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ABSTRACT

High interest rate currencies tend to appreciate.  This is the uncovered interest rate parity (UIP) puzzle.
It is primarily a statement about short-term interest rates and how they are related to exchange rates.
Short-term interest rates are strongly affected by monetary policy.  The UIP puzzle, therefore, can
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We find evidence in favor of a particular asymmetry.  If the foreign Taylor rule responds to exchange
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Fama's negative correlation between interest rate differentials and currency depreciation rates.
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1 Introduction

Uncovered interest rate parity (UIP) predicts that high interest rate currencies will
depreciate relative to low interest rate currencies. Yet for many currency pairs and
time periods we seem to see the opposite. The inability of asset-pricing models to
reproduce this fact is what we refer to as the UIP puzzle.

The UIP evidence is primarily about short-term interest rates and currency
depreciation rates. Monetary policy exerts substantial influence over short-term
interest rates. Therefore, the UIP puzzle can be restated in terms of monetary
policy: Why do countries with high interest rate policies have currencies that tend
to appreciate relative to those with low interest rate policies?

The risk-premium interpretation of the UIP puzzle asserts that high interest
rate currencies pay positive risk premiums. The question, therefore, can also be
phrased in terms of currency risk: When a country pursues a high-interest rate
monetary policy, why does this make its currency risky? For example, when the
Fed sharply lowered rates in 2001 and the ECB did not, why did the euro become
relatively risky? When the Fed sharply reversed course in 2005, why did the dollar
become the relatively risky currency? This paper formulates a model of interest
rate policy and exchange rates that can potentially answer these questions.

To understand what we do it’s useful to understand previous work on monetary
policy and the UIP puzzle.1 Most models are built upon the basic Lucas (1982)
model of international asset pricing. The key equation in Lucas’ model is

St+1

St
=
n∗t+1e

−π∗t+1

nt+1e−πt+1
, (1)

where St denotes the nominal exchange rate (price of foreign currency in units
of domestic), nt denotes the intertemporal marginal rate of substitution of the
domestic representative agent, πt is the domestic inflation rate and asterisks de-
note foreign-country variables. Equation (1) holds by virtue of complete financial
markets. It characterizes the basic relationship between interest rates, nominal
exchange rates, real exchange rates, preferences and consumption.

Previous work has typically incorporated monetary policy into equation (1)
via an explicit model of money. Lucas (1982), for example, uses cash-in-advance
constraints to map Markov processes for money supplies into the inflation term,
exp(πt − π∗t ), and thus into exchange rates. His model, and many that follow it,
performs poorly in accounting for data. This is primarily a reflection of the weak
empirical link between measures of money and exchange rates.

1Examples are Alvarez, Atkeson, and Kehoe (2007), Backus, Gregory, and Telmer (1993),
Bekaert (1994), Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006), Canova and Marrinan
(1993), Dutton (1993), Grilli and Roubini (1992), Macklem (1991), Marshall (1992), McCallum
(1994) and Schlagenhauf and Wrase (1995).
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Our approach is also built upon equation (1). But — like much of the modern
theory and practice of monetary policy — we abandon explicit models of money in
favor of interest rate rules. Following the New Keynesian macroeconomics litera-
ture (e.g., Clarida, Gaĺı, and Gertler (1999)), the policy of the monetary authority
is represented by a Taylor (1993) rule. Basically, where Lucas (1982) uses money
to restrict the inflation terms in equation (1), we use Taylor rules. Unlike his
model, however, our allows for dependence between the inflation terms and the
real terms, nt and n∗t . This is helpful for addressing the evidence on how real and
nominal exchange rates co-move.

A sketch of what we do is as follows. The simplest Taylor rule we consider is

it = τ + τ1πt + zt , (2)

where it is the nominal short-term interest rate, πt is the inflation rate, zt is a
“policy shock,” and τ and τ1 are policy parameters. We also assume that the
private sector can trade bonds. Therefore the nominal interest rate must also
satisfy the standard (nominal) Euler equation,

it = − logEt nt+1e
−πt+1 , (3)

where (as above) nt+1 is the real marginal rate of substitution. An equilibrium
inflation rate process must satisfy both of these equations at each point in time,
which requires inflation to solve the nonlinear stochastic difference equation:

πt = − 1

τ1

(
τ + zt + logEt nt+1 e

−πt+1
)
. (4)

A solution to equation (4) is an endogenous inflation process, πt, that is jointly de-
termined by the response of monetary authority and the private sector to the same
underlying shocks. By substituting such a solution back into the Euler equation
(3), we arrive at what Gallmeyer, Hollifield, Palomino, and Zin (2007) (GHPZ)
refer to as a ‘monetary policy consistent pricing kernel:’ a (nominal) pricing ker-
nel that depends on the Taylor-rule parameters τ and τ1. Doing the same for the
foreign country, and then using equation (1), we arrive at a nominal exchange rate
process that also depends on the policy parameters τ and τ1. Equations (1)–(4)
(along with specifications for the shocks) fully characterize the joint distribution
of interest rates and exchange rates and, therefore, any departures from UIP.

Given a Taylor rule such as (2), and its foreign counterpart, we can ask whether
the implied exchange rate process in (1) tends to appreciate when the implied
interest rate in (3) is relatively low. If so, then the source of UIP deviations can
be associated with this Taylor rule. Moreover, we can generalize the specification
of the Taylor rule in equation (2) and analyze the consequences of alternative
monetary policies for currency exchange rates. In addition, we can ask whether the
Taylor rule parameters are identified by the UIP facts. Cochrane (2007) provides
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examples in which policy parameters and the dynamics of the shocks are not
separately identified by the relationship between interest rates and inflation. Our
framework has the potential for identifying monetary policy parameters from the
properties of currency exchange rates.

Our paper proceeds as follows. We begin by ignoring real exchange rate varia-
tion. This means that nt = n∗t and, according to equation (1), relative PPP holds:
log(St/St−1) = πt − π∗t . This is a useful starting point because it provides focus
for the essence of our question: “how do Taylor-rule-implied inflation dynamics
affect exchange rates?” We also go one step further and set nt = n∗t = er, thus
abstracting from real interest rate variation (this doesn’t really matter for nominal
exchange rates and it makes the analysis easier). The resulting Euler equation for
the nominal interest rate (with lognormality) is as follows.2

it = r + Et πt+1 −
1

2
Var t(πt+1) . (5)

The model therefore boils down to two equations for each country — equations (2)
and (5) — along with a specification for the policy shocks, zt in equation (2). As
is shown below, the latter must necessarily feature stochastic volatility. Otherwise
the conditional variance in equation (5) would be a constant and UIP would hold
(up to a constant). The solution for inflation is of the form π(zt, vt), where vt is the
volatility of zt. Most of our analysis focuses on variation arising from vt because
only it affects currency risk.

Our first results are negative in nature. We find that simple Taylor rules of
the form (2) can generate deviations from UIP, but not as large as those typically
focused upon in the literature.3 The basic reason is straightforward. The Euler
equation (5) imposes restrictions between the current interest rate and moments
of future inflation. The Taylor rule imposes an additional, contemporaneous re-
striction between the current interest rate and current inflation. It says that a
volatility shock that increases inflation by 1% must increase the interest rate by
more than 1%. This is because τ1 > 1, the so-called “Taylor principle” required

2Equation (5) also shows how our paper — at least the initial part — relates to the benchmark
New-Keynesian setup. All that really distinguishes the two is the conditional variance term. But,
for us, this is where all the action is. That is, if inflation were homoskedastic then the nominal
interest rate would satisfy the Fisher equation (up to a constant), the difference equation (4)
would be linear, and the solution for inflation would be in the same class as, say, Clarida, Gaĺı,
and Gertler (1999). What would also be true, however, is that UIP would be satisfied (up to a
constant) and Fama’s (1984) well-known regression of the depreciation rate on the interest rate
differential would yield a (population) slope coefficient of 1.0. Our paper would be finished before
it even began. Stochastic volatility, therefore, is not a choice, it is a requirement. The only issue
is where it comes from.

3Specifically, our model (without real rate variation) can generate slope coefficients from
Fama’s (1984) regression of depreciation rates on interest rate differentials that are less than
unity, but not less than zero.

4



for the inflation solution to be non-explosive. However, if inflation is a station-
ary, positively autocorrelated process, then its conditional mean in equation (5)
must increase by less than 1%. The only way that both can be satisfied is if the
conditional variance in equation (5) decreases. But this means that the mean
and variance of the (log) pricing kernel are positively correlated, something which
contradicts Fama’s (1984) necessary conditions for resolving the anomaly. There
are two ways around this. The first is that volatility is negatively autocorrelated.
This is empirically implausible. The second is that the volatility shock that affects
inflation also affects the real interest rate (and the real exchange rate). This is the
subject of Section 3.2.

This reasoning — spelled out in detail in Section 3.1.4 — is admittedly com-
plex. But the basic point is not. Taylor rules of the form (2) imply restrictions
on the co-movement of the mean and variance of the pricing kernel. Getting this
co-movement right is critical for resolving the UIP puzzle, so these restrictions can
be binding. Models of the inflation term in equation (1) that are driven by exoge-
nous money supplies do not impose such restrictions. Neither do models in which
an exogenous inflation process is used to transform real exchange rates into nom-
inal exchange rates. The sense in which we’re learning something about how the
conduct of modern monetary policy relates to exchange rates is the sense in which
these restrictions identify the policy parameters, τ and τ1, and the parameters of
the shock process zt.

Our next results are more positive. While continuing to abstract from real
exchange rate and interest rate variability, we examine two alternative Taylor
rules relative to that in equation (2). In both cases there are parameterizations of
the model that admit UIP deviations similar to those observed in data. The first
alternative introduces an additional variable and an asymmetry to the Taylor rule
(2). The variable is the contemporaneous currency depreciation rate, log(St/St−1).
The asymmetry is that the foreign central bank reacts more to the exchange rate
than does the domestic central bank. Or, in concrete terms, the Bank of England
reacts to variation in the pound/dollar exchange rate, but the Fed does not. Such
an asymmetry seems plausible. The international role of the U.S. dollar versus the
pound is certainly not symmetric. A small country like New Zealand might pay
closer attention to the kiwi/yen exchange rate than a large country like Japan.
There is also some empirical and theoretical support for such an asymmetry (c.f.
Benigno (2004), Benigno and Benigno (2008), Clarida, Gal, and Gertler (1998),
Eichenbaum and Evans (1995), Engel and West (2006)).

The second alternative Taylor rule we consider is based on McCallum (1994)
and is emphasized in Woodford (2003). We include the lagged interest rate into
equation (2). Like McCallum, we find parameterizations of the model that work.
Our approach extends his work by endogenizing the currency risk premium which,
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in his paper, is exogenous.4 This is an important step since it constrains the sense
in which the UIP anomaly is driven by endogenous equilibrium inflation risk. That
is, in our model, a shock is realized, the Taylor rule responds to that shock, and
as a result so does inflation. Whether or not this shock commands a risk premium
depends on the parameters of the model. We can then ask if the way in which
monetary policy reacts to shocks is consistent with risk premiums that are capable
of creating sizable deviations from UIP.

The final sections of our paper move beyond expository examples and develop a
model that can be taken to the data. We use a model of nt and n∗t to incorporate
real exchange rate and interest rate variation. We use Epstein and Zin (1989)
preferences and we model foreign and domestic consumption as following long-run
risk processes as in Bansal and Yaron (2004) and the exchange rate applications in
Bansal and Shaliastovich (2008) and Colacito and Croce (2008). Our model does
not feature nominal frictions, so inflation reacts to consumption shocks (since they
appear in the Taylor rule) but not the other way around.5 We solve for endogenous
inflation in the same manner as described above, but inclusive of the nt term in
the difference equation (4).

