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Non-Technical Summary 
 
 
Production processes can be considered as transforming inputs into 
outputs. In economic modelling it is usually assumed that this 
happens instantaneously. However, a "real world" production 
process takes time, meaning that the outputs are available with a 
certain time lag after assigning the inputs. The time lag may be 
substantial in the production of capital goods such as plants, 
buildings or larger network infrastructure. 
 
We analyze the question how this time-lag influences the optimal 
investment over time at hand of an optimal control capital 
accumulation model. As known from the time-to-build literature, 
time-lagged optimal control problems may exhibit a qualitatively 
different system dynamics as compared to instantaneous capital 
accumulation models, namely cyclical and exponentially damped 
oscillating optimal investment paths. We confirm this system 
dynamics for the case of Leontief-type production functions and 
show under which conditions the optimal path is dominated by one 
major cycle. 
 
As time-lagged optimal control problems are not analytically 
soluble, even in the linear approximation around the stationary 
state, state-of-the-art numerical optimization methods are used 
for the second major contribution of the analysis: the 
illustration of the transition from instantaneous to time-lagged 
production. We show the formation of the major cycle and 
illustrate that while for small time lags instantaneous production 
neoclassical economic theory is a good approximation, the validity 
of this approximation is challenged for large time lags. 
Calculating the major cycle already gives a good impression 
of what to expect from the optimal paths of investment. 
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1 Introdu
tionAll produ
tion takes time. That is, the transformation of inputs into outputs does noto

ur instantaneously. This ubiquitous experien
e has in�uen
ed e
onomi
 theory invarious ways and at di�erent times. In his formulation of Austrian 
apital theory, vonBöhm-Bawerk ([1889℄1921) applied the average investment period, i. e. the average timespan between the assignment of the non-produ
ed inputs and the �nished 
onsumptiongoods in the produ
tion pro
ess, to avoid the problem of the ambiguity of an aggre-gate measure of 
apital. This time aspe
t of produ
tion was revived in the 1970s by theneo-Austrian 
apital theories (e. g. von Weizsä
ker 1971, Hi
ks 1973 and Faber 1979).El-Hodiri et al. (1972) derived a generalized maximum prin
iple for a growth model withheterogenous 
apital goods and exogenously given and 
onstant time-lags between 
on-trol and state variables. Benhabib and Rusti
hini (1991) interpreted the time stru
tureof produ
tion as a spe
ial 
ase of vintage-
apital models, whi
h they 
alled gestationlags. The time aspe
t of produ
tion has also been dis
ussed in the ma
roe
onomi
 realbusiness 
y
le theory. Following an idea �rst posed in Kale
ki (1935), Kydland andPres
ott (1982) empiri
ally analyzed how far time 
onsuming investment, whi
h they
alled time-to-build, 
ould explain real business 
y
les. While Kydland and Pres
ott(1982) argued that the time-to-build feature is essential to 
y
li
al �u
tuations in theirmodel, this was doubted by Ioannides and Taub (1992). Rusti
hini (1989) and Aseaand Zak (1999) showed in simple optimal 
ontrol models with one 
apital good (but adi�erent lag stru
ture) that the time-to-build feature is the driving for
e for the 
y
li
alsystem dynami
s.In 
ontrast to the authors mentioned above, we expli
itly analyze the qualitative andquantitative properties of the optimal paths in their dependen
e on the time-lag σ.Therefore, we formulate an optimal 
ontrol 
apital a

umulation model with a 
onstantand exogenously given time-lag between investment and the a

umulation of 
apital. Forreasons of analyti
al tra
tability, we restri
t our attention to a Leontief-type produ
tionfun
tion. Although the dynami
s of our 
apital a

umulation model is governed by a sys-tem of fun
tional di�erential equations, whi
h is not analyti
ally soluble, we derive somequalitative properties of the optimal solution. As expe
ted from the works of Rusti
hini(1989) and Asea and Zak (1999), the optimal investment paths for a �nite investmentperiod are shown to be 
y
li
al, as opposed to the monotoni
 paths for instantaneous
apital a

umulation.We present a systemati
 analysis of the impa
t of the length of the time-lag σ. Weshow analyti
ally that there is a 
ontinuous transition from instantaneous to time-lagged
apital a

umulation, in the sense that the 
y
li
al behavior be
omes more pronoun
edwith in
reasing time-lag σ. For time-lagged optimal 
ontrol problems even the linearapproximation around the stationary state is not analyti
ally soluble, so numeri
al op-timization is a relevant issue in order to analyze and understand the system dynami
sof time-lagged problems. Using a method des
ribed in Winkler et al. (2004), we solvethe time-lagged optimization problem numeri
ally and dis
uss the results.The paper is organized as follows. In se
tion 2 we introdu
e the optimization model.Although the optimal 
ontrol problem is not analyti
ally soluble, we derive some ana-1



lyti
al properties of the solution in se
tion 3. In se
tion 4 we apply advan
ed numeri
aloptimization methods and dis
uss the optimal paths for an example. Se
tion 5 
on
ludes.2 The ModelWe analyze an optimal 
ontrol 
apital a

umulation model with an exogenously giventime-lag between investment and 
apital a

umulation. In general, time-lagged a

umu-lation problems exhibit severe analyti
al di�
ulties, as even linear fun
tional di�erentialequations are in general not soluble. Therefore, we restri
t our attention to a Leontief-type produ
tion fun
tion.1 This spe
ialization allows us to derive analyti
al propertiesof the optimal paths.Suppose the following intertemporal welfare fun
tion W is to be maximized
W{c(t)} =

