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Non-Technical Summary

Production processes can be considered as transforming inputs into
outputs. In economic modelling it is usually assumed that this
happens instantaneously. However, a "real world" production
process takes time, meaning that the outputs are available with a
certain time lag after assigning the inputs. The time lag may be
substantial in the production of capital goods such as plants,
buildings or larger network infrastructure.

We analyze the question how this time-lag influences the optimal
investment over time at hand of an optimal control capital
accumulation model. As known from the time-to-build literature,
time-lagged optimal control problems may exhibit a qualitatively
different system dynamics as compared to instantaneous capital
accumulation models, namely cyclical and exponentially damped
oscillating optimal investment paths. We confirm this system
dynamics for the case of Leontief-type production functions and
show under which conditions the optimal path is dominated by one
major cycle.

As time-lagged optimal control problems are not analytically
soluble, even in the linear approximation around the stationary
state, state-of-the-art numerical optimization methods are used
for the second major contribution of the analysis: the
illustration of the transition from instantaneous to time-lagged
production. We show the formation of the major cycle and
illustrate that while for small time lags instantaneous production
neoclassical economic theory is a good approximation, the validity
of this approximation is challenged for large time lags.
Calculating the major cycle already gives a good impression

of what to expect from the optimal paths of investment.




On the Transition from Instantaneous to Time-Lagged
Capital Accumulation
The Case of Leontief-Type Production Functions

Ralph Winkler*#, Ulrich Brandt-Pollmann', Ulf Moslener* and Johannes Schloder’*

* School of Politics, International Relations and the Environment, Keele University, UK
§ Research Centre for Environmental Economics, University of Heidelberg, Germany

T Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
! Centre for European Economic Research (ZEW), Mannheim, Germany

April 2005

Abstract: We formulate an optimal control capital accumulation model with a Leontief-
type production function and an exogenously given time-lag between investment and the
accumulation of the capital stock, to analyze the qualitative and quantitative influence of
time-lags on the system dynamics. As known from the time-to-build literature, optimal
investment paths for positive and finite time-lags are in general cyclical, in contrast to
the monotonic optimal paths for instantaneous capital accumulation. We show that the
transition between instantaneous and time-lagged capital accumulation is continuous, in
the sense that the greater is the time-lag between investment and capital accumulation,
the more likely and more pronounced becomes cyclical behavior of the optimal paths.

Keywords: cyclical optimal paths, numerical optimization, time-lagged optimal control,
time-to-build

JEL-Classification: E32, C63, C61

Correspondence:

Ralph Winkler

School of Politics, International Relations and the Environment

Keele University, Keele

Staffordshire, ST5 5BG, United Kingdom

phone: +44 1782 583745, fax: 444 1782 583592, email: r.t.winkler@pol.keele.ac.uk

* We are grateful to Jiirgen Eichberger, Malte Faber, Christoph Heinzel and John Proops for com-
ments on an earlier draft. Ulf Moslener and Ralph Winkler gratefully acknowledge financial support
by the Deutsche Forschungsgemeinschaft (German Research Foundation) under the postgraduate
programme “Environmental and Resource Economics”.



1 Introduction

All production takes time. That is, the transformation of inputs into outputs does not
occur instantaneously. This ubiquitous experience has influenced economic theory in
various ways and at different times. In his formulation of Austrian capital theory, von
Bohm-Bawerk (|1889|1921) applied the average investment period, i. e. the average time
span between the assignment of the non-produced inputs and the finished consumption
goods in the production process, to avoid the problem of the ambiguity of an aggre-
gate measure of capital. This time aspect of production was revived in the 1970s by the
neo-Austrian capital theories (e.g. von Weizsécker 1971, Hicks 1973 and Faber 1979).
El-Hodiri et al. (1972) derived a generalized maximum principle for a growth model with
heterogenous capital goods and exogenously given and constant time-lags between con-
trol and state variables. Benhabib and Rustichini (1991) interpreted the time structure
of production as a special case of vintage-capital models, which they called gestation
lags. The time aspect of production has also been discussed in the macroeconomic real
business cycle theory. Following an idea first posed in Kalecki (1935), Kydland and
Prescott (1982) empirically analyzed how far time consuming investment, which they
called time-to-build, could explain real business cycles. While Kydland and Prescott
(1982) argued that the time-to-build feature is essential to cyclical fluctuations in their
model, this was doubted by Ioannides and Taub (1992). Rustichini (1989) and Asea
and Zak (1999) showed in simple optimal control models with one capital good (but a
different lag structure) that the time-to-build feature is the driving force for the cyclical
system dynamics.

In contrast to the authors mentioned above, we explicitly analyze the qualitative and
quantitative properties of the optimal paths in their dependence on the time-lag o.
Therefore, we formulate an optimal control capital accumulation model with a constant
and exogenously given time-lag between investment and the accumulation of capital. For
reasons of analytical tractability, we restrict our attention to a Leontief-type production
function. Although the dynamics of our capital accumulation model is governed by a sys-
tem of functional differential equations, which is not analytically soluble, we derive some
qualitative properties of the optimal solution. As expected from the works of Rustichini
(1989) and Asea and Zak (1999), the optimal investment paths for a finite investment
period are shown to be cyclical, as opposed to the monotonic paths for instantaneous
capital accumulation.