Our last set of results are both qualitative, as above, and quantitative. We
characterize conditions under which real and nominal exchange rates will resolve
the UIP puzzle and show that the latter depend on the Taylor rule parameters.
We show that, as above, Taylor rule-implied inflation tends to hinder the model’s
performance, reducing the deviations from UIP. The logic is basically the same
as our simplest, nominal-variability-only model described above. Nevertheless, we
are able to find a calibration that satisfies the following criteria: (i) Fama’s (1984)
UIP coefficient is negative, (ii) UIP holds unconditionally, so that the mean of the
risk premium is is zero, (iii) changes in real and nominal exchange rates are highly
correlated (Mussa (1986)), (iv) exchange rate volatility is high relative to inflation
differentials, (v) exchange rates exhibit near random-walk behavior but interest
rate differentials are highly autocorrelated, (vi) international pricing kernels are
highly correlated but international aggregate consumption growth rates are not

4Engel and West (2006) also study a model of how Taylor rules affect exchange rates. Their
analysis, while focusing on a different set of questions, is related to McCallum’s in that they
interpret their ‘policy shock’ as an amalgamation of an actual policy shock and an exogenous risk
premium. Our paper relates to theirs in that both derive an exchange rate process as the solution
to a forward-looking difference equation. The main difference is that our deviations from UIP are
endogenous.

5Similar to Bansal and Shaliastovich (2008), Colacito and Croce (2008), and Verdelhan (2010)
we treat foreign and domestic consumption exogenously, remaining silent on the goods-market
equilibrium that gives rise to the consumption allocations. We simply exploit the fact that, with
complete financial markets, equation (1) will hold in any such equilibrium. We then calibrate the
joint distribution of foreign and domestic consumption to match the data and ask if the implied
real and nominal exchange rates and interest rates fit the facts. A more formal treatment and
justification is provided in Section 3.
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(Brandt, Cochrane, and Santa-Clara (2006)), (vii) domestic real and nominal in-
terest rates are highly autocorrelated with means and volatilities that match data.
Our calibrated values for the Taylor rule parameters satisfy conditions required for
a solution to exist and, interestingly, are also in the ballpark of typical reduced-
form estimates. We find τ1 = 1.1 and τ2 = 0.74, where the latter is the coefficient
on consumption growth, the analog of the output gap in our setting.

The remainder of the paper is organized as follows. In Section 2 we provide
a terse overview of existing results on currency risk and pricing kernels that are
necessary for our analysis. Section 3 develops our main model of nominal and real
exchange rates and Section 3.1 examines the special case of zero real variability.
Section 3.2 provides qualitative results on the main model from Section 3, Section
4 conducts the quantitative exercise and Section 5 concludes.

2 Pricing Kernels and Currency Risk Premiums

We begin with a terse treatment of existing results in order to fix notation. The
level of the spot and one-period forward exchange rates, in units of U.S. dollars
(USD) per unit of foreign currency (say, British pounds, GBP), are denoted St
and Ft. Logarithms are st and ft. USD and GBP one-period interest rates (con-
tinuously compounded) are denoted it and i∗t . Covered interest parity implies that
ft − st = it − i∗t . Fama’s (1984) decomposition of the interest rate differential
(forward premium) is

it − i∗t = ft − st =
(
ft − Etst+1

)
+
(
Etst+1 − st

)
≡ pt + qt

This decomposition expresses the forward premium as the sum of qt, the expected
USD depreciation rate, and pt, the expected payoff on a forward contract to receive
USD and deliver GBP. We define the latter as the foreign currency risk premium.
We define uncovered interest parity (UIP) as pt = 0. The well-known rejections of
UIP are manifest in negative estimates of the parameter b from the regression

st+1 − st = c+ b
(
it − i∗t

)
+ residuals . (6)

The population regression coefficient can be written

b =
Cov(qt, pt + qt)

Var(pt + qt)
. (7)

Fama (1984) noted that necessary conditions for b < 0 are

Cov(pt, qt) < 0 (8)

Var(pt) > Var(qt) (9)
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Our approach revolves around the standard (nominal) pricing-kernel equation,

bn+1
t = Etmt+1b

n
t+1 , (10)

where bnt is the USD price of a nominal n-period zero-coupon bond at date t and
mt is the pricing kernel for USD-denominated assets. The one-period interest rate
is it ≡ − log b1t . An equation analogous to (10) defines the GBP-denominated
pricing kernel, m∗t , in terms of GBP-denominated bond prices, b∗t .

Backus, Foresi, and Telmer (2001) translate Fama’s (1984) decomposition into
pricing kernel language. First, assume complete markets so that the currency
depreciation rate is

st+1 − st = log
(
m∗t+1/mt+1

)
Fama’s (1984) decomposition becomes

it − i∗t = logEtm
∗
t+1 − logEtmt+1 (11)

qt = Et logm∗t+1 − Et logmt+1 (12)

pt =
(
logEtm

∗
t+1 − Et logm∗t+1

)
− (logEtmt+1 − Et logmt+1) (13)

= Var t(logm∗t+1)/2−Var t(logmt+1)/2 , (14)

where equation (14) is only valid for the case of conditional lognormality. Basically,
Fama’s (1984) conditions state that the means and the variances must move in
opposite directions and that the variation in the variances must exceed that of the
means.

Our objective is to write down a model in which b < 0. Inspection of equations
(8) and (14) indicate that a necessary condition is that pt vary over time and that,
for the lognormal case, the log kernels must exhibit stochastic volatility.

3 Model

Consider two countries, home and foreign. The home-country representative agent’s
consumption is denoted ct and preferences are of the Epstein and Zin (1989) (EZ)
class:

Ut = [(1− β)cρt + βµt(Ut+1)
ρ]1/ρ

where β and ρ characterize patience and intertemporal substitution, respectively,
and the certainty equivalent of random future utility is

µt(Ut+1) ≡ Et[Uαt+1]
1/α ,

so that α characterizes (static) relative risk aversion (RRA). The relative mag-
nitude of α and ρ determines whether agents prefer early or late resolution of
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uncertainty (α < ρ, and α > ρ, respectively). Standard CRRA preferences corre-
spond to α = ρ. The marginal rate of intertemporal substitution, defined as nt+1,
is

nt+1 = β

(
ct+1

ct

)ρ−1( Ut+1

µt(Ut+1)

)α−ρ
. (15)

The nominal marginal rate of substitution — the pricing kernel for claims denom-
inated in USD units — is then

mt+1 = nt+1e
−πt+1 ,

where πt+1 is the (continuously-compounded) rate of inflation between dates t and
t+ 1. The foreign-country representative agent’s consumption, c∗t , and preferences
are defined analogously. Asterisks’ are used to denote foreign variables. Foreign
inflation is π∗t+1.

The domestic pricing kernel satisfies Et(mt+1Rt+1) = 1 for all USD-denominated
asset returns, Rt+1. Similarly, Et(m

∗
t+1R

∗
t+1) = 1 for all GBP-denominated re-

turns. The domestic pricing kernel must also price USD-denominated returns on
GBP-denominated assets:

Et
(
mt+1

St+1

St
R∗t+1

)
= 1 . (16)

We assume that international financial markets are complete for securities denom-
inated in goods units, USD units and GBP units. This implies the uniqueness of
the nominal and real pricing kernels and therefore, according to equation Equation
(16),

St+1

St
=

m∗t+1

mt+1
=
n∗t+1e

−π∗t+1

nt+1e−πt+1
. (17)

Equation (17) must hold in any equilibrium with complete financial markets. This
is true irrespective of the particular goods-market equilibrium that gives rise to the
consumption allocations ct and c∗t that are inherent in nt and n∗t . Our approach
is to specify ct and c∗t exogenously and calibrate them to match the joint behav-
ior of data on domestic and foreign consumption. We are silent on the model
of international trade that gives rise to such consumption allocations. Bansal
and Shaliastovich (2008), Colacito and Croce (2008), Gavazzoni (2008), Verdelhan
(2010) and others follow a similar approach. Hollifield and Uppal (1997), Sercu,
Uppal, and Hulle (1995) and the appendix in Verdelhan (2010) — all building
upon Dumas (1992) — are examples of more fully-articulated complete markets
models in which imperfectly-correlated cross-country consumption is generated by
transport costs. Basically, our approach is to these models what Hansen and Sin-
gleton (1983) first-order-condition-based approach was to Mehra and Prescott’s
(1985) general equilibrium model.
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Following Bansal and Yaron (2004) and the application to real exchange rates
of Bansal and Shaliastovich (2008), domestic consumption growth, xt+1, contains
a small and persistent component (its ‘long-run risk’) with stochastic volatility:

log(ct+1/ct) ≡ xt+1 = µ+ lt +
√
ut ε

x
t+1 (18)

lt+1 = ϕllt +
√
wt ε

l
t+1 (19)

where

ut+1 = (1− ϕu)θu + ϕuut + σuε
u
t+1 (20)

wt+1 = (1− ϕw)θw + ϕwwt + σwε
w
t+1 (21)

Foreign consumption growth, x∗t+1 is defined analogously. The innovations are as-

sumed to be multivariate normal and independent within-country: (εx, εl, εu, εw)
′ ∼

NID(0, I), but we allow for correlation across countries: ηεj ≡ Corr(εj , εj
∗
), for

j = (x, l, u, w).

The process (18)–(21) looks complicated, but each of the ingredients are nec-
essary. Stochastic volatility is necessary because without it the currency risk pre-
mium would be constant and the UIP regression parameter, b, would be 1.0. Long-
run risk — by which we mean time variation in the conditional mean of consump-
tion growth, lt — isn’t critical for exchange rates, but it is for achieving a realistic
calibration of interest rates. It decouples the conditional mean of consumption
growth from other moments of consumption growth, thereby permitting persistent
and volatile interest rates to co-exist with relatively smooth and close-to-i.i.d. con-
sumption growth. Finally, cross-country correlation in the innovations is critical
for achieving realistic cross-country consumption correlations. The latter imposes
substantial discipline on our calibration (c.f., Brandt, Cochrane, and Santa-Clara
(2006)).

The final ingredients are domestic and foreign Taylor rules. We assume that
there are no nominal frictions, so that monetary policy has no impact on consump-
tion. We’ll consider several different specifications, but the most general ones are
of the form

it = τ + τ1πt + τ2lt + τ3 log
( St
St−1

)
+ τ4it−1 + zt (22)

where zt is a policy shock governed by

zt+1 = (1− ϕz)θz + ϕzzt +
√
vtε

z
t+1 (23)

vt+1 = (1− ϕv)θv + ϕvvt + σvε
v
t+1 . (24)

Analogous equations, denoted with asterisks, characterize the foreign-country Tay-
lor rules. The first four variables in the Taylor rule are defined above and have
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each played a prominent role in the literature. We include the exogenous policy
shocks, zt, in order to allow for some flexibility in the distinction between real and
nominal variables. Without policy shocks endogenous inflation will depend only on
consumption shocks. The same will therefore be true of nominal exchange rates.
We find it implausible that monthly variation in nominal exchange rates is 100%
attributable to real shocks. This being said, the identification of the parameters of
the zt process is an important issue. We deal with it explicitly in the next section.
Note that stochastic volatiliy in the policy shocks is a necessary condition for them
to have any affect on currency risk premiums.

3.1 Nominal Variability Only

The crux of our question asks “how does Taylor-rule-implied inflation affect ex-
change rates?” In order to focus on this we begin by abstracting from real exchange
rate variation. We set nt = n∗t , implying that log(St/St−1) = πt − π∗t , so that rel-
ative PPP holds exactly. We don’t take this specification seriously for empirical
analysis. We use it to try to understand exactly how the Taylor rule restricts
inflation dynamics and, therefore, nominal exchange rate dynamics. As we’ll see
in Section 3.2, the lessons we learn carry over to more empirically-relevant models
with both nominal and real variability.

We start with the simplest possible variant of the Taylor rule (22):

it = τ + τ1πt + zt , (25)

where the process for zt is described above, in equations (23-24). There are, of
course, many alternative specifications. A good discussion related to asset pricing
is Ang, Dong, and Piazzesi (2007). Cochrane (2007) uses a similar specification
to address issues related to price-level determinacy and the identification of the
parameters in equation (25). We begin with it for reasons of tractability and
clarity. We then go on to include the nominal depreciation rate and the lagged
interest rate, as appear in the general expression (22).

