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Nontechnical Summary

This paper studies the relationship between employment and wage structures in West

Germany based on the IAB employment subsample 1975–1997.

The evolution of age-specific skill wage premia in the German labor market between

1975 and 1997 shows that the age profiles of skill wage differentials have not moved in

parallel fashion over time, but rather experienced a twist. Accordingly, it is unlikely that

these developments are associated merely with age and time effects applying uniformly

to all cohorts. Furthermore, we observe a break in the inter-cohort trend of skill- and

age-specific relative employment such that young birth cohorts do not follow the path of

the older ones towards further skill upgrading. The empirical evidence thus suggests the

existence of cohort effects affecting the evolution of both skill wage premia and relative

employment. Following the testing approach suggested in MaCurdy and Mroz (1995), we

find such cohort effects for both relative employment and wage premia.

A coherent operationalization of wages and employment in a labor demand framework is

generally difficult due to the heterogeneous nature of the input factor labor. We extend

the structural approach of Card and Lemieux (2001). In this set-up based on a nested CES

model, the simultaneous inclusion of skill and age as dimensions of heterogeneity not only

enables the separation of age, time, and cohort effects, but also facilitates the estimation

of a specification with a relatively large number of different input factors. Moreover, the

model incorporates steady skill-biased technical change. We estimate the model with and

without instruments taking account of the endogeneity of both wages and employment.

Our preferred specifications estimate the elasticity of substitution between skill groups to

range between 4.9 and 6.9, and the elasticity of substitution between age groups between

5.2 and 20.1. Compared to the literature, these numbers are rather high. In international

comparison, this finding reflects the fairly small amount of over-all wage dispersion in

Germany as well as the relatively compressed distribution of skills.

Based on the estimated parameters, we conduct some simulation experiments. We sim-

ulate the magnitude of wage changes in the different skill groups that would have been

necessary to reduce skill-specific unemployment rates in 1997 by one half. With wage

changes equal for all age groups within the respective skill classes, this would have left

the wage structure within skill groups unaffected. The necessary nominal wage changes

range between 8.8 and 12.2% and are the higher the lower the employees’ qualification.

This finding provides evidence for the existence of wage compression—relative to a situ-

ation with reduced unemployment, there is too little wage dispersion across the different

skill groups.
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1 Introduction

Numerous empirical studies record descriptive micro-data evidence on the evolution of
wages and employment measures; see the survey article of Katz and Autor (1999). To
capture the heterogeneity of labor, authors usually undertake a grouping into different
classes based on observed covariates like age and sex of employees or on the basis of
job characteristics. Available studies typically report considerable wage dispersion both
between and within adequately defined classes. Variation over time yet generates another
important dimension of heterogeneity.

Particular attention is given to skill wage premia and the evolution of skill-specific em-
ployment. As a stylized fact, the unemployment rate is the higher the lower the (formal)
qualificational level of the employees. In West Germany, for example, the respective rates
for employees without a vocational degree, for those with, and for those with a university
degree were 19.4%, 5.7%, and 2.6% in the year 2000.1

Rigidity of the wage structure is often referred to as a major cause for the different
degrees of incidence of unemployment; compare, e. g., Fitzenberger and Franz (2001). As
elaborated in the discussion about employment impacts of skill-biased technical change
(SBTC; see Katz and Autor, 1999, Acemoglu, 2002), relative demand for low-skilled labor
decreases faster over time than does relative supply. In line with neoclassical demand
theory (Hamermesh, 1993), market clearing would in this case require an increase of
qualificational wage differentials.

Despite the popularity and plausibility of this hypothesis an empirical operationalization
of the interrelation between wage structures and employment that goes beyond mere de-
scriptive evidence proves difficult due to the heterogeneity of labor, among other things.
Conventional empirical analyses of qualificational labor demand typically take into ac-
count only a small number of homogeneous skill groups—mostly not more than three; cf.
the surveys in Hamermesh (1993) and Katz and Autor (1999) and for Germany, e. g., the
studies of Fitzenberger (1999), Steiner and Wagner (1998b), or Falk and Koebel (1999,
2002). These approaches are often justified in light of the fact that satisfactory solutions
to the problem of aggregation do not exist.2 Also, standard approaches based on cost-
minimizing behavior like flexible translog systems, which allow for a larger number of
factors, quickly become impracticable.

Based on US data, Katz and Murphy (1992) analyze wage differentials between high school
and college graduates in the context of supply and demand effects. A CES model proves
compatible with the developments of wage premia and employment over time. These are
consistent with the labor market entry of young and the exit of older birth cohorts on the
one hand and an increase in average educational attainment on the other. The literature
interprets these trends as a race between changes in the skill structure of labor supply and
that of labor demand; cf., for example, Johnson (1997), Topel (1997), and Machin (2002).
However, in addition to the variation of skills between different cohorts, human capital
endowments also change with age. Whereas increasing labor market experience and job

1Cf. Reinberg and Hummel (2002), p. 27.
2For discussions of the problem of aggregation in the context of labor demand estimations see, e. g.,

Koebel (2005) and Katz and Autor (1999).
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tenure augment human capital stocks with age, skill-biased and accelerating structural
change might invalidate individual endowments of older workers. Freeman (1979) and
Welch (1979) thus account for imperfect substitutability between workers of different age
by means of CES technologies for workers from discrete age or “career phase” groups.

Card and Lemieux’s (2001) – henceforth CL – investigation using US, UK, and Canadian
data reconciles the analysis of Katz and Murphy (1992) with those of Freeman (1979) and
Welch (1979). In a set-up which uses the nested CES model developed by Sato (1967) the
simultaneous inclusion of skill and age as dimensions of heterogeneity not only enables
the separation of age, time, and cohort effects, but also facilitates the estimation of a
specification with a relatively large number of different input factors. The estimation
strategy undertaken in particular yields elasticities of substitution both between high
school and college graduates and between workers belonging to different age classes.

The starting point of the study by CL is the observation that the college-high school gap
in wages has increased strongly for younger US men whereas the gap for older men has
remained nearly constant. The driving force for these observed cohort-specific changes
is the slowdown in the growth of college-educated labor which did not keep up with the
steady skill bias in labor demand; see also Autor, Katz, and Kearney (2005) for a recent
reassessment.

Wage trends in West Germany differed from what happened in countries like the US,
UK, or Canada over the last decades. In particular, wage dispersion for male workers did
not increase to the same extent (Prasad, 2004). In fact, skill wage differentials decreased
between workers with and those without a vocational training degree; see Fitzenberger
(1999) and Fitzenberger and Wunderlich (2002). Regarding the differential between work-
ers with a vocational degree and workers with university-type education there is conflicting
evidence; see Steiner and Wagner (1998a), Möller (1999), and Fitzenberger (1999). Little
evidence exists regarding age-related wage differentials. Fitzenberger (1999) and Fitzen-
berger and Wunderlich (2002) find that cross-sectional age profiles became somewhat
steeper for male workers without and for those with a vocational training degree. Accord-
ing to the SBTC hypothesis, skill upgrading in employment should thus have occurred at
a faster rate in Germany compared to countries like the US, the UK, or Canada and, in
the spirit of CL, cohort effects are likely to be of importance in West Germany as well.
There is recent concern that the necessary skill upgrading of the labor force in Germany
is too slow to combat the high unemployment of the low-skilled; see the stylized facts
reported in OECD (2004).

This paper broadens the scope of the nested CES framework and provides estimates based
on the IAB employment sample (IABS) for Germany. While consistently reconciling the
developments of relative wages and employment, our treatment extends upon the existing
literature in several directions. First, we let three skill groups account for heterogeneity
within the qualification dimension. This extension is necessary in light of the coexistence
of vocational training and university education in Germany. Second, we treat the iden-
tification of cohort effects more rigorously. Tests for the existence of cohort effects and
their separability from age and time effects (as suggested by MaCurdy and Mroz, 1995)
are applied to check the validity of the specification. Third, rather than merely running
regressions for skill wage differentials, we estimate a full system of skill and age premia
implied by the nested CES model. Fourth, we take a closer look at the notions of ob-
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served employment and let instrumental variable techniques account for the endogeneity
of both wages and employment. Finally, we draw on the estimated substitution parame-
ters in order to conduct two simulation experiments: We calculate the magnitude of wage
changes in the three skill groups that would have been necessary to halve skill-specific
unemployment rates in 1997 (the latest period available). While allowing for relative
changes between skill groups, this would have left the wage structure within skill groups
unaffected. Due to the particularly high unemployment rate among low-skilled employees
in Germany, the design imposes a disproportionately prominent increase in employment
of this group, and thus is of high policy relevance. Alternatively, one might be inter-
ested in changes of the wage structure within skill groups, holding the structure across
the respective groups constant. Here, the model set-up may provide an answer to the
question how wages for employees of different age would have had to change to reduce all
age-specific unemployment rates by one half.

The remainder of the paper is organized as follows: Section 2 outlines the trends in skill
wage premia and skill-specific employment in the IABS between 1975 and 1997. Following
an investigation into the nature of cohort effects in section 3, section 4 discusses different
facets of the nested CES model which allow for the reconciliation of the stylized empirical
facts, and section 5 estimates elasticities of substitution across and within skill groups.
Based on the resulting parameters, the simulation experiments are presented in section
6. Section 7 concludes.

2 Descriptive Evidence

A number of recent empirical studies provides descriptive evidence for skill wage differ-
entials in the German labor market. Among the analyses—comprising, e. g., Christensen
(2003), Christensen and Schimmelpfennig (1998), Fitzenberger (1999), Fitzenberger and
Wunderlich (2002), Möller (1999), Prasad (2004), Riphahn (2003), Steiner and Mohr
(2000), and Steiner and Wagner (1998a)—there is some consensus that, by and large,
the earnings distribution across skill groups stayed relatively stable during the 1980’s and
1990’s.

A closer look calls for detailed investigations which take into consideration further as-
pects of heterogeneity. In the tradition of Mincer (1974) work experience is an important
additional determinant of individual earnings, and the effects of age—often used as a
proxy for experience—are of interest themselves. Prasad (2004) and Riphahn (2003), for
example, estimate year-specific Mincer equations and depict the evolution of returns to
potential experience. Studies explicitly accounting for the age dimension of wage distrib-
utions examine single cross-sectional age profiles, like Fitzenberger and Reize (2003), or
focus specifically on cohort analyses, as Boockmann and Steiner (2000) or Fitzenberger,
Hujer, MaCurdy, and Schnabel (2001), for example. Beißinger and Möller (1998) account
for the age dimension in the distribution of (un)employment for discrete years between
1980 and 1990.

Our study scrutinizes both wages and employment across the two dimensions skill and age
for the time span 1975–1997. It is based on the IAB employment subsample (IABS), a 1%
random draw of German employment spells subject to social insurance contributions. The
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IABS covers about 80% of all employed persons, and it provides detailed information on
daily wages for blue and white collar workers as well as the exact timing of employment
spells. We classify employees into three skill groups and consider six age classes. An
extensive description of the data and classifications used is given in appendix A.

2.1 Stylized Facts I: The Evolution of Wage Differentials

Age-specific skill wage premia or skill wage differentials rsm,a,t among workers of age a at
time t are defined as the difference in mean log wage of high-skilled (s = h, employees with
a university degree) or low-skilled workers (s = l, employees with neither university nor
vocational training degree) and that of medium-skilled workers (s = m, employees with
a vocational training degree). Using dummy variables ds,a,t for the different skill groups
and possibly controlling for further influences,3 they can be derived from regressions

ln(wa,t) = constanta,t + rl,a,t · dl,a,t + rh,a,t · dh,a,t + controlsa,t + εa,t(1)

in the respective age-time cells. Due to the social security taxation threshold, wage data
in the IABS are censored from above. Thus (1) is estimated by means of Tobit regressions.
Observations are weighted by the length of the respective employment spells. Results are
provided in table 4 in appendix B.

Figure 2 illustrates the evolution of age-specific wage differentials for males over time. Skill
premia generally grow with age. Taking age as a proxy for experience, this corresponds to
classical human capital theory (Becker, 1993). The estimated premia have evolved quite
differently, though.

The education premium for high-skilled employees compared to the medium-skilled stayed
roughly constant for the oldest age class until 1987 and declined by about 9 percentage
points (ppoints) thereafter. The relative position of 30- to 35-year-old high-skilled, on the
other hand, deteriorated by about 9 ppoints during the late 1970’s, partly rose again in
the first half of the 80’s, and stayed constant from 1986 on.

The differential between older medium- and low-skilled workers exhibited a decline of
about 5 ppoints during the eighties and recovered to an overall decline of about 2 ppoints
during the nineties. In the youngest age class this wage premium exhibited an even
higher volatility: Between 1975 and 1986, low-skilled workers on average gained around
6 ppoints compared to the medium-skilled. Later on, the differential increased again and
even exceeded the 1975-level in 1997.

To infer the evolution of age profiles across time, we plot the wage differentials for three
years against the age dimension in figure 3. Average wage differentials between high- and
medium-skilled generally increase rather steeply with age: The premium grows by up to
29 ppoints. However, the shape of the profiles changes over time.

In 1975 the profile is considerably curved, showing especially a pronounced rise for young
individuals. In transition to the mid-1980’s, the curvature declines whilst the profile still

3Cf. appendix A for details on implemented specifications.
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shows a similarly high increase over the entire age span: In particular for middle-aged
workers the premium for higher education declines compared to 1975. Starting in the
second half of the eighties, one observes a twist of the profile. Whereas the increase in
the premium for higher education for workers up to their mid-thirties is much the same in
1997 as in 1986, the profile has become flatter for older employees: The relative position
of older high-skilled workers has deteriorated in comparison to the situation in 1986.