We present a systematic analysis of the impact of the length of the time-lag 0. We
show analytically that there is a continuous transition from instantaneous to time-lagged
capital accumulation, in the sense that the cyclical behavior becomes more pronounced
with increasing time-lag o. For time-lagged optimal control problems even the linear
approximation around the stationary state is not analytically soluble, so numerical op-
timization is a relevant issue in order to analyze and understand the system dynamics
of time-lagged problems. Using a method described in Winkler et al. (2004), we solve
the time-lagged optimization problem numerically and discuss the results.

The paper is organized as follows. In section 2 we introduce the optimization model.
Although the optimal control problem is not analytically soluble, we derive some ana-



lytical properties of the solution in section 3. In section 4 we apply advanced numerical
optimization methods and discuss the optimal paths for an example. Section 5 concludes.

2 The Model

We analyze an optimal control capital accumulation model with an exogenously given
time-lag between investment and capital accumulation. In general, time-lagged accumu-
lation problems exhibit severe analytical difficulties, as even linear functional differential
equations are in general not soluble. Therefore, we restrict our attention to a Leontief-
type production function.! This specialization allows us to derive analytical properties
of the optimal paths.

Suppose the following intertemporal welfare function W is to be maximized

W{c(t)} = / T V(elt)) expl—pt] dt 1)

where p denotes the positive and constant discount rate and V' the twice differentiable,
monotonically increasing (V’ > 0) and strictly concave (V" < 0) instantaneous welfare
function.

The only non-producible input factor, e. g. labor, is given in constant amount [, which is
distributed to three linear-limitational production processes. Without loss of generality,
we assume that the first process produces one unit of the consumption good with one
unit of labor. The second process combines A\ units of labor together with s units of
capital to produce one unit of the consumption good. The third process creates one unit
of investment from one unit of labor. Thus, we derive

alt) = ht), (2)
(3)

it) = (), (4)
where [; denote the amount of labor employed in process i (i = 1,2, 3). Assuming efficient
production, i.e. Iy(t)/A = k(t)/k, and that the labor restriction holds with equality, i. e.
>, Li(t) =1 Vt, total production P(t) = ¢1(t) 4 co(t) + i(t) reads:”

1—A
K

k(t) - (5)

Note that we can write total consumption c¢(t) = ¢;(t) + ¢2(t) as total production minus
investment:

c(t) = P(k(t)) —i(t) . (6)

! The model introduced in the following is a slightly adapted continuous time version of the 3-process
model discussed in Faber and Proops (1991).

2 Although consumption goods and investment goods are different commodities, they can be summed
up because they are all measured in units of labor.




Hence, the formal structure of our model is similar to the neoclassical growth models
introduced by Cass (1965) and Koopmans (1965). The main difference is that we analyze
a linear production function which does not satisfy the Inada conditions (limy_ P’ =
00, limy o, P' = 0).

To model the time structure of production we assume that capital accumulation is
time consuming: investment at time ¢ increases the capital stock £ delayed until time
t+o, where o denotes the positive and constant time-lag between investment and capital
accumulation. Furthermore, we assume that the capital stock deteriorates at the positive
and constant rate -:

k(t) =i(t—o) — yk(t) . (7)

In addition, we assume that the capital stock k cannot be consumed, i.e. i(t) > 0. Hence,
the optimal control problem reads:

max /0 V(e(t)) expl—pt] dt (8a)

subject to

o(t) =1+ ! ; Ak(t) —i(t) (8b
k(t) =i(t—o) — vk(t) , (8¢
i(t) >0, (8d

The restriction (8e) assures that ¢; > 0.* When it is binding, then all labor is used
to employ and maintain the capital stock. This implies that the consumption good is
exclusively produced by the capital intensive process (3). The equation of motion for
the capital stock (8¢c) is the main difference from instantaneous capital accumulation
models. Because of the positive time-lag o, the ordinary differential equation becomes
a retarded differential-difference equation, i.e. the variation in the capital stock depends
not only on parameters evaluated at time ¢ but also on parameters evaluated at the
earlier time ¢t —o. Thus, the specification of an initial value for the capital stock k is
no longer sufficient for a unique solution. In addition, we have to specify an initial path
¢ for the investment ¢ in the time interval [—o,0). Hence, unlike the case of ordinary
differential equations, the past does not condense into a single parameter — the initial
value — but the time path has a crucial impact on the future dynamics. As a consequence,
the complexity of the system dynamics increases greatly. For the sake of simplicity we
assume that the initial path ¢ is constant at 0.