∫ ∞

0

V (c(t)) exp[−ρt] dt , (1)where ρ denotes the positive and 
onstant dis
ount rate and V the twi
e di�erentiable,monotoni
ally in
reasing (V ′ > 0) and stri
tly 
on
ave (V ′′ < 0) instantaneous welfarefun
tion.The only non-produ
ible input fa
tor, e. g. labor, is given in 
onstant amount l̄, whi
h isdistributed to three linear-limitational produ
tion pro
esses. Without loss of generality,we assume that the �rst pro
ess produ
es one unit of the 
onsumption good with oneunit of labor. The se
ond pro
ess 
ombines λ units of labor together with κ units of
apital to produ
e one unit of the 
onsumption good. The third pro
ess 
reates one unitof investment from one unit of labor. Thus, we derive
c1(t) = l1(t) , (2)
c2(t) = min

[

l2(t)

λ
,
k(t)

κ

]

, (3)
i(t) = l3(t) , (4)where li denote the amount of labor employed in pro
ess i (i = 1, 2, 3). Assuming e�
ientprodu
tion, i. e. l2(t)/λ = k(t)/κ, and that the labor restri
tion holds with equality, i. e.

∑

i li(t) = l̄ ∀ t, total produ
tion P (t) = c1(t) + c2(t) + i(t) reads:2
P (k(t)) = l̄ +

1 − λ

κ
k(t) . (5)Note that we 
an write total 
onsumption c(t) = c1(t) + c2(t) as total produ
tion minusinvestment:

c(t) = P (k(t)) − i(t) . (6)1 The model introdu
ed in the following is a slightly adapted 
ontinuous time version of the 3-pro
essmodel dis
ussed in Faber and Proops (1991).2 Although 
onsumption goods and investment goods are di�erent 
ommodities, they 
an be summedup be
ause they are all measured in units of labor.2



Hen
e, the formal stru
ture of our model is similar to the neo
lassi
al growth modelsintrodu
ed by Cass (1965) and Koopmans (1965). The main di�eren
e is that we analyzea linear produ
tion fun
tion whi
h does not satisfy the Inada 
onditions (limk→0 P ′ =
∞, limk→∞ P ′ = 0).To model the time stru
ture of produ
tion we assume that 
apital a

umulation istime 
onsuming: investment at time t in
reases the 
apital sto
k k delayed until time
t+σ, where σ denotes the positive and 
onstant time-lag between investment and 
apitala

umulation. Furthermore, we assume that the 
apital sto
k deteriorates at the positiveand 
onstant rate γ:

k̇(t) = i(t−σ) − γk(t) . (7)In addition, we assume that the 
apital sto
k k 
annot be 
onsumed, i. e. i(t) ≥ 0. Hen
e,the optimal 
ontrol problem reads:
max
i(t)

∫ ∞

0

V (c(t)) exp[−ρt] dt (8a)subje
t to
c(t) = l̄ +

1 − λ

κ
k(t) − i(t) , (8b)

k̇(t) = i(t−σ) − γk(t) , (8
)
i(t) ≥ 0 , (8d)
l̄ −

λ

κ
k(t) − i(t) = c(t) −

1

κ
k(t) ≥ 0 , (8e)

i(t) = ξ(t) = 0 , t ∈ [−σ, 0) , (8f)
k(0) = 0 . (8g)The restri
tion (8e) assures that c1 ≥ 0.3 When it is binding, then all labor is usedto employ and maintain the 
apital sto
k. This implies that the 
onsumption good isex
lusively produ
ed by the 
apital intensive pro
ess (3). The equation of motion forthe 
apital sto
k (8
) is the main di�eren
e from instantaneous 
apital a

umulationmodels. Be
ause of the positive time-lag σ, the ordinary di�erential equation be
omesa retarded di�erential-di�eren
e equation, i.e. the variation in the 
apital sto
k dependsnot only on parameters evaluated at time t but also on parameters evaluated at theearlier time t−σ. Thus, the spe
i�
ation of an initial value for the 
apital sto
k k isno longer su�
ient for a unique solution. In addition, we have to spe
ify an initial path

ξ for the investment i in the time interval [−σ, 0). Hen
e, unlike the 
ase of ordinarydi�erential equations, the past does not 
ondense into a single parameter � the initialvalue � but the time path has a 
ru
ial impa
t on the future dynami
s. As a 
onsequen
e,the 
omplexity of the system dynami
s in
reases greatly. For the sake of simpli
ity weassume that the initial path ξ is 
onstant at 0.3 Note that restri
tion (8d) together with the initial 
ondition (8g) assure that c2 ≥ 0.3



3 Analysis of the Optimal SolutionAlthough the optimal 
ontrol problem (8) is not analyti
ally soluble, we 
an state somequalitative properties of the solution. We shall see that the optimal solution falls intoone of two di�erent 
lasses. First, in the trivial 
ase the a

umulation of 
apital isnot optimal. Then the optimal investment path is i(t) = 0 for all times t and therestri
tion (8d) is binding, while the restri
tion (8e) is not binding. The system will stayin the trivial stationary state (i⋆ = 0, k⋆ = 0) forever. Se
ond, in the non-trivial 
aseinvestment is optimal and thus i(t) > 0 for all times t. As a 
onsequen
e restri
tion(8d) is never binding. For small times t also the restri
tion (8e) is not binding. First,for times t ∈ [0, σ) the 
apital sto
k is identi
al to 0 due to the initial path ξ (8f). Afterthe time-lag σ investment turns into 
apital, and the 
apital sto
k in
reases. At sometime t′ the 
apital sto
k is big enough so that all available labor l̄ is used to employand maintain the 
apital sto
k. Hen
e the restri
tion (8e) is binding. The system willthen 
onverge to a stationary state, whi
h is determined by the restri
tion (8e) and thetime-lagged equation of motion (8
).3.1 Ne
essary and Su�
ient ConditionsWe start the dis
ussion of the properties of the optimal path by dedu
ing the ne
essaryand su�
ient 
onditions. In 
ontrast to Asea and Zak (1999), the lag stru
ture appliedin maximization problem (8) is not supported by the Maximum Prin
iple of Pontrjaginet al. (1962). To determine the ne
essary 
onditions for an optimal solution we applythe generalized Maximum Prin
iple derived in El-Hodiri et al. (1972). We obtain thefollowing present-value Hamiltonian H