In addition to nt = n∗t , we abstract from real interest rate variation by setting
nt = n∗t = 1. For exchange rates, conditional on nt = n∗t , this is without loss of
generality. The (nominal) short interest rate, it = − logEtmt+1, is therefore

it = − logEt e
−πt+1

= Et πt+1 −
1

2
Var t(πt+1) . (26)

The Taylor rule (25) and the Euler equation (26) imply that inflation must satisfy
the following difference equation:

πt = − 1

τ1

(
τ + zt + Et πt+1 −

1

2
Var t(πt+1)

)
. (27)
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Given the log-linear structure of the model, guess that the solution has the form,

πt = a+ a1zt + a2vt . (28)

Instead of solving equation (27) forward, just substitute equation (28) into the
Euler equation (26), compute the moments, and then solve for the ai coefficients
by matching up the result with the Taylor rule (25). This gives,

a =
C − τ
τ1

a1 =
1

ϕz − τ1

a2 =
1

2(ϕz − τ1)2(ϕv − τ1)

where

C ≡ a+ a1θz(1− ϕz) + a2θv(1− ϕv)− (a2σv)
2/2 .

More explicit derivations are given in Appendix A. Inflation and the short rate can
now be written as:

πt =
C − τ
τ1

+
1

ϕz − τ1
zt +

1

2(ϕz − τ1)2(ϕv − τ1)
vt

it = C +
ϕz

ϕz − τ1
zt +

τ1
2(ϕz − τ1)2(ϕv − τ1)

vt

= C + ϕza1zt + τ1a2vt ,

and the pricing kernel as

− logmt+1 = C + (σva2)
2/2 + a1ϕzzt + a2ϕvvt + a1v

1/2
t εzt+1 + σva2ε

v
t+1

= D +
1

ϕz − τ1
ϕzzt +

ϕv
2(ϕz − τ1)2(ϕv − τ1)

vt

+
1

ϕz − τ1
v
1/2
t εzt+1 +

σv
2(ϕz − τ1)2(ϕv − τ1)

εvt+1

(29)

where

D ≡ C + (σva2)
2/2 .

Now consider a foreign country, say the UK. Denote all foreign variables with
an asterisk. The foreign Taylor rule is

i∗t = τ∗ + τ∗1π
∗
t + z∗t .
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with z∗t and its volatility following processes analogous to equations (23–24). For
now, zt and z∗t can have any correlation structure. Repeating the above calculations
for the UK and then substituting the results into equations (11–14) we get

it − i∗t = ϕza1zt − ϕ∗za∗1z∗t + τ1a2vt − τ∗1 a∗2v∗t
qt = D −D∗ + a1ϕzzt − a∗1ϕ∗zz∗t + a2ϕvvt − a∗2ϕ∗vv∗t
pt = −1

2

(
a21vt − a∗21 v∗t + σ2va

2
2 − σ∗2v a∗22

)
where D ≡ C + (σva2)

2/2. It is easily verified that pt + qt = it − i∗t .

Result 1: Symmetry and ϕz = 0

If all foreign and domestic parameter values are the same and ϕz =
ϕ∗z = 0, then the UIP regression parameter (7) is:

b =
Cov(it − i∗t , qt)

Var(it − i∗t )
=

Cov(pt + qt, qt)

Var(pt + qt)
(30)

=
ϕv
τ1

(31)

Calculations are provided in Appendix A.

3.1.1 Discussion

The sign of Cov(pt, qt) does not depend on ϕz. That is, Cov(pt, qt) is essentially
the covariance between the kernel’s mean and its variance and, while vt appears in
both, zt appears only in the mean. The assumption ϕz = 0 is therefore relatively
innocuous in the sense that it has no effect on one of the two necessary conditions
(8) and (9).

We require τ1 > 1 for the solution to make sense. Therefore, according to
equation (31), 0 < b < 1 unless ϕv < 0. The latter is implausible. Nevertheless,
the UIP regression coefficient can be significantly less than unity and the joint
distribution of exchange rates and interest rates will admit positive expected excess
returns on a suitably-defined trading strategy.

We cannot, at this point, account for b < 0. But the model does deliver some
insights into our basic question of how Taylor rules restrict inflation dynamics and,
consequently, exchange rate dynamics. We summarize with several remarks.
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Remark 1: This is not just a relabeled affine model

Inspection of the pricing kernel, equation (29), indicates that it is basically a
log-linear function of two unobservable factors. Is what we are doing just a rela-
beling of the class of latent-factor affine models described in Backus, Foresi, and
Telmer (2001)? The answer is no and the reason is that the Taylor rule imposes
economically-meaningful restrictions on the model’s coefficients.

To see this consider a pricing kernel of the form

− logmt+1 = α+ βvt + γv
1/2
t εt+1 (32)

where vt is an arbitrary, positive stochastic process, and an analogous expression
describes m∗t+1. Backus, Foresi, and Telmer (2001) show that such a structure
generates a UIP coefficient b < 0 if β > 0 and β < γ2/2. The former condition
implies that the mean and variance of negative the log kernel move in the same
direction — this gives Cov(pt, qt) < 0 — and the latter implies that the variance
is more volatile so that Var(pt) > Var(qt).

Now compare equations (32) and (29). The Taylor rule imposes the restrictions
that β can only be positive if ϕv is negative (because a2 < 0 since τ1 > 1) and
that β = σvϕvγ. Moreover, both β and γ are restricted by value of the policy
parameter τ1. In words, the UIP evidence requires the mean and the variance of
the pricing kernel to move in particular ways relative to each other. The Taylor
rule and its implied inflation dynamics place binding restrictions on how this can
happen. The unrestricted pricing kernel in equation (32) can account for b < 0
irrespective of the dynamics of vt. Imposing the Taylor rule says that vt must be
negatively autocorrelated.

Remark 2: Reason that negatively-correlated volatility is necessary for b < 0?

First, note that a2 < 0, so that an increase in volatility vt decreases inflation πt.
Why? Suppose not. Suppose that vt increases. Then, since τ1 > 1, the Taylor rule
implies that the interest rate it must increase by more than inflation πt. However
this contradicts the stationarity of inflation which implies that the conditional
mean must increase by less than the contemporaneous value. Hence a2 < 0. A
similar argument implies that a1 < 0 from equation (28). The point is that the
dynamics of Taylor-rule implied inflation, at least until we get the real interest
rate involved in Section 3.2, are driven by the muted response of the interest rate
to a shock, relative to that of the inflation rate.

Next, to understand why ϕv < 0 is necessary for b < 0, consider again an
increase in volatility vt. Since a2 < 0, the U.S. interest rate it and the contempo-
raneous inflation rate πt must decline. But for b < 0 USD must be expected to
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depreciate. This means that, although πt decreases, Etπt+1 must increase. This
means that volatility must be negatively autocorrelated.

Finally, consider the more plausible case of positively autocorrelated volatility,
0 < ϕv < 1. Then b < 1 which is, at least, going in the right direction (e.g., Backus,
Foresi, and Telmer (2001) show that the vanilla Cox-Ingersoll-Ross model generates
b > 1). The reasoning, again, derives from the ‘muted response of the interest rate’
behavior required by the Taylor rule. This implies that Cov(pt, qt) > 0 — thus
violating Fama’s condition (8) — which says that if inflation and expected inflation
move in the same direction as the interest rate (because ϕv > 0), then so must the
USD currency risk premium. The regression (6) can be written

qt = c+ b(pt + qt)− forecast error ,

where ‘forecast error’ is defined as st+1 − st − qt. Since Cov(pt, qt) > 0, then
Var(pt + qt) > Var(qt) and, therefore, 0 < b < 1.

Even more starkly, consider the case of ϕv = 0 so that b = 0. Then the exchange
rate is a random walk — i.e., qt = 0 so that st = Etst+1 — and all variation in the
interest rate differential is variation in the risk premium, pt. Taylor rule inflation
dynamics, therefore, say that for UIP to be a good approximation, changes in
volatility must show up strongly in the conditional mean of inflation and that this
can only happen if volatility is highly autocorrelated.

Remark 3: Identification of policy parameters

Cochrane (2007) provides examples where policy parameters like τ1 are impossible
to distinguish from the parameters of the unobservable shocks. Result 1 bears
similarity to Cochrane’s simplest example. We can estimate b from data but, if we
can’t estimate ϕv directly then there are many combinations of ϕv and τ1 that are
consistent with any estimate of b.

Identification in our special case, however, is possible because of the conditional
variance term in the interest rate equation: it = Etπt+1 − Var tπt+1. To see this
note that, with ϕz = 0, the autocorrelation of the interest rate is ϕv and, therefore,
ϕv is identified by observables. Moreover,

it
Etπt+1

=
τ1
ϕv

,

which identifies τ1 because the variables on the left side are observable.

The more general case of ϕz 6= 0 doesn’t work out as cleanly, but it appears
that the autocorrelation of inflation and the interest rate jointly identify ϕz and
ϕv and the above ratio again identifies the policy parameter τ1. These results are
all special cases of those described in Backus and Zin (2008).
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3.1.2 Asymmetric Taylor Rules

The series of affine models outlined in Backus, Foresi, and Telmer (2001) suggest
that asymmetries between the foreign and domestic pricing kernels are likely to
play a critical role in achieving b < 0. Their approach is purely statistical in nature.
There are many parameters and few sources of guidance for which asymmetries
are plausible and which are not. This section asks if foreign and domestic Taylor
rule asymmetries are plausible candidates.

mierda

Suppose that foreign and domestic Taylor rules depend on the exchange rate
in addition to domestic inflation and a policy shock:

it = τ + τ1πt + zt + τ3 log(St/St−1) (33)

i∗t = τ∗ + τ∗1π
∗
t + z∗t + τ∗3 log(St/St−1) (34)

The asymmetry that we’ll impose is that τ3 = 0 so that the Fed does not react to
the depreciation rate whereas the Bank of England does. Foreign central banks
reacting more to USD exchange rates seems plausible. It’s also consistent with
some empirical evidence in, for example, Clarida, Gaĺı, and Gertler (1999), Engel
and West (2006), and Eichenbaum and Evans (1995).

Assuming the same processes for the state variables as equations (23) and (24)
(and their foreign counterparts), guess that the inflation solutions look like:

πt = a+ a1zt + a2z
∗
t + a3vt + a4v

∗
t ≡ a+A>Xt

π∗t = a∗ + a∗1zt + a∗2z
∗
t + a∗3vt + a∗4v

∗
t ≡ a∗ +A∗>Xt

and collect the state variables into the vector

X>t ≡
[
zt z

∗
t vt v

∗
t

]>
.

Interest rates, from Euler equations with real interest rate = 0, must satisfy:

it = C +B>Xt

i∗t = C∗ +B∗>Xt

where,

B> ≡
[
a1ϕz a2ϕ

∗
z (a3ϕv −

a21
2

) (a4ϕ
∗
v −

a22
2

)
]

C ≡ a+ a1θz(1− ϕz) + a2θ
∗
z(1− ϕ∗z) + a3θv(1− ϕv) + a4θ

∗
v(1− ϕ∗v)−

1

2

(
a23σ

2
v + a24σ

∗2
v

)
B∗> ≡

[
a∗1ϕz a∗2ϕ

∗
z (a∗3ϕv −

a∗21
2

) (a∗4ϕ
∗
v −

a∗22
2

)
]

C∗ ≡ a∗ + a∗1θz(1− ϕz) + a∗2θ
∗
z(1− ϕ∗z) + a∗3θv(1− ϕv) + a∗4θ

∗
v(1− ϕ∗v)−

1

2

(
a∗23 σ

2
v + a∗24 σ

∗2
v

)
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The solution for the a coefficients and the following result are provided in Appendix
B.

Result 2: Asymmetric reaction to exchange rates

If foreign and domestic Taylor rules are equations (33) and (34), with
τ3 = 0 and all remaining foreign and domestic parameter values the
same, then b < 0 if τ∗3 > τ1.