In comparison, the profile of the wage differential between low- and medium-skilled work-
ers is typically much flatter, especially for older workers. The differential declines strongly
for younger workers between 1975 and 1986 and it increases again strongly between 1986
and 1997. But even though the maximum decline—roughly 8 ppoints in 1986—is found
to be small relative to the one experienced by the high-to-medium-skilled differential, the
picture of the developments over time is still striking. In 1975 the average education
premium moderately rose with age, showing increments declining with age. Up to 1986,
the profile shifted downward by about 2–6 ppoints, becoming steeper for younger age
classes. In 1997, however, the profile shows a twisted shape: Whilst the differential for
older workers partly recovered in a parallel kind of manner, the youngest workers now
face a premium increased by 6 ppoints that renders the entire profile nearly flat.

Taking the above results together, we assert a first stylized fact:

Between the mid-1970’s and the mid-1990’s, age profiles of skill wage premia
have not moved in parallel fashion over time. Skill wage premia declined over
time (especially between the 1970’s and 1980’s) in a non-uniform fashion across
age groups.

Thus, the developments are not likely to be the result of pure age and time effects alone.
Cohort effects, i. e., systematic differences across birth cohorts, supposedly play an ad-
ditional important role. Our subsequent theoretical and empirical investigation into the
development of skill wage premia hence takes account of age, time, and cohort effects.

2.2 Stylized Facts II: Trends in Relative Employment

Based on the individual spell data, we use a weighted headcount as our measure of em-
ployment: In each age-time cell, the number of skill-specific employed is summed up,
weighted by the duration of the respective employment spells.

Figure 4 presents relative employment trends for the different age classes. These are the
employment counts of the high- and the low-skilled relative to the employment in the
medium-skill group, respectively. The measures show the skill upgrading over the past
decades: For most of the sample period, both the ratio of high-skilled to medium-skilled
and that of medium-skilled to low-skilled employment were the higher the younger the
respective age class. Furthermore, the skill-intensity of employment has increased over
time. Starting from a situation of uniform skill upgrading in all age classes, however, the
increase of relative employment of the skilled slows down considerably or even comes to
an end at some point in time. Beginning in the mid 1980’s, this break occurs first for the
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youngest age group. It then works through the older classes during the following years
until it affects the oldest employees in the second half of the 1990’s.4

We record a second stylized fact:

There is a break in the inter-cohort trend of relative employment such that
younger birth cohorts do not follow the older ones towards further skill up-
grading.

The empirical evidence thus suggests the existence of cohort effects in the employment
dimension, too.

3 Testing for Cohort Effects

To distinguish age, cohort, and time effects in wage premia ra,t, CL undertake a decom-
position of wage premia by the following regression:

ra,t = ba + ct−a + dt + εa,t(2)

where ba, ct−a, and dt denote age, cohort, and time dummies, respectively. However, one
should be cautious with respect to the identification of wage premia. When separating
cohort effects from pure time and age effects an identification issue arises because the
cohort (defined by the individual’s year of birth) is calendar time minus age.

As a first identification approach, we follow CL by estimating equations (2), setting the
effects for the oldest birth-cohorts (up to 1928) equal to zero. The model is formally
“identified” based on annual data by using five-year age intervals and implicitly assuming
age and cohort effects to be constant within each interval.5 A test for the existence of
cohort effects is then conducted by testing for joint significance of all other cohort terms.
This approach is suggestive from an economic point of view. However, it resolves the
identification problem in a rather ad hoc way; see Heckman and Robb (1985) for a detailed
discussion of the identification issue. We employ an alternative approach introduced by
MaCurdy and Mroz (1995) and also used in Fitzenberger, Hujer, MaCurdy, and Schnabel
(2001) which deals with the identification issue both more explicitly and more rigorously.

Following this approach, we formalize cohort effects as the outcome of interaction between
age and time by allowing for interaction terms of different order. For identification, the

4Note that the approximate zero-growth of the relative employment of high-skilled in the first age
class should not be over-interpreted in our context, because it likely reflects the extension of education
durations and the corresponding deferments of labor market entries during the last decades; cf., for
example, Reinberg and Hummel (1999).

5Boockmann and Steiner (2000) follow a similar identification strategy by defining their cohorts to
span periods of five or ten years. In addition, the study considers actual experience rather than age.
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linear cohort effect is explicitly set to zero.6 To test for the existence of cohort effects, we
estimate the following specification:

rsm,a,t = bsm,a + dsm,t +
4∑

i=1

γi,smRi,a,t + ξa,tKsm,after(ca,t)(3)

+(1− ξa,t)Ksm,before(ca,t) + εsm,a,t, s ∈ {l, h}, ξa,t =

{
1 : ca,t ≥ 0
0 : else

,

using age and time dummy variables as well as year of birth ca,t as cohort variable,
normalized to zero for those aged 25 in the year 1975. The pure, separable cohort effects
for those entering the labor market after and before 1975, respectively, are given by

Ksm,k(ca,t) = δk,1,smc2
a,t + δk,2,smc3

a,t + δk,3,smc4
a,t, k ∈ {after,before}, s ∈ {l, h}.(4)

The terms Ri,a,t capture polynomial interaction terms between age and cohorts in the
time derivative of rsm,a,t as defined in MaCurdy and Mroz (1995).7

As a second specification, we use polynomials of order four in time instead of time dum-
mies. In both specifications separability of age and time effects on the wage differentials
holds if γi,sm = 0 for all i. Under this assumption, additive models can be valid repre-
sentations. Uniform growth in wage ratios holds if additionally the pure effects for the
cohorts after 1975 are equal to zero: γi,sm = δafter,j,sm = 0 for all i, j. In this case, the
existence of cohort effects is denied for those whose entire working life cycle falls into the
observation period. Finally, one may test whether even older cohorts do not face any
cohort effects: γi,sm = δafter,j,sm = δbefore,h,sm = 0 for all h, i, j; see MaCurdy and Mroz
(1995) for further details.

The approach is also applied to test for the existence of cohort effects in the employment
dimension suggested by the graphical inspection in section 2.2. In this case, rsm,a,t in
equation (3) is replaced by ln(Ls,a,t/Lm,a,t).

The detailed estimation results for the cohort effects and the associated tests can be found
in tables 5 and 6 in appendix B. Our major findings are that there is evidence for cohort
effects in skill wage differentials as well as in relative employment measures.8 Yet additive
separability of age, time, and cohort effects in the evolution of wage differentials does
not have to be rejected. Based on these results, the estimation of the structural model
introduced and discussed in the subsequent section is in fact justified.

6It is natural to set the linear cohort effect to zero because in a model with separable age and time
effects and only a linear cohort effect, one only observes parallel shifts of the cross-sectional age profiles
over time; see Fitzenberger, Hujer, MaCurdy, and Schnabel (2001).

7Adapted to our notation, the integrals of interaction terms up to second order are given by R1,a,t =
ca,ta

2
a,t/2 + a3

a,t/3, R2,a,t = c2
a,ta

2
a,t/2 + 2a3

a,tca,t/3 + a4
a,t/4, R3,a,t = ca,ta

3
a,t/3 + a4

a,t/4, and R4,a,t =
c2
a,ta

3
a,t/3 + a4

a,tca,t/2 + a5
a,t/5.

8Since the restrictive decomposition of cohort and age effects in equation (2) following CL is rejected,
we do not discuss the associated results. Though, if accepted as such, this approach suggests the existence
of cohort effects as well.
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4 Estimation Framework

Building on the stylized facts, we follow CL in applying a model based on the two-level
CES production function developed by Sato (1967). The model treats not only workers
with different educational attainment, but—well in line with the conjectures of Freeman
(1979) and Welch (1979)—also similarly educated workers of different age as imperfect
substitutes. Given factor remunerations according to their respective marginal products,
it can be transformed into relative wage equations which permit to separate age, time,
and cohort effects on the wage gaps—and therefore provides an analytical framework to
link the stylized facts outlined above.

Our study extends the analysis of CL in several directions. First, we consider the three
skill groups introduced above. Second, we do not only look at skill premia, but also take
account of age premia implied by the model. When estimating the model, these two points
require system estimation techniques. Third, we additionally allow for the possibility of
cohort effects in age-specific productivity terms. Fourth, we are concerned with possi-
ble endogeneity of employment and estimate the model with and without instrumental
variables.

4.1 The Two-Level CES Model

The Sato (1967) framework suggests a CES model of aggregate production yt:

yt =
(
θl,tL

ρ
l,t + θm,tL

ρ
m,t + θh,tL

ρ
h,t

) 1
ρ ,(5)

where Ls,t, the measures of employment in skill group s and period t, themselves are CES
subaggregates of the skill- and time-specific employment quantities Ls,a,t of individuals in
age groups a:

Ls,t =

[∑
a

φs,aL
π
s,a,t

] 1
π

, s ∈ {l,m, h}.(6)

The productivity parameters θs,t covering the usual CES distribution parameters as well
as the (relative) efficiency terms of the different skill groups are allowed to vary over
time to capture (skill-biased) technical change, and φs,a map the productivities of the
different age classes within the skill classes.9 σS = 1/(1− ρ) and σA = 1/(1− π) denote
the elasticity of substitution between two skill groups and the elasticity of substitution
between different age groups within the same skill group, respectively.

Let wages be determined by the respective marginal products:

ws,a,t

ws̃,ã,t

=

∂yt

∂Ls,a,t

∂yt

∂Ls̃,ã,t

=
θs,t · Lρ−π

s,t · y1−ρ
t · φs,a · Lπ−1

s,a,t

θs̃,t · Lρ−π
s̃,t · y1−ρ

t · φs̃,ã · Lπ−1
s̃,ã,t

(7)

9Note that the evolution of the relative efficiency terms over time captured by trends in θs,t also
includes drifts in the overall efficiency of age-specific labor that are common across all age groups but
may vary across skill classes. Any changes, e. g., in capital endowments affecting the productivity of the
different skills implicitly enter this way.
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for all s, s̃ ∈ {l, m, h} and a, ã ∈ {27, ..., 52}. Then age-specific skill premia rss̃,a,t =
ln(ws,a,t/ws̃,a,t) result as

rss̃,a,t = ln

(
θs,t

θs̃,t

)
+ ln

(
φs,a

φs̃,a

)
− 1

σA

ln

(
Ls,a,t

Ls̃,a,t

)
+

[
1

σA

− 1

σS

]
ln

(
Ls,t

Ls̃,t

)
, s 6= s̃.(8)

Moreover, the production technology specifies the skill-specific wage premia across age
rs,aã,t = ln(ws,a,t/ws,ã,t) as

rs,aã,t = ln

(
φs,a

φs,ã

)
− 1

σA

ln

(
Ls,a,t

Ls,ã,t

)
, a 6= ã.(9)

Note that CL base their empirical analysis just on (8) whereas our study considers all
information implied by both (8) and (9).

The occurrence of perfect substitutability between different age groups, i. e., σA → ∞,
nests the standard case of a CES with skill groups being homogeneous in the age dimen-
sion.10 One would expect substitutability to be higher within skill groups than across,
i. e., σA > σS. In this case both age group-specific relative employment ln(Ls,a,t/Ls̃,a,t) and
aggregate relative employment ln(Ls,t/Ls̃,t) exert a negative impact on the skill premia in
(8).

Moreover, rewriting equation (8) as

rss̃,a,t = ln

(
θs,t

θs̃,t

)
+ ln

(
φs,a

φs̃,a

)
− 1

σS

ln

(
Ls,t

Ls̃,t

)
− 1

σA

[
ln

(
Ls,a,t

Ls̃,a,t

)
− ln

(
Ls,t

Ls̃,t

)]
(10)

unveils the nature of incorporated cohort effects. If ln(Ls,a,t/Ls̃,a,t) − ln(Ls,t/Ls̃,t) varies
over time, there are cohort effects in relative employment in the sense that age-specific
relative employment evolves differently from the aggregate measure.11 If, in addition, σA

is finite, then differences in cohort size affect rss̃,a,t through the term in brackets.

To show that cohort effects identify σA, consider the general decomposition

ln

(
Ls,a,t

Ls̃,a,t

)
= ψ̃ss̃,a + µ̃ss̃,t−a + ν̃ss̃,(a,t−a)(11)

such that the model involves year- (index t), age- (index a), and cohort-specific (index
t− a) effects. Then,

rss̃,a,t = ln

(
θs,t

θs̃,t

)
+

[
1

σA

− 1

σS

]
ln

(
Ls,t

Ls̃,t

)
+ ln

(
φs,a

φs̃,a

)
− 1

σA

ψ̃ss̃,a

− 1

σA

(
µ̃ss̃,t−a + ν̃ss̃,(a,t−a)

)

≡ λss̃,t + ψss̃,a + µss̃,t−a + νss̃,(a,t−a), s 6= s̃.(12)

10Note that this occurrence does not preclude differences in the productivity parameters φs,a across
age groups.

11This is what has been tested explicitly in section 3 using the MaCurdy and Mroz (1995) approach.
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Observe that equations (3) and (4) used to test for cohort effects in section 3 are flexible
parameterizations of (12). It is clear that the identification of σA depends on the existence
of cohort size effects.

By disregarding variations of age-specific productivity φs,a over time, any cohort effects
found in the skill wage premia are implicitly attributed to changes in labor quantities.
This assumption is suited in light of our main focus to operationalize the relationship
between relative wages and employment, and it is not contradicted by the test results of
section 3; compare also Juhn, Murphy, and Pierce (1993) and Welch (1979). Yet we also
show how it can be relaxed in section 4.3 below.

Apart from being operational for a large number of input factors, being consistent with
a neoclassical production function is a great merit of the CES framework. The two-
level CES offers the additional advantage that it accounts for an important aspect of
heterogeneity within the skill groups: Workers of different age are allowed to be imperfect
substitutes.12

4.2 Empirical Implementation

Equations (8) and (9) specify all wage ratios rss̃,aã,t across skill and age groups for given
t; see figure 1.13

Figure 1: System Structure of Wage Ratios

 

27 32 37 42 47 52 

l 

m 

h 

 

Knots: input factors. Solid lines: age-specific skill wage premia; dashed lines: skill-specific age premia.