H = V (c(t)) exp[−ρt] + pc(t)

[

l̄ +
1 − λ

κ
k(t) − i(t) − c(t)

]

+ pk(t+σ)i(t)

−pk(t)γk(t) + pi(t)i(t) + pl(t)

[

l̄ −
λ

κ
k(t) − i(t)

]

,where pc, pi and pl denote the Kuhn-Tu
ker parameters of the 
orresponding restri
tionsand pk the 
ostate variable of the 
apital sto
k k, i.e. they are the shadow pri
es ofthe 
orresponding restri
tions. The di�eren
e to instantaneous 
apital a

umulation is
overed by the term pk(t+σ)i(t). Although it might look odd at �rst sight to have
pk evaluated at a future time, while we have a retarded equation of motion (8
), theexplanation is quite intuitive: pk measures the net present value of all future welfaregains of one additional unit of 
apital. As investment takes the time period σ to turninto produ
tive 
apital, the investment i(t) gives rise to additional 
apital at t+σ, ofwhi
h the net present value is given by pk(t+σ).Assuming that H is 
ontinuously di�erentiable with respe
t to i, the ne
essary 
ondi-

4



tions for an optimal solution read:
∂H

∂i(t)
= −pc(t) + pk(t+σ) + pi(t) − pl(t) = 0 , (9a)

∂H

∂c(t)
= V ′(c(t)) exp[−ρt] − pc(t) = 0 , (9b)

∂H

∂k(t)
= pc(t)

1 − λ

κ
− pk(t)γ − pl(t)

λ

κ
= −ṗk(t) , (9
)

pi(t) ≥ 0 , pi(t)i(t) = 0 , (9d)
pl(t) ≥ 0 , pl(t)

[

l̄ −
λ

κ
k(t) − i(t)

]

= 0 . (9e)As the HamiltonianH is 
on
ave in k and i due to the assumed 
urvature properties of V ,these ne
essary 
onditions are also su�
ient if, in addition, the following transversality
ondition is satis�ed:
lim
t→∞

[pk(t)k(t)] = 0 . (9f)The e
onomi
 interpretation of the ne
essary and su�
ient 
onditions is straightforward.Equation (9b) states that along the optimal path the shadow pri
e of the 
onsumptiongood equals the net present value of marginal utility. Equation (9
) represents a linear�rst order di�erential equation for the shadow pri
e of 
apital, whi
h 
an be unambigu-ously solved together with the transversality 
ondition (9f). As usual, the shadow pri
eof 
apital pk(t) gives the present value gain in welfare of a marginal in
rease of 
apitalat time t. Now we 
an interpret equation (9a). It says that along the optimal path andas long as investment is positive, i. e. pi(t) = 0, and restri
tion (8e) is not binding, i. e.
pl(t) = 0, the present value of the 
osts for an investment in the 
apital good in termsof lost welfare has to equal the shadow pri
e of 
apital pk at time t+σ. As investment attime t a

umulates the 
apital sto
k at time t+σ, the present value of the future welfaregains are 
aptured by the future shadow pri
e of 
apital pk(t+σ).3.2 Stationary StateIn the following we dedu
e a 
ondition for the exogenous parameters to distinguishthe trivial from the non-trivial 
ase. Furthermore, we 
al
ulate the 
orresponding �xedpoints (i⋆, k⋆), whi
h are given by the 
onditions i̇(t) = k̇(t) = 0.Proposition 1 (Stationary State)The unique �xed point (i⋆, k⋆) of the optimal 
ontrol problem (8) is given by:

• (i⋆ = 0, k⋆ = 0), if 1 − λ

κ
≤ (γ + ρ) exp[ρσ], and

•

(

i⋆ =
γκl̄

λ + γκ
, k⋆ =

κl̄

λ + γκ

), if 1 − λ

κ
> (γ + ρ) exp[ρσ].

5



The 
orresponding stationary state 
onsumption levels are c⋆ = l̄ for (i⋆ = 0, k⋆ = 0),and c⋆ = l̄
λ+γκ

for (

i⋆ = γκl̄

λ+γκ
, k⋆ = κl̄

λ+γκ

).Proof: Suppose investment in 
apital is not optimal. Then i(t) = 0, pi(t) ≥ 0 and
pl(t) = 0 ∀ t. Hen
e, (9a) redu
es to:

pc(t) ≥ pk(t+σ) . (10)Furthermore, if i(t) = 0, then also k(t) = 0 and c(t) = l̄ ∀ t. Thus, we derive from (9b):
pc(t) = V ′

(

l̄
)

exp[−ρt]. (11)The di�erential equation for the shadow pri
e pk 
an be solved together with the transver-sality 
ondition (9f) to yield:
pk(t) =

1 − λ

(γ + ρ)κ
V ′

(

l̄
)

exp[−ρt] . (12)Inserting (11) and (12) in (10) and simplifying yields the following inequality:
1 − λ

κ
≤ (γ + ρ) exp[ρσ] . (13)Thus, investment is optimal if this inequality does not hold. In this 
ase investmentis positive and 
apital is a

umulated until all labor is used to employ and maintainthe 
apital sto
k, i. e. the restri
tion (8e) is binding. Hen
e, c⋆ = k⋆/κ and i⋆ = γk⋆.Inserting into (8b) yields the stated result for i⋆, k⋆and c⋆. �In the following we shall 
on
entrate our attention to the non-trivial 
ase of positiveinvestment, where 1−λ