Remark 4: Pathological policy behavior?

Interpreted literally, τ∗3 > 0 means that the Bank of England reacts to an appreci-
ation in GBP by increasing the British interest rate. However, at the same time,
there exist sensible calibrations of the model in which Cov(i∗t , log(St/St−1)) > 0.
This makes the obvious point that the Taylor rule coefficients must be interpreted
with caution since all the endogenous variables in the rule are responding to the
same shocks.

3.1.3 McCallum’s Model

McCallum (1994), equation (17), posits a policy rule of the form

it − i∗t = λ
(
st − st−1

)
+ σ

(
it−1 − i∗t−1

)
+ ζt ,

where ζt is a policy shock. He also defines UIP to include an exogenous shock, ξt,
so that

it − i∗t = Et
(
st+1 − st

)
+ ξt .

McCallum solves the implicit difference equation for st − st−1 and finds that it
takes the form

st − st−1 = −σ/λ
(
it − it−1

)
− λ−1ζt +

(
λ+ σ

)−1
ξt

He specifies values σ = 0.8 and λ = 0.2 — justified by the policy-makers desire to
smooth interest rates and ‘lean-into-the-wind’ regarding exchange rates — which
resolve the UIP puzzle by implying a regression coefficient from our equation (6)
of b = −4. McCallum’s insight was, recognizing the empirical evidence of a risk
premium in the interest rate differential, to understand that the policy rule and
the equilibrium exchange rate must respond to the same shock that drives the risk
premium.
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In this section we show that McCallum’s result can be recast in terms of our
pricing kernel model and a policy rule that targets the interest rate itself, not the
interest rate differential. The key ingredient is a lagged interest rate in the policy
rule:

it = τ + τ1πt + τ4it−1 + zt , (35)

where the processes for zt and its volatility vt are the same as above. Guess that
the solution for endogenous inflation is:

πt = a+ a1zt + a2vt + a3it−1 , (36)

Substitute equation (36) into the pricing kernel and compute the expectation:

it =
1

1− a3

(
C + a1ϕzzt + (a2ϕv − a21/2)vt

)
,

where

C ≡ a+ a1θz(1− ϕz) + a2θv(1− ϕv)− (a2σv)
2/2

Match-up the coefficients with the Taylor rule and solve for the aj parameters:

a =
C

τ1 + τ4
− τ

τ1

a1 =
τ1 + τ4

τ1(ϕz − τ1 − τ4)

a2 =
(τ1 + τ4)

2

2τ21 (ϕz − τ1 − τ4)2(ϕv − τ1 − τ4)

a3 = −τ4
τ1

It’s useful to note that

a2 =
a21

2(ϕv − τ1 − τ4)
and that matching coefficients imply

a1ϕz
1− a3

= 1 + τ1a1 ;
a2ϕv − a21/2

1− a3
= τ1a2.

Inflation and the short rate are:

πt =
C

τ1 + τ4
− τ

τ1
+

τ1 + τ4
τ1(ϕz − τ1 − τ4)

zt +

+
(τ1 + τ4)

2

2τ21 (ϕz − τ1 − τ4)2(ϕv − τ1 − τ4)
vt −

τ4
τ1
it−1

it =
τ1

τ1 + τ4
C +

ϕz
ϕz − τ1 − τ4

zt +
(τ1 + τ4)

2

2τ1(ϕz − τ1 − τ4)2(ϕv − τ1 − τ4)
vt

=
1

1− a3

(
C + ϕza1zt + (τ1 + τ4)a2vt

)
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The pricing kernel is

− logmt+1 = D +
a1ϕz

1− a3
zt +

a2ϕv − a3a21/2
1− a3

vt + a1v
1/2
t εzt+1 + σva2ε

v
t+1

where

D ≡ C

1− a3
+ (σva2)

2/2

The GBP-denominated kernel and variables are denoted with asterisks. If we as-
sume that all foreign and domestic parameter values are the same (i.e., τ = τ∗), the
interest-rate differential, the expected depreciation rate, qt, and the risk premium,
pt, are:

it − i∗t =
a1ϕz

1− a3
(zt − z∗t ) +

a2ϕv − a21/2
1− a3

(vt − v∗t )

qt =
a1ϕz

1− a3
(zt − z∗t ) +

a2ϕv − a3a21/2
1− a3

(vt − v∗t )

pt = −1

2
a21(vt − v∗t )

It is easily verified that pt + qt = it − i∗t .

The nominal interest rate and the interest rate differential have the same au-
tocorrelation:

Corr(it+1, it) = Corr(it+1 − i∗t+1, it − i∗t )

= 1− (1− ϕz)(1 + τ1a1)
2 Var(zt)

Var(it)
− (1− ϕv)(τ1a2)2

Var(vt)

Var(it)
.

If we set ϕz = 0, then the regression parameter is:

b =
Cov(it − i∗t , qt)

Var(it − i∗t )

=
ϕv − τ4
τ1

To see the similarity to McCallum’s model define ζ ≡ zt − z∗t , and subtract
the UK Taylor rule from its U.S. counterpart in (35). Assuming symmetry, we get

it − i∗t = τ1(πt − π∗t ) + τ4
(
it − i∗t

)
+ ζt

= τ1(st − st−1) + τ4
(
it − i∗t

)
+ ζt ,

where the second equality follows from market completeness and our simple pricing
kernel model. This is the same as McCallum’s policy rule with τ1 = λ and τ4 = σ.
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His UIP “shock” is the same as our pt = −a21(vt − v∗t )/2, with ϕz = ϕv = 0.
With ϕv = 0 we get the same UIP regression coefficient, −τ4/τ1. McCallum’s
model is basically a two-country Taylor rule model with a lagged interest rate
in the policy rule and no dynamics in the shocks. Allowing for autocorrelated
volatility diminishes the model’s ability to account for a substantially negative
UIP coefficient, a feature that McCallum’s approach does not recognize. A value
of b < 0 can only be achieved if volatility is less autocorrelated that the value of
the interest rate smoothing policy parameter.

3.1.4 Summary

The goal of this section has been to ascertain how the imposition of a Taylor rule
restricts inflation dynamics and how these restrictions are manifest in the exchange
rate. What have we learned?

A good context for understanding the answer is the Alvarez, Atkeson, and
Kehoe (2008) (AAK) paper. The nuts and bolts of their argument goes as follows.
With lognormality, the nominal interest is

it = −Et
(

logmt+1

)
−Var t

(
logmt+1

)
/2

AAK argue that if exchange rates follow a random walk then variation in the
conditional mean term must be small.6 Therefore (according to them), “almost
everything we say about monetary policy is wrong.” The idea is that, in many
existing models, the monetary policy transmission mechanism works through its
affect on the conditional mean of the nominal marginal rate of substitution, mt.
But if exchange rates imply that the conditional mean is essentially a constant
— so that ‘everything we say is wrong’ — then the mechanism must instead be
working through the conditional variance.

If one takes the UIP evidence seriously, this isn’t quite right. The UIP puzzle
requires variation in the conditional means (i.e., it says that exchange rates are
not a random walk).7 Moreover, it also requires that this variation be negatively
correlated with variation in the conditional variances, and that the latter be larger
than the former. In terms of monetary policy the message is that the standard

6i.e., random walk exchange rates mean that Et log(St+1/St) = 0, and, from equation (12),
Et log(St+1/St) = −Et(logmt+1 − logm∗t+1). Random walk exchange rates, therefore, imply that
the difference between the mean of the log kernels does not vary, not the mean of the log kernels
themselves. More on this below.

7Of course, the variation in the forecast error for exchange rates dwarfs the variation in the
conditional mean (i.e., the R2 from the Fama-regressions is very small). Monthly changes in
exchange rates certainly exhibit ‘near random walk’ behavior, and for policy questions the dis-
tinction may be a second-order effect. This argument, however, does not affect our main point
regarding the AAK paper: that exchange rates are all about differences between pricing kernels
and its hard to draw definitive conclusions about their levels.
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story — that a shock that increases the mean (of the marginal rate of substitution)
decreases the interest rate — is wrong. The UIP evidence says that we need to get
used to thinking about a shock that increases the mean as increasing the interest
rate, the reason being that the same shock must decrease the variance, and by
more than it increases the mean.

Now, to what we’ve learned. We’ve learned that symmetric monetary policies
as represented by Taylor rules of the form (25) can’t deliver inflation dynamics that,
by themselves, satisfy these requirements. The reason is basically what we label
the ‘muted response of the short rate’. The evidence requires that the conditional
mean of inflation move by more than its contemporaneous value. But the one
clear restriction imposed by the Taylor rule — that the interest rate must move
less than contemporaneous inflation because the interest rate must also be equal
to the conditional mean future inflation — says that this can’t happen (unless
volatility is negatively autocorrelated).

This all depends heavily on the real interest rate being a constant, something
we relax in the next section. What’s going on is as follows. In general, the Euler
equation and the simplest Taylor rule can be written as

it = rt + Et πt+1 −
Var t

(
πt+1

)
2

+ Cov t(nt+1, πt+1) (37)

it = τ + τ1πt + zt . (38)

The Euler equation (37) imposes restrictions between the current short rate and
moments of future inflation. The Taylor rule (38) imposes an additional contempo-
raneous restriction between the current interest rate and current inflation. To see
what this does, first ignore the real parts of equation (37), rt and the covariance
term. Recalling that endogenous inflation will be a function π(zt, vt), consider a
shock to volatility that increases inflation by 1%.8 The Taylor rule says that it
must increase by more than 1%, say 1.2%. But, if inflation is a positively auto-
correlated stationary process, then its conditional mean, Etπt+1, must increase by
less than 1%, say 0.9%. Equation (37) says that the only way this can happen is
if the conditional variance decreases by 0.2%; a volatility shock that increases πt
must decrease Var tπt+1. Therefore the mean and variance of the pricing kernel
must move in the same direction, thus contradicting what Fama (1984) taught us
is necessary for b < 0.

Phrased in terms of the exchange rate, the logic is equally intuitive. The
increase in the conditional mean of inflation implies an expected devaluation in
USD — recall that relative PPP holds if we ignore real rates — which, given the
increasing interest rate implied by the Taylor rule, moves us in the UIP direction:
high interest rates associated with a devaluing currency. Note that, if volatility

8A shock to zt isn’t particularly interesting in this context because it doesn’t affect both the
mean and variance of the pricing kernel.
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were negatively autocorrelated, Etπt+1 would fall and the reverse would be true;
we’d have b < 0.9

So, the contemporaneous restriction implied by the Taylor rule is very much a
binding one for our question. This points us in two directions. First, it suggests
that an interaction with the real interest rate is likely to be important. None
of the above logic follows if rt and Cov t(nt+1, πt+1) also respond to a volatility
shock. We follow this path in the next section. Second it points to something
else that the AAK story doesn’t get quite right. Exchange rate behavior tells us
something about the difference between the domestic and foreign pricing kernels,
not necessarily something about their levels. The above logic, and AAK’s logic,
is about levels, not differences. Symmetry makes the distinction irrelevant, but
with asymmetry it’s important. What our asymmetric example delivers is (i)
inflation dynamics that, in each currency, satisfies ‘muted response of the short
rate’ behavior, and (ii) a difference in inflation dynamics that gets the difference
in the mean and the variance of the kernels moving in the right direction.