The solid lines correspond to the age-specific skill wage premia in equation (8), the dashed
lines to the skill-specific age premia in equation (9). With a total of 3×6 = 18 input factors

12Prima facie, one might judge the model’s functional form restrictive. In particular, the elasticities of
substitution between (identically skilled) workers of different age are restricted to be all equal, so that,
say, a 55-year-old executive can be replaced by an experienced 50-year-old as well as by a 25-year-young
entrant. However, the model is well-suited to tell apart the effects of the two dimensions age and time.
In contrast to feasible translog systems, for example, its age×time dimensioning allows to incorporate a
relatively large number of input factors. For discussions on functional specification and aggregation see,
e. g., Koebel (2005).

13One could also write down wage ratios across time based on the CES production function. However,
the output in different time periods yt would not cancel.
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(knots), the system implies 6× 3 = 18 age-specific skill premia plus 3× 5(5− 1)/2 = 45
skill-specific age premia, adding up to 63 possible equations. However, there are only
17 independent wage ratios (lines). The additional 46 ratios are redundant in the sense
that they can be expressed by means of the 17 independent ones.14 For example, the
wage differential between high-skilled and medium-skilled workers on the one hand and
the differential between medium-skilled and low-skilled on the other hand add up to the
differential between the high-skilled and the low-skilled, i. e., rhl,a,t = rhm,a,t + rml,a,t.
Analogously, age premia add up; for example, rs,3727,t = rs,3732,t + rs,3227,t.

The adding-up constraints translate to cross-equation restrictions in the estimation of the
system. Our basic approach is to estimate the full-rank system (17 ratios) by means of
Feasible GLS (FGLS).15 In order to achieve invariance with respect to the choice of the
excluded equations, we estimate the 63-equation system by System OLS (SOLS) at the
first stage. As compared to the approaches pursued in the literature so far, the inclusion
of equations for age premia (9) promises more accurate estimation of, in particular, σA.
The following paragraphs describe the estimation strategy in more detail.

The two-level CES basically entails nonlinear system equations. However, estimation can
be achieved by estimating linear models in three steps:16

(1) Estimate the equation system

rss̃,a,t = bss̃,a + dss̃,t − 1

σA

ln

(
Ls,a,t

Ls̃,a,t

)
+ εss̃,a,t, s 6= s̃(13)

rs,aã,t = bs,aã − 1

σA

ln

(
Ls,a,t

Ls,ã,t

)
+ εs,aã,t, a 6= ã(14)

to obtain an estimate for 1
σA

, which is equal across equations. At this step, the
first-stage SOLS contains the full set of 63 equations, but the system rank, i. e., the
number of equations estimated in the second stage of FGLS, is reduced to 15: in
comparison with the above number of 17 independent ratios, one additional degree is
lost for each of the two estimated skill ratios due to the inclusion of the skill-specific
time dummies dss̃,t.

(2) SOLS estimation of the 18-equation system

ln(ws,a,t) +
1

σ̂A

ln(Ls,a,t) = ds,t + ln(φs,a) + εs,a,t(15)

then provides estimates of φs,a and allows to calculate the skill group aggregates
Ls,t defined in (6).

14There exist even more redundant wage ratios across both age and skill (rss̃,aã,t, s 6= s̃, a 6= ã).
15As will become evident below, there are also cross-equation restrictions within the non-redundant

part.
16In general, the model can be estimated in one step using nonlinear techniques. Following CL, we

proceed in three steps to avoid numerical difficulties. This is the only viable alternative because we apply
bootstrapping to obtain standard errors.
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(3) Finally, the entire model—equations (9) and (10) extended by additive error terms—
can be estimated, using the generated aggregates and taking account of the cross-
equations restrictions concerning 1/σA and 1/σS. Again, first-stage SOLS employs
all 63 equations, but now FGLS uses 17 equations as explained above.

FGLS makes use of the covariance of the error terms across equations within a year.
The relative productivity of workers over time, ln(θs,t/θs̃,t), is assumed to follow a linear
time trend. This approach captures the steady demand hypothesis (Acemoglu, 2002)—
the steady shift towards a higher relative demand for more highly skilled labor reflects a
constant rate of SBTC.17

Concerning the age-productivity within skill groups, φs,a, two specifications are possible:
First, ln(φs,a/φs̃,a) and ln(φs,a/φs,ã) can be estimated freely at the third step, using age
dummies in analogy to the first step (model version (a)). Alternatively, φs,a may be treated
as predetermined by the estimate from the second step (model version (b)). Furthermore,
a version (c) would treat σA at the third step as predetermined by first-step estimate,
and finally, both φs,a and σA can be taken as predetermined from previous steps (version
(d)). We compare the four versions (a) to (d) in a Monte Carlo study in appendix C. By
and large, version (a) performs best in terms of closed point estimates and minimum root
mean squared error. All of our estimations thus use this specification.

To account for estimation error in all steps of the estimation approach, we obtain bootstrap
standard errors (details can be found in appendix D). This is crucial because the third
step estimates are based on the generated regressor Ls,t.

4.3 Model Relaxations and Extensions

We consider two types of model relaxations (specification tests) of the tight specification
of the production technology introduced in section 4.1. First, we allow for elasticities of
substitution between age groups being different across skill groups by replacing (6) with

Ls,t =

[∑
a

φs,aL
πs
s,a,t

] 1
πs

, s ∈ {l, m, h}.(16)

The third step now estimates

rss̃,a,t = bss̃,a + βss̃t− 1

σS

ln

(
Ls,t

Ls̃,t

)
− 1

σAs

ln

(
Ls,a,t

Ls,t

)
+

1

σAs̃

ln

(
Ls̃,a,t

Ls̃,t

)
+εss̃,a,t(17)

rs,aã,t = bs,aã − 1

σAs

ln

(
Ls,a,t

Ls,ã,t

)
+ εs,aã,t.(18)

17See also Murphy and Welch (1992, 2001) and Card and DiNardo (2002) regarding the pros and cons
of this hypothesis. We also experimented with modeling breaks in SBTC which might have resulted from
German unification; compare the discussion of results in section 5.
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This relaxation is quite plausible and the hypothesis σAs = σA for all s ∈ {l, m, h} is
easily tested.

A second relaxation, regarding additionally the uniform elasticity of substitution between
skill groups, can be implemented at the third step replacing (9), (10) by

rss̃,a,t =bss̃,a+βss̃t− 1

σSs

ln(Ls,t)+
1

σSs̃

ln(Ls̃,t)− 1

σAs

ln

(
Ls,a,t

Ls,t

)
+

1

σAs̃

ln

(
Ls̃,a,t

Ls̃,t

)
+εss̃,a,t(19)

rs,aã,t =bs,aã − 1

σAs

ln

(
Ls,at

Ls,ãt

)
+ εs,aã,t(20)

and testing whether σSs = σS for all s ∈ {l,m, h}. Note however that this ad hoc
relaxation abandons the theoretical consistency of the model and has to be viewed as a
specification test. The parameters σSs are no longer elasticities of substitution.

The model specifications discussed so far are referred to as “benchmark version (i)”. Next,
we describe the model versions (ii) to (ix) which are estimated as extensions of (i) as part
of our extensive sensitivity analysis. Table 7 in the appendix conveniently summarizes all
estimated versions.

As discussed in section 4.1, a further type of cohort effects could arise if age-specific
productivity φs,a were allowed to vary with time. This case would match an age bias
in the evolution of the returns to (i. e., the price of) experience over time: There might
be differential trends in the relative productivity of different age groups thus implying
an age/cohort bias in technological progress (see footnote 9). The separability of these
particular productivity components from the time effects captured by the educational skill
measure θs,t has to rely on further functional form assumptions; cf. the discussion about
the identification of cohort effects in section 3. A simple and convenient form is to assume
multiplicative interaction of age or cohort and time. Then, equation (6) is replaced by

Ls,t =

[∑
a

φs,a exp(δszt)L
π
s,a,t

] 1
π

, s ∈ {l, m, h},(21)

where z = a (version (ii)) or z = t − a (version (iii)), respectively. Then, equations (9),
(10) become

rss̃,a,t = bss̃,a+βss̃t+(δs−δs̃)zt− 1

σS

ln

(
Ls,t

Ls̃,t

)
− 1

σA

[
ln

(
Ls,a,t

Ls̃,a,t

)
− ln

(
Ls,t

Ls̃,t

)]
+εss̃,a,t(22)

rs,aã,t = bs,aã + δs(z − z̃)t− 1

σA

ln

(
Ls,a,t

Ls,ã,t

)
+ εs,aã,t,(23)

where z̃ = ã (version (ii)) or z̃ = t− ã (version (iii)), respectively. We test for significance
of the additional parameters δs.
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Further sensitivity tests are straightforward. Following CL, we estimate the limited in-
formation version (iv) which involves estimating solely equation (10) for skill wage differ-
entials but disregards the skill-specific age premia (9). Version (v) excludes the youngest
group of university graduates (25 to 29 years old) because the descriptive results in section
2.2 showed quite different trends for this group. Version (vi) examines possible breaks in
the SBTC trends caused by German unification in 1990.

As comparison with a traditional CES model we estimate model version (vii) with σA

being restricted to infinity. Focusing on the estimation of σS, this version still allows
for productivity differences across age. Moreover, we estimate a traditional CES model
(version (viii))

rss̃,t = constantss̃ + βss̃t− 1

σS

ln

(
Ls,t

Ls̃,t

)
+ εss̃,t, s 6= s̃,(24)

again testing for uniqueness of σS. Here, time-specific mean wage differences rss̃,t =
ln(ws,t/ws̃,t) are calculated as a weighted average

rss̃,t =
1

Ls,t + Ls̃,t

∑
a

(Ls,a,t + Ls̃,a,t)(ωs,a,t − ωs̃,a,t), s 6= s̃(25)

of time- and age-specific differences ωs,a,t pre-estimated by period specific Tobit regressions

ln(wt) =
∑
s

∑
a

ωs,a,t · ds,a,t + controlst + εt ,(26)

where ds,a,t indicate dummies for the different skill×age groups. Alternatively, version (ix)
obtains skill differentials rsm,t directly from standard regressions which include separate
skill and age dummies:

ln(wt) = rlm,t · dl,t + rhm,t · dh,t +
∑
a

$a,t · da,t + controlst + εt.(27)

In contrast to the previous versions, (viii) and (ix) average out the age dimension before
estimating the elasticity of substitution and Ls,t measures aggregate employment as a
headcount rather than in efficiency units. Hence, the resulting elasticities should be
comparable to those found in the literature for employment in persons.

4.4 Endogeneity of Employment

The different measures of employment (headcounts for Ls,a,t and efficiency units for Ls,t)
are crucial here. The estimation approach builds on inverting labor demand and the liter-
ature (e. g., CL for the US, UK, and Canada) assumes equality of demand and (effective)
supply and supply being inelastic in the short run. Market clearing is highly question-
able in the case of Germany, since it disregards unemployment driving a wedge between
demand and supply of labor.
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Moreover, both observed wage premia, i. e., the relative price of skilled labor, as well as
observed relative employment generally result as outcomes of all labor market processes—
and should therefore be treated as endogenous in the empirical implementation. Endo-
geneity of employment follows, for instance, in wage-setting models with right-to-manage
(RTM) assumption or efficient bargaining, in which wage bargaining takes account of the
firms’ employment decisions (McDonald and Solow, 1981, Nickell and Andrews, 1983,, or
Arnsperger and de la Croix, 1990).

Under the RTM assumption—in contrast to efficient bargaining—observations on wages
and employment lie on the demand curve. Then, the coefficient on relative employment
−1/σ in any of the models above represents the (negative) relationship between wage
premia rss̃ = ln(ws/ws̃) and relative employment ln(Ls/Ls̃) on the demand schedule. Un-
observed shocks in output demand affect wages and employment in the same direction.
Such shocks render relative employment endogenous and dilute the negative labor demand
relation. Least squares estimation then yields (in absolute terms) downward-biased esti-
mates of the true relationship or, put differently, upward-biased estimates for the elasticity
of substitution σ.

As a remedy, we implement an instrumental variable (IV) approach. As instruments, we
use measures of labor supply, which is assumed inelastic in the short run, possibly due to
past human capital investment (Katz and Autor, 1999 and CL).18 We compile measures
of skill×age-specific labor force numbers Lsupply

s,a,t and aggregate numbers Lsupply

s,t =
∑

a Lsupply

s,a,t

from German Microcensus data available at the Federal Statistical Office and estimate a
system of IV equations with equation-specific instruments as follows.

To instrument age-specific employment Ls,a,t at the first and the third step of the estima-
tion approach, we have the 3× 6 = 18-equation system

ln (Ls,a,t) = αs,a + ds,t +
∑

s̃

αs̃s ln
(
Lsupply

s̃,a,t

)
+ εs,a,t(28)

with skill×age-specific intercepts αs,a, skill-specific time dummies ds,t, and the impact αs̃s

of the excluded instruments Lsupply

s̃,a,t .19 The system (28) is also estimated first by SOLS and
subsequently by FGLS in order to increase efficiency.20 We then use predicted employment
values L̂s,a,t from (28) at the first and at the third step of the estimation approach; see
appendix D for estimation of the covariance of this sequential estimator.

At the third step, we additionally instrument aggregate employment Ls,t based on

ln (Ls,t) = αs + βst +
∑

s̃

αs̃s ln
(
Lsupply

s̃,t

)
+ εs,t(29)

18Accounting for the endogeneity of relative employment is also crucial as traditional demand analysis
treats prices/wages as exogenous (Hamermesh, 1993).