κ
> (γ +ρ) exp[ρσ] holds. Then the stationary state is independentof the time-lag σ as long as this inequality holds. As already mentioned, the system dy-nami
s of the non-trivial 
ase splits into three phases. In the �rst phase, in the following
alled the initial phase, investment is positive but the 
apital sto
k is still 0 due to theinitial path ξ = 0 (8f) and thus, the 
onsumption good is solely produ
ed by produ
tionpro
ess (2). During the se
ond phase, in the following 
alled the growth phase, the 
ap-ital sto
k is a

umulated while the 
onsumption good is produ
ed by both produ
tionpro
esses (2) and (3). Hen
e, the restri
tion (8e) is not binding. In the third phase, in thefollowing 
alled the 
onsolidation phase, 
onsumption is solely produ
ed by the 
apitalintensive produ
tion pro
ess (3), i. e. the restri
tion (8e) is binding.3.3 Initial Phase and Growth PhaseDuring the initial phase and the growth phase the dynami
s of the optimal solution isgoverned by the following system of di�erential equations, whi
h 
an be derived by the

6



ne
essary and su�
ient 
onditions (setting pi(t) = pl(t) = 0) and the equation of motion(8
):4
ċ(t) =

V ′(c(t))

V ′′(c(t))
(γ + ρ) −

V ′(c(t+σ))

V ′′(c(t))

1 − λ

κ
exp[−ρσ] , (14a)

k̇(t) = l̄ +
1 − λ

κ
k(t−σ) − c(t−σ) − γk(t) . (14b)Note that ċ also depends on advan
ed (at a later time) and k̇ on retarded (at an earliertime) variables. Hen
e, (14) forms a system of fun
tional di�erential equations.5 Theusual pro
edure, to linearize the system of di�erential equations around some point ofinterest and dis
uss the resulting system of linear di�erential equations, is not appli
ablehere, be
ause during the growth phase there is no point of attra
tion like the stationarystate. On the 
ontrary, during the growth phase we expe
t the system to 
hange rapidly.Furthermore, in general even the linearized system is not analyti
ally soluble. As a
onsequen
e, little more 
an be said about the optimal paths than that the systemdynami
s is in general 
y
li
al (Winkler 2004).Nevertheless, it is worth noting that if σ = 0 both c(t) and k(t) in
rease monotoni
allywhile for σ > 0 
y
li
al paths are also feasible. Furthermore, the dynami
s of the 
apitalsto
k during the initial phase, ranging from t = 0 to t = σ, is 
ompletely determined bythe initial investment path ξ, the initial 
apital sto
k k(0) and the equation of motion(8
). Thus, the time-lagged a

umulation of 
apital introdu
es an additional moment ofinertia to the system dynami
s.3.4 Consolidation PhaseThe situation 
hanges as soon as restri
tion (8e) is binding and the system dynami
senters the 
onsolidation phase. Here we expe
t the system to 
onverge towards thestationary state. Inserting restri
tion (8e) into equation (8b) we derive:

k(t) =
κ

λ
(l̄ − i(t)) . (15)Di�erentiating with respe
t to time yields:

k̇(t) = −
κ

λ
i̇(t) . (16)Hen
e, the �rst result for the system dynami
s during the 
onsolidation phase is that
apital and investment develop in opposite dire
tions as k̇ and i̇ are of opposite sign.Inserting this equation into the equation of motion for the 
apital sto
k (8
) yields thefollowing inhomogeneous retarded linear di�erential equation:

i̇(t) + γi(t) +
λ

κ
i(t−σ) = γl̄ . (17)4 Here we present the di�erential equations for c(t) and k(t) instead of i(t) and k(t). Note that on
ethe paths for c(t) an k(t) are known, the path for i(t) 
an easily be 
al
ulated using (8b).5 For an introdu
tion to retarded fun
tional di�erential equations see Asea and Zak (1999: se
tion 2)and Gandolfo (1996: 
hapter 27). A detailed exposition for linear fun
tional di�erential equations(di�erential-di�eren
e equations) is given in Bellman and Cooke (1963), and Hale (1977).7



As for ordinary linear di�erential equations, the solution is the superposition of a parti
u-lar solution of the inhomogeneous equation plus the general solution for the homogeneousequation. It 
an easily be veri�ed that the stationary state investment i⋆ = γκl̄

λ+γκ
solves(17). Hen
e, we 
an restri
t our attention to the solution of the homogeneous equation.Similar to the 
ase of ordinary linear �rst-order di�erential equations, the elementarysolutions în for î(t) = i(t) − i⋆ are exponential fun
tions (e.g. Gandolfo 1996: 550�551).Hen
e, we 
an write the general solution as an (in�nite) series of elementary solutions:

î(t) =
∑

n

in exp[xnt] , (18)where in denote 
onstants, whi
h 
an (at least in prin
iple) be unambiguously determinedby the set of initial 
onditions and the transversality 
ondition (9f), and the xn are theroots of the 
hara
teristi
 equation:
x + γ +

λ

γ
exp[−σx] = 0 . (19)Let us denote the real 
hara
teristi
 roots by xr and the 
omplex roots by xj = aj ± ibjwith aj, bj ∈ R (we shall see that all 
omplex roots appear in 
onjugate pairs). For σ = 0the 
hara
teristi
 equation (19) has a unique negative real root xr = −(γ + λ/γ). For

σ > 0 the equation exhibits 0, 1 or 2 negative real roots xr and in addition an in�nitenumber of 
omplex roots xj as the following proposition states.Proposition 2 (Roots of the 
hara
teristi
 polynomial)Given positive 
onstants λ and γ, the 
hara
teristi
 equation (19) has
• one unique negative real root xr = −(γ + λ

