the preceding section's results to functionals $Z_{\text {Car }}$ and $Z_{\text {mile }}$, defined in $\$ 2.1$ as proportional to notions of capital cost and operating cost, respectively. Total variable cost with respect to these two objectives is

$$
p_{\mathrm{CAR}} Z_{\mathrm{CAR}}+p_{\mathrm{MHI}} Z_{\mathrm{MHLE}}
$$

where

$$
\begin{aligned}
& p_{\mathrm{CAR}}=\text { capital cost/car/day } \\
& Z_{\mathrm{GAR}}=\text { number of cars } \\
& P_{\mathrm{MHE}}=\text { operating cost/car-mile } \\
& Z_{\text {MLE }}=\text { car-miles } / \text { day }
\end{aligned}
$$

The choice of a solution that minimizes total cost depends upon $p_{\text {CAR }} / p_{\text {mile }}$, the ratio of capital cost/day to operating cost/nile.

The uritical ratios for this problem have a special form related to the inter-city distances as demonstrated by the following Proposition:

Proposition 4. (a) For objectives of the form

$$
Z_{\mathrm{MHL}}+\left(p_{\mathrm{AR}} / p_{\mathrm{MHL}}\right) Z_{\mathrm{CAR}}
$$

the critical ratios of $\rho=p_{\text {car }} / p_{\text {male }}$ (as defined in Proposition 2) have the form

$$
\rho_{i}=\frac{1}{\kappa} \sum_{\substack{c, c_{i} \\ c, c}} \alpha_{c,} m_{i c}
$$

where $\alpha_{c i}$ are integers, and κ is a positive interger satisfying:

$$
\kappa \leq Z_{\mathrm{CAR}}\left(\mathbf{x}_{i}^{*}, \mathbf{u}_{i}^{*}\right)-Z_{\mathrm{CAR}}\left(\mathbf{x}_{i+1}^{*}, \mathbf{u}_{i+1}^{*}\right)
$$

(b) If the citics constitutic a corridor ($\$ 1.5$) ordered c_{1}, \ldots, c_{k} then under the assumptions in (a) the critical ratios have the form

$$
\rho_{i}=\frac{1}{\kappa} \sum_{\substack{c_{i}, c_{j} \in c \\ i, j}} \alpha_{c_{i}, j}\left(m_{c_{i} c^{\prime},}+m_{\dot{\theta}_{i} c_{i}}\right)
$$

where $\alpha_{c_{i} c_{i}}$ are integers, and κ is a positive integer satisfying the incquality in (a).

Proposition 4 offers a characterization of the critical ratios for $Z_{\text {mit }}$ and $Z_{\text {CAR }}$. At ratios $\rho=\rho_{\text {CAR }} / p_{\text {MLIF }}$ such that $\rho_{i} \leq \rho<\rho_{i+1}$, adding cars to the system makes possible at net saving of $\dot{\text { La }} \alpha_{c c} \cdot m_{c c}$ car-miles/day. So long as $\rho_{\text {Car }} / p_{\text {Mile }}>\rho_{i}$, however, the proposition implics that

$$
\kappa p_{\mathrm{CAK}}>\left(\Sigma \alpha_{c c} \cdot m_{c \mathrm{c}}\right) p_{\mathrm{MHE}}
$$

The cost of adding κ cars (left-hand side) is greater than the cost saved by the reduction in car-miles (right-hand side), and hence adding the cars is uncconomical. For $p_{\text {Car }} / p_{\text {mhe }}<\rho_{i}$, the incquality is reversed, so that total cost is less when the cars are added. When $p_{\text {car }} / \rho_{\text {alie }}=\rho_{t}$, however.

$$
\kappa p_{\mathrm{CAR}}=\left(\Sigma \alpha_{c c^{\prime}} m_{c c^{\prime}}\right) p_{\mathrm{MHIL}}
$$

Hence ρ_{i} is the ratio of capital to operating expense at which the capital cost of adding cars is exactly balanced by a resultant saving in operating cost.