19For versions (ii) and (iii), the equations of (28) also involve the terms αsat and αs(t−a)t, respectively.
20Due to the cross-equation restrictions for the time dummies ds,t, the rank of the system covariance

matrix is reduced to 15, which does not allow us to estimate freely all age specific intercepts αs,a with
FGLS. Therefore, we replace the skill×age dummies αs,a with skill-specific age polynomials of order three.
The SOLS estimates for αs,a do not differ significantly from polynomials of order three in age.
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with skill-specific intercepts αs, skill-specific linear time trends βst, and αs̃s as coefficients
of the excluded instruments Lsupply

s̃,t .21 In this case, there are no cross-equation restrictions

and the estimation by SOLS and FGLS is straightforward. Predicted values L̂s,t based
on (29) are used at the third step of the estimation approach.

Results for the IV equations and tests for significance of the excluded instruments are
displayed in tables 11 and 12 in appendix B. The excluded instruments are jointly sig-
nificant both for age-specific employment and aggregate employment, which we take as
sufficient evidence in favor of our IV estimation approach. Note, however, that lack of
individual significance is often the case, especially for aggregate employment.

5 Estimation Results

We estimate the model versions (i) to (ix) described in section 4.3 (see table 7 for a
short description). Tables 8 to 10 comprise the estimates of the substitution parameters
estimated at the first and at the third step and report the results of specification tests.

5.1 Preferred Specifications

Table 1 shows estimates of our preferred specifications (i), (ii), and (iii). Recall that
version (i) is the benchmark specification and versions (ii) and (iii) allow for cohort effects
in age-specific productivity.

In effect, the estimated elasticity σA usually proves finite, meaning that the estimated
1/σA is significantly positive: Employees of different age are imperfect substitutes. The
structural model consistently mirrors the dimensions of cohort effects uncovered by the
descriptive inspection in section 2. The preferred specifications in table 1 let the elasticity
between age groups σAs vary across skill classes (relaxation 1), but stick to a single
elasticity of substitution across skill classes σS. The assumption of identical σA turns out
overly restrictive in almost all cases; compare the test results in tables 8 and 9. However,
differences in σSs across skill groups are significant in most cases for FGLS, but no so for
FGLS-IV. Moreover, the restricted FGLS-estimate for σS provides reasonable estimates
of the average σSs. Imposing the restriction of a uniform σSs does not affect σAs in a
noticeable way. For these reasons, we will focus on the restricted estimates.

Regarding instrumentation, we find only little differences in the point estimates for σAs.
Yet the IV estimates for σS are considerably reduced. Along the reasoning of the previous
section, unobserved shocks affect particularly aggregate relative employment, rendering
this measure endogenous and estimation of σS without instruments inconsistent. Not
surprisingly, though, the estimated standard errors are higher in case of IV estimation
such that in some cases σS is not statistically different from 1.22

21In case of the model version (iv), the equations of (29) further include skill-specific breaks in the
linear time trends.

22Large standard errors of our estimates may result for various reasons: First, the aggregate employment
measures included at the third step are pre-generated regressors, the variation of which the bootstrap
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Table 1: Elasticities of Substitution, Preferred Specifications of the Nested CES

model version (i) (ii) (iii)
Estimation FGLS FGLS-IV FGLS FGLS-IV FGLS FGLS-IV

l 8.58 10.31 9.18 9.44 9.20 8.68
(0.67) (1.64) (0.74) (1.62) (0.74) (1.40)

σA m 4.81 5.27 5.23 6.01 5.22 5.38
(0.32) (0.66) (0.38) (0.86) (0.37) (0.73)

h 19.52 20.13 10.36 8.50 10.15 8.59
(5.87) (11.11) (1.98) (2.57) (1.83) (2.63)

σS 9.36 6.15 9.49 6.97 6.32 4.91
(0.91) (2.87) (0.93) (2.85) (0.55) (1.54)

Model versions: (i) benchmark model; (ii) with age×time interaction in age-specific productivity; (iii)
with cohort×time interaction in age-specific productivity. Standard errors in parentheses based on 500
bootstrap repetitions. Bold numbers: Elasticities finite (inverses significant at 0.95 level). Data sources:
IABS 1975–1997, German Microcensus.

Our estimates of σS, ranging from 4.9 to 6.9 in case of IV, imply a rather high degree of
substitutability compared to findings in the related literature; cf. the surveys in Hamer-
mesh (1993) and Katz and Autor (1999). CL report elasticities of substitution between
college graduates and high school graduates for Canada, the UK, and the US between 2
and 2.5.23 In international comparison, our high elasticities are likely to reflect the small
amount of over-all wage dispersion as well as the more compressed distribution of skills
in Germany; cf. Nickell and Bell (1996) and Freeman and Schettkat (2001). Comparable
studies for Germany also take account of three skill types, but they find elasticities not
higher than 3.6.24 Differences in the estimates may be attributed to the selection of data
or the model’s functional form. We address this issue when discussing additional model

procedure takes account of. Second, FGLS instrumentation has to account for the estimation error in
earlier estimation steps. Third, we lose precision by instrumentation. The labor force numbers taken
to instrument employment do not differ strongly from linear time trends such that especially σS , the
coefficient of predicted aggregate employment, is difficult to estimate precisely.

23Other studies quantifying elasticities for the US present σ-estimates within a similar range: Autor,
Katz, and Kearney (2005), also applying a nested CES model, report elasticities around 1.6. Bound and
Johnson (1992), Katz and Murphy (1992), and Krusell, Ohanian, Rios-Rull, and Violante (2000) report
1.8, 1.4, and 1.7, respectively. Ciccone and Peri (2005) prefer a span between 1.2 and 2.2, and Stapleton
and Young (1988) note a value of 3.0.

24Fitzenberger and Franz (2001) estimate elasticities of substitution between medium- and low-skilled
of 0.6–1.4 for manufacturing and of 3.0–3.6 for non-manufacturing industries, while Steiner and Wagner
(1998b) and Steiner and Mohr (2000) report values for all three classes of merely 0.3–0.5 for manufacturing
and 1.4 for construction and transportation. Falk and Koebel (1999, 2002) find at most substitutability
between medium- and low-skilled employees, whereas Koebel, Falk, and Laisney (2003) bilaterally classify
high- and medium-skilled as well as medium- and low-skilled as substitutes, but they find complementarity
between low- and high-skilled employees. Entorf (1996) finds elasticities between 0.5 and 1.5 for blue and
white collar workers and Beißinger and Möller (1998) of 1.8 for males and 3.3 for females.
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specifications in the next section.

Employees with different skill levels are more difficult to substitute than those with identi-
cal skill levels. The substitutability across different age groups with values of σAs between
5.3 and 8.6 (version (iii), IV) is lowest among the medium-skilled.25 This finding supports
the view that low-skilled employees, mainly in positions which do not require intensive
training, can be substituted relatively easily. Contrary to the hypothesis that substi-
tutability between young and old workers diminishes (monotonically) with educational
attainment (Welch, 1979),26 an analogous reasoning applies to university graduates of
different age, whose education is often said to provide them with a high competence in
general problem solving. Workers with a vocational degree, however, qualify for specific
tasks such that, say, younger colleagues can substitute older workers less easily.

5.2 Sensitivity Analysis

Tables 8 to 10 report the results for all different model versions. First of all, table 10
reports the outcomes of models which assume perfect substitution across age classes.
Estimates of the nested CES with σA restricted to infinity at the third step (version
(vii)) as well as from the CES model (viii), which still incorporates age×skill specific
intercepts, are very close to the above results. However, we get lower estimates of σS

between 3.7 (IV) and 4.9 (no IV) from a traditional CES model (ix), which does not
allow for age×skill interaction. On the one hand, the fact that the latter estimate is still
relatively high in comparison with the literature suggests that prime age males are indeed
a relatively homogeneous group. On the other hand, the finding that all specifications
(i) to (viii) yield higher elasticities than the more restrictive version (ix) warrants the
conclusion that models (including those in the literature) disregarding differences in the
relative productivity of the different age classes incorrectly attribute too much variation
in (relative) wages to changes in (relative) employment.

Second, disregarding the equations for age premia as in version (iv) in table 9 basically
leaves σS unchanged, while estimates for σA increase. Since this approach does not use
the full information content of the system, we consider these results to be less reliable.

Third, the additional interaction terms in versions (ii) and (iii) in table 8 are significant in
most cases. Thus, there is evidence for cohort effects in age-specific relative productivities
in addition to the cohort effects in relative employment. Yet the resulting elasticities are
comparable to those obtained from the benchmark model (i). If anything, σAh is lower in
the versions with interactions (ii) and (iii).

Fourth, while we have so far assumed a constant rate of SBTC, we also estimated breaks
in the linear time trends to capture a possible slowdown or an increase in SBTC resulting

25σAm even turns out lower than σS in several specifications reported in tables 8 and 9.
26Studies for the US report a much higher degree of substitutability between age classes within the

group of high school graduates than among those with a college degree: Freeman (1979) finds elasticities
of 14 and 2, respectively (even if the estimated reciprocals of both values show insignificant). Stapleton
and Young (1988) note amounts of 73.6 (reciprocal insignificant) and 2.5. CL do not find any significant
differences, though. They report significantly finite values of σA in the range of 4–6. Our higher estimates
then reflect a higher degree of homogeneity within the skill groups defined for Germany, compared to
that within the college and high school groups pertinently classifying Anglo-Saxon education systems.
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from German unification. The corresponding breaks generally turned out insignificant;
see the results for version (vi) in table 9. Finally, the results do not change notably either
when we exclude the particular group of 25–29-year-old university graduates27 from the
analysis; see version (v) in table 9. We are thus somewhat confident about the results of
our preferred specifications in table 1.

6 Simulation Experiments

In light of the ongoing policy debate about cures for unemployment and the creation of
employment, estimates from the above structural model can be used to assess the effect
of wage changes on employment by means of simulation experiments.

First, and similar to the experiment conducted by Fitzenberger and Franz (2001), we
estimate the magnitude of wage changes in the three skill groups that would be necessary
to induce, say, a reduction of unemployment rates by one half in all three skill groups. Due
to the particularly high unemployment rate among the low-skilled,28 this design enquires
about a disproportionately sizeable increase in employment of that deprived group, and
thus is of high policy relevance. The relative wage changes are assumed to be equal for
all age groups within the respective skill groups: ∆ ln(ws,a) = ∆ ln(w̄s) for all a. While
allowing for relative changes between skill groups, this leaves the wage structure within
skill groups unaffected.

The calculations are done for the latest available year 1997. The time index t is omitted
for notational simplicity. We use a first order Taylor approximation of overall employment
in each skill group s as the sum of employment in the respective age groups a:

L∗s =
∑
a

L∗s,a =
∑
a

(
Ls,a +

∑

s̃

∑

ã

∂Ls,a

∂ ln(ws̃,ã)
∆ ln(ws̃,ã)

)
, s ∈ {l, m, h},(30)

where L∗s, L∗s,a are the employment targets consistent with the goal to reduce unemploy-
ment rates by one half. Drawing on the wage elasticity of labor demand

ηss̃,aã =
∂Ls,a

∂ws̃,ã

ws̃,ã

Ls,a

=
∂ ln(Ls,a)

∂ ln(ws̃,ã)
=

∂Ls,a

∂ ln(ws̃,ã)

1

Ls,a

,(31)

equation (30) can be written in terms of relative changes:

∆Ls

Ls

=
L∗s − Ls

Ls

=
∑
a

Ls,a

Ls

∑

s̃

∑

ã

ηss̃,aã∆ ln(ws̃,ã).(32)

The relationship between wage elasticities ηss̃,aã, Allen-Uzawa elasticities of substitution
σss̃,aã, and cost shares Ss,a implied by cost minimizing behavior of employers is given by

ηss̃,aã = Ss̃,ãσss̃,aã + Ss̃,ãη for a 6= ã ∨ s 6= s̃,(33)

27Compare footnote 4.
28The skill-specific and age-specific rates of unemployment in West Germany our simulations make use

of are displayed in appendix A.
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where η denotes the price elasticity of product demand and

ηss,aa = η −∑

s̃

∑

ã 6=a

ηss̃,aã −
∑

s̃6=s

ηss̃,aa = Ss,aη −
∑

s̃

∑

ã 6=a

Ss̃,ãσss̃,aã −
∑

s̃ 6=s

Ss̃,aσss̃,aa;(34)

see, e. g., Hamermesh (1993). Based on the nested CES production function, inter-class
Allen-Uzawa partial elasticities of substitution and intra-class elasticities,29 write

σss̃,aã = σS for s 6= s̃, and σss,aã = σS +
1

Ss

(σA − σS) for a 6= ã.(35)

On principle, cost shares for the nested CES model can be derived directly from the model
via Shepard’s Lemma as functions of the productivity parameters θs and φs,a and wages
ws,a; cf., for example, Chung (1994). Yet the actual calculation fails this way due to
the underidentification of the productivity parameters. Hence, we employ observed cost
shares

Ss,a =
ws,aLs,a∑

s̃

∑
ã ws̃,ãLs̃,ã

and Ss =
∑
a

Ss,a.(36)

The targeted relative change of employment can be inferred from the unemployment rates
urs = Us/WFs = 1− Ls/WFs, where Us and WFs denote unemployment and work force
in skill group s, respectively:

∆Ls

Ls

=
L∗s − Ls

Ls

=
(0.5WFs + 0.5Ls)− Ls

Ls

= 0.5
urs

1− urs

.(37)

As η we take a weighted average of the elasticities estimated by Fitzenberger and Franz
(2001) separately for the manufacturing and the non-manufacturing sector, with employ-
ment ratios in the respective sectors as weights.

Since we set ∆ ln(ws,a) = ∆ ln(w̄s) for all a, the system (32) yields unique solutions for
the necessary wage changes based on our estimation results. The calculation of standard
errors is based on the errors of the estimated parameters.

Alternatively, one might be interested in changes of the wage structure within the skill
groups, holding the structure across the respective groups constant. In this context, the
model set-up allows us to answer the question how the wages for employees of differ-
ent age would have to change—identically in all skill groups—to reduce all age-specific
unemployment rates ura = Ua/WFa = 1− La/WFa by one half.