3 Note that restriction (8d) together with the initial condition (8g) assure that ca > 0.



3 Analysis of the Optimal Solution

Although the optimal control problem (8) is not analytically soluble, we can state some
qualitative properties of the solution. We shall see that the optimal solution falls into
one of two different classes. First, in the trivial case the accumulation of capital is
not optimal. Then the optimal investment path is i(¢) = 0 for all times ¢ and the
restriction (8d) is binding, while the restriction (8e) is not binding. The system will stay
in the trivial stationary state (i* = 0,k* = 0) forever. Second, in the non-trivial case
investment is optimal and thus i(¢) > 0 for all times ¢. As a consequence restriction
(8d) is never binding. For small times ¢ also the restriction (8e) is not binding. First,
for times ¢ € [0, o) the capital stock is identical to 0 due to the initial path & (8f). After
the time-lag o investment turns into capital, and the capital stock increases. At some
time t' the capital stock is big enough so that all available labor [ is used to employ
and maintain the capital stock. Hence the restriction (8e) is binding. The system will
then converge to a stationary state, which is determined by the restriction (8e) and the
time-lagged equation of motion (8c).

3.1 Necessary and Sufficient Conditions

We start the discussion of the properties of the optimal path by deducing the necessary
and sufficient conditions. In contrast to Asea and Zak (1999), the lag structure applied
in maximization problem (8) is not supported by the Maximum Principle of Pontrjagin
et al. (1962). To determine the necessary conditions for an optimal solution we apply
the generalized Maximum Principle derived in El-Hodiri et al. (1972). We obtain the
following present-value Hamiltonian H

H = V(e(t))expl—pt] + pe(t) [i + %k@—w)—c(t)]+pk<t+a>z‘<t>

R+ pi0)i0) + ) 1= 2k = (0] |

where p., p; and p; denote the Kuhn-Tucker parameters of the corresponding restrictions
and p, the costate variable of the capital stock k, i.e. they are the shadow prices of
the corresponding restrictions. The difference to instantaneous capital accumulation is
covered by the term pg(t+0)i(t). Although it might look odd at first sight to have
pi evaluated at a future time, while we have a retarded equation of motion (8c), the
explanation is quite intuitive: pp measures the net present value of all future welfare
gains of one additional unit of capital. As investment takes the time period ¢ to turn
into productive capital, the investment i(t) gives rise to additional capital at t+o, of
which the net present value is given by py(t+0).

Assuming that H is continuously differentiable with respect to i, the necessary condi-



tions for an optimal solution read:

OH

i) —pe(t) + pr(t+o) +pi(t) —p(t) =0, (9a)
S = VD) el =) =0, (91)
S = PO - n(02 = o) (%)
pi(t) > 0, pi(t)i(t)=0, (9d)
() > 0, p(t) {Z— %kz(t) —z'(t)] =0. (9e)

As the Hamiltonian H is concave in k£ and ¢ due to the assumed curvature properties of V/,
these necessary conditions are also sufficient if, in addition, the following transversality
condition is satisfied:

Jim [ (O (1)] = 0. (o)

The economic interpretation of the necessary and sufficient conditions is straightforward.
Equation (9b) states that along the optimal path the shadow price of the consumption
good equals the net present value of marginal utility. Equation (9¢) represents a linear
first order differential equation for the shadow price of capital, which can be unambigu-
ously solved together with the transversality condition (9f). As usual, the shadow price
of capital pi(t) gives the present value gain in welfare of a marginal increase of capital
at time t. Now we can interpret equation (9a). It says that along the optimal path and
as long as investment is positive, i.e. p;(t) = 0, and restriction (8e) is not binding, i. e.
pi(t) = 0, the present value of the costs for an investment in the capital good in terms
of lost welfare has to equal the shadow price of capital p, at time t+o. As investment at
time t accumulates the capital stock at time t+o, the present value of the future welfare
gains are captured by the future shadow price of capital pi(t+0).

3.2 Stationary State

In the following we deduce a condition for the exogenous parameters to distinguish
the trivial from the non-trivial case. Furthermore, we calculate the corresponding fixed
points (i*, k*), which are given by the conditions i(t) = k(t) = 0.

Proposition 1 (Stationary State)
The unique fized point (i*,k*) of the optimal control problem (8) is given by:

1— A
o (i*=0, k*=0), if < (v + p) explpo], and

. il Kl 1=
* k,* — .
. (z pp— A+w)’ if —— > (7 +p) exp[po]




The corresponding stationary state consumption levels are ¢ =1 for (i* = 0, k* = 0),

x 1 xRl *x _ Kl
and c = 3om for (z = S k _A+m>'

Proof: Suppose investment in capital is not optimal. Then i(t) = 0, p;(¢) > 0 and
pi(t) = 0 Vt. Hence, (9a) reduces to:

pelt) > prlt+o) (10)
Furthermore, if i(t) = 0, then also k(t) = 0 and ¢(t) = [ V¢. Thus, we derive from (9b):
pelt) = V' (1) expl—pt]. (1)

The differential equation for the shadow price p can be solved together with the transver-
sality condition (9f) to yield:

nl) = ¢ L2y (1) expl—pf] - (12)

v+ Pk
Inserting (11) and (12) in (10) and simplifying yields the following inequality:

2 < () exploo] (13)

Thus, investment is optimal if this inequality does not hold. In this case investment
is positive and capital is accumulated until all labor is used to employ and maintain
the capital stock, i.e. the restriction (8e) is binding. Hence, ¢* = k*/k and i* = vk*.
Inserting into (8b) yields the stated result for i*, k*and c*. 0

In the following we shall concentrate our attention to the non-trivial case of positive
investment, where 1=2 > (v + p) exp[po] holds. Then the stationary state is independent
of the time-lag o as long as this inequality holds. As already mentioned, the system dy-
namics of the non-trivial case splits into three phases. In the first phase, in the following
called the initial phase, investment is positive but the capital stock is still 0 due to the
initial path £ = 0 (8f) and thus, the consumption good is solely produced by production
process (2). During the second phase, in the following called the growth phase, the cap-
ital stock is accumulated while the consumption good is produced by both production
processes (2) and (3). Hence, the restriction (8e) is not binding. In the third phase, in the
following called the consolidation phase, consumption is solely produced by the capital
intensive production process (3), i.e. the restriction (8e) is binding.

3.3 Initial Phase and Growth Phase

During the initial phase and the growth phase the dynamics of the optimal solution is
governed by the following system of differential equations, which can be derived by the



necessary and sufficient conditions (setting p;(t) = p;(¢f) = 0) and the equation of motion

(8c):*

L V(elt) V'(c(t+a))1— A
ct) = W(v+p)— Vi) n exp[—po] (14a)
k(t) = [+ ; k(t—o) — c(t—o) — vk(t) . (14b)

Note that ¢ also depends on advanced (at a later time) and k on retarded (at an earlier
time) variables. Hence, (14) forms a system of functional differential equations.” The
usual procedure, to linearize the system of differential equations around some point of
interest and discuss the resulting system of linear differential equations, is not applicable
here, because during the growth phase there is no point of attraction like the stationary
state. On the contrary, during the growth phase we expect the system to change rapidly.
Furthermore, in general even the linearized system is not analytically soluble. As a
consequence, little more can be said about the optimal paths than that the system
dynamics is in general cyclical (Winkler 2004).

Nevertheless, it is worth noting that if o = 0 both ¢(¢) and k(t) increase monotonically
while for o > 0 cyclical paths are also feasible. Furthermore, the dynamics of the capital
stock during the initial phase, ranging from ¢ = 0 to t = o, is completely determined by
the initial investment path &, the initial capital stock k£(0) and the equation of motion
(8¢). Thus, the time-lagged accumulation of capital introduces an additional moment of
inertia to the system dynamics.

3.4 Consolidation Phase

The situation changes as soon as restriction (8e) is binding and the system dynamics
enters the consolidation phase. Here we expect the system to converge towards the
stationary state. Inserting restriction (8e) into equation (8b) we derive:

k(t) = S —i(1) - (15)

Differentiating with respect to time yields:
K-

k(t) = -5 - (16)

Hence, the first result for the system dynamics during the consolidation phase is that
capital and investment develop in opposite directions as k and i are of opposite sign.
Inserting this equation into the equation of motion for the capital stock (8c) yields the
following inhomogeneous retarded linear differential equation:

i) +7i(t)+%i(t—a) A (17)

* Here we present the differential equations for ¢(t) and k(t) instead of i(t) and k(t). Note that once
the paths for ¢(t) an k(t) are known, the path for i(¢) can easily be calculated using (8b).

5 For an introduction to retarded functional differential equations see Asea and Zak (1999: section 2)
and Gandolfo (1996: chapter 27). A detailed exposition for linear functional differential equations
(differential-difference equations) is given in Bellman and Cooke (1963), and Hale (1977).



As for ordinary linear differential equations, the solution is the superposition of a particu-
lar solution of the inhomogeneous equation plus the general solution for the homogeneous
equation. It can easily be verified that the stationary state investment * = % solves
(17). Hence, we can restrict our attention to the solution of the homogeneous equation.

Similar to the case of ordinary linear first-order differential equations, the elementary
solutions i, for i(t) = i(t) — i* are exponential functions (e.g. Gandolfo 1996: 550-551).

Hence, we can write the general solution as an (infinite) series of elementary solutions:

i) = 3 inexplont] (1)
n
where i,, denote constants, which can (at least in principle) be unambiguously determined
by the set of initial conditions and the transversality condition (9f), and the z,, are the
roots of the characteristic equation:

A
:c—l—’y—l—;exp[—ax] =0. (19)

Let us denote the real characteristic roots by z, and the complex roots by x; = a; £ ib;
with a;, b; € R (we shall see that all complex roots appear in conjugate pairs). For o = 0
the characteristic equation (19) has a unique negative real root =, = —(y + A/). For
o > 0 the equation exhibits 0, 1 or 2 negative real roots z, and in addition an infinite
number of complex roots x; as the following proposition states.