γ
), if σ = 0, and

• 0, 1 or 2 negative real roots with xr < −(γ + λ
γ
) and an in�nite number of 
omplexroots xj, of whi
h only a �nite number has positive or vanishing real part, if σ > 0.Proof: 1. The 
ase σ = 0 is obvious from equation (19).2. Real solutions for σ > 0: Set F (x) = x and G(x) = −(γ + λ

κ
exp[−σx]). Thenthe real roots are given by F (x) = G(x) for x ∈ R. There are no positive rootsbe
ause of G(0) = −(γ + λ

κ
) and limx→∞ G(x) = −γ. As limx→−∞ G(x) = −∞,

G′(x) = σλ
κ

exp[−σx] > 0 and G′′(x) = −σ2λ
κ

exp[−σx] < 0, G(x) may not interse
t
F (x), tou
h F (x) for one multiple root or interse
t F (x) twi
e in the negative half-plane. As G(0) = −(γ + λ

κ
) and due to the 
urvature properties of G(x) all rootsare smaller than −(γ + λ

γ
).3. Complex solutions for σ > 0: Set x = a + ib with a, b ∈ R. Inserting into (19) andseparating real and imaginary parts yields the following equations, whi
h have tohold for the 
hara
teristi
 roots:

a + γ +
λ

κ
exp[−σa] cos[σb] = 0 , (20a)

b −
λ

κ
exp[−σa] sin[σb] = 0 . (20b)8



Unfortunately, this system of equations is not analyti
ally soluble. Nevertheless,we 
an state some general properties of the solution. First, note that if a+ ib solves(20) then a − ib also does. Hen
e, 
omplex 
hara
teristi
 roots always appear in
onjugate pairs and therefore we restri
t the further analysis to positive b. Se
ond,due to equation (20b), sin(σb) has to be positive. Hen
e, the imaginary parts b arerestri
ted to the following intervals:
2jπ

σ
< bj <

2(j + 1)π

σ
, j ∈ N0 . (21)For further investigations we rearrange the equations (20)

a =
1

σ
ln

[

λσ

κ

sin β

β

]

, (22a)
ln

[ κ

λσ

]

− γ = ln

[

sin β

β

]

+
β

tan β
, (22b)where β = σb. Note that the right-hand-side (RHS) of equation (22b) is indepen-dent of the exogenous parameters. Thus, we 
an determine the imaginary parts bby the interse
tion of the 
onstant of the left-hand-side (LHS), whi
h depends onthe exogenous parameters, with the graph of the right-hand-side of equation (22b).Due to the stri
t monotoni
ity of ln and tan, there is one unique interse
tion inea
h interval des
ribed by (21) for n > 0 and in addition an interse
tion for n = 0if the LHS of (22b) < 1 (�gure 1). Hen
e, the 
hara
teristi
 equation (19) has anin�nite number of 
omplex solutions.The last thing to show is that there is only a �nite number of 
omplex roots with

aj ≥ 0. From equation (22a) we know that aj < 0 if λσ
κ

sin β

β
< 1. As sin[σbj ]

σbj
→ 0 for

n → ∞, there is one j′ for any given set of exogenous parameters so that aj < 0 if
j > j′. �The spa
e of solutions de
omposes into a stable manifold spanned by the eigenve
-tors 
orresponding to the eigenvalues with negative real part and an unstable manifoldspanned by the eigenve
tors 
orresponding to the eigenvalues with positive real part.6Note that due to the transversality 
ondition (9f), the optimal solution is restri
ted tothe stable hyperplane. Con
luding, the optimal solutions for investment i(t) and 
apitalsto
k k(t) in the 
onsolidation phase 
an be written as:
i(t) = i⋆ +

∑

r

ir exp[xrt] +
∑

j

ij exp[ajt] sin[φj + bjt] , (23a)
k(t) = k⋆ −

∑

r

κ

λ
ir exp[xrt] −

∑

j

κ

λ
ij exp[ajt] sin[φj + bjt] , (23b)6 Depending on the exogenously given parameters the 
hara
teristi
 polynomial may have one 
har-a
teristi
 roots with vanishing real part(aj′ = 0). If su
h a solely 
omplex root exists, the systemdynami
s may exhibit a so 
alled limit-
y
le, i. e. the system os
illates around the stationary statewithout 
onverging towards or diverging from it (Asea and Zak 1999). From the proof of proposition2 it is 
lear that this 
an only happen a

identally for spe
ial sets of exogenous parameters.9
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Figure 1: The imaginary parts of the 
hara
teristi
 roots are given by the interse
tionof the graph of the RHS of equation (22b) with the 
onstant A = ln
[

κ
λσ

]

− γ, whi
h isthe LHS of equation (22b).where ir, ij and φj are 
onstants whi
h have to be determined by the set of initial
onditions and the transversality 
ondition. Furthermore, if aj > 0 then ij = 0. Notethat the optimal solution de
omposes in a monotoni
 part (the �rst sum 
overing thereal roots) and a 
y
li
al part (the se
ond sum 
overing the 
omplex roots). The 
y
li
alpart itself is a 
omposition of individual 
y
les, where the imaginary part bj determinesthe period-length, the real part aj the damping and the 
onstant ij the amplitude of the
orresponding 
y
le.3.5 Transition from Instantaneous to Time-Lagged Capital A

umulationFrom our analysis so far it is obvious that the system dynami
s exhibits a qualitative
hange for a transition from σ = 0 to σ > 0. The optimal paths for investment and
apital 
onverge towards the stationary state stri
tly monotoni
ally and exponentiallyin the �rst 
ase, and 
y
li
ally and exponentially damped in the latter 
ase. However,so far it is not 
lear how this transition takes pla
e quantitatively. Do the optimal pathsexhibit more and more pronoun
ed 
y
li
al behavior with in
reasing time-lag σ, or dothey experien
e a sharp 
hange at the transition from σ = 0 to any σ > 0? Obviously,intuition would suggest a smooth and 
ontinuous transition. In fa
t, this time intuitionholds (at least during the 
onsolidation phase) as we shall show in the following analysis.Therefore, we �rst take a 
loser look at the frequen
ies, determined by xj, and the10