In analogy to (30), we write

L∗a =
∑
s

L∗s,a =
∑
s

(
Ls,a +

∑

s̃

∑

ã

∂Ls,a

∂ ln(ws̃,ã)
∆ ln(ws̃,ã)

)
, a ∈ {27, ..., 52}.(38)

29For model relaxation (16), σA in equation (35) has to be replaced by σAs.
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Now assuming ∆ ln(ws,a) = ∆ ln(w̄a) for all s, the system

∆La

La

=
L∗a − La

La

=
∑
s

Ls,a

La

∑

s̃

∑

ã

ηss̃,aã∆ ln(w̄ã)(39)

can be solved for the necessary wage changes within the skill groups.

To evaluate the respective real magnitudes of the wage changes, we calculate the price
adjustments induced by the nominal wage reductions. Here, the assumption of profit
maximizing behavior under monopolistic competition takes account of endogenous output
effects. We consider the Amoroso-Robinson relation for the output price level p and a
constant elasticity of product demand η,

(
1 +

1

η

)
p = MC, such that d ln(p) = d ln(MC),(40)

with marginal costs

MC =
∑
s

∑
a

ws,a
∂Ls,a

∂y
=

∑
s

∑
a

ws,a
Ls,a

y

∂Ls,a

∂y

y

Ls,a

=
∑
s

∑
a

ws,aLs,a

y
.(41)

The last equality in (41) follows from the constant returns to scale assumption. Relative
price changes then arise from (40) as

d ln(p) =

∑
s

∑
a

Ls,aws,a

y
d ln(ws,a)

∑
s̃

∑
ã

Ls̃,ãws̃,ã

y

=
∑
s

∑
a

Ls,aws,a∑
s̃

∑
ã Ls̃,ãws̃,ã

d ln(ws,a).(42)

Now let ∆ ln(ws,a) = ∆ ln(w̄s) for all a in the first experiment. Then,

∆ ln(p) =
∑
s

∆ ln(w̄s)
∑
a

Ls,aws,a∑
s̃

∑
ã Ls̃,ãws̃,ã

.(43)

In the second experiment, ∆ ln(ws,a) = ∆ ln(w̄a) for all s, and so

∆ ln(p) =
∑
a

∆ ln(w̄a)
∑
s

Ls,aws,a∑
s̃

∑
ã Ls̃,ãws̃,ã

.(44)

Table 2 displays the outcome of the first simulation experiment and compares it to results
obtained in Fitzenberger and Franz (2001).

Considering the employment target of reducing skill-specific unemployment rates, wages
paid are too high in all skill groups, and the necessary wage reductions—ranging from
8.8 to 12.2%—are the higher the lower the skill level. This result provides evidence for
wage compression across skill groups. The fact that estimated wage reductions appear
rather modest may be ascribed to at least two reasons: on the one hand to the high wage
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Table 2: Wage Changes for Different Skill Groups Necessary to Halve Skill-Specific Un-
employment Rates in 1997 and Induced Price Change

Model ∆ ln(wl) ∆ ln(wm) ∆ ln(wh) ∆ ln(p)

(i) FGLSa -0.109 -.093 -0.091 -0.094
(0.0139) (0.0139) (0.0139) (0.0139)

(i) FGLS-IVa -0.117 -0.092 -0.089 -0.094
(0.0175) (0.0135) (0.0137) (0.0135)

(ii) FGLSa -0.109 -0.093 -0.091 -0.094
(0.0139) (0.0139) (0.0139) (0.0139)

(ii) FGLS-IVa -0.114 -0.093 -0.090 -0.094
(0.0176) (0.0150) (0.0151) (0.0151)

(iii) FGLSa -0.116 -0.092 -0.089 -0.094
(0.0140) (0.0139) (0.0139) (0.0139)

(iii) FGLS-IVa -0.122 -0.092 -0.088 -0.094
(0.0173) (0.0151) (0.0152) (0.0151)

F/F (2001)b -0.141 -0.103 - -0.105
(0.019) (0.020) (-) (0.020)

F/F (2001)c -0.342 -0.313 - -0.314
(0.099) (0.020) (-) (0.020)

a Calculations based on the results displayed in table 1. Standard errors in parentheses based on 500
bootstrap repetitions.
b Fitzenberger and Franz (2001), specification 4; assumption of constant returns to scale; elasticities of
substitution between the high-skilled on the one hand and medium- and low-skilled on the other restricted
to equal 1; no changes in wages and employment for the high-skilled; results for 1995.
c Fitzenberger and Franz (2001), specification 3; elasticities of substitution between the high-skilled on
the one hand and medium- and low-skilled on the other restricted to equal 1; no changes in wages and
employment for the high-skilled; results for 1995.

elasticities resulting from the substantial elasticities of substitution, and to the assump-
tion of constant returns to scale on the other. The latter point becomes evident by the
comparison of our results to those of Fitzenberger and Franz (2001): Their specification 4,
which likewise postulates constant returns to scale, yields estimates very similar to ours,
whilst their unrestricted specification 3 indicates higher (nominal) reductions. The range
of dispersion, however, turns out rather similar in all models.

The induced relative price changes are a weighted average of the wage reductions; compare
equation (43). Thus, given our estimates of nominal wage reductions, the high-skilled
experience a real wage increase, whereas the low-skilled face real losses ex constructione.

To put this result into perspective, some remarks are in order: First, the experiment
models a shock to the employment decision of the firm—we do not attempt to account for
supply-side reactions to the wage changes. Second, capital and other inputs are assumed
to be constant, as well.30 Third, and similarly, the simulation does not consider substi-

30None of the simulations reported in table 2 takes into consideration substitution effects with respect
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tutability with respect to participants in different labor market segments, like women or
employees in mini jobs not subject to social security contributions.

The results of the second experiment, regarding a reduction of age specific unemployment
rates, are displayed in table 3.

Table 3: Wage Changes for Different Age Groups Necessary to Halve Age-Specific Unem-
ployment Rates in 1997 and Induced Price Change

Model ∆ ln(w27) ∆ ln(w32) ∆ ln(w37) ∆ ln(w42) ∆ ln(w47) ∆ ln(w52) ∆ ln(p)

(i) FGLSa -0.087 -0.087 -0.086 -0.086 -0.086 -0.087 -0.087
(0.0128) (0.0128) (0.0128) (0.0128) (0.0128) (0.0128) (0.0128)

(i) FGLS-IVa -0.087 -0.087 -0.087 -0.086 -0.086 -0.087 -0.087
(0.0126) (0.0125) (0.0125) (0.0125) (0.0125) (0.0125) (0.0125)

(ii) FGLSa -0.088 -0.087 -0.086 -0.086 -0.086 -0.087 -0.087
(0.0128) (0.0128) (0.0128) (0.0128) (0.0128) (0.0128) (0.0128)

(ii) FGLS-IVa -0.088 -0.087 -0.087 -0.086 -0.086 -0.087 -0.087
(0.0140) (0.0140) (0.0140) (0.0140) (0.0140) (0.0140) (0.0140)

(iii) FGLSa -0.088 -0.087 -0.087 -0.086 -0.086 -0.087 -0.087
(0.0128) (0.0128) (0.0128) (0.0128) (0.0128) (0.0128) (0.0128)

(iii) FGLS-IVa -0.088 -0.087 -0.08 -0.086 -0.086 -0.087 -0.087
(0.0140) (0.0140) (0.0140) (0.0140) (0.0140) (0.0140) (0.0140)

Calculations based on the results displayed in table 1. Standard errors in parentheses based on 500
bootstrap repetitions.

The calculated wage reductions in the different age groups are very similar. Yet the small
degree of variation comes as no surprise because the differences in unemployment rates
across the age classes are rather small. In particular, it has to be recalled that very young
as well as older participants close to (early) retirement age, who can be expected to face
deviant labor market conditions that result in differing unemployment rates, have been
excluded from the analysis. For our sample of prime age males there is no evidence of
wage compression across the age distribution. As to the underlying high elasticities of
substitution and concerning the interpretation of the induced price changes, the same
caveats as for the first experiment apply.

7 Conclusions

The evolution of age-specific skill wage premia in the German labor market between 1975
and 1997 shows that the age profiles of skill wage differentials have not moved in parallel
fashion over time, but rather experienced a twist. Accordingly, it is unlikely that these
developments are associated merely with age and time effects which apply uniformly to

to intermediate inputs or capital stocks. Given capital-skill complementarities, for example, the reported
numbers might overstate actual necessary wage changes. For the importance of capital issues in labor
demand cf. Krusell, Ohanian, Rios-Rull, and Violante (2000).
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all cohorts. Furthermore, we observe a break in the inter-cohort trend of skill- and age-
specific relative employment such that young birth cohorts do not follow the path of
the older ones towards further skill upgrading. The empirical evidence thus suggests the
existence of cohort effects affecting the evolution of both skill wage premia and relative
employment. Following the approach suggested in MaCurdy and Mroz (1995), we find
such cohort effects for both relative employment and wage premia.

A coherent operationalization of wages and employment in a labor demand framework is
generally difficult due to the heterogeneous nature of the input factor labor. We extend
the structural approach of Card and Lemieux (2001) based on the nested CES model
of Sato (1967), giving rise to a complex picture of German labor demand. On the one
hand, the model consistently maps rational behavior within the framework of neoclassical
production theory. On the other hand, its age×time dimensioning allows to incorporate a
relatively large number of input factors. That way, we analyze wage differences between
18 types of labor.

The results are compatible with the steady demand hypothesis of a constant rate of
SBTC as in Acemoglu (2002). Moreover, employees of different age are found to be
imperfect substitutes—the model indeed takes account of age, time, and cohort effects.
Our preferred specifications estimate the elasticity of substitution between skill groups to
range between 4.9 and 6.9, and the elasticity of substitution between age groups between
5.2 and 20.1. Compared to the literature, these numbers are rather high. In international
comparison, this finding reflects the fairly small amount of over-all wage dispersion in
Germany as well as the relatively compressed distribution of skills. In comparison with
alternative studies using different functional forms to model labor demand in Germany,
we reckon that, on the one hand, our focus on prime age male employees in the IABS in
fact results in a considerably homogeneous sample. On the other hand, approaches in the
literature which disregard the interaction of skill and age are likely to report spuriously
small elasticities.

On the basis of the estimated parameters, simulation experiments allow for policy-relevant
implications. We simulate the magnitude of wage changes in the different skill groups that
would have been necessary to reduce skill-specific unemployment rates in 1997 by one
half. With wage changes equal for all age groups within the respective skill classes, this
would have left the wage structure within skill groups unaffected. The necessary nominal
wage changes range between 8.8 and 12.2% and are the higher the lower the employees’
qualification. This finding provides evidence for the existence of wage compression—
relative to a situation with reduced unemployment, there is too little wage dispersion
across the different skill groups.

Our analysis shows the necessity to integrate different dimensions of heterogeneity into
empirically meaningful models of labor demand. The nested CES approach allows to
do this in a parsimonious way. However it comes at the price of strong functional form
assumptions.

As a final caveat, it should be mentioned that our neoclassical production function frame-
work fails to incorporate residual wage inequality that remains within cells defined by
skill, age, and year. Residual wage inequality is a major part of total wage dispersion
(Juhn, Murphy, and Pierce (1993) and Fitzenberger, Garloff, and Kohn (2003)). This
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should be taken account of in future research on the link between wage differences and
labor demand. Yet no conceptual framework exists so far to do so.
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Beschäftigtenstichprobe,” in Empirische Wirtschaftsforschung: Methoden und Anwen-
dungen, ed. by W. Franz, H. J. Ramser, and M. Stadler, pp. 255–282. Mohr Siebeck,
Wirtschaftwissenschaftliches Seminar Ottobeuren 32.

Fitzenberger, B., R. Schnabel, and G. Wunderlich (2004): “The Gender Gap in
Labor Market Participation and Employment: A Cohort Analysis for West Germany,”
Journal of Population Economics, 17, 83–116.

Fitzenberger, B., and G. Wunderlich (2002): “Gender Wage Differences in West
Germany: A Cohort Analysis,” German Economic Review, 3(4), 379–414.

Freeman, R., and R. Schettkat (2001): “Skill compression, wage differentials and
employment: Germany vs the US,” Oxford Economic Papers, 53(3), 582–603.

Freeman, R. B. (1979): “The Effect of Demographic Factors on Age-Earnings Profiles,”
Journal of Human Resources, 14(3), 289–318.

27



Hamermesh, D. S. (1993): Labor Demand. Princeton University Press, Princeton, NJ.

Heckman, J. J., and R. Robb (1985): “Using Longitudinal Data To Estimate Age, Pe-
riod, and Cohort Effects in Earnings Equations,” in Cohort Analysis in Social Research,
ed. by W. Mason, and S. Fienberg, pp. 138–150. Springer.

Johnson, G. E. (1997): “Changes in Earnings Inequality: The Role of Demand Shifts,”
Journal of Economic Perspectives, 11(2), 41–54.

Juhn, C., K. M. Murphy, and B. Pierce (1993): “Wage Inequality and the Rise in
Returns to Skill,” Journal of Political Economy, 101(3), 410–442.

Katz, L. F., and D. H. Autor (1999): “Changes in the Wage Structure and Earnings
Inequality,” in Handbook of Labor Economics, ed. by O. Ashenfelter, and D. Card,
vol. 3, chap. 26, pp. 1463–1555. Elsevier Science.

Katz, L. F., and K. M. Murphy (1992): “Changes in Relative Wages, 1963–1987:
Supply and Demand Factors,” Quarterly Journal of Economics, 107(1), 35–78.

Koebel, B. (2005): “Exports and Labour Demand: Searching for Functional Structure
in Multi-Output Multi-Skill Technologies,” Discussion Paper 1672, IZA.

Koebel, B., M. Falk, and F. Laisney (2003): “Imposing and Testing Curvature
Conditions on a Box-Cox Cost Function,” Journal of Business and Economic Statistics,
21, 319–335.