For the Northeast Corridor data deseribed later in this paper, all critical ratios had the especially simple form $\kappa=1 . a_{a_{i},}=0$ or 1 . At these ratios the capital cost of one added car equalled the operating cost over one round trip that was saved by adding the car: sice further in $\$ 84.4$, 4.6. (It may be that under certain assumptions about the nelwork and schedule, critical ratios must have simple formis like this; but such has not been shown formally.)

3. Base Data for the Nopmbasi Corkmor

As a demonstration case, the gencral transshipment structure was applied to anticipated Northeast Corridor service for 1982. This section deseribes how Corrider operations were modeled (\$3.1 3.2), and how base data for 1982 were derived (883.33 .8).

The primary reference for data-zathering techniques is a pair of Corridor studies prepared by Peat, Marwick, Mitehell and Company $[1,6]$. These are referred to in the sequel as the "PMM studies".

§3.1. Characteristics of the Northeast Corridor

The base-run Northeast Corridor comprises four terminals: Boston, New York, Philadelphia, and Washington. Scheduled trains conneet these terminals on three north-south segments as follows:

Segment	Length (miles)
Boston New York	232
New York Philadelphia	90
Philadelphia Washington	135

Cars arriving at a terminal may move on immediately in the same direction, or may be stored for use in later trains in either direction. A fixed minimum amount of time (in addition to the normal stopover time) is required to change the direction of a car.

Also in the Corridor are seven intermediate stations. as shown in Fi igure 3. Trains are scheduled to stop at these stations. but cars may not be stored or switched there. Including both terminals and intermediate stations, the corridor comprises 11 cities, connected by 10 north-south links.

For purposes of the 1982 base run, cars in Corridor service are assumed to have a uniform capacity of 75 passengers. Station size is taken to be 14 cars; trains requiring more than 14 cars are to be rua in multiple sections of 14 cars or less tach. Each section is assumed to require one locomotive.

§3.2. Modeling Northeast Corridor Service

The Northeast Corridor is modeled as a corridor network with turnaround delay, as defined in $\$ 1.5$.

The set of C of eities in the nodel comprises the four Corridor terminals:

$$
C=\{\text { Boston, New York, Philadelphial. Washington }\}
$$

Intermediate stations can be omitted from this set, since they are not points at which cars inay be stored or switched. (Demands to and from

Figure 3 Terminals and intermediate stations in the Northeas Corridor as modeled by
the base run.
intermediate stations are used to determine the minimum size of cath train however. See ss3 3 3.6.)

The model's selhedale-period is one day partitioned into a set of intervals T represating minutes of the day. Henee the number of partition intervals. τ. is 1440 .

The sehedule. S, lists the arrival and departure terminal of each train and the corresponding arrival and departure times to the nearest minute. Its construction is described in $\$ 3.3$.

The demand for each train is calculated from annual patronage forecasts by the methods described in $\$ \$ 3.4$ 3.6. A lower limit $d_{c e}[t, t]$ and upper limit $h_{c c}\left[t, t^{\prime}\right]$ on wath train's size is then derived from its demand. as explained by \$3.7.

The turnaround delay δ is lixed at 20 minutes. for reasons set liorth in $\$ 3.8$.

83.3. The Schedule

The 11 -city base schedule is an updated version of that employed in the PMM stadies [1, 6]. It assumes gencrally half-hourly service to the terminals and major intermediate statiotis (Providence. New Haven. Baltimore) and hourly service at minor stations (New London, Stamlord. Trenton. Wilmington). Appropriate reductions are made late at night and carly in the morning, when demands are very low.

Segment trip times lor 1982 are assumed to be approximately as follows:

Segment

Boston New York
New York Philadelphia Philadelphia Washington

Trip time

3 hours 40 minutes
1 hour 1 minute
1 hour 38 minutes

Trip times for individual links are calculated accordingly. Allowance is made in addition for stopover times of abont 5 minntes at New York. and 1.25 minutes at other stations. It is assumed however. that trains do not sate any tine when they skip stops at minor stations.

The full ll-coty schedule is used in calculating demands. as described below ($\$ \$ 3.4$ 3.6). In forming the transshipment network. however, only the arrival and departure tiones at the terminal cities are employed. (The full base schedule is printed in [4].)