Proposition 2 (Roots of the characteristic polynomial)
Given positive constants A and vy, the characteristic equation (19) has

e one unique negative real root x, = —(v + %), if o =0, and

e 0, 1 or 2 negative real roots with x, < —(y+ %) and an infinite number of complex
roots x;j, of which only a finite number has positive or vanishing real part, if o > 0.

Proof: 1. The case o = 0 is obvious from equation (19).

2. Real solutions for 0 > 0: Set F(z) = z and G(z) = —(7 + 2 exp[—oz]). Then
the real roots are given by F(z) = G(x) for z € R. There are no positive roots
because of G(0) = —(y + 2) and lim, o G(z) = —7. As lim,__ G(z) = —o0,
G'(z) = 2 exp|—oz] > 0 and G"(z) = —%’\ exp[—oz] < 0, G(z) may not intersect
F(x), touch F(x) for one multiple root or intersect F'(z) twice in the negative half-
plane. As G(0) = —(7 + 2) and due to the curvature properties of G(x) all roots
are smaller than —(y + %)

3. Complex solutions for o > 0: Set x = a + ib with a, b € R. Inserting into (19) and
separating real and imaginary parts yields the following equations, which have to
hold for the characteristic roots:

A
a+y+ - exp[—oa] cos[ob] =0, (20a)

b— %exp[—aa] sinfob] =0 . (20b)



Unfortunately, this system of equations is not analytically soluble. Nevertheless,
we can state some general properties of the solution. First, note that if a+1b solves
(20) then a — ib also does. Hence, complex characteristic roots always appear in
conjugate pairs and therefore we restrict the further analysis to positive b. Second,
due to equation (20b), sin(ob) has to be positive. Hence, the imaginary parts b are
restricted to the following intervals:

2jm 2+ D)m

<b < ——" € Np . 21
e ]< p 7.]6 0 ()

For further investigations we rearrange the equations (20)

1 Ao si
a = E In {%Slgﬁ} , (223)
K B sin 3 I}

where § = ob. Note that the right-hand-side (RHS) of equation (22b) is indepen-
dent of the exogenous parameters. Thus, we can determine the imaginary parts b
by the intersection of the constant of the left-hand-side (LHS), which depends on
the exogenous parameters, with the graph of the right-hand-side of equation (22b).
Due to the strict monotonicity of In and tan, there is one unique intersection in
each interval described by (21) for n > 0 and in addition an intersection for n =0
if the LHS of (22b) < 1 (figure 1). Hence, the characteristic equation (19) has an
infinite number of complex solutions.

The last thing to show is that there is only a finite number of complex roots with

a; > 0. From equation (22a) we know that a; < 0 if A—;% < 1. As % — 0 for
J

n — 00, there is one j’ for any given set of exogenous parameters so that a; < 0 if

ji>7. O

The space of solutions decomposes into a stable manifold spanned by the eigenvec-
tors corresponding to the eigenvalues with negative real part and an unstable manifold
spanned by the eigenvectors corresponding to the eigenvalues with positive real part.®
Note that due to the transversality condition (9f), the optimal solution is restricted to
the stable hyperplane. Concluding, the optimal solutions for investment i(¢) and capital
stock k() in the consolidation phase can be written as:

i(t) ="+ Z ir expla,t] + Z i; expla;t] sin[p; + b;t] (23a)
k) =k =Y gz expla,t] =Y gij expla;t] sin[¢; + bjt] | (23b)

6 Depending on the exogenously given parameters the characteristic polynomial may have one char-
acteristic roots with vanishing real part(a;; = 0). If such a solely complex root exists, the system
dynamics may exhibit a so called limit-cycle, i.e. the system oscillates around the stationary state
without converging towards or diverging from it (Asea and Zak 1999). From the proof of proposition
2 it is clear that this can only happen accidentally for special sets of exogenous parameters.
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Figure 1: The imaginary parts of the characteristic roots are given by the intersection
of the graph of the RHS of equation (22b) with the constant A = In [/\—’Z] — 7, which is
the LHS of equation (22b).

where ,, 7; and ¢; are constants which have to be determined by the set of initial
conditions and the transversality condition. Furthermore, if a; > 0 then 7; = 0. Note
that the optimal solution decomposes in a monotonic part (the first sum covering the
real roots) and a cyclical part (the second sum covering the complex roots). The cyclical
part itself is a composition of individual cycles, where the imaginary part b; determines
the period-length, the real part a; the damping and the constant i; the amplitude of the
corresponding cycle.

3.5 Transition from Instantaneous to Time-Lagged Capital Accumulation

From our analysis so far it is obvious that the system dynamics exhibits a qualitative
change for a transition from ¢ = 0 to ¢ > 0. The optimal paths for investment and
capital converge towards the stationary state strictly monotonically and exponentially
in the first case, and cyclically and exponentially damped in the latter case. However,
so far it is not clear how this transition takes place quantitatively. Do the optimal paths
exhibit more and more pronounced cyclical behavior with increasing time-lag o, or do
they experience a sharp change at the transition from ¢ = 0 to any ¢ > 07 Obviously,
intuition would suggest a smooth and continuous transition. In fact, this time intuition
holds (at least during the consolidation phase) as we shall show in the following analysis.
Therefore, we first take a closer look at the frequencies, determined by z;, and the

10



amplitudes, determined by i;, of the optimal solution. The following proposition states
the result.