To see this, recall that X>t ≡
[
zt z

∗
t vt v

∗
t

]>
and consider the foreign and

domestic pricing kernels in the asymmetric model:

− logmt+1 = constants + a1ϕzzt + a3ϕvvt + a1v
1/2
t εzt+1 + a3σvε

v
t+1

− logm∗t+1 = constants +A>ΛXt + V (Xt)
1/2
[
εzt+1 ε

z∗
t+1 ε

v
t+1 w

∗
t+1

]>
where Λ is a diagonal matrix of autoregressive coefficients, and V (Xt) is a diagonal
matrix of conditional standard deviations. The asymmetric restriction that τ3 = 0
and τ∗3 6= 0 effectively makes this a ‘common factor model’ with asymmetric load-
ings on the common factors. A number of recent papers, Lustig, Roussanov, and
Verdelhan (2009) for example, have argued persuasively for such a specification.
What we’ve developed is one economic interpretation of their statistical exercise.10

More explicitly, consider the difference in the mean and variance of the log
kernels from the symmetric and asymmetric examples of Sections 3.1 and 3.1.2.
For the symmetric case we have

pt = −1

2
a21
(
vt − v∗t

)
qt = a2ϕv

(
vt − v∗t

)
9This intuition is also useful for understanding why we get 0 < b < 1 with positively auto-

correlated volatility. The RHS of the regression, the interest rate spread, contains both the mean
and the variance of inflation. The LHS contains only the mean. If (negative) the mean and
the variance move in the same direction, then the RHS is moving more than the LHS and the
population value of b is less than unity.

10Note that if the conditional mean coefficients on zt and vt were the same across m and m∗

then, contrary to AAK’s assertion, monetary policy could affect the mean of the pricing kernel
while still allowing for a random walk exchange rate. This is simply because zt and vt would not
appear in the difference between the means of the two log kernels.
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whereas for the asymmetric case we have

pt = −1

2

(
a21 − a∗21

)
vt +

1

2
a∗4v
∗
t

qt = ϕv
(
a3 − a∗3

)
vt − a∗4v∗t

where the a coefficients are functions of the model’s parameters, outlined above
and in more detail in the appendix. What’s going on in the symmetric case is
transparent. pt and qt can only be negatively correlated if ϕv < 0 (since a2 < 0).
The asymmetric case is more complex, but it turns out that what’s critical is that
(a3 − a∗3) < 0. This in turn depends on the difference (τ1 − τ∗3 ) being negative.
Overall, what the asymmetric Taylor rule does is that it introduces an asymmetry
in how a common factor between m and m∗ affect their conditional means. This
asymmetry causes the common factor to show up in exchange rates, and it can
also flip the sign and deliver b < 0 with the right combination of parameter values.

3.2 Nominal and Real Variability

We now incorporate real exchange rate variability and an interaction between real
exchange rates and endogenous inflation. There are no nominal frictions in the
model and thus monetary policy has no impact on real variables. The model
features both real and nominal shocks. The former have a direct effect on con-
sumption and, through the Taylor rules, an indirect effect on inflation and the
exchange rate. The latter affect inflation and exchange rates, but have no effect
on consumption.

Following Hansen, Heaton, and Li (2005), we linearize the logarithm of the real
pricing kernel, equation (15), around zero. The result is

− log(nt+1) = δr + γrl lt + γruut + γrwwt (39)

+ λrx
√
utε

x
t+1 + λrl

√
wtε

l
t+1 + λruσuε

u
t+1 + λrwσwε

w
t+1 (40)

where

γrl = (1− ρ); γru =
α

2
(α− ρ); γrw =

α

2
(α− ρ)ω2

l

λrx = (1− α); λrl = −(α− ρ)ωl; λrv = −(α− ρ)ωu; λrw = −(α− ρ)ωw

Details for the derivation, together with the expressions for the constant δr and the
linearization coefficients ωl, ωu, and ωw, can be found in Appendix D. Following
the affine term structure literature, we refer to γr = [γrl γ

r
u γrw]′ as real factor

loadings and to λr = [λrx λ
r
l λ

r
u λ

r
w]′ as real prices of risk.
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The conditional mean of the real pricing kernel is equal to

Et log nt+1 = −(δr + γrl lt + γruut + γrwwt)

and its conditional variance is

Var t log nt+1 =
(
λrx
)2
ut +

(
λrl
)2
wt + (λruσu)2 + (λrwσw)2

The conditional mean depends both on expected consumption growth and stochas-
tic volatility, whereas the conditional variance is a linear function of current
stochastic volatility processes only. Notice that, in the standard time and state
separable utility case, volatility is not priced as a separate source of risk and the
real pricing kernel collapses to the familiar:

− log nt+1 = δr + (1− α)lt + (1− α)
√
utε

x
t+1

Next, the real short rate is

rt ≡ − logEt(nt+1)

= r̄ + γrl lt + rruut + rrwwt

where

r̄ = δr − 1

2
[(λruσu)2 + (λrwσw)2] ,

and

rru = γru −
1

2
(λrx)2; rrw = γrw −

1

2
(λrl )

2 .

Assuming symmetry, the expression for the expected real depreciation, qrt , the real
forward premium, f rt − srt , and the real risk premium, prt , are:11

qrt = γrl (lt − l∗t ) + γru(ut − u∗t ) + γrw(wt − w∗t ) ,

f rt − srt = γrl (lt − l∗t ) + rru(ut − u∗t ) + rrw(wt − w∗t ) ,

prt = −1

2

(
(λrx)2(ut − u∗t ) + (λrl )

2(wt − w∗t )
)
.

Result 3: The real UIP slope coefficient

11Symmetry means that both the parameters governing the motion of the state variables and
the preference parameters are the same across countries. Similarly to the previous section, the
model can be extended to allow for asymmetric loadings and asymmetric state variables.
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If all foreign and domestic parameter values are the same, then the real
UIP regression parameter, obtained by the regressing the real interest
rate differential on the real depreciation rate is:

br =
Cov(f rt − srt , qrt )

Var(f rt − srt )

=
(γrl )

2Var(lt − l∗t ) + γrur
r
uVar(ut − u∗t ) + +γrwr

r
wVar(wt − w∗t )

(γrl )
2Var(lt − l∗t ) + (rru)2Var(ut − u∗t ) + (rrw)2Var(wt − w∗t )

Without the presence of both stochastic volatility and EZ preferences,
br is equal to one and, in real terms, UIP holds identically. Also, when
the long-run state variables, lt and wt, are perfectly correlated across
countries, the slope coefficient reduces to br = γru/r

r
u. This is the case

considered by Bansal and Shaliastovich (2008).

For br to be negative, we require Cov(f rt −srt , qrt ) < 0. The expression above makes
it evident that only stochastic volatility terms can contribute negatively to this
covariance. In particular, a necessary condition for a negative real slope coefficient
is that the γr and rr = (rru, r

r
w)′ coefficients have opposite sign, for at least one

of the stochastic volatility processes. A preference for the early resolution of risk
(α < ρ) and an EIS larger than one (ρ < 0) deliver the required covariations.

3.2.1 Taylor Rule and Endogenous Inflation

Domestic monetary policy is described by a Taylor rule in which the short interest
rate reacts to contemporaneous inflation and expected consumption growth:12

it = τ + τ1πt + τ2lt + zt , (41)

where the policy shock zt evolves according to equations (23-24), with the restric-
tion that θz = 0. For currency risk, the latter is innocuous since it has no effect
on the conditional variance of the nominal pricing kernels.

Following the technique developed above, we guess that the solution for en-
dogenous inflation has the form

πt = a+ a1lt + a2ut + a3wt + a4zt + a5vt ,

substitute it into the Euler equation (3), compute the moments, and then solve for
the aj coefficients by matching up the result with the Taylor rule (41). This gives,

a1 =
γl − τ2
τ1 − ϕl

; a2 =
γu − 1

2λ
2
x

τ1 − ϕu
; a3 =

γw − 1
2λ

2
l

τ1 − ϕw
;

12For parsimony, we use expected consumption growth, lt, and not its current level, xt, as is
instead standard in the literature. Doing so reduces our state space by one variable. The model
can readily be extended to allow for a specification that includes xt instead of lt.
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a4 =
−1

τ1 − ϕz
; a5 =

−1
2a

2
4

τ1 − ϕv

a =
1

τ1 − 1
[δ − τ + a2(1− ϕu)θu + a3(1− ϕw)θw + a5(1− ϕv)θv

− 1

2
[(λuσu)2 + (λwσw)2 + (λvσv)

2]

where the constant term, the factor loadings and the pricing of risk of the nominal
pricing kernel are

δ = δr + a+ a2(1− ϕu)θu + a3(1− ϕw)θw + a5(1− ϕv)θv

γl = γrl + a1ϕl; γu = γru + a2ϕu; γw = γrw + a3ϕw; γz = a4ϕz; γv = a5ϕv

λx = λrx; λl = λrl + a1; λu = λru + a2; λw = λrw + a3; λz = a4; λv = a5

The linearized nominal pricing kernel is

− logmt+1 = − log nt+1 + πt+1

= δ + γllt + γuut + γwwt + γzzt + γvvt

+ λx
√
utε

x
t+1 + λl

√
wtε

l
t+1 + λuσuε

u
t+1

+ λwσwε
w
t+1 + λz

√
vtε

z
t+1 + λvσvε

v
t+1 .

The Taylor rule parameters, through their determination of the equilibrium in-
flation process, affect both the factor loadings on the real factors as well as their
prices of risk. This would not be the case if the inflation process was exogenously
specified. On the other hand, the factor loadings and the prices of risk of the
nominal state variables, zt and vt, depend exclusively on the choice of the Taylor
rule parameters.

The nominal short rate is

it ≡ − logEt(mt+1)

= ῑ+ γllt + γzzt + ruvt + rwwt + rvvt ,

where

ῑ = δ − 1

2
[(λuσu)2 + (λwσw)2 + (λvσv)

2] ;

ru = γu −
1

2
λ2x; rw = γw −

1

2
λ2l ; rv = γv −

1

2
λ2z .
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The nominal interest rate differential, the expected depreciation rate and the risk
premium can be derived from equations (11–14). Assuming symmetry across coun-
tries, we have

qt = γl(lt − l∗t ) + γz(zt − z∗t ) + γu(ut − u∗t ) + γw(wt − w∗t ) + γv(vt − v∗t ) ,

ft − st = γl(lt − l∗t ) + γz(zt − z∗t ) + ru(ut − u∗t ) + rw(wt − w∗t ) + rv(vt − v∗t ) ,

pt = −1

2

(
λ2x(ut − u∗t ) + λ2l (wt − w∗t ) + λ2z(vt − v∗t )

)
.

Result 4: The nominal UIP slope coefficient

If all foreign and domestic parameter values are the same, the nominal
UIP slope coefficient is

b =
Cov(ft − st, qt)

Var(ft − st)

=
γ2
l Var(lt − l∗t ) + γ2

zVar(zt − z∗t ) + γuruVar(ut − u∗t ) + γwrwVar(wt − w∗t ) + γvrvVar(vt − v∗t )

γ2
l Var(lt − l∗t ) + γ2

zVar(zt − z∗t ) + r2uVar(ut − u∗t ) + r2wVar(wt − w∗t ) + (rv)2Var(vt − v∗t )
.

As was the case for the real UIP slope coefficient, without EZ pref-
erences and stochastic volatility in consumption growth, long run risk
and policy shock, b = 1.

3.2.2 Discussion

The results obtained in this section rely crucially on three ingredients: EZ prefer-
ences, stochastic volatility and the choice of the Taylor rule parameters. We now
analyze their impact on the UIP slope coefficient and risk premium.

Remark 5: With EZ preferences, volatility is priced as a separate source of risk

From the previous section, we learned that if we want to explain the UIP puzzle
we need stochastic volatility. In the model with real exchange rate variability, the
necessary variation for the real UIP slope, br, comes from consumption growth, in
the form of short-run volatility, ut, and long-run volatility, wt.

With standard expected utility (α = ρ), both the volatility real factor loadings
γru and γrw, and the real prices of risk, λru and λrw, collapse to zero. Consequently,
the real UIP slope coefficient is identically equal to one. EZ preferences allow
agents to receive a compensation for taking volatility risk, to which they would
not be entitled with standard time-additive expected utility preferences. The con-
temporaneous presence of both stochastic volatility and EZ preferences is needed
to explain the anomaly in real terms. Without stochastic volatility in the real
pricing kernel, the real currency risk premium is constant and both of Fama’s con-
dition are violated. Without EZ preferences, stochastic volatility in consumption
growth is not priced at all.
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Remark 6: The role of the Taylor parameters in the UIP slope coefficient

Work in progress.