83.4. Design-day Patronage

Annual patronage for 1982 was akalated by use of a computerbased model devcloped in one of the PMM studies [6]. The input data were those derived from PMM's "base assmmptions" with the exception of trip times. which were increased to rellect the base schedule ($\$ 3.3$).

The PMM model estimates annat two-w:ly patronage for individual station-pairs in the Northeast (orridor. Annatal onc-was paronage is computed by hathing the two-way figares. A foll possible station-pati, are omitted cither beallase they could not be separated from other pares. or becance competitive commuter service is atalable for the or traters All of these cxcluded pairs are short distance, and ate decmed to be relttively insignific:ant o Corridor service

The base run models patronage for a desigh day. calculated as $1 / 270$ of the annu:a :mount. This concept of design day, representing epproximately the 10th busiest day of the year. has been employed in enginecring ments [1. Appendix (]

\$3.5. Demand Distributions

The base run employs a set of cumulative dem:me functions to derive the patterns of demand befwecn station-pairs over a day. Following a method of the PMM studics [1. pp. C.7 (.14], dem:and for service from : larger station to a sm:iller one is taken to be departurebased (that is, dependent upon the time of departure). while demand for service from a smaller to a larger station is areival-based (dependent upon time of arrival). Demand between citics of comparable size is determined by :iveraging surival-based :und departure-based distribution lunctions.

The demand distributions employed in the base run are derived from bimod:al gaussi:m-like probability distributions* fit to actual arrival and departure counts for Tuesday. M:1y 21. 1974. This date was chosen bec:use it afforded actual ticketing dat:a and was uninfluenced by special weckend or holidey patterns. Counts could be made. however. for only a small namber of station-pairs. especially as no information was arabable for trips passing through New York. In consequence, actual distributions were fit for ten particular patirs only. and these are used to approximate the distributions for other station-p:tirs (see [4] for further details).

\$3.6. Eiffective Demands Over Semments

For every scheduled tram over a segincoln. there is an effective demand: the number of passengers that the train must accommodate to guarantece everyone a seat at all points on the route. Effective demands are determined for the base run in the following steps:

Station-pair demands. Given onc-w:y patronage datal (\$3.4) and comulative demand functions ($\$ 3.5$) a design-day demand is calculated

[^1]for every seheduled trip between a pair of stations in the 11 -eity schedille (exchading certain station-pairs as explamed in $\$ 3.3$).
limk demamds. Total demand for any tran over a given linh is computed as a sum of all station-par demands that involve travel ower that link.

For example total demand for a typical seheduled train over the Wil-mington-Philadelphia link does not include only passengers who get on at Wilmington and disembark at Philadeiphiat. Some passengers who get of at Philadelphia began their trip in Washington or Battimote: some who start at Wilmington will stay on to Trenton, New York, or a station further north; and some passengers both start sonth of Wilmington and terminate north of Philadelphia. Demand for the train for all such stationpair trips must be added to determine total demand for the erain over the Wilmington-Philadelphia link.

Maximal-link demands. For every train over a particular seqment. there emerges from the link demands a maximal lime over which demand is highest. A train accommodates all passengers over a segment only if it meets demand over the maximal link, since cars cannot be added within the segment. Hence the effective demand for each train is eymal to the train's maximal link demand.

For instance, say demand for a Washington-Philadelphist tain is 197 passengers over the Washington-Baltimore link. 237 over the BaltimoreWilmington link, and 225 over the Wilmington-Philadelphia link. The maximal link for that train is then Baltimore-Wilmington. and effective demand for the train is 237 .

§3.7. Minimum and Maximum Train Sizes

For the base run, cars are assumed to hold 75 passengers. Hence if a is the effective demand for a train, its minimum size is:

$$
\langle d / 75\rangle
$$

(Here angle brackets denote the least integer greater than the enclosed value.)

The maximum size of a train for the base ron is the lesser of two limits, one related to load factor, the other to station length:

Load-factor limit. Due to imbalances in demand throughout the day, some trains will have to be run with more than the absolate minimmon number of ears. It is reasonable. however, to limit the number of these deadhead cars to some proportion of the train. Specitically. in the base ran no train is allowed to have more cars than required to mee! wice its effective demand, with the proviso that every train may have at least 2 cars.