Proposition 3 (Properties of the optimal path)
Given the optimal control problem (8) together with the binding restriction (8e), the
optimal paths for investment i(t) and capital stock k(t) exhibit the following properties:

e There exists at most one major cycle with period-length Ty > 20 corresponding to
the characteristic root x; with j = 0.

o There exists an infinite number of minor cycles with period-length T; < o/j cor-
responding to the characteristic root x; with j € N.

e The upper bound for the amplitude of the cycle corresponding to the characteristic
root x; is smaller the higher is j € Ny.

e The upper bound for the damping of the cycle corresponding to the characteristic
root x; is more negative the higher is j € Ny.

Proof: 1. Period-lengths T;: From (21) we know that there is a complex root with
imaginary part b; within each interval (2j7/0;2(j+1)7 /o) for each j € N and one
complex root with imaginary part by in the interval (0; 7 /o) if the LHS of equation
(22b) is smaller than 1. Thus, the corresponding period lengths T} = 27 /b; of the

cycles are:
Ty >20, j=0, (24a)
T,<Z, jeN. (24b)
J

2. Upper bound for the amplitudes: According to (23a), the absolute difference be-
tween the maximum and the minimum value of the investment path within one
period-length is smaller than |2i;| as the cycles are also exponentially damped. As
investment is non-negative according to restriction (8d), capital can decrease at
most at the rate of deterioration . As the maximal possible amount for the capital
stock k(t) is given by k = kl, the maximal decrease in capital within the time span
T; must not exceed yxITj. Hence, the following relations for the constants i; hold:

2kl - kylo
b; j+1’

< KylTy = J €Ny . (25)

K.
‘QXZj
Thus, an upper bound 7; for the constant i; is given by:

kYo
J+1

’EJ’ = ’ ] € I\]0 . (26)
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3. Upper bounds for real parts a; (damping): According to (22a) the real parts a; are
given by:

1 Ao sin 3;
CLj = ; n ? ﬂ
J

According to (21), 27y is a lower bound for ;. Setting 1 as an upper bound for
sin 3;, we derive as an upper bound a; for the real part a;:

B 1 {)\0

}, jEeENg. (27)

a; = —1In
I

, JE€ENgy. 28
27T/€j:| J = (28)
Hence, for given exogenous parameters )\, x and o the upper bound a; is smaller
the higher is 7. U

From proposition 3 we expect that the optimal paths exhibit a dominant cycle, which
corresponds to the characteristic root z; with the smallest j that satisfies a; < 0. If
the smallest j = 0, then we observe a major cycle with a period-length bigger that 2.
Otherwise we observe a minor cycle with period-length smaller than o/j. In general, we
observe a damped cyclical convergence towards the stationary state, but limit-cycles are
possible for certain sets of exogenous parameters. In addition, we expect to observe the
contributions of the minor cycles corresponding to the characteristic roots with higher
J- Note that the higher is j, the smaller is the period-length T}, the smaller is the
upper bound for |i;| and thus the amplitude, and the higher is the damping due to
the increasingly more negative real parts a;. Hence, we expect the contribution of the
characteristic root x; to be smaller the higher is j.

Let us now take a closer look at the transition from ¢ = 0 to o > 0. Therefore,
we assume that all exogenous parameters are fixed except for o, which we shall treat
as a variable. Then we can analyze how the optimal paths change if we change . In
particular, we are interested in the transition ¢ — 0. The result is stated in the following
proposition.

Proposition 4 (Continuous transition theorem)

Given the optimal control problem (8) together with the binding restriction (8e), the
optimal paths for investment i(t) and capital stock k(t) exhibit ceteris paribus a contin-
uous transition from monotonic to cyclical behavior for a transition from instantaneous
(0 =0) to time-lagged (o > 0) capital accumulation in the following sense:

o The period-lengths T; of the cycles converge to 0 for o — 0.
o The upper bounds i;, and thus the amplitudes of the cycles, converge to 0 for o — 0.

Proof: 1. Period-lengths Tj: According to (24b), it is obvious that the minor cycles
(7 > 0) have shorter period-lengths the smaller the time-lag o. The situation is
slightly more complicated for the major cycles (; = 0). Note that for j = 0 the
LHS of equation (22b) tends to +oo for & — 0. Thus, there exists a ¢’ so that the
LHS of equation (22b) equals one. As a consequence, there exists no major cycle
for o < o'

12



2. Upper bounds |i;]: From (26) follows directly that lim,_q |i;| = 0. O

According to proposition 4 we expect that the optimal paths exhibit increasingly more
pronounced cyclical behavior if we increase the time-lag 0. However, note that for in-
creasing o, eventually the inequality (13) holds and the system dynamics will be of the
trivial-solution-type.