Remark 7: The role of persistence in stochastic volatility

Similarly to the purely nominal symmetric example of section 3.1, the persistence
of country specific volatility ϕu plays a crucial role in the determination of the
sign of the UIP slope. Too see this, consider again for simplicity the case in which
the long-run factor lt and its volatility wt are perfectly correlated across countries.
Also, assume the policy shock zt is not autocorrelated (ϕz = 0). The nominal
slope coefficient simplifies to

b =
Cov(ft − st, qt)

Var(ft − st)
=
γuruVar(ut − u∗t ) + γvrvVar(vt − v∗t )
r2uVar(ut − u∗t ) + (rv)2Var(vt − v∗t )

.

For the necessary condition of Cov(ft − st, pt) < 0 to be satisfied, we investigate
the coefficients on short-run consumption volatility and policy shock volatility.
First, γv and rv cannot have opposite sign. The reason is the same as in the
symmetric purely nominal example of the previous section: a shock to a nominal
state variable of inflation, zt or vt, together with τ1 > 1, imply the muted response
of interest rate to a nominal shock, relative to that of the inflation rate. Therefore,
unless the policy shock volatility is negatively autocorrelated, the contribution of
the nominal state variables to Cov(ft − st, pt) is necessarily of the wrong sign.
As was the case for the purely nominal example, introducing asymmetries across
countries, or allowing for interest rate smoothing in the Taylor rules can overcome
this problem.

A different mechanism is at work for short-run consumption volatility. In this
case, similarly to what we have seen above for the real slope coefficient, γu and ru
can have different signs, provided that the agents in the economy have preference
for the early resolution of risk. However, a positive autocorrelation in stochastic
volatility necessarily works against it. This is a direct consequence of endogenizing
inflation and deriving the GHPZ monetary policy consistent pricing kernel. To see
this, recall that

γu = γru + a2ϕu , a2 =
γu − 1

2λ
2
x

τ1 − ϕu
=

ru
τ1 − ϕu

.

Since we require γu and ru to have opposite signs for the resolution of the puzzle,
we must have a2 < 0. Therefore, γu < γru, and, all other things being equal, we
require a stronger preference for the early resolution (α << ρ) of risk, relative to
the one we needed for the real case.
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Consequently, it is in general harder to get a negative nominal UIP slope rather
than a negative real UIP slope. As we have seen, the first reason is that the con-
tribution of the nominal state variables necessarily goes in the wrong direction,
at least in our simple symmetric case with Taylor rules reacting to (expected)
consumption growth and current inflation. The second reason is that, with en-
dogenous inflation, positive autocorrelated consumption volatility makes it harder
to get the required magnitudes of the factor loadings and prices of risk of short-
and long-run volatility. Nonetheless, a careful choice of Taylor parameters can
deliver the required Fama conditions.

4 Quantitative Results

We’d like our model to be able to account for the following exchange rate facts.
Foremost, of course, is the negative nominal UIP slope coefficient. But other
important features are (i) UIP should hold unconditionally, so that the mean of
the risk premium, pt is zero, (ii) changes in real and nominal exchange rates are
highly correlated (Mussa (1986)), (iii) exchange rate volatility is high relative to
inflation differentials, (iv) exchange rates exhibit near random-walk behavior but
interest rate differentials are highly autocorrelated, (v) international pricing kernels
are highly correlated but international aggregate consumption growth rates are
not (Brandt, Cochrane, and Santa-Clara (2006)). In addition, domestic real and
nominal interest rates should be highly autocorrelated with means and volatilities
that match data.

We calibrate our model using a monthly frequency. We begin by tying-down
as much as we can using consumption data. The parameters for domestic and
foreign aggregate consumption growth are chosen symmetrically so that (i) the
mean and standard deviation match U.S. data, (ii) the autocorrelation is close to
zero, (iii) the cross-country correlation is 0.30, and (iv) the autocorrelation of the
conditional mean, lt, is 0.993 and its cross-country correlation is 0.90 (following,
roughly, Bansal and Shaliastovich (2008), Bansal and Yaron (2004) and Colacito
and Croce (2008)). The autocorrelations of the short and long-run volatilities
are chosen, primarily, to match the autocorrelation in interest rates and inflation
rates. The parameters of the policy shock processes, zt and z∗t , are set so that
the shocks are independent across countries and uncorrelated across time (i.e.,
ϕz = ϕ∗z = 0). Finally, the level and persistence of the volatility of the policy
shocks are chosen — alongside risk aversion, intertemporal substitution, and the
Taylor rule parameters — to match (i) the variance of the nominal exchange rate,
(ii) the mean and variance of inflation and the nominal interest rate, (iii) the
autocorrelation of the interest rate differential (forward premium), and (iv) the
UIP regression parameter, b. The resulting parameter values are reported in Table
1.
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Table 1
Calibrated Parameter Values

Parameter Value

Subjective discount factor β 0.999

Mean of consumption growth θx 0.0016
Long run risk persistence ϕl 0.993
Short run volatility level θu 1.50e-5
Short run volatility persistence ϕu 0.920
Short run volatility of volatility σu 1.40e-6
Long run volatility mean θw 2.80e-8
Long run volatility persistence ϕw 0.950
Long run volatility of volatility σw 5.66e-9

Policy shock persistence ϕz 0
Policy shock volatility level θv 1.00e-5
Policy shock volatility persistence ϕv 0.94
Volatility of policy shock volatility σv 1.73e-6

Risk aversion 1− α 5.0
Elasticity of intertemporal substitution 1/(1− ρ) 2.0
Taylor-rule parameter, inflation τ1 1.1
Taylor-rule parameter, consumption τ2 0.74

Our model’s population moments, evaluated at the parameter values of Table 1,
are reported in Table 2. By and large, the model performs pretty well. Endogenous
inflation — the focal point of our paper — matches the the sample mean, variance
and autocorrelation of the U.S. data. The same applies for interest rates and the
interest rate differential (the forward premium). Simulations of these variables are
reported in Figures 1 and 2. Real and nominal exchange rates fit the Mussa (1986)
evidence. See Figure 3. Nominal exchange rate variability is higher than in the
data, but only slightly, at 18.6% versus 15.0%. This is good news in light of the
point made by Brandt, Cochrane, and Santa-Clara (2006); the high pricing kernel
variability required to explain asset prices (Hansen and Jagannathan (1991)) re-
quires either highly correlated foreign and domestic pricing kernels, highly variable
exchange rates, or some combination of the two. With standard preferences, low
cross-country consumption correlations rule out the former, thus implying that ob-
served exchange rate variability is too small relative to theory. Our model resolves
this tension with the combination of recursive preferences and high correlation in
cross-country long-run risk processes. This point has been made previously by
Colacito and Croce (2008). Its empirical validity is an open question.
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Where our model falls somewhat short is in the magnitude of the nominal UIP
slope coefficient. While Fama’s conditions are satisfied — see Figure 4 and the
“carry trade” graph, Figure 5 — we nevertheless get b = −0.20 whereas a rough
average from the data is around b = −2.00. Herein lies our overall message, which
echos that of Section 3.1. The restrictions on inflation imposed by the Taylor
rule are binding in the sense that, although the slope coefficient for real variables
may be strongly negative, its nominal counterpart is less so. Put differently, if
the mapping between real and nominal variables is an exogenous inflation process,
then, given our real model, a realistic nominal slope coefficient would be easy to
obtain. Endogenous inflation, on the other hand, ties one’s hands in an important
manner.

This all presupposes symmetric Taylor rules. Further research should investi-
gate the asymmetries pointed at toward the end of Section 3.1.

Table 2
Sample and Population Moments

Moment Sample Population (Model)

E(πt)× 12 4.34 4.86

σ(πt)×
√

12 1.32 1.59
Corr(πt, πt−1) 0.60 0.60

E(it)× 12 6.42 6.37
σ(it)× 12 3.72 3.76
Corr(it, it−1) 0.98 0.97

E(it − i∗t ) ≈ 0.00 0.00
σ(it − i∗t )× 12 3.70 3.79
Corr(it − i∗t , it−1 − i∗t−1) 0.98 0.96

E(st+1 − st) ≈ 0.00 0.00

σ(st+1 − st)×
√

12 15.00 18.61

Corr(st+1 − st)×
√

12 ≈ 0.00 0.05

br ?.?? -5.02
b ≈ −2.00 -0.20

5 Conclusions

How is monetary policy related to the UIP puzzle? Ever since we’ve known about
the apparent profitability of the currency carry trade people have speculated about
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a lurking role played by monetary policy. The story is that, for some reason, central
banks find themselves on the short side of the trade, borrowing high yielding
currencies to fund investments in low yielding currencies. In certain cases this
has seemed almost obvious. It’s well known, for instance, that in recent years
the Reserve Bank of India has been accumulating USD reserves and, at the same
time, sterilizing the impact on the domestic money supply through contractionary
open-market operations. Since Indian interest rates have been relatively high, this
policy basically defines what it means to be on the short side of the carry trade.
This leads one to ask if carry trade losses are in some sense a cost of implementing
Indian monetary policy? If so, is this a good policy? Is there some sense in which
it is causing the exchange rate behavior associated with the carry trade?

Our paper’s questions, while related, are less ambitious than these speculations
about India. What we’ve shown goes as follows. It is almost a tautology that
we can represent exchange rates as ratios of nominal pricing kernels in different
currency units:

St+1

St
=
n∗t+1 exp(−π∗t+1)

nt+1 exp(−πt+1)
.

It is less a tautology that we can write down sensible stochastic processes for
these four variables that are consistent with the carry trade evidence.13 Previous
work has shown that such processes have many parameters that are difficult to
identify with sample moments of data. Our paper shows two things. First, that
by incorporating a Taylor rule for interest rate behavior we reduce the number
of parameters. Doing so is sure to deteriorate the model’s fit. But the benefit is
lower dimensionality and parameters that are economically interpretable. Second,
we’ve shown that some specifications of Taylor rules work and others don’t. This
seems helpful in and of itself. It also shows that there exist policy rules which,
when combined with sensible pricing kernels, are consistent with the carry trade
evidence. This is a far cry from saying that policy is causing carry trade behavior
in interest rates and exchange rates, but it does suggest a connection that we
find intriguing. In our models, for instance, there exist changes in the policy
parameters, τ1 and τ3, under which the carry trade profits go away.

Finally, it’s worth noting that India, of course, is much more the exception
than the rule. Most central banks — especially if we limit ourselves to those
from OECD countries — don’t have such explicit, foreign-currency related poli-
cies. However, many countries do use nominal interest rate targeting to implement
domestic policy and, therefore, we can think about central banks and the carry

13See, for example, Backus, Foresi, and Telmer (2001), Bakshi and Chen (1997), Bansal (1997),
Brenna and Xia (2006), Frachot (1996), Lustig, Roussanov, and Verdelhan (2009), and Saá-
Requejo (1994).
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trade in a consolidated sense. For example, in early 2004 the UK less U.S. interest
rate differential was around 3%. Supposing that this was, to some extent, a policy
choice, consider the open-market operations required to implement such policies.
The Bank of England would be contracting its balance sheet — selling UK govern-
ment bonds — while (at least in a relative sense) the Fed would be expanding its
balance sheet by buying U.S. government bonds. If the infamous carry-trader is
in between, going long GBP and short USD, then we can think of the Fed funding
the USD side of the carry trade and the Bank of England providing the funds for
the GBP side. In other words, the consolidated balance sheets of the Fed and
Bank of England are short the carry trade and the carry-trader is, of course, long.
In this sense, central banks and their interest-rate policies may be playing a more
important role than is apparent by just looking at their foreign exchange reserves.
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Appendix A
Symmetric Model

The short rate must satisfy both the Euler equation and the Taylor rule:

it = − logEtmt+1 (A1)

it = τ + τ1πt + zt , (A2)

where the processes for zt and its volatility vt are

zt = θz(1− ϕz) + ϕzzt−1 + v
1/2
t−1ε

z
t

vt = θv(1− ϕv) + ϕvvt−1 + σvε
v
t

where εzt and εvt are i.i.d. standard normal. Given that mt+1 = nt+1Pt/Pt+1 and
πt+1 = log(Pt+1/Pt), set the real pricing kernel to a constant so that mt+1 =
exp(−πt+1). Guess that the solution for endogenous inflation is:

πt = a+ a1zt + a2vt , (A3)

Substitute equation (A3) into the Euler equation (A1) and compute the expecta-
tion. The result is

it = C + a1ϕzzt + (a2ϕv − a21/2)vt , (A4)

where

C ≡ −n+ a+ a1θz(1− ϕz) + a2θv(1− ϕv)− (a2σv)
2/2

Substiute the postulated solution (A3) into the Taylor rule, match-up the resulting
coefficients with those in equation (A4), and solve for the ai coefficients:

a =
C − τ
τ1

a1 =
1

ϕz − τ1

a2 =
1

2(ϕz − τ1)2(ϕv − τ1)

It’s useful to note that

a2 =
a21

2(ϕv − τ1)
.