Krusell, P., L. E. Ohanian, J.-V. Rios-Rull, and G. L. Violante (2000):
“Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis,” Econo-
metrica, 68(5), 1029–1053.

Machin, S. (2002): “Labour Market Inequality and Changes in the Relative Demand for
Skills,” Paper for the Royal Statistical Society Conference on Explanations of Rising
Economic Inequality.

MaCurdy, T. E., and T. Mroz (1995): “Measuring Macroeconomic Shifts in Wages
from Cohort Specifications,” unpublished manuscript, Stanford University and Univer-
sity of North Carolina.

McDonald, I. M., and R. M. Solow (1981): “Wage Bargaining and Employment,”
American Economic Review, 71, 896–908.

Mincer, J. (1974): Schooling, Experience, and Earnings. National Bureau of Economic
Research, New York.
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Beschäftigungsstruktur in Deutschland,” Jahrbücher für Nationalökonomie und
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A Data

Throughout the empirical investigation, we make use of the IAB employment subsam-
ple (IABS) 1975–1997, a representative 1% random draw of German employees with
employment spells subject to social insurance contributions. Excluding civil servants,
self-employed, and freelancers, the IABS covers about 80% of all employed persons. For
an extensive description of these register-based data see Bender, Hilzendegen, Rohwer,
and Rudolph (1996) and Bender, Haas, and Klose (2000). Selected data at first comprise
spells of both men and women employed full-time in West-Germany, excluding parallel
employment and training spells.

We restrict attention to prime-age employees between 25 and 55 years to circumvent a
number of sample selection problems. Since the IABS contains no information on hours
worked, we undertake a headcount to derive an employment measure, weighting each
observation with the length of the respective employment spell. This procedure assumes
that the number of, say, monthly hours does not change over time nor does it differ by
individual, justifying the concentration on full-time employees only.

Concerning the wage data, Steiner and Wagner (1997) report a structural break between
1983 and 1984. In order not to deceivingly interpret this as increasing wage inequality
across skill groups, we apply the correction procedure suggested by Fitzenberger (1999).

Observations are classified into three skill groups according to the individuals’ educational
attainment. The group of the low-skilled consists of employees without any vocational
training. Those with a vocational training degree are considered medium-skilled, and
individuals with a university or technical college degree form the group of the high-skilled.
To deal with measurement error in the education information when defining the skill
groups, we correct the skill information such that formal degrees an individual has once
obtained are not lost later.

Stage zero of the estimation approach estimates wage differentials by means of Tobit
regressions due to the censoring of wage data induced by the social security taxation
threshold (Beitragsbemessungsgrenze). Observations are weighted by the length of the
respective employment spells. As a first approach, equation (1) includes dummies for
foreigners and women as control variables and further allows for possible interactions of
these with the skill variables. Besides, a linear age term captures variation within the
age classes. Cross terms of female and skill dummies prove significant in nearly all cells.
Consequently, we base our analysis on males only. Period-specific wage differentials for
the traditional CES are similarly estimated by pre-step Tobit estimations (26), using
age-specific skill dummies and a dummy for foreigners.

Estimation equations at the first and at the second step include a full set of age dummies
and time dummies for 1976–1997. The latter are replaced by a linear time trend at the
third step.

At steps one and three we instrument observed employment measures by means of the size
of the labor force obtained from the German Microcensus, a representative 1% population
sample collected annually, typically via face-to-face interviews. We use representative sub-
samples available through the Federal Statistical Office (Statistisches Bundesamt). The

31



cell-specific labor force is imputed as the sum of (male) employed and unemployed work-
ers within the skill×age groups. For several years within our sampling period, however,
individual records of educational attainment were voluntary, leading to sizable shares of
missing values. We apply the procedure developed in Fitzenberger, Schnabel, and Wun-
derlich (2004) to assign the shares of missings to the three skill groups in each cell. For
the years without any skill information in the German Microcensus, we interpolate; see
also Fitzenberger (1999).

For the first simulation experiment, skill-specific unemployment rates are taken from
Reinberg and Hummel (2002). Rates for low-, medium-, and high-skilled males in 1997
read 27.1%, 6.8%, and 3.0%, respectively. Age group-specific unemployment rates for the
second experiment are calculated based on Statistisches Bundesamt (1998). For the six
age groups (from young to old) the rates are 8.5%, 7.5%, 7.4%, 7.1%, 7.0%, and 8.1%.

To obtain employment weights for the manufacturing and the non-manufacturing sector,
we assign the IABS sector codes to the two categories as done in Fitzenberger (1999).
Using the 1997-weights (0.4412 for manufacturing and 0.4746 for non-manufacturing),
we calculate the price elasticity of demand, η, as a weighted average of the elasticities
ηman = −0.7994 and ηnon-man = −0.1762 estimated by Fitzenberger and Franz (2001).

B Tables and Figures
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Figure 2: Evolution of Wage Differentials over Time
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Calculations based on IABS 1975–1997. Digits within the graphs indicate the middle points of the
respective age classes.
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Figure 3: Age Profiles of Wage Differentials
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Figure 4: Trends in Relative Employment
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Table 4: Estimated Wage Differentials by Age and Time

Age 25–29 30–34 35–39
Time rl,a,t rh,a,t rl,a,t rh,a,t rl,a,t rh,a,t

1975 -0.1299 0.2942 -0.1628 0.4338 -0.1689 0.5270
(0.0057) (0.0111) (0.0058) (0.0113) (0.0048) (0.0140)

1976 -0.1187 0.2622 -0.1477 0.3882 -0.1564 0.5235
(0.0057) (0.0102) (0.0062) (0.0102) (0.0050) (0.0123)

1977 -0.1175 0.2535 -0.1467 0.3795 -0.1692 0.5013
(0.0060) (0.0093) (0.0065) (0.0097) (0.0055) (0.0113)

1978 -0.1151 0.2517 -0.1439 0.3638 -0.1618 0.4839
(0.0064) (0.0089) (0.0067) (0.0093) (0.0059) (0.0104)

1979 -0.1020 0.2482 -0.1414 0.3407 -0.1544 0.4540
(0.0067) (0.0090) (0.0066) (0.0085) (0.0062) (0.0098)

1980 -0.1117 0.2573 -0.1353 0.3324 -0.1498 0.4486
(0.0068) (0.0088) (0.0066) (0.0081) (0.0068) (0.0102)

1981 -0.1011 0.2669 -0.1387 0.3376 -0.1454 0.4222
(0.0070) (0.0088) (0.0068) (0.0078) (0.0072) (0.0100)

1982 -0.0990 0.2640 -0.1358 0.3473 -0.1553 0.4256
(0.0071) (0.0089) (0.0071) (0.0075) (0.0075) (0.0098)

1983 -0.0947 0.2537 -0.1274 0.3518 -0.1585 0.4236
(0.0072) (0.0090) (0.0078) (0.0075) (0.0078) (0.0096)

1984 -0.0856 0.2585 -0.1289 0.3551 -0.1583 0.4227
(0.0073) (0.0094) (0.0084) (0.0077) (0.0081) (0.0094)

1985 -0.0683 0.2663 -0.1269 0.3628 -0.1479 0.4251
(0.0074) (0.0096) (0.0087) (0.0078) (0.0084) (0.0092)

1986 -0.0664 0.2718 -0.1189 0.3541 -0.1417 0.4193
(0.0073) (0.0090) (0.0089) (0.0076) (0.0087) (0.0089)

1987 -0.0716 0.2917 -0.1090 0.3509 -0.1386 0.4174
(0.0072) (0.0087) (0.0088) (0.0074) (0.0090) (0.0086)

1988 -0.0777 0.2992 -0.1104 0.3413 -0.1317 0.4296
(0.0072) (0.0088) (0.0084) (0.0069) (0.0094) (0.0083)

1989 -0.0780 0.2839 -0.1039 0.3512 -0.1330 0.4230
(0.0070) (0.0086) (0.0084) (0.0070) (0.0096) (0.0084)

1990 -0.0866 0.2735 -0.1187 0.3597 -0.1349 0.4172
(0.0069) (0.0086) (0.0081) (0.0069) (0.0094) (0.0082)

1991 -0.1002 0.2661 -0.1149 0.3574 -0.1379 0.4192
(0.0068) (0.0084) (0.0078) (0.0067) (0.0093) (0.0081)

1992 -0.0924 0.2614 -0.1248 0.3537 -0.1340 0.4126
(0.0066) (0.0081) (0.0075) (0.0065) (0.0089) (0.0077)

1993 -0.0840 0.2672 -0.1212 0.3662 -0.1333 0.4190
(0.0069) (0.0083) (0.0075) (0.0065) (0.0089) (0.0076)

1994 -0.0846 0.2514 -0.1238 0.3651 -0.1438 0.4305
(0.0073) (0.0089) (0.0075) (0.0063) (0.0090) (0.0075)

1995 -0.0987 0.2373 -0.1269 0.3598 -0.1423 0.4383
(0.0075) (0.0091) (0.0077) (0.0065) (0.0090) (0.0075)

1996 -0.1156 0.2486 -0.1242 0.3456 -0.1544 0.4255
(0.0079) (0.0097) (0.0078) (0.0066) (0.0091) (0.0076)

1997 -0.1366 0.2764 -0.1271 0.3473 -0.1591 0.4400
(0.0089) (0.0106) (0.0083) (0.0069) (0.0092) (0.0077)

Tobit estimations, observations weighted with the length of the respective employment spells. Standard
errors in parentheses. Data source: IABS 1975–1997.
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Table 4: Estimated Wage Differentials by Age and Time (Continued)

Age 40–44 45–49 50–54
Time rl,a,t rh,a,t rl,a,t rh,a,t rl,a,t rh,a,t

1975 -0.1780 0.5577 -0.1769 0.5445 -0.1725 0.5709
(0.0052) (0.0189) (0.0055) (0.0213) (0.0069) (0.0248)

1976 -0.1586 0.5713 -0.1699 0.5662 -0.1736 0.5537
(0.0053) (0.0147) (0.0056) (0.0183) (0.0065) (0.0208)

1977 -0.1586 0.5713 -0.1699 0.6003 -0.1838 0.5739
(0.0053) (0.0147) (0.0056) (0.0185) (0.0066) (0.0205)

1978 -0.1640 0.5525 -0.1645 0.6142 -0.1824 0.5853
(0.0055) (0.0132) (0.0059) (0.0182) (0.0065) (0.0191)

1979 -0.1577 0.5185 -0.1659 0.5829 -0.1696 0.5589
(0.0054) (0.0118) (0.0057) (0.0161) (0.0063) (0.0169)

1980 -0.1532 0.5171 -0.1615 0.5507 -0.1649 0.5398
(0.0054) (0.0115) (0.0057) (0.0148) (0.0060) (0.0163)

1981 -0.1549 0.5087 -0.1599 0.5420 -0.1782 0.5675
(0.0057) (0.0111) (0.0057) (0.0143) (0.0060) (0.0164)

1982 -0.1585 0.4902 -0.1542 0.5475 -0.1715 0.5682
(0.0060) (0.0105) (0.0057) (0.0128) (0.0062) (0.0155)

1983 -0.1626 0.4905 -0.1561 0.5468 -0.1698 0.5652
(0.0066) (0.0101) (0.0060) (0.0122) (0.0062) (0.0149)

1984 -0.1613 0.4907 -0.1497 0.5296 -0.1674 0.5484
(0.0073) (0.0102) (0.0062) (0.0115) (0.0066) (0.0145)

1985 -0.1498 0.4888 -0.1504 0.5469 -0.1597 0.5655
(0.0082) (0.0109) (0.0065) (0.0116) (0.0069) (0.0145)

1986 -0.1413 0.4869 -0.1517 0.5359 -0.1490 0.5633
(0.0090) (0.0112) (0.0067) (0.0111) (0.0069) (0.0140)

1987 -0.1425 0.5013 -0.1524 0.5289 -0.1418 0.5836
(0.0095) (0.0117) (0.0073) (0.0113) (0.0070) (0.0138)

1988 -0.1425 0.4679 -0.1499 0.5228 -0.1437 0.5495
(0.0096) (0.0110) (0.0077) (0.0108) (0.0071) (0.0124)

1989 -0.1362 0.4725 -0.1465 0.5416 -0.1388 0.5427
(0.0098) (0.0111) (0.0083) (0.0115) (0.0073) (0.0125)

1990 -0.1438 0.4527 -0.1527 0.5045 -0.1424 0.5359
(0.0096) (0.0104) (0.0092) (0.0118) (0.0073) (0.0122)

1991 -0.1391 0.4578 -0.1490 0.5002 -0.1513 0.5446
(0.0095) (0.0102) (0.0101) (0.0126) (0.0077) (0.0124)

1992 -0.1394 0.4468 -0.1417 0.4860 -0.1562 0.5183
(0.0095) (0.0095) (0.0102) (0.0121) (0.0080) (0.0120)

1993 -0.1450 0.4803 -0.1472 0.5014 -0.1677 0.5274
(0.0098) (0.0095) (0.0104) (0.0121) (0.0088) (0.0121)

1994 -0.1552 0.4614 -0.1459 0.5024 -0.1697 0.5378
(0.0102) (0.0092) (0.0106) (0.0106) (0.0099) (0.0123)

1995 -0.1527 0.4641 -0.1583 0.5034 -0.1682 0.5226
(0.0102) (0.0091) (0.0106) (0.0114) (0.0112) (0.0130)

1996 -0.1568 0.4561 -0.1725 0.4675 -0.1575 0.4877
(0.0105) (0.0091) (0.0105) (0.0107) (0.0120) (0.0132)

1997 -0.1632 0.4664 -0.1647 0.4766 -0.1628 0.5356
(0.0105) (0.0092) (0.0110) (0.0106) (0.0129) (0.0141)

Tobit estimations, observations weighted with the length of the respective employment spells. Standard
errors in parentheses. Data source: IABS 1975–1997.
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Table 5: Cohort Effects in Wage Differentials?