Although the analysis carried out in this section contributed greatly to our under-
standing of the system dynamics of the linear-limitational optimal control problem (8),
there are still unanswered questions. First, we can say hardly anything about the opti-
mal paths during the growth phase. Second, although we were able to estimate upper
bounds for the amplitudes of the cycles during the consolidation phase, we cannot tell if
cycles play a significant role at all, as the amplitudes may be very small or even vanish.

For general production functions the situation is even worse. In general, time-lagged
accumulation problems exhibit severe analytical difficulties, as even linear functional dif-
ferential equations are in general not soluble. Hence, in general the standard method in
optimal control theory to linearize the resulting system of differential equations around
the stationary state does not lead lead to analytical solutions. As a consequence, nu-
merical optimization methods play an important role to analyze and understand the
behavior of time-lagged optimal control problems. In the following section we discuss a
numerical example to illustrate our analytical results.

4 A Numerical Example

In this section we discuss an example of optimization problem (8) for a special set of
exogenous parameters.” To analyze the transition from instantaneous to time-lagged
capital accumulation we vary ¢ between 0 and 0.5. Table 1 shows numerically calculated
values for the real characteristic roots z, and the first three complex characteristic roots
z; together with their corresponding period-length 7}; and upper bounds [i;| for selected
values of o.

Note that there are real characteristic roots only for 0 = 0 and o = 0.1. Furthermore,
for 0 = 0.1 there exists no major cycle. As the first two minor cycles have very small
period-lengths T and are strongly damped, due to highly negative real parts a;, we
expect the optimal paths to exhibit only slightly cyclical behavior. For o > 0.2 there are
no real characteristic roots. As a consequence, the optimal paths have to be cyclical. To
what extent the major and minor cycles play a role in the system dynamics is impossible
to say as we only know the period-lengths and upper bounds for their amplitudes.
Nevertheless, we expect the major cycles with period-lengths 7} ranging from 1.27 to
2.01 to dominate the cyclical behavior as their upper bounds are much higher than the
upper bounds for the minor cycles.

To test our expectations we solve the optimal control problem (8) numerically with
the advanced optimal control software package MUSCOD-II developed by the Simulation

7 The following functions and constants have been chosen for ease of graphical presenting of the results:
V(e(t)) =Inc(t), I = 26%, A=08,k=03,v=0.15, p=0.1, kg = 0 and £(¢) = 0.
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o ]| 0 0.1 0.2 0.3 0.4 0.5
Ty || —2.82 —4.21 — — — —
Tr—2 —20.15

Bo — — 0.99 (0.327) | 1.29(0.417) [ 1.46(0.46w) | 1.56 (0.57)
ag — — —3.99 -1.73 —0.79 —0.32

bo — — 4.96 4.31 3.63 3.13

Ty — — 1.27(6.330) | 1.46 (4.860) | 1.73(4.320) | 2.01(4.020)
io — — 2.03(10.140) | 2.33(7.780) | 2.76(6.90) | 3.21(6.430)
By — | 7.44(2.377) | 7.53(2.4m) | 7.58(2.417) | 7.62(2.42m) | 7.66 (2.43m)
a1 — —34.17 —13.51 —7.62 —4.99 —3.54

by — 74.4 37.64 25.26 19.04 15.29

T — [ 0.08(0.840) | 0.17(0.830) | 0.25(0.830) | 0.33(0.820) | 0.41(0.820)
i — | 0.14(1.350) | 0.27(1.340) | 0.4(1.330) | 0.53(1.320) [ 0.66 (1.310)
B2 13.87 (4.41m) [ 13.92 (4.437) | 13.94 (4.447) | 13.96 (4.45m) | 13.98 (4.457)
ay — —39.88 —16.43 —9.59 —6.47 —4.72

b — 138.67 69.58 46.48 34.91 27.96

T — ] 0.05(0.450) | 0.09(0.450) | 0.14(0.450) | 0.18(0.450) [ 0.22(0.450)
ia — | 0.07(.720) | 0.14(0.720) | 0.22(0.720) | 0.29(0.720) [ 0.36(0.720)

Table 1: Numeric estimates for the real characteristic roots and the first three complex
chararcteristic roots together with their corresponding period-lengths and upper bound
for the constant i; in absolute numbers and in units of 7 or o respectively (terms in
brackets).

and Optimization Group of the Interdisciplinary Center for Scientific Computing at the
University of Heidelberg. For details about the numerical simulation see Winkler et al.
(2004). As it is not possible to optimize numerically over an infinite time horizon 7, the
time horizon has been set sufficiently high to ensure a close neighborhood of the optimal
paths to the long-run stationary state (7 ~ 60). For a more convenient exposition, the
figures show the time paths up to ¢t = 15 (figure 2) and ¢ = 8 (figure 3) only.