Note that this is the same as saying that

∂it
∂vt

= τ1
∂πt
∂vt

=
∂Etπt+1

∂vt
− 1

2

∂Var tπt+1

∂vt
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Similarly, a1 = 1/(ϕz − τ1) is the same as saying that

∂it
∂zt

= τ1
∂πt
∂zt

+ 1 =
∂Etπt+1

∂zt
− 1

2

∂Var tπt+1

∂zt
.

Both of these things are kind of trivial. They just say that the effect of a shock on
the Taylor rule equation must be consistent with the effect on the Euler equation.

Note also that

C =
τ1

τ1 − 1

(
− n− τ

τ1
+ a1θz(1− ϕz) + a2θv(1− ϕv)− (a2σv)

2/2
)

Inflation and the short rate are:

πt =
C − τ
τ1

+
1

ϕz − τ1
zt +

1

2(ϕz − τ1)2(ϕv − τ1)
vt

it = C +
ϕz

ϕz − τ1
zt +

τ1
2(ϕz − τ1)2(ϕv − τ1)

vt

= C + ϕza1zt + τ1a2vt

The pricing kernel is

− logmt+1 = C + (σva2)
2/2 + a1ϕzzt + a2ϕvvt + a1v

1/2
t εzt+1 + σva2ε

v
t+1

= D +
1

ϕz − τ1
ϕzzt +

ϕv
2(ϕz − τ1)2(ϕv − τ1)

vt

+
1

ϕz − τ1
v
1/2
t εzt+1 +

σv
2(ϕz − τ1)2(ϕv − τ1)

εvt+1

where

D ≡ C + (σva2)
2/2

The GBP-denominated kernel and variables are denoted with asterisks. The
interest-rate differential, the expected depreciation rate, qt, and the risk premium,
pt, are:

it − i∗t = ϕza1zt − ϕ∗za∗1z∗t + τ1a2vt − τ∗1 a∗2v∗t
qt = D −D∗ + a1ϕzzt − a∗1ϕ∗zz∗t + a2ϕvvt − a∗2ϕ∗vv∗t
pt = −1

2

(
a21vt − a∗21 v∗t + σ2va

2
2 − σ∗2v a∗22

)
It is easily verified that pt + qt = it − i∗t .

If we assume that all foreign and domestic parameter values are the same (i.e.,
τ = τ∗) and if we set ϕz = 0, then the regression parameter is:

b =
Cov(it − i∗t , qt)

Var(it − i∗t )

=
ϕv
τ1
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Appendix B
Asymmetric Taylor Rule

Taylor rules

it = τ + τ1πt + zt + τ3dt

i∗t = τ∗ + τ∗1π
∗
t + z∗t + τ∗3 dt

dt ≡ log(St/St−1) = πt − π∗t

State variables,

zt = θz(1− ϕz) + ϕzzt−1 + v
1/2
t−1ε

z
t

vt = θv(1− ϕv) + ϕvvt−1 + σvε
v
t

and the associated foreign-country processes with asterisks and with all shocks
i.i.d.. Collect them in the state vector, Xt:

Xt ≡
[
zt z

∗
t vt v

∗
t

]>
Inflation solutions:

πt = a+ a1zt + a2z
∗
t + a3vt + a4v

∗
t ≡ a+A>Xt

π∗t = a∗ + a∗1zt + a∗2z
∗
t + a∗3vt + a∗4v

∗
t ≡ a∗ +A∗>Xt

Interest rates, from Euler equations with real interest rate = 0:

it = C +B>Xt

i∗t = C∗ +B∗>Xt

where,

B> ≡
[
a1ϕz a2ϕ

∗
z (a3ϕv −

a21
2

) (a4ϕ
∗
v −

a22
2

)
]

C ≡ a+ a1θz(1− ϕz) + a2θ
∗
z(1− ϕ∗z) + a3θv(1− ϕv) + a4θ

∗
v(1− ϕ∗v)−

1

2

(
a23σ

2
v + a24σ

∗2
v

)
B∗> ≡

[
a∗1ϕz a∗2ϕ

∗
z (a∗3ϕv −

a∗21
2

) (a∗4ϕ
∗
v −

a∗22
2

)
]

C∗ ≡ a∗ + a∗1θz(1− ϕz) + a∗2θ
∗
z(1− ϕ∗z) + a∗3θv(1− ϕv) + a∗4θ

∗
v(1− ϕ∗v)−

1

2

(
a∗23 σ

2
v + a∗24 σ

∗2
v

)
Taylor rules become:

it = τ + τ1(a+A>Xt) + zt + τ3
(
a+A>Xt − a∗ −A

∗>Xt

)
= τ + τ1a+ τ3(a− a∗) +

(
τ1A

> + ι>z + τ3[A
> −A∗>]

)
Xt

i∗t = τ∗ + τ∗1 (a∗ +A∗>Xt) + z∗t + τ∗3
(
a+A>Xt − a∗ −A

∗>Xt

)
= τ∗ + τ∗1 a

∗ + τ∗3 (a− a∗) +
(
τ∗1A

∗> + ι∗>z + τ∗3 [A> −A∗>]
)
Xt
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where ι>z ≡ [ 1 0 0 0 ] and ι∗>z ≡ [ 0 1 0 0 ]. Matching-up the coefficients means

C = τ + τ1a+ τ3(a− a∗)
C∗ = τ∗ + τ∗1 a

∗ + τ∗3 (a− a∗)
B = τ1A

> + ι>z + τ3(A
> −A∗>)

B∗ = τ∗1A
∗> + ι∗>z + τ∗3 (A> −A∗>)

To solve for the constants (the first two equations):[
1− τ1 − τ3 τ3
−τ∗3 1− τ∗1 + τ∗3

] [
a
a∗

]
=

[
τ − stuff
τ∗ − stuff∗

]
where stuff and stuff∗ are everything on the LHS of the solutions for C and C∗,
except the first terms, a and a∗.

The B equations are eight equations in eight unknowns, A and A∗. Conditional
on these, the C equations are two-in-two, a and a∗. The B equations can be broken
into 4 blocks of 2. It’s useful to write them out because you can see where the
singularity lies.[

(τ1 + τ3 − ϕz) −τ3
τ∗3 (τ∗1 − τ∗3 − ϕz)

] [
a1
a∗1

]
=

[
−1
0

]
[

(τ1 + τ3 − ϕ∗z) −τ3
τ∗3 (τ∗1 − τ∗3 − ϕ∗z)

] [
a2
a∗2

]
=

[
0
−1

]
[

(τ1 + τ3 − ϕv) −τ3
τ∗3 (τ∗1 − τ∗3 − ϕv)

] [
a3
a∗3

]
=

[
−a21/2
−a∗21 /2

]
[

(τ1 + τ3 − ϕ∗v) −τ3
τ∗3 (τ∗1 − τ∗3 − ϕ∗v)

] [
a4
a∗4

]
=

[
−a22/2
−a∗22 /2

]
Two singularities exist:

• UIP holds exactly. If τ3 = 0 (so that the Fed ignores the FX rate), ϕv = ϕ∗v
and τ1 = τ∗1 (complete symmetry in parameters, save τ3 and τ∗3 ) then a
singularity is τ∗3 = τ1 − ϕv. As τ∗3 approaches this from below or above, the
UIP coefficient goes to 1.0.

• Anomaly resolved. Similarly, if τ3 = 0, ϕv = ϕ∗v and τ1 = τ∗1 then a singularity
is τ∗3 = τ1. As τ∗3 approaches from below, the UIP coefficient goes to infinity.
As τ∗3 approaches from above, it goes to negative infinity.

The latter condition is where the UIP regression coefficient changes sign. This says
that we need τ∗3 > τ3. This may seem pathological. It says that — if we interpret
these coefficients as policy responses (which we shouldn’t) — the ECB responds
to an appreciation in EUR by increasing interest rates more than 1:1 (and more
than the ‘Taylor principle’ magnitude of τ1 > 1).
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Appendix C
Derivations for McCallum Model

Write the interest rate coefficients as follows:

it =
1

1− a3

(
C + a1ϕzzt + (a2ϕv − a21/2)vt

)
= ci + cizzt + civvt

and, for reasons that will become clear, define

ĩt ≡ it − θzciz − θvciv

The exogenous state variables obey

zt = θz(1− ϕz) + ϕzzt−1 + v
1/2
t−1ε

z
t

vt = θv(1− ϕv) + ϕvvt−1 + σvε
v
t

where a mean is now incorporated for z. I’m not sure if this thing is identified or
not. Denote the state vector as X>t = [zt vt ĩt−1]

> so that we can write

Xt = (I − Φ)θ + ΦXt−1 + V (Xt−1)
1/2st−1

where

θ> = [θz θv ci]
>

Φ =

 ϕz 0 0
0 ϕv 0
ciz civ 0


V (Xt−1) =

 vt−1 0 0
0 σ2v 0
0 0 0


s>t = [εzt ε

v
t 0]>

The mean, variance and autocovariance of X are

µ>X = [θz θv C/(1− a3)]

Γ0 =


θv

1−ϕ2
z

0 cizϕzθv
1−ϕ2

z
σ2
v

1−ϕ2
v

civϕvσ
2
v

1−ϕ2
v

c2izθv
1−ϕ2

z
+

c2ivσ
2
v

1−ϕ2
v


Γ1 = ΦΓ0
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Moments

• Inflation. Let πt = aπ +A>πXt where A>π = [a1 a2 a3]. Since

πt = a+ a1zt + a2vt + a3it−1 ,

we must have
aπ = a+ a3 (cizθz + civθv) .