amplitudes, determined by ij, of the optimal solution. The following proposition statesthe result.Proposition 3 (Properties of the optimal path)Given the optimal 
ontrol problem (8) together with the binding restri
tion (8e), theoptimal paths for investment i(t) and 
apital sto
k k(t) exhibit the following properties:
• There exists at most one major 
y
le with period-length T0 > 2σ 
orresponding tothe 
hara
teristi
 root xj with j = 0.
• There exists an in�nite number of minor 
y
les with period-length Tj < σ/j 
or-responding to the 
hara
teristi
 root xj with j ∈ N.
• The upper bound for the amplitude of the 
y
le 
orresponding to the 
hara
teristi
root xj is smaller the higher is j ∈ N0.
• The upper bound for the damping of the 
y
le 
orresponding to the 
hara
teristi
root xj is more negative the higher is j ∈ N0.Proof: 1. Period-lengths Tj: From (21) we know that there is a 
omplex root withimaginary part bj within ea
h interval (2jπ/σ; 2(j +1)π/σ) for ea
h j ∈ N and one
omplex root with imaginary part b0 in the interval (0; π/σ) if the LHS of equation(22b) is smaller than 1. Thus, the 
orresponding period lengths Tj = 2π/bj of the
y
les are:

T0 > 2σ , j = 0 , (24a)
Tj <

σ

j
, j ∈ N . (24b)2. Upper bound for the amplitudes: A

ording to (23a), the absolute di�eren
e be-tween the maximum and the minimum value of the investment path within oneperiod-length is smaller than |2ij| as the 
y
les are also exponentially damped. Asinvestment is non-negative a

ording to restri
tion (8d), 
apital 
an de
rease atmost at the rate of deterioration γ. As the maximal possible amount for the 
apitalsto
k k(t) is given by k̄ = κl̄, the maximal de
rease in 
apital within the time span

Tj must not ex
eed γκl̄Tj. Hen
e, the following relations for the 
onstants ij hold:
∣

∣

∣
2
κ

λ
ij

∣

∣

∣
< κγl̄Tj =

2πκγl̄

bj

<
κγl̄σ

j + 1
, j ∈ N0 . (25)Thus, an upper bound īj for the 
onstant ij is given by:

|̄ij| =
κγλl̄σ

j + 1
, j ∈ N0 . (26)

11



3. Upper bounds for real parts aj (damping): A

ording to (22a) the real parts aj aregiven by:
aj =

1

σ
ln

[

λσ

κ

sin βj

βj

]

, j ∈ N0 . (27)A

ording to (21), 2πj is a lower bound for βj. Setting 1 as an upper bound for
sin βj, we derive as an upper bound āj for the real part aj:

āj =
1

σ
ln

[

λσ

2πκj

]

, j ∈ N0 . (28)Hen
e, for given exogenous parameters λ, κ and σ the upper bound āj is smallerthe higher is j. �From proposition 3 we expe
t that the optimal paths exhibit a dominant 
y
le, whi
h
orresponds to the 
hara
teristi
 root xj with the smallest j that satis�es aj < 0. Ifthe smallest j = 0, then we observe a major 
y
le with a period-length bigger that 2σ.Otherwise we observe a minor 
y
le with period-length smaller than σ/j. In general, weobserve a damped 
y
li
al 
onvergen
e towards the stationary state, but limit-
y
les arepossible for 
ertain sets of exogenous parameters. In addition, we expe
t to observe the
ontributions of the minor 
y
les 
orresponding to the 
hara
teristi
 roots with higher
j. Note that the higher is j, the smaller is the period-length Tj, the smaller is theupper bound for |ij| and thus the amplitude, and the higher is the damping due tothe in
reasingly more negative real parts aj. Hen
e, we expe
t the 
ontribution of the
hara
teristi
 root xj to be smaller the higher is j.Let us now take a 
loser look at the transition from σ = 0 to σ > 0. Therefore,we assume that all exogenous parameters are �xed ex
ept for σ, whi
h we shall treatas a variable. Then we 
an analyze how the optimal paths 
hange if we 
hange σ. Inparti
ular, we are interested in the transition σ → 0. The result is stated in the followingproposition.Proposition 4 (Continuous transition theorem)Given the optimal 
ontrol problem (8) together with the binding restri
tion (8e), theoptimal paths for investment i(t) and 
apital sto
k k(t) exhibit 
eteris paribus a 
ontin-uous transition from monotoni
 to 
y
li
al behavior for a transition from instantaneous(σ = 0) to time-lagged (σ > 0) 
apital a

umulation in the following sense:

• The period-lengths Tj of the 
y
les 
onverge to 0 for σ → 0.
• The upper bounds īj, and thus the amplitudes of the 
y
les, 
onverge to 0 for σ → 0.Proof: 1. Period-lengths Tj: A

ording to (24b), it is obvious that the minor 
y
les(j > 0) have shorter period-lengths the smaller the time-lag σ. The situation isslightly more 
ompli
ated for the major 
y
les (j = 0). Note that for j = 0 theLHS of equation (22b) tends to +∞ for σ → 0. Thus, there exists a σ′ so that theLHS of equation (22b) equals one. As a 
onsequen
e, there exists no major 
y
lefor σ < σ′. 12