Figure 2 shows numerical optimized paths of the time-lagged capital accumulation
problem (8) for time-lags o ranging from 0 to 0.5. As already mentioned, the optimal
paths split into three phases: the initial phase, the growth phase and the consolidation
phase. As the marginal productivity of capital changes discontinuous at the transition
from one phase to another, the optimal paths are not necessarily differentiable at the
phase borders. In fact, for ¢ > 0 we observe kinks in the optimal investment paths which
correspond to these phase transitions (indicated by black triangles in figure 2). Consistent
with proposition 2, the optimal paths converge monotonically towards the stationary
state for instantaneous capital accumulation (o = 0). We also observe monotonic optimal
paths for ¢ > 0 during the initial phase and the growth phase, which was not necessarily
expected from the system of functional differential equations (14). Whether this is a
general feature of this model, or just an artifact of our choice of exogenous parameters,
is impossible to say. In general, the system of functional differential equations (14) allows
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for cyclical system dynamics.

As expected from propositions 3 and 4, the system dynamics exhibits increasingly
pronounced cyclical behavior for increasing time-lags o. The fact that the optimal paths
for 0 = 0.1 show no visible non-monotonicity, suggests that the non-monotonicity is of
a magnitude which cannot be traced in our graphical representation or perhaps even
by the resolution of the numerical optimization procedure. This is not surprising as we
know from table 1 that there is no major cycle for ¢ = 0.1 and the first minor cycle
has a very small period-length and very high damping. For ¢ > 0.2 the optimal paths
show clearly visible cyclical behavior, which becomes increasingly more pronounced the
bigger the time-lag . Nevertheless, all optimal paths converge towards the stationary
state. This is not necessarily the case as the system dynamics could exhibit a limit-cycle.
For example, for our choice of parameters the major cycle turns into a limit-cycle for
o~ 0.65.

Finally, we illustrate the continuous transition from instantaneous to time-lagged cap-
ital accumulation as stated in proposition 4. Figure 3 shows a 3-dimensional plot of the
optimal paths, where the third axis denotes increasing time-lags o. The exogenous pa-
rameters are identical to the calculations for figure 2. Again the time-lag o € [0,0.5],
which has been split into a grid of 500 equidistant points. For each of these 500 ¢ the
optimal control problem has been solved numerically and the resulting graphs have been
composed to the 3-dimensional plots in figure 3. They show how the optimal paths evolve
from monotonic to cyclical paths for increasing time-lag o.

5 Conclusion

As known from the time-to-build literature, time-lagged optimal control problems ex-
hibit in general a qualitatively different system dynamics compared to instantaneous
capital accumulation models. While the optimal paths of the latter converge strictly
monotonically towards the stationary state, the first show cyclical and exponentially
damped optimal paths. In this paper we have drawn attention to the quantitative as-
pects of the system dynamics by a transition from instantaneous to time-lagged capital
accumulation. To be able to derive analytical properties of the optimal solution, we have
restricted our attention to a Leontief-type production function.

We have shown that there is a continuous transition from instantaneous to time-lagged
capital accumulation in the sense that the greater is the time lag o between investment
and capital accumulation, the more the optimal paths display cyclical behavior and thus,
the more they differ from the optimal paths of the instantaneous problem. Moreover,
although the optimal solution exhibits in general an infinite number of cycles with differ-
ent amplitudes, period-lengths and damping, the system dynamics is dominated by the
contribution of the major cycle (if existing and otherwise by the first existing minor cy-
cle) as amplitudes decrease and damping increases rapidly for cycles of higher order. As
time-lagged optimal control problems are not analytically soluble, even in the linear ap-
proximation around the stationary state, numerical optimization is especially relevant to
analyze and understand the system dynamics of time-lagged optimal control problems.
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Figure 2: Optimal paths for capital and investment for time-lags o € [0,0.5] between
investment and capital accumulation.
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Thus, we have illustrated our analytical results by an example using state-of-the-art
numerical optimization methods.

Our result is of direct interest to economic theory. It suggests that the standard
assumption of instantaneous capital accumulation in neoclassical economic theory can be
justified as a good approximation for small time-lags 0. However, for large time-lags, e. g.
in plant construction or the pharmaceutical industry, the validity of this approximation
is endangered. A priori it seems difficult to determine if a given time-lag should be
considered to be small or large, as this depends on the whole set of exogenous parameters
and the error one is willing to tolerate. However, as the optimal paths are dominated by
the contribution of the first few cycles, the calculation of the period-length of the major
cycle (or if non-existing the first existing minor cycle) and the corresponding real part
and upper bound for its amplitude give a good impression of what to expect from the
optimal paths.

So far we have solely analyzed a centralized economy. A priori it is not clear if the
well known result of instantaneous capital accumulation that (under certain additional
assumptions) a decentralized market solution is Pareto-optimal turns out to be true in
the case of time-lagged capital accumulation. Intuition suggests that the households’
knowledge about the time-lag might be crucial. To answer this question further investi-
gations on this topic have to be carried out. Another promising area of research is the
combination of growth models with time-lagged capital accumulation. This could give
new insights for the analysis of real business cycles.
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