Coefficients Wage Differential l/m Wage Differential h/m

DJ32 -0.03277 (-10.72) -0.03278 (-9.51) 0.10880 (12.00) 0.10887 (15.74)
DJ37 -0.05143 (-9.00) -0.05145 (-8.17) 0.19881 (13.88) 0.19895 (15.78)
DJ42 -0.05798 (-5.37) -0.05801 (-4.93) 0.25360 (9.79) 0.25384 (10.69)
DJ47 -0.06539 (-3.37) -0.0655 (-3.10) 0.29732 (6.75) 0.29769 (7.29)
DJ52 -0.06898 (-2.19) -0.06907 (-2.03) 0.32937 (4.87) 0.32994 (5.46)
DT76 0.01123 (3.58) -0.00966 (-0.80)
DT77 0.00835 (2.45) -0.01215 (-1.09)
DT78 0.01117 (3.50) -0.01760 (-1.32)
DT79 0.01841 (5.94) -0.0428 (-3.41)
DT80 0.02124 (5.34) -0.05278 (-3.93)
DT81 0.02133 (5.24) -0.05340 (-3.73)
DT82 0.02226 (5.37) -0.05424 (-3.71)
DT83 0.02336 (4.55) -0.05669 (-3.64)
DT84 0.02661 (4.39) -0.06185 (-3.54)
DT85 0.03486 (5.06) -0.05445 (-2.89)
DT86 0.04075 (5.36) -0.05967 (-2.89)
DT87 0.04317 (4.89) -0.05404 (-2.26)
DT88 0.04341 (4.27) -0.0663 (-2.53)
DT89 0.04695 (4.04) -0.06747 (-2.30)
DT90 0.04024 (3.01) -0.08155 (-2.49)
DT91 0.03848 (2.66) -0.08363 (-2.30)
DT92 0.03976 (2.22) -0.09726 (-2.38)
DT93 0.03882 (1.96) -0.08609 (-1.89)
DT94 0.03565 (1.62) -0.09096 (-1.81)
DT95 0.03279 (1.33) -0.09749 (-1.74)
DT96 0.02853 (1.02) -0.11586 (-1.86)
DT97 0.02480 (0.79) -0.09967 (-1.40)
TIME 0.00174 (1.08) -0.01827 (-4.84)

TIME2 0.00032 (1.09) 0.00217 (3.16)
TIME3 0.00002 (-1.06) -0.00012 (-2.67)
TIME4 2.16e-07 (0.47) 2.38e-06 (2.26)

R1 -0.00054 (-1.05) -0.00054 (-0.96) 0.00059 (0.35) 0.00059 (0.32)
R2 -6.09e-06 (-0.23) -6.14e-06 (-0.22) -0.00009 (-0.80) -0.00009 (-0.78)
R3 0.00017 (1.87) 0.00017 (1.68) -3.65e-06 (-0.01) -3.26e-06 (-0.01)
R4 2.89e-06 (0.44) 2.90e-06 (0.42) 0.00003 (1.30) 0.00003 (1.19)

COHORTA2 0.00018 (1.86) 0.00018 (1.78) 0.00071 (3.22) 0.00071 (4.60)
COHORTB2 0.00093 (3.52) 0.0009 (2.89)
COHORTA3 -0.00001 (-3.67) -0.00001 (-3.84) -0.00003 (-3.32) -0.00003 (-3.62)
COHORTB3 0.00003 (1.75) 0.00003 (1.74)
CONSTANT -0.12597 (-41.59) -0.12178 (-35.41) 0.28023 (23.91) 0.28895 (43.45)

Testsa

Separabilityb 7.83∗ 6.27 8.11∗ 9.13∗∗

Cohorts after 1975c 36.57∗∗∗ 34.79∗∗∗ 34.14∗∗∗ 36.00∗∗∗

Any cohort effectsd 233.12∗∗∗ 232.72∗∗∗

Data source: IABS 1975–1997. White robust t-values in parentheses. Specification of equation (4):
Inclusion of additional polynomial cohort terms as long as neither the respective coefficient nor those of
lower orders turn insignificant.
a Wald tests, χ2-values. ∗(∗∗,∗∗∗ ) Hypothesis rejected at 0.90 (0.95, 0.99) level.
b H0 : Ri = 0 for all i.
c H0 : Ri = COHORTAj = 0 for all i, j.
d H0 : Ri = COHORTAj = COHORTBh = 0 for all h, i, j.



Table 6: Cohort Effects in Relative Employment?

Coefficients Log. Relative Employment l/m Log. Relative Employment h/m

DJ32 0.20288 (6.78) 0.20273 (7.04) 0.40904 (10.08) 0.40907 (10.61)
DJ37 0.43241 (9.80) 0.43213 (9.96) 0.19945 (3.48) 0.19952 (3.67)
DJ42 0.74647 (9.19) 0.74594 (9.46) -0.19470 (-2.02) -0.19458 (-2.13)
DJ47 1.0750 (7.67) 1.07414 (7.90) -0.6767 (-4.19) -0.67656 (-4.39)
DJ52 1.271 (5.76) 1.26952 (5.89) -1.164 (-4.61) -1.16373 (-4.84)
DT76 -0.12099 (-5.19) 0.02528 (0.69)
DT77 -0.26984 (-12.28) 0.08666 (2.69)
DT78 -0.38845 (-15.32) 0.13468 (3.18)
DT79 -0.48621 (-17.13) 0.17800 (3.95)
DT80 -0.58195 (-19.86) 0.23592 (5.19)
DT81 -0.6860 (-22.36) 0.30340 (6.54)
DT82 -0.79031 (-24.24) 0.3775 (8.62)
DT83 -0.90355 (-23.41) 0.43387 (9.11)
DT84 -1.0147 (-22.55) 0.50096 (9.02)
DT85 -1.1114 (-21.79) 0.57136 (10.11)
DT86 -1.2122 (-20.47) 0.67825 (11.37)
DT87 -1.3021 (-20.57) 0.78194 (11.87)
DT88 -1.3900 (-19.29) 0.87782 (11.65)
DT89 -1.4639 (-17.60) 0.95953 (11.15)
DT90 -1.5333 (-16.10) 1.0478 (10.62)
DT91 -1.5957 (-15.04) 1.1553 (10.39)
DT92 -1.6613 (-13.83) 1.2654 (10.11)
DT93 -1.7531 (-12.75) 1.3681 (9.60)
DT94 -1.8375 (-11.92) 1.473 (9.18)
DT95 -1.9217 (-11.27) 1.5817 (8.76)
DT96 -2.0027 (-10.59) 1.6518 (8.23)
DT97 -2.0752 (-9.73) 1.771 (7.92)
TIME -0.11679 (-12.16) 0.04054 (2.86)

TIME2 -0.00076 (-0.42) 0.00105 (0.49)
TIME3 0.00020 (1.75) 0.00013 (0.99)
TIME4 -5.38e-06 (-2.04) -4.31e-06 (-1.55)

R1 0.01396 (3.96) 0.01394 (4.10) -0.02248 (-4.80) -0.02248 (-5.10)
R2 0.00011 (0.62) 0.00011 (0.64) 0.00007 (0.32) 0.00007 (0.35)
R3 -0.00443 (-6.99) -0.00443 (-7.34) 0.00455 (5.28) 0.00455 (5.63)
R4 -0.00009 (-2.05) -0.00009 (-2.12) 0.00003 (0.66) 0.00003 (0.71)

COHORTA2 0.00484 (7.97) 0.00484 (8.05) -0.00600 (-8.44) -0.00600 (-8.66)
COHORTB2 -0.00326 (-4.16) -0.00326 (-4.48)
COHORTA3 -0.00010 (-7.00) -0.00010 (-6.91) 0.00011 (7.32) 0.00011 (7.20)
CONSTANT -1.25039 (-40.19) -1.26223 (-42.44) -2.62419 (-47.43) -2.62877 (-55.56)

Testsa

Separabilityb 377.59∗∗∗ 355.74∗∗∗ 35.76∗∗∗ 43.66∗∗∗

Cohorts after 1975c 1000.3∗∗∗ 1035.6∗∗∗ 1004.0∗∗∗ 1034.1∗∗∗

Any cohort effectsd 1011.1∗∗∗ 1043.8∗∗∗

Data source: IABS 1975–1997. White robust t-values in parentheses. Specification of equation (4):
Inclusion of additional polynomial cohort terms as long as neither the respective coefficient nor those of
lower orders turn insignificant.
a Wald tests, χ2-values. ∗(∗∗,∗∗∗ ) Hypothesis rejected at 0.90 (0.95, 0.99) level.
b H0 : Ri = 0 for all i.
c H0 : Ri = COHORTAj = 0 for all i, j.
d H0 : Ri = COHORTAj = COHORTBh = 0 for all h, i, j.



Table 7: Summary of Model Versions (Specifications)

Label Specification Description

(i) benchmark model two-level CES
(ii) extended benchmark two-level CES with age×time interaction in

age-specific relative productivity
(iii) extended benchmark two-level CES with cohort×time interaction

in age-specific relative productivity
(iv) sensitivity check two-level CES disregarding age-premia
(v) sensitivity check two-level CES excluding university graduates

aged 25–29 years
(vi) sensitivity check two-level CES with break in SBTC
(vii) restricted benchmark two-level CES with 1/σA = 0
(viii) CES with interaction CES with age×skill interaction
(ix) traditional CES traditional CES
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Table 8: Elasticities of Substitution, Specifications of the Nested CES

model version (i) (i) (i) (ii) (ii) (ii) (iii) (iii) (iii)

l 7.10 7.10 7.24 7.24 7.24 7.24
(0.49) (0.49) (0.50) (0.50) (0.50) (0.50)

σFGLS
A,1st step m 8.28 7.07 7.07 7.53 7.20 7.20 7.53 7.20 7.20

(0.55) (0.48) (0.48) (0.54) (0.50) (0.50) (0.54) (0.50) (0.50)
h 18.55 18.55 8.98 8.98 8.98 8.98

(5.59) (5.59) (1.51) (1.51) (1.51) (1.51)

l 8.58 8.59 9.18 9.21 9.20 9.26
(0.67) (0.69) (0.74) (0.75) (0.74) (0.76)

σFGLS
A,3rd step m 8.71 4.81 4.81 7.85 5.23 5.25 7.92 5.22 5.26

(0.63) (0.32) (0.32) (0.60) (0.38) (0.39) (0.61) (0.37) (0.38)
h 19.52 19.69 10.36 10.47 10.15 10.49

(5.87) (5.98) (1.98) (2.02) (1.83) (1.99)

l 12.56 12.72 8.18
(1.58) (1.75) (0.88)

σFGLS
S m 8.97 9.36 7.15 9.04 9.49 6.98 5.65 6.32 4.74

(0.81) (0.91) (1.06) (0.84) (0.93) (1.01) (0.46) (0.55) (0.52)
h 6.81 6.78 5.36

(1.00) (0.97) (0.74)

l 6.87 6.87 7.23 7.23 7.23 7.23
(0.53) (0.53) (0.54) (0.54) (0.54) (0.54)

σFGLS-IV
A,1st step m 8.11 6.86 6.86 7.44 7.20 7.20 7.44 7.20 7.20

(0.60) (0.53) (0.53) (0.60) (0.54) (0.54) (0.59) (0.54) (0.54)
h 28.95 28.95 9.85 9.85 9.86 9.86

(14.57) (14.57) (2.25) (2.25) (2.25) (2.25)

l 10.31 11.53 9.44 10.20 8.68 9.22
(1.64) (2.12) (1.62) (1.98) (1.40) (1.62)

σFGLS-IV
A,3rd step m 10.25 5.27 5.67 9.22 6.01 6.55 8.23 5.38 5.79

(1.52) (0.66) (0.82) (1.34) (0.86) (1.14) (1.19) (0.73) (0.91)
h 20.13 21.26 8.50 9.10 8.59 9.85

(11.11) (12.10) (2.57) (3.21) (2.63) (3.65)

l 9.67] 11.54] 8.03]

(13.37) (24.50) (8.44)
σFGLS-IV

S m 8.14 6.15 5.65] 7.94 6.97 6.69] 5.92 4.91 4.48]

(3.11) (2.87) (5.72) (4.07) (2.85) (7.16) (1.65) (1.54) (2.16)
h 6.8] 7.19] 6.38]

(7.76) (8.13) (4.56)

Model versions: (i) benchmark model; (ii) with age×time interaction in age-specific productivity; (iii)
with cohort×time interaction in age-specific productivity. Standard errors in parentheses based on 500
bootstrap repetitions. Bold numbers: Elasticities finite (inverses significant at 0.95 level). ] Respective
parameters not significantly different at 0.95 level. Data sources: IABS 1975–1997, German Microcensus.
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Table 9: Elasticities of Substitution, Further Specifications of the Nested CES

model version (iv) (iv) (iv) (v) (v) (v) (vi) (vi) (vi)

l 15.19 15.19 6.85 6.85 7.10 7.10
(1.27) (1.27) (0.47) (0.47) (0.49) (0.49)

σFGLS
A,1st step m 16.64 15.13 15.13 7.23 6.83 6.83 8.28 7.07 7.07

(1.37) (1.26) (1.26) (0.50) (0.46) (0.46) (0.55) (0.48) (0.48)
h 26.76 26.76 9.86 9.86 18.55 18.55

(6.37) (6.37) (1.74) (1.74) (5.59) (5.59)

l 17.09 17.20 8.54 8.53 8.62† 8.64
(1.77) (1.82) (0.66) (0.66) (0.69) (0.69)

σFGLS
A,3rd step m 19.01 9.21 9.26 7.65 4.79 4.79 8.86† 4.84† 4.84

(2.04) (0.76) (0.79) (0.57) (0.32) (0.33) (0.66) (0.32) (0.33)
h 24.53 25.54 11.19 11.23 19.19† 18.93