2. Upper bounds |̄ij|: From (26) follows dire
tly that limσ→0 |ij| = 0. �A

ording to proposition 4 we expe
t that the optimal paths exhibit in
reasingly morepronoun
ed 
y
li
al behavior if we in
rease the time-lag σ. However, note that for in-
reasing σ, eventually the inequality (13) holds and the system dynami
s will be of thetrivial-solution-type.Although the analysis 
arried out in this se
tion 
ontributed greatly to our under-standing of the system dynami
s of the linear-limitational optimal 
ontrol problem (8),there are still unanswered questions. First, we 
an say hardly anything about the opti-mal paths during the growth phase. Se
ond, although we were able to estimate upperbounds for the amplitudes of the 
y
les during the 
onsolidation phase, we 
annot tell if
y
les play a signi�
ant role at all, as the amplitudes may be very small or even vanish.For general produ
tion fun
tions the situation is even worse. In general, time-laggeda

umulation problems exhibit severe analyti
al di�
ulties, as even linear fun
tional dif-ferential equations are in general not soluble. Hen
e, in general the standard method inoptimal 
ontrol theory to linearize the resulting system of di�erential equations aroundthe stationary state does not lead lead to analyti
al solutions. As a 
onsequen
e, nu-meri
al optimization methods play an important role to analyze and understand thebehavior of time-lagged optimal 
ontrol problems. In the following se
tion we dis
uss anumeri
al example to illustrate our analyti
al results.4 A Numeri
al ExampleIn this se
tion we dis
uss an example of optimization problem (8) for a spe
ial set ofexogenous parameters.7 To analyze the transition from instantaneous to time-lagged
apital a

umulation we vary σ between 0 and 0.5. Table 1 shows numeri
ally 
al
ulatedvalues for the real 
hara
teristi
 roots xr and the �rst three 
omplex 
hara
teristi
 roots
xj together with their 
orresponding period-length Tj and upper bounds |̄ij| for sele
tedvalues of σ.Note that there are real 
hara
teristi
 roots only for σ = 0 and σ = 0.1. Furthermore,for σ = 0.1 there exists no major 
y
le. As the �rst two minor 
y
les have very smallperiod-lengths Tj and are strongly damped, due to highly negative real parts aj, weexpe
t the optimal paths to exhibit only slightly 
y
li
al behavior. For σ ≥ 0.2 there areno real 
hara
teristi
 roots. As a 
onsequen
e, the optimal paths have to be 
y
li
al. Towhat extent the major and minor 
y
les play a role in the system dynami
s is impossibleto say as we only know the period-lengths and upper bounds for their amplitudes.Nevertheless, we expe
t the major 
y
les with period-lengths Tj ranging from 1.27 to
2.01 to dominate the 
y
li
al behavior as their upper bounds are mu
h higher than theupper bounds for the minor 
y
les.To test our expe
tations we solve the optimal 
ontrol problem (8) numeri
ally withthe advan
ed optimal 
ontrol software pa
kage MUSCOD-II developed by the Simulation7 The following fun
tions and 
onstants have been 
hosen for ease of graphi
al presenting of the results:

V (c(t)) = ln c(t), l̄ = 26 2

3
, λ = 0.8, κ = 0.3, γ = 0.15, ρ = 0.1, k0 = 0 and ξ(t) = 0.13



σ 0 0.1 0.2 0.3 0.4 0.5

xr=1 −2.82 −4.21 � � � �
xr=2 � −20.15 � � � �
β0 � � 0.99 (0.32π) 1.29 (0.41π) 1.46 (0.46π) 1.56 (0.5π)

a0 � � −3.99 −1.73 −0.79 −0.32

b0 � � 4.96 4.31 3.63 3.13

T0 � � 1.27 (6.33σ) 1.46 (4.86σ) 1.73 (4.32σ) 2.01 (4.02σ)

ī0 � � 2.03 (10.14σ) 2.33 (7.78σ) 2.76 (6.9σ) 3.21 (6.43σ)

β1 � 7.44 (2.37π) 7.53 (2.4π) 7.58 (2.41π) 7.62 (2.42π) 7.66 (2.43π)

a1 � −34.17 −13.51 −7.62 −4.99 −3.54

b1 � 74.4 37.64 25.26 19.04 15.29

T1 � 0.08 (0.84σ) 0.17 (0.83σ) 0.25 (0.83σ) 0.33 (0.82σ) 0.41 (0.82σ)

ī1 � 0.14 (1.35σ) 0.27 (1.34σ) 0.4 (1.33σ) 0.53 (1.32σ) 0.66 (1.31σ)

β2 � 13.87 (4.41π) 13.92 (4.43π) 13.94 (4.44π) 13.96 (4.45π) 13.98 (4.45π)

a2 � −39.88 −16.43 −9.59 −6.47 −4.72

b2 � 138.67 69.58 46.48 34.91 27.96

T2 � 0.05 (0.45σ) 0.09 (0.45σ) 0.14 (0.45σ) 0.18 (0.45σ) 0.22 (0.45σ)

ī2 � 0.07 (.72σ) 0.14 (0.72σ) 0.22 (0.72σ) 0.29 (0.72σ) 0.36 (0.72σ)Table 1: Numeri
 estimates for the real 
hara
teristi
 roots and the �rst three 
omplex
harar
teristi
 roots together with their 
orresponding period-lengths and upper boundfor the 
onstant ij in absolute numbers and in units of π or σ respe
tively (terms inbra
kets).and Optimization Group of the Interdis
iplinary Center for S
ienti�
 Computing at theUniversity of Heidelberg. For details about the numeri
al simulation see Winkler et al.(2004). As it is not possible to optimize numeri
ally over an in�nite time horizon τ , thetime horizon has been set su�
iently high to ensure a 
lose neighborhood of the optimalpaths to the long-run stationary state (τ ≈ 60). For a more 
onvenient exposition, the�gures show the time paths up to t = 15 (�gure 2) and t = 8 (�gure 3) only.Figure 2 shows numeri
al optimized paths of the time-lagged 
apital a