In terms of d, this limit is:

$$
m: 1 v(<2 d / 75\rangle .2)
$$

Its elect is to requite bad factor over the maximal link to be at lane reasonably near $50^{\prime \prime}$, the requirement becoming stricter at larger de. minds.

Station-length limit. Plans for 1982 assume that stations will hold at most 14 -car trains (\$3.1). When more than 14 cars are assigned to a train. one or more extra sections must be put on i, employing an equal number of extra locomotives. To prevent unnecessary extrat sections. the base run requires that the number of sections actually run be no greater than $\langle(d / 75) / 14\rangle$, the number of sections required to meet effective demand. This translates to an upper limit on cars of:

$$
14<(d / 75) / 14\rangle
$$

If $d / 75$ is 12.6 . for instance, this upper limit is 14 : but if $d / 75$ is 15.2 , two sections are needed in any event. and the limit is 28 .

The load -factor upper limit is the lesser one for demands under 525 passengers (7 cars). At larger demands. the station-length limit predomnates.

For the base run, only 5 trains require as many as t wo sections: there front Philadelphia to New York in the morning. and two from New York to Philadelphia in the afternoon. Most other trains of 7 or more cars are also on the New York-Philadelphia segment.

\$3.8. Turnaround Delos

For the base run a delay of 20 minutes (i ne addition to the regular stopping tine built into the schedule) is postulated whenever the direction of a car is changed. This time is domed sufficient to cover switching under 1982 conditions plus any lags in the arrival of extra sections.

It happens that for the base schedule amy turnaround delay from 9 to 20 minutes has the same effect. A delay of more than 20 minutes requires additional cars at Philadelphia.

4. Base Runs With the Northeast Corridor Data

Computer processing and its results for the base ron are discussed in this section. The principal computing tool was the SESAME linciar progriming system developed att the National Burial of Economic Research $[3,7,8]$.

Generation of the base data ($\$ 4.1$) and the 1.P model ($\$ 4.2$) wat necessarily performed first. Optimal solutions were then found for a variety of objectives: minimum cars and car-miles, and maximum load
fator (84.3); minimum total operaing and capital cosi (84.4); and minimmon turnaromed switching ($\$ 4.5$). Further analyses incladed sensitivity to demands ($\$ 4.6$) and requirements for locomotives ($\$ 4.7$).

84.1. (omputing the Base Data

Estimates of 1982 rail patronage ($\$ 3.4$) were produced by running a computer simalation prog am adapted specially for the PMM demand study [6]. This program projects business and non-bissiness use of four modes of travel: rail. bus, air, and car. A subrontinc was added to file total rail patronage only, in a format suitable for subsequent processing.

The patronage data file plus a file representing the fill sehedale, then served as input to a demand-catculating program. This program employs cumnlative demand functions for station-pairs to compute effective demands. and consequent upper and lower limits, for cach train (as described in \$\$3.5-3.7).

Principal ontpui from the demand program is a set of tables. representing the schedule and other information, that can be read by an LP matrix generator (\$4.2). In addition. sets of alternative train-size limits are filed in a form that allows any one set to be read into the matrix.

§4.2. Generating the Model

An LP equivalent of the network model was generated in a form suitable for computer processing by DATAMAT. a subsystem of SESAME [3]. A program in the DATAMAT macro language was written for this purpose.

Upper and lower limits on train-size variables are not gencrated as explicit constraint rows: they are incorporated in a "bound set" that is enforced implicitly by SESAME's simplex algorithm. Actual limit values are also absent at this stage: they are read in from a separate file just before the model is solved or analyzed. This arrangement facilitates working with several sets of limits, as was done. for example, in the sensitivity analysis described in $\S 4.6$.

The LP generated by the DATAMAT program represents a redaced network. duplicated to distinguish northbound and southbound cars in the corridor $(\$ \$ 1.3,1.5)$. For the base schedule, the I.P representation required 1275 siructural variables and 528 constraint rows.