(6.41) (7.00) (2.39) (2.33) (5.66) (5.46)

l 12.31 12.54 24.55
(1.69) (1.70) (14.19)

σFGLS
S m 8.94 8.92 6.83 8.59 9.24 6.84 14.42† 16.69† 13.02

(0.83) (0.85) (1.09) (0.77) (0.88) (0.96) (4.98) (6.77) (5.64)
h 5.95 6.46 7.13

(0.79) (1.08) (2.03)

l 14.83 14.83 6.71 6.71 6.87 6.87
(1.33) (1.33) (0.56) (0.56) (0.56) (0.56)

σFGLS-IV
A,1st step m 15.57 14.78 14.78 7.02 6.70 6.70 8.11 6.86 6.86

(1.36) (1.32) (1.32) (0.58) (0.56) (0.56) (0.65) (0.56) (0.56)
h 21.71 21.71 9.13 9.13 28.95 28.95

(4.99) (4.99) (2.00) (2.00) (14.94) (14.94)

l 15.10 15.03 8.70 9.83 10.48† 10.23†

(1.33) (1.27) (1.15) (1.57) (1.70) (1.65)
σFGLS-IV

A,3rd step m 14.73 8.27 8.26 8.76 4.67 5.16 10.94† 5.31† 5.16†

(1.22) (0.65) (0.63) (1.01) (0.48) (0.68) (1.73) (0.65) (0.61)
h 12.15 11.95 8.40 11.02 26.43† 20.52†

(1.64) (1.60) (2.56) (4.80) (16.49) (10.03)

l 12.48] 13.87] -26.87]†

(7.71) (25.22) (72.13)
σFGLS-IV

S m 8.09 8.72 6.00] 8.01 8.75 6.10] 15.87† -172.7† -20.97]†

(2.98) (3.30) (1.64) (1.90) (3.43) (3.51) (12.29) (2749.2) (72.13)
h 9.10] 6.11] 6.70]†

(3.32) (7.11) (16.96)

Model versions: (iv) excluding equations for age premia; (v) excluding high-skilled of age 25–29; (vi)
with break in SBTC. Standard errors in parentheses based on 500 bootstrap repetitions. Bold numbers:
Elasticities finite (inverses significant at 0.95 level). ] Respective parameters not significantly different
at 0.95 level. † Time break in SBTC insignificant at 0.95 level. Data sources: IABS 1975–1997, German
Microcensus.
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Table 10: Estimates of σS, Assuming Perfect Substitution Between Age Classes

model version (vii) (vii) (viii) (viii) (ix) (ix)

l 12.45 11.95 10.57
(1.70) (2.00) (2.28)

σFGLS
S m 8.82 6.79 8.25 5.86 4.93 3.81

(0.78) (0.97) (0.97) (0.94) (0.67) (0.45)
h 6.15 4.67 3.36

(0.80) (0.54) (0.24)

l 15.95] 13.80] 198.3
(47.95) (8.26) (3132.6)

σFGLS-IV
S m 9.14 6.93] 6.26 6.21] 3.76 5.15

(8.03) (7.26) (1.16) (1.79) (0.95) (1.99)
h 8.32] 5.65] 4.53

(14.30) (1.18) (1.08)

Model versions: (vii) nested CES (benchmark) with 1/σA restricted to zero at the third step; (viii) CES
model with skill differentials as employment-weighted average of age-specific premia; (ix) CES model
without skill×age-interaction. Standard errors in parentheses. Bold numbers: Elasticities finite (inverses
significant at 0.95 level). ] Respective parameters not significantly different at 0.95 level. Data sources:
IABS 1975–1997, German Microcensus.

Table 11: Instrumental Variables: First Stage Results for Age-Specific Employment

Model (i)/(iv) (ii) (iii)
Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err.

αuu 0.7411∗∗∗ (0.0716) 0.8091∗∗∗ (0.0762) 0.8091∗∗∗ (0.0762)
αmu 0.5254∗∗∗ (0.1204) 0.5237∗∗∗ (0.1296) 0.5237∗∗∗ (0.1296)
αhu -0.3894∗∗∗ (0.0677) -0.5690∗∗∗ (0.0832) -0.5690∗∗∗ (0.0832)
αum 0.0620 (0.0458) 0.1158∗∗ (0.0490) 0.1158∗∗ (0.0490)
αmm 0.9232∗∗∗ (0.0766) 0.9106∗∗∗ (0.0814) 0.9106∗∗∗ (0.0815)
αhm -0.1008∗∗ (0.0450) -0.2272∗∗∗ (0.0572) -0.2272∗∗∗ (0.0572)
αuh -0.1603∗ (0.0899) -0.1044 (0.0947) -0.1044 (0.0947)
αmh 0.6185∗∗∗ (0.1504) 0.6178∗∗∗ (0.1592) 0.6178∗∗∗ (0.1592)
αhh 0.6484∗∗∗ (0.0848) 0.4987∗∗∗ (0.1081) 0.4987∗∗∗ (0.1081)

χ2 12722.7∗∗∗ 5150.5∗∗∗ 5150.5∗∗∗

Coefficients of additional instruments. See the text for a description of the instrumentation strategy. See
the text and tables 8 and 9 for descriptions of the model versions (i) to (iv). χ2: Test for joint significance
of additional instruments. ∗(∗∗,∗∗∗ ) parameter significant at 0.90 (0.95, 0.99) level.
Data sources: IABS 1975–1997, German Microcensus.
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Table 12: Instrumental Variables: First Stage Results for Aggregate Employment

Model (i) (ii) (iii) (iv)
Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err.

αuu 0.3466 (0.4031) 0.3409 (0.4028) 0.3187 (0.3906) -0.9379∗∗∗ (0.2001)
αmu 0.3597 (0.9445) 0.3595 (0.9436) 0.4125 (0.9151) 1.8051∗∗∗ (0.4019)
αhu 1.4425 (1.3686) 1.4435 (1.3673) 1.3901 (1.3260) 0.3551 (0.5588)
αum -0.2373∗∗ (0.1074) -0.2435∗∗ (0.1068) -0.3352∗∗ (0.1424) -0.0797 (0.1203)
αmm 1.4841∗∗∗ (0.2517) 1.4763∗∗∗ (0.2501) 1.6945∗∗∗ (0.3336) 1.3068∗∗∗ (0.2417)
αhm -0.0854 (0.3647) -0.0778 (0.3624) -0.2980 (0.4834) 0.0480 (0.3360)
αuh -0.5004∗∗ (0.2492) -0.4982∗∗ (0.2465) -0.5909∗∗ (0.2954) 0.1934 (0.1846)
αmh 2.5600∗∗∗ (0.5838) 2.5478∗∗∗ (0.5774) 2.768∗∗∗ (0.6921) 1.7792∗∗∗ (0.3707)
αhh -1.5078∗ (0.8459) -1.4936∗ (0.8367) -1.7162∗ (1.0028) -0.9205∗ (0.5154)

χ2 235.04∗∗∗ 240.74∗∗∗ 233.86∗∗∗ 250.51∗∗∗

Coefficients of additional instruments. See the text for a description of the instrumentation strategy. See
the text and tables 8 and 9 for descriptions of the model versions (i) to (iv). χ2: Test for joint significance
of additional instruments. ∗(∗∗,∗∗∗ ) parameter significant at 0.90 (0.95, 0.99) level.
Data sources: IABS 1975–1997, German Microcensus.
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C Monte Carlo Study

We conduct a Monte Carlo Study in order to compare the following estimation approaches:

(a) Age-specific relative productivities φs,a/φs̃,ã and elasticities σAs estimated freely at
the third step.

(b) φs,a at the third step taken as predetermined from the second step.

(c) σAs at the third step taken as predetermined from the first step.

(d) φs,a as well as σAs at the third step taken as predetermined from previous steps.

We assume the following parameter values for the benchmark model:

• elasticities σAu = 15, σAm = 10, σAh
= 20, and σS = 2.

• skill-specific linear time trends of 1% per year for ln(θh,t/θm,t) and of 2% for ln(θm,t/θl,t).

• age×skill-specific productivities φs,a set to appropriate values between exp (9.3) and
exp (9.8).

When simulating log wages, we assume a normally distributed additive error term with
standard deviation STDDEV , which captures residual wage dispersion. The chosen val-
ues for STDDEV between 0.001 and 0.2 correspond to 90–10-percentile wage differences
between 0.2% and 50%.

We then estimate the benchmark version (i) of the model. Results for the different ap-
proaches are displayed in table 13. None of the approaches strictly dominates the others in
terms of minimum bias or minimum root mean squared error for all parameters. However,
approach (a), which (re)estimates all parameters freely at the third step, performs best
in most of the cases and, what is more, its performance is also fairly good when coming
off second-best. We therefore decide to use approach (a) for the estimations throughout
the paper.
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Table 13: Monte Carlo Study: Average Third-Step Estimates for 1/σ and Root Mean
Squared Errors

STDDEV Parameter Value (a) (b) (c) (d)

0.001 1/σAu 0.0667 0.0666 0.0763 0.0739 0.0739
(0.00046) (0.00966) (0.00720) (0.00720)

1/σAm 0.1 0.1000 0.0976 0.0742 0.0742
(0.00085) (0.00244) (0.02581) (0.02581)

1/σAh 0.05 0.0500 0.0477 0.0488 0.0488
(0.00082) (0.00239) (0.00144) (0.00144)

1/σS 0.5 0.5002 0.4730 0.4993 0.3208
(0.00139) (0.02704) (0.00145) (0.17936)

0.005 1/σAu 0.0667 0.0666 0.0767 0.0746 0.0746
(0.00230) (0.01023) (0.00810) (0.00810)

1/σAm 0.1 0.0999 0.0981 0.0748 0.0748
(0.00423) (0.00262) (0.02529) (0.02529)

1/σAh 0.05 0.0499 0.0479 0.0496 0.0496
(0.00409) (0.00357) (0.00385) (0.00385)

1/σS 0.5 0.5004 0.4758 0.4992 0.3180
(0.00691) (0.02530) (0.00659) (0.18496)

0.010 1/σAu 0.0667 0.0665 0.0771 0.0747 0.0747
(0.00459) (0.01116) (0.00879) (0.00879)

1/σAm 0.1 0.0998 0.0986 0.0748 0.0748
(0.00847) (0.00401) (0.02542) (0.02542)

1/σAh 0.05 0.0498 0.0482 0.0498 0.0498
(0.00818) (0.00607) (0.00767) (0.00767)

1/σS 0.5 0.5006 0.4765 0.4992 0.3130
(0.01381) (0.02757) (0.01347) (0.19854)

0.050 1/σAu 0.0667 0.0658 0.0790 0.0741 0.0741
(0.02296) (0.02341) (0.01983) (0.01983)

1/σAm 0.1 0.0989 0.1020 0.0743 0.0743
(0.04234) (0.01985) (0.03162) (0.03162)

1/σAh 0.05 0.0492 0.0463 0.0495 0.0495
(0.04088) (0.03095) (0.03842) (0.03842)

1/σS 0.5 0.5026 0.4989 0.5009 0.2976
(0.06903) (0.07197) (0.06884) (0.34478)

0.100 1/σAu 0.0667 0.0649 0.0795 0.0733 0.0733
(0.04592) (0.03973) (0.03737) (0.03737)

1/σAm 0.1 0.0978 0.1064 0.0735 0.0735
(0.08469) (0.03821) (0.04534) (0.04534)

1/σAh 0.05 0.0484 0.0432 0.0491 0.0491
(0.08177) (0.06613) (0.07685) (0.07685)

1/σS 0.5 0.5049 0.5578 0.5031 0.4805
(0.13808) (0.16231) (0.13778) (0.44487)

0.200 1/σAu 0.0667 0.0632 0.0746 0.0717 0.0717
(0.09185) (0.07540) (0.07372) (0.07372)

1/σAm 0.1 0.0955 0.1087 0.0718 0.0718
(0.16939) (0.07247) (0.07874) (0.07874)

1/σAh 0.05 0.0469 0.0405 0.0481 0.0481
(0.16356) (0.14403) (0.15371) (0.15371)

1/σS 0.5 0.5094 0.6651 0.5073 0.7133
(0.27625) (0.30859) (0.27571) (0.51902)

Simulation of the benchmark model based on 1000 resamples. RMSE in parentheses. Bold numbers:
minimum bias and minimum RMSE, respectively. See the text of appendix C for a description of the
estimation approaches (a) to (d).



D Calculating Standard Errors

The calculation of standard errors and test statistics for the parameters obtained from
the multi-step estimation approach and in the simulation experiment has to take account
of pre-step estimation variability. We therefore use bootstrapping techniques.

We resample from the distribution of ln(ws,a,t) estimated by the Tobit regressions at
stage zero (section 2.1, equation (1)). All three subsequent estimation steps as well as
the calculations for the simulation experiments are put into a single bootstrap loop. We
use 500 repetitions to obtain the variance-covariance matrix of the estimated parameters
from the empirical bootstrap distribution.

Standard errors for the reported elasticities σ can then be calculated by means of the Delta
method relying on the estimated bootstrap distribution of 1/σ. Direct bootstrapping of σ
is not possible because of the discontinuity of the inverse function at the argument zero.
With negative estimates of the inverse elasticities for single extreme resamples, direct
calculation of the variance of σ would not be not well-defined.

In case of IV estimation the three-step approach is extended at steps one and three by
the estimation of IV equations. In each iteration of the bootstrap loop we draw from
the estimated distribution of IV parameters, calculate predicted values for employment
Ls,a,t and Ls,t, and estimate the three-step model. Note that while predicted employment
values are used in the SOLS and FGLS estimation, the calculation of the respective FGLS
weighting matrices from SOLS residuals relies on actual employment.

When drawing inference on the estimated wage changes in the simulation experiment,
we assume ηman and ηnon-man, the price elasticities of product demand taken from
Fitzenberger and Franz (2001), to be independently normally distributed.
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