umulationproblem (8) for time-lags σ ranging from 0 to 0.5. As already mentioned, the optimalpaths split into three phases: the initial phase, the growth phase and the 
onsolidationphase. As the marginal produ
tivity of 
apital 
hanges dis
ontinuous at the transitionfrom one phase to another, the optimal paths are not ne
essarily di�erentiable at thephase borders. In fa
t, for σ > 0 we observe kinks in the optimal investment paths whi
h
orrespond to these phase transitions (indi
ated by bla
k triangles in �gure 2). Consistentwith proposition 2, the optimal paths 
onverge monotoni
ally towards the stationarystate for instantaneous 
apital a

umulation (σ = 0). We also observe monotoni
 optimalpaths for σ > 0 during the initial phase and the growth phase, whi
h was not ne
essarilyexpe
ted from the system of fun
tional di�erential equations (14). Whether this is ageneral feature of this model, or just an artifa
t of our 
hoi
e of exogenous parameters,is impossible to say. In general, the system of fun
tional di�erential equations (14) allows
14



for 
y
li
al system dynami
s.As expe
ted from propositions 3 and 4, the system dynami
s exhibits in
reasinglypronoun
ed 
y
li
al behavior for in
reasing time-lags σ. The fa
t that the optimal pathsfor σ = 0.1 show no visible non-monotoni
ity, suggests that the non-monotoni
ity is ofa magnitude whi
h 
annot be tra
ed in our graphi
al representation or perhaps evenby the resolution of the numeri
al optimization pro
edure. This is not surprising as weknow from table 1 that there is no major 
y
le for σ = 0.1 and the �rst minor 
y
lehas a very small period-length and very high damping. For σ ≥ 0.2 the optimal pathsshow 
learly visible 
y
li
al behavior, whi
h be
omes in
reasingly more pronoun
ed thebigger the time-lag σ. Nevertheless, all optimal paths 
onverge towards the stationarystate. This is not ne
essarily the 
ase as the system dynami
s 
ould exhibit a limit-
y
le.For example, for our 
hoi
e of parameters the major 
y
le turns into a limit-
y
le for
σ ≈ 0.65.Finally, we illustrate the 
ontinuous transition from instantaneous to time-lagged 
ap-ital a

umulation as stated in proposition 4. Figure 3 shows a 3-dimensional plot of theoptimal paths, where the third axis denotes in
reasing time-lags σ. The exogenous pa-rameters are identi
al to the 
al
ulations for �gure 2. Again the time-lag σ ∈ [0, 0.5],whi
h has been split into a grid of 500 equidistant points. For ea
h of these 500 σ theoptimal 
ontrol problem has been solved numeri
ally and the resulting graphs have been
omposed to the 3-dimensional plots in �gure 3. They show how the optimal paths evolvefrom monotoni
 to 
y
li
al paths for in
reasing time-lag σ.5 Con
lusionAs known from the time-to-build literature, time-lagged optimal 
ontrol problems ex-hibit in general a qualitatively di�erent system dynami
s 
ompared to instantaneous
apital a

umulation models. While the optimal paths of the latter 
onverge stri
tlymonotoni
ally towards the stationary state, the �rst show 
y
li
al and exponentiallydamped optimal paths. In this paper we have drawn attention to the quantitative as-pe
ts of the system dynami
s by a transition from instantaneous to time-lagged 
apitala

umulation. To be able to derive analyti
al properties of the optimal solution, we haverestri
ted our attention to a Leontief-type produ
tion fun
tion.We have shown that there is a 
ontinuous transition from instantaneous to time-lagged
apital a

umulation in the sense that the greater is the time lag σ between investmentand 
apital a

umulation, the more the optimal paths display 
y
li
al behavior and thus,the more they di�er from the optimal paths of the instantaneous problem. Moreover,although the optimal solution exhibits in general an in�nite number of 
y
les with di�er-ent amplitudes, period-lengths and damping, the system dynami
s is dominated by the
ontribution of the major 
y
le (if existing and otherwise by the �rst existing minor 
y-
le) as amplitudes de
rease and damping in
reases rapidly for 
y
les of higher order. Astime-lagged optimal 
ontrol problems are not analyti
ally soluble, even in the linear ap-proximation around the stationary state, numeri
al optimization is espe
ially relevant toanalyze and understand the system dynami
s of time-lagged optimal 
ontrol problems.
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Thus, we have illustrated our analyti
al results by an example using state-of-the-artnumeri
al optimization methods.Our result is of dire
t interest to e
onomi
 theory. It suggests that the standardassumption of instantaneous 
apital a

umulation in neo
lassi
al e
onomi
 theory 
an bejusti�ed as a good approximation for small time-lags σ. However, for large time-lags, e. g.in plant 
onstru
tion or the pharma
euti
al industry, the validity of this approximationis endangered. A priori it seems di�
ult to determine if a given time-lag should be
onsidered to be small or large, as this depends on the whole set of exogenous parametersand the error one is willing to tolerate. However, as the optimal paths are dominated bythe 
ontribution of the �rst few 
y
les, the 
al
ulation of the period-length of the major
y
le (or if non-existing the �rst existing minor 
y
le) and the 
orresponding real partand upper bound for its amplitude give a good impression of what to expe
t from theoptimal paths.So far we have solely analyzed a 
entralized e
onomy. A priori it is not 
lear if thewell known result of instantaneous 
apital a

umulation that (under 
ertain additionalassumptions) a de
entralized market solution is Pareto-optimal turns out to be true inthe 
ase of time-lagged 
apital a

umulation. Intuition suggests that the households'knowledge about the time-lag might be 
ru
ial. To answer this question further investi-gations on this topi
 have to be 
arried out. Another promising area of resear
h is the
ombination of growth models with time-lagged 
apital a

umulation. This 
ould givenew insights for the analysis of real business 
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