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Abstract

A well known problem with revealed preference methods is that when data are found to
satisfy their restrictions it is hard to know whether this should be viewed as a triumph for
economic theory, or a warning that these conditions are so undemanding that almost anything
goes. This paper allows researchers to make this distinction. Our approach builds on theoretical
support in the form of an axiomatic cardinal characterisation of a measure of predictive success
due to Selten (1991). We illustrate the idea using a large, nationally representative panel survey
of Spanish consumers with broad commodity coverage. The results show that this approach
to revealed preference methods can lead us radically to reassess our view of the empirical
performance of economic theory.

Acknowledgements: We are grateful to Richard Blundell, Martin Browning, Jerry Hausman,
Clare Leaver, Peter Neary and seminar audiences in Brown, Copenhagen, Leuven, LSE, Oxford,
Tulane, Queen Mary and Essex for their comments. We are deeply indebted to John D. Hey
who brought Selten’s Theorem to our attention.

1 Introduction

Revealed preference conditions offer simple, intuitive and direct means of assessing the empirical
implications of a wide range of basic economic models. Indeed, when revealed preference conditions
are checked it is often found that the models perform reasonably well1 . But is this a triumph
for Economics, or a warning that revealed preference conditions are so undemanding that almost
anything goes? The contribution of this paper is to provide a systematic way in which we might,
for the first time, be able to tell.

To illustrate the difficulty, consider the classical two-good consumer choice problem illustrated
in Figure 1. It shows two budget constraints where prices are p1 = [3, 4]

′
and p2 = [4, 3]

′
and

budgets are x1 = 10 and x2 = 5. This environment is one in which there is a modest change
in relative prices in conjunction with a large change in income. As a result, regardless of where
a nonsatiated consumer’s choices fall, revealed preference restrictions on their behaviour simply
cannot be violated. As Varian (1982) puts it,

"... lack of variation in the price data limits the power of these methods."
H. Varian, Econometrica, 1982, pp 966-7.2

1Revealed preference tests have found rational behaviour amongst New York dairy farmers (Tauer (1995)), Danish
consumers (Blow et al (2008)), children (Harbaugh et al. (2001)), psychiatric patients (Battalio et al. (1973)), and
Capuchin monkeys (Chen et al. (2006)).

2Note, this is not a statement about statistical power. This