§4.3. Minimizing Cars and Car-Miles

The basc-run LP was solved by use of SESAME's standard primal simplex algorithm. A leasible solution was obtained (starting from an allslack basis) in 665 iterations, and an optimal solution for the minimumcars objective. $Z_{\text {cak }}$, in an additional 28 itcrations. An optimal solution

min' M:

$\operatorname{mon} / \mathrm{sin}$
for the minimum-ar-miles objective, $Z_{\text {sum }}$, was also found A maximum system load factor. $Z_{1 f}$. was determined from $Z_{\text {sat }}$. as these two objectives arc inversely proportional (\$2.1).

The vallace of the objectives at their optima for the base data are:

$$
\begin{aligned}
\min Z_{\mathrm{caR}} & =164 \text { cars } \\
\min Z_{\text {mar }} & =131388^{\text {car-milcs }} \\
\max Z_{15} & =74.15^{\circ}
\end{aligned}
$$

84.4. Minimizing Operating Plus Capital Cost

Following the andysis set forth in \$ $\$ 2.3$ 2.5. the next step was to minimize total "eperating" and "capital" cost of the base model. SESAME's algorithm for parametric analysis of the objective function was cmployed for this purpose. Part of the process was alumatied by use of small programs writton in the SESAME command langaige.

The propertics of all optimal solution depend upon the value of $p_{\mathrm{Car}} / p_{\mathrm{mln}}$. the ratio of capital cost/day to operating cost/mile. For the base data. there are three significantly different regions into which this ratio may fall:
(1) Capital cost/day $\geq 450 \times$ operating cost/milt. Herc capital cost dominates: in any optimal solution the number of cars is at its absolatio minimum. 164. The minimum number of car-miles per day, given 164 cars. is 135978: and the system load factor (which is inverscly proportional to total car-miles) is $71.65^{\circ} \ldots$.
(2) $450 \times$ operating cost $/$ mile \geq capital cost/day $\geq 180 \times$ operating cost/mile. At this level the influence of capital cost dectines somewhat. The number of cars in an optimal solution increases to 167: car-miles per day decline to 134628 ($\mathbf{3 y s t c m}$ load factor 72.37°,).
(3) Capital cost/day $\leq 180 \times$ operating cosi/mile. Herc operating cost dominates. In an optimal solution car-miles/day is at its absolute minimum. 131388 (system load factor 74.15°), while the number of cars in the system incrases to 185.

The results are shown graphically in Figure 4. Clarly the biggest jump is at critical ratio) $p_{\mathrm{CAR}} / p_{\text {Mule }}=180$. the round-trip distance bctween New York and Philadelphia. At ratios bclow this point. buying an extra car is ceonomical even if it saves just one New York-Philadelphia run. At higher ratios it pays to buy a snatler flect, ruming cath car (on the average) more miles civery day. The size of the jump about a $10^{\circ}{ }^{\circ}$, difference in flet size is not surprising. Demand is heaviest atong the New York-Philadelphia segment. and is highly unbalanced: northbound ravel peaks in the morning. while southbound dentand is highes! in the

Figute 5 The three solution regens for the base run, ploticd as a fumetion of cepetal con: dat and operating cost/mile. Atternatise projections of the actual ratio of the ex amounts in
1982 are indicated by X :
afternoon. Consequently, a fair amount of deadheading catn be avoided if a larger flect is available.

The other jump. at $p_{\text {Cak }} / p_{\text {mht }}=450$. represents a point at which the cost of a car equals the cost of running it from New York to Washington and back. This is a lairly insignificant critical ratio. honctor as the optimum at ratios below 450 requires only threc cars more than the optimum above 450.

Several estimates of the actual $p_{\text {car }} / p_{\text {amit }}$. derived from a PMM fimancial analysis [1], are plotted against the eritical ratios in Figure 5. The estimates suggest that $p_{\text {car }} / p_{\text {mile }}$ probably fatls into region (1). and hence that capital cost is probably predominant. (Morcover. if the ratio is not in region (1) it appears very likely to be in region (2). Whete the optimal solution is not much difierent.)