The unconditional moments are:

µπ = aπ +A>π µX

σ2π = A>π Γ0Aπ

Corr(πt, πt−1) = A>π Γ1Aπ/σ
2
π

I worked one out by hand as a check:

σ2π = (a1ϕz + a3ciz)
2 θv

1− ϕ2
z

+ (a2ϕv + a3civ)
2 σ2v

1− ϕ2
v

+ a21θv + (a2σv)
2

The conditional moments are:

Etπt+1 = aπ +A>π
(
(I − Φ)θ + ΦXt−1

)
Var tπt+1 = A>π

 vt 0 0
0 σ2v 0
0 0 0

Aπ
• Interest rate. Let it = ci + C>i Xt, where C>i = [ciz civ 0] and

C = a+ a1θz(1− ϕz) + a2θv(1− ϕv)− (a2σv)
2/2

ci = C/(1− a3)
ciz = ϕza1/(1− a3)
civ = (τ1 + τ4)a2/(1− a3)

The moments are:

µi = ci + C>i µX

σ2i = C>i Γ0Ci

Corr(it, it−1) = C>i Γ1Ci/σ
2
i

• Depreciation rate: dt = πt−π∗t . With independence across countries we have

µπ = aπ − aπ∗ +A>µX −A>µX∗
σ2d = σ2π + σ2π∗

Corr(dt, dt−1) =
σ2π

σ2π + σ2π∗
Corr(πt, πt−1) +

σ2π∗

σ2π + σ2π∗
Corr(π∗t , π

∗
t−1)
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So — obviously, in this model where relative PPP holds exactly — we have a
strong counterfactual. The autocorrelation of the depreciation rate and the
inflation rate are the same. Relaxing these things may work, to some extent.
Here’s a start:

µπ = aπ − a∗π +A>π µX − (A∗π)>µX∗

σ2d = A>π Γ0Aπ + (A∗π)>Γ∗0A
∗
π + Cov()

Corr(dt, dt−1) = Cov(πt, πt−1) + Cov(π∗t , π
∗
t−1) + Cov(πt, π

∗
t−1) + Cov(π∗t−1, πt)

• Interest rate differential: it − i∗t .

it − i∗t = ci − ci∗ + C>i Xt − C>i∗X∗t
With independence, the moments are

µπ = ci − ci∗ + C>i µX − C>i∗µX∗
Var(it − i∗t ) = σ2i + σ2i∗

Corr(it − i∗t , it−1 − i∗t−1) =
σ2i

σ2i + σ2i∗
ρi +

σ2i∗

σ2i + σ2i∗
ρi∗

• UIP Coefficient. First the expected depreciation rate, with symmetry, is

qt = Etdt+1 = Et(πt+1 − π∗t+1)

= aπ − aπ∗ +A>π ΦXt −A>π∗Φ∗X∗t .

So the covariance (with independence) is

Cov(it − i∗t , qt) = Cov
(
C>i Xt − C>i∗X∗t , A>π ΦXt −A>π∗Φ∗X∗t

)
= C>i Γ0Φ

>Aπ + C>i∗Γ
∗
0Φ
∗>Aπ∗

and the regression coefficient is

b =
C>i Γ0Φ

>Aπ + C>i∗Γ
∗
0Φ
∗>Aπ∗

Var(it − i∗t )

• p and q

qt = Etπt+1 − Etπ∗t+1

pt = −1

2

(
Var tπt+1 −Var tπ

∗
t+1

)
= −1

2

A>π
 vt 0 0

0 σ2v 0
0 0 0

Aπ −A>π∗
 v∗t 0 0

0 σ∗2v 0
0 0 0

Aπ∗


where the formulae for the conditional means is above (under the italicized
heading Inflation).
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Appendix D
Linearization for the Pricing Kernel

The log of the equilibrium domestic marginal rate of substitution in equation (15)
is given by

log(nt+1) = log β + (ρ− 1)xt+1 + (α− ρ)[logWt+1 − logµt(Wt+1)],

where xt+1 ≡ log(ct+1/ct) is the log of the ratio of domestic observed consumption
in t+1 relative to t and Wt is the value function. The first two terms are standard
expected utility terms: the pure time preference parameter β and a consumption
growth term times the inverse of the negative of the intertemporal elasticity of
substitution. The third term in the pricing kernel is a new term coming from EZ
preferences.

We work on a linearized version of the real pricing kernel, following the findings
of Hansen, Heaton, and Li (2005). In particular, I focus on the the value function
of each representative agent, scaled by the observed equilibrium consumption level

Wt/ct = [(1− β) + β(µt(Wt+1)/ct)
ρ]1/ρ

=

[
(1− β) + βµt

(
Wt+1

ct+1
× ct+1

ct

)ρ]1/ρ
,

where I use the linear homogeneity of µt. In logs,

wct = ρ−1 log[(1− β) + β exp(ρgt)],

where wct = log(Wt/ct) and gt ≡ log(µt(exp(wct+1 + xt+1))). Taking a linear
approximation of the right-hand side as a function of gt around the point m̄, I get

wct ≈ ρ−1 log[(1− β) + β exp(ρm̄)] +

[
β exp(ρm̄)

1− β + β exp(ρm̄)

]
(gt − m̄)

≡ κ̄+ κgt

where κ < 1. Approximating around m̄ = 0, results in κ̄ = 0 and κ = β, and for
the general case of ρ = 0, the “log aggregator”, the linear approximation is exact
with κ̄ = 1− β and κ = β.

Given the state variables of the economy, l, u and w, and the log-linear structure
of the model, we conjecture a solution for the value function of the form,

wct = ω̄ + ωllt + ωuut + ωwwt,

where ω̄, ωl, ωu and ωw are constants to be determined. Therefore

wct+1 + xt+1 = ω̄ + ωllt+1 + ωuut+1 + ωwwt+1 + xt+1
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and, using the properties of lognormal random variables, gt can be expressed as

gt ≡ log(µt(exp(wct+1 + xt+1)))

= log(Et[exp(wct+1 + xt+1)
α]

1
α )]

= Et[wct+1 + xt+1] +
α

2
Vart[wct+1 + xt+1].

Using the above expression, we solve for the value-function parameters by matching
coefficients

ωl = κ(ωlϕl + 1)

⇒ ωl =

(
κ

1− κϕl

)
ωu = κ(ωuϕu +

α

2
)

⇒ ωu =
α

2

κ

1− κϕu
ωw = κ(ωwϕw +

α

2
ω2
l )

⇒ ωw =
α

2
ω2
l

κ

1− κϕu
.

The solution allows us to simplify the term [logWt+1 − logµt(Wt+1)] in the
pricing kernel in equation (5):

logWt+1 − logµt(Wt+1) = wct+1 + xt+1 − logµt(exp (wct+1 + xt+1))

= ωl
√
wtε

l
t+1 + ωuσuε

u
t+1 + ωwσwε

w
t+1 +

√
utε

x
t+1

− α

2
(ω2
l wt + ω2

uσ
2
u + ω2

wσ
2
w + ut) .

Equation (39) follows by collecting terms. In particular,

δr = − log β + (1− ρ)µ+
α

2
(α− ρ)[(ωuσu)2 + (ωwσw)2]

γrl = (1− ρ); γru =
α

2
(α− ρ); γrw =

α

2
(α− ρ)ω2

l

λrx = (1− α); λrl = −(α− ρ)ωl; λrv = −(α− ρ)ωu; λrw = −(α− ρ)ωw

ωl =

(
κ

1− κϕl

)
; ωu =

α

2

(
κ

1− κϕu

)
; ωw =

α

2

(
κ

1− κϕw

)
ω2
l

46



Appendix E
Moment Conditions

• Consumption growth:

Et(xt+1) = µ+ lt , Var t(xt+1) = ut ,

E(xt+1) = µ , Var(xt+1) = θu + Var lt ,

Cov(xt+1, xt) = ϕlVar l , Corr(xt+1, xt) = ϕlVar lt
θu+Var lt

• Long run risk:

Et(lt+1) = ϕllt , Var t(lt+1) = wt ,

E(lt+1) = 0 , Var(lt+1) = θw
1−ϕ2

l
,

Cov(lt+1, lt) = ϕlVar lt , , Corr(lt+1, lt) = ϕl

• Short-run volatility:

Et(ut+1) = (1− ϕu)θu , Var t(ut+1) = σ2u ,

E(ut+1) = θu , Var(ut+1) = σ2
u

1−ϕ2
u
,

Cov(ut+1, ut) = ϕuVarut , Corr(ut+1, ut) = ϕu

• Long-run volatility:

Et(wt+1) = (1− ϕw)θw , Var t(wt+1) = σ2w ,

E(wt+1) = θw , Var(wt+1) = σ2
w

1−ϕ2
w
,

Cov(wt+1, wt) = ϕwVarwt , Corr(wt+1, wt) = ϕw

• Real pricing kernel:

Et log nt+1 = −(δr + γrl lt + γruut + γrwwt)

Var t log nt+1 =
(
λrx
)2
ut +

(
λrl
)2
wt + (λruσu)2 + (λrwσw)2

E log nt+1 = −(δr + γruθu + γrwθw)

Var log nt+1 =
(
λrx
)2
θu +

(
λrl
)2
ωu + (λruσu)2 + (λrwσw)2

+
(
γrl
)2

Var(lt) +
(
γru
)2

Var(ut) +
(
γrw
)2

Var(wt)

• Real risk free interest rate:

E(rt) = r̄ + rruθu + rrwθw

Var(rt) = (γrl )
2Var(lt) +

(
rru
)2

Var(vt) +
(
rrw
)2

Var(wt)
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Corr(rt+1, rt) = 1− (1− ϕl)
(
γrl
)2 Var(lt)

Var(rt)
− (1− ϕu)

(
rru
)2 Var(ut)

Var(rt)
− (1− ϕw)

(
rrw
)2 Var(wt)

Var(rt)

• Cross-country moments (symmetric coefficient):14

Cov(xt, x
∗
t ) = Cov(lt, l

∗
t ) + ηεxE(

√
ut
√
u∗t )

Cov(lt, l
∗
t ) =

ηεlE(
√
wt
√
w∗t )

1− ϕ2
l

Cov(vt, v
∗
t ) =

ηεuσ
2
u

1− ϕ2
u

Cov(wt, w
∗
t ) =

ηεwσ
2
w

1− ϕ2
w

• Real depreciation rate:

Et(d
r
t+1) = qrt , E(drt ) = 0 ,

Var(drt+1) = 2[Var(log nt+1)− Cov(log nt+1, log n∗t+1)]

• Inflation:

E(πt) = a+ a2θu + a3θw + a5θv

Var(πt) = a21Var(lt) + a22Var(ut) + a23Var(wt) + a24Var(zt) + a25Var(vt)

Corr(πt+1, πt) = 1− (1− ϕl)a21
Var(lt)

Var(πt)
− (1− ϕu)a22

Var(ut)

Var(πt)
− (1− ϕw)a23

Var(wt)

Var(πt)

− (1− ϕz)a24
Var(zt)

Var(πt)
− (1− ϕv)a25

Var(vt)

Var(πt)

corr(xt+1, πt) = a1
Var(lt)

Stdev(xt)Stdev(πt)
, corr(xt, πt) = corr(xt+1, πt)ϕl

• Nominal interest rate:

E(it) = ῑ+ ruθu + rwθw + rvθv

Var(it) = γ2l Var(lt) + γ2zVar(zt) + r2uVar(ut) + r2wVar(wt) +
(
rv
)2

Var(vt)

Corr(it+1, it) = 1− (1− ϕl)γ2l
Var(lt)

Var(it)
− (1− ϕz)γ2z

Var(zt)

Var(it)

− (1− ϕu)r2u
Var(ut)

Var(it)
− (1− ϕw)r2w

Var(wt)

Var(it)
− (1− ϕv)

(
rv
)2 Var(vt)

Var(it)

14The expressions for cross-country moments greatly simplify if we assume either independence
or perfect correlation in the stochastic volatility processes, ut and wt.
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• Nominal depreciation rate:

Et(dt+1) = qt , E(dt) = 0

Var(dt+1) = 2[Var(logmt+1)− Cov(logmt+1, logm∗t+1)]
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Figure 1: Annualized Inflation and the Nominal Interest Rate, 30-Year Simulation.
Discussion in Section 4.
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Figure 2: Annualized Interest Rate Differential (Forward Premium), 30-Year Sim-
ulation. Discussion in Section 4.
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Figure 3: Log Real and Nominal Exchange Rate, 30-Year Simulation. Discussion
in Section 4.

52



0 50 100 150 200 250 300 350 400
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 
Risk Premium
Expected Depreciation

Figure 4: Currency Risk Premium and Expected Depreciation, 30-Year Simulation.
Discussion in Section 4.
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Figure 5: Log Nominal Exchange Rate and Interest Rate Differential, 30-Year
Simulation. The interest rate differential is USD less GBP. The exchange rate
is “price of GBP.” So, UIP predicts that when the red line is above zero, the
blue line will increase. The profitability of the carry trade is premised upon the
opposite. While it’s obviously not clear from the graph (as in an analogous graph
of data), the latter tends to happen slightly more than the former. The graph also
highlights the riskiness of the carry trade. Variation in nominal exchange rates is
large relative to the interest differential and its components, p and q. This graph
is discussed in Section 4.
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