84.5. Minimizing Turnaround

$Z_{\text {turn }}$ the number of times per day that the direction of at ear is changed (\$2.1). was also considered. Since capital cost seemed likely to
predominate, a solution was found to:

The optimal value of $Z_{\text {at }}$, is not particularly reveating: but the flow of cars being turned aronod a! Nex York and Philak lphia is of interest. No northbound car is crer tumed around at Philadelphia. and no southbound ear is cever turned at Now York. Cars rumning north from Philadelphia are held in storage at New York mostly in the morning, when northbound tratel on the Philadelpha-New York segment predominates. Cars running south from New York are held at Philadelphia mostly in the afternoon, when somblhound taflic is dominant on the segment.

In effect, many cars are needed only for the Philadelphia-New York scgment, to satisfy paak dematnd northbound in the morning and sountbound in the afternoon. This suggests a revised schedule in which New York-Philadelphia shutte trains are run at peak hours, in addition to the usual through trains.

84.6. Sensitivity to Demand

Demand projections are inherently uncertain. They are based on approximate data, and their postulations are open to question. A PMM study of Northeast Corridor demands [6]. for example, cstimates 1982 patronage at anywhere from 11 to 23 million passengers, depending upon assumptions about costs and travel times.

It is thus essential that the model be solved for a range of demands. Fortunately, this can be donc by SESAME in an cspecially efficiont way. by taking advantage of two characteristics of the model.

First, a change in demands does not change the model's row and column structure: demands affect only the lower and upper limits on the train-size variables. Consequently, the LP matrix need be gencrated only once for each combination of schedule and turnaround delay. Sets of limit values are lifed separately; just before the model is to be solved or analyzed, SESAME is instructed which set of limits to use with the pre-vously-crated matrix. Any different set of limits is easily substituted whenever desired.

Second, different scts of dem and limits for the same model tend to be similar, and hence their optimal solutions are generatly close together. As a result, it is not necessary to solve from scrateh for each set of demands. An optimal basis for one demand set is a very good starting basis for iterating to an optimum for any similar set. SESAME's dual simplex algorithm is especialiy uscful for this purpose. since changing upper and lower limits does not violate dual feasibility.

For the base run, alternative estimates of effective demands were first derived through scaling the base patronage estimates by a constant

 annual patronage. The small graph shows the gencral formis of these functions as parobage approaches cero and intinits.
factor; then upper and fower limits were determined as before. Ninc factors, ranging from 7 to 1.3, were chosen. For cath. a separate set of upper and lower limits was filed by the demand program (\$4.I).

An amalysis of total capital and operating cost was performed, in the manner of $\$ 4.4$, for each set of sealed demands. The overall pattern is the same as that for the base demands: the only large jump is at $P_{\text {cak }} / P_{\text {mall }}=$ 180, where the capital cost of a car equals its operating cost from New York to Philadelphia and back. There is some variation in the minor jumps, the one at 450 (New York-Washington) sometimes omitted. and one at 462 (New York-Boston) occasionally appearing: but none of these jumps is associated with a significant change in the solution.

Figure 6 shows cars and car-moles plotted against total amual patronage for the case in which capital cost predominates. These slightly convex curves are fairly close to lines through the origin, especially within a limited range (say. $20^{\prime \prime}$, around the base data). Hence as a rule of thumb one may say that both the minimum fleet size, and the minimum number
of car-miles that must be run with minimal fleet, are ronghly proportional to total patronage:

$$
\begin{aligned}
& \min 7_{c}=0 \text { non) } 03 \cdot(\text { (totatanmad patronage }) \\
& \left.\min Z_{\text {smit }} \mid Z_{\mathrm{Cak}}=.0086 \cdot \text { (total annual patronage }\right)
\end{aligned}
$$

(In fiat both cats and car-miles do approach proportionality a patronage as the latter goes to infinity. This is becalase at very high demands the problem is virtually continnoms. so that any incraase in total demand can be net by just increasing the size of eath train in the same proportion. with rounding in negligible amounts. At lairly small demand. on the other hand, the integrality of the problem comes into play. A rehatively large amount of excess capacity is run simply becanse demands are rounded up to the next integer. and hence the actaral curve for cars or car-miles rans somewhat above the line of proportionality see small graph in Figure 6.)

Many more sophistocated sensitivity analyses are conceivable if one allows patronage between different station-pars to vary at different rates. For example. one might ase anmal patronages computed under different assumptions: or one mighi apply different cumulative probability distributions to one set of annual patronages.

\$4.7. Locomotive Requirements

The upper-limits rules for the base ran (83.7) insure that the number of 14 -car sections that must be run to mect cach train's demand is fixed: if demand is 14 cars or less, one section is run: if demand is greater than 14 but not more than 28. two sections are run: and so forth. Hence, assuming one locomotive per section. one can tell exactly hew many locomotives will be required for cach train in the sehedule, in any feasible solution. The analysis of $\$ 1.7$ is thus applicable: locomotive demands can be substituted for car demands to determine the number of locomotives required and how far they must travel.

Only 5 trains in the base ram required two sections (and hence two locomotivesj; the remainder all required one. Onc-section trains were given an upper limit of two locomotives. and two-section trains an upper limit of threc (for up to 21 cars) or four (for 2228 cars). Sets of limits were computed and filed by the same demand program used for modeling cars (\$4.1).

Solving the model with the techniques applied previonsty to car demands. it was determined that a single solution minimized both the number of locomotives required (31) and the namber of locomotive-miles run (34074). Only 4 scetions, all southbound, had to be run with an extra locomotive.

Sensitivity amalyses analogous to those rum for car demands (\$4.6)

Were also applied to locomotives. The case at 70° ", of base demand r quires only one focomotive for cuery schedulad tatin: hericic 29 locome tives is an absolute minimum for the base schedale.

National Rureall af Reomomic Restar: C.S. Departmem of Transportalion

Submitted Augusi 1976
Revised January 1977

Refrinefs

11] Baker. H. S. and M. O. Laughlin. Financal Aablsis of the Nurthemst (orrator D). colopment Project." Report no. DOT-TSC:RA-N(D-7e-3. Tramportation Syme Conter. U.S. Deparment of Transportation Sume $\mathbf{1 9 7 6}$.
[2] Bechto. Ine.. "Northast Corridor High-Spical Rail Service Improvement Proje: Task 1. Demand Analssis." Report No FRA-ONE(D)-75-1. Othice of Northease (orr dor Development. Fideral Ralroad Admaistration, April leys.
(1) DATAMAT Reference Manal (Third Edition). Order no. Dowis. Computer Resarat Conter for Eanomics and Aangement Science. National Burcath of Lonamic R: sarch, July 1975.
4] Furer. Robert. Modets of Raifoad Pasenger-Car Requirements in the Nonthe. Corridor. Volume I: Formutanon and Rewhlas." Repor: no. IRA/NECPO\% Tramportation Systms Center, U.S. Deparment of Tansportation, Sepember 19 Avalable through the National Technical Information Scrvice. Springital V'A 2ato or irom the authors of this paper.)
[S] Furer. Robert. "Models di Rairoad Pasienger-Car Requiraments in the Northeds Corrider. Volume It: User's Guide." Report no. FR, NA: (PO)-76/22. II. Tranpert.tion Systems Center. U.S. Departintent of Transportation. September 1976. (Avalabi. through the National Techatallaformation Serviec. Spingtield. VA 22161: or tron the atuthors of this paper.)
(6j Peokopy. J. C. and D. E. Ruma. "Demand Projections for the Vorthent Corrder: Financial Analvsis." Report mo. DOT-TSC-FRA-NCD-76-4. Tramsportation Syater Center. U.S. Department of Tramsportation. June 1976.
$[7]$ SESAME Irimer (Sciond Edition). Order no. D0076. Computer Rescarch Cinter for Ecomomics and Management Science. National Burcan of Econome Reacarch. January 1976.
[8] SESAME Reference Manual. Order no. D0077. Computer Reacarch Conter for Eow

[^0]: *Proofs of sill propositions in this section are given in [4].

[^1]: * Thest distributions were derived and estimated by Wether Mescener and atan Welhngton at the Tranpportation Systems Center. U.S. Deparment of Transportatoma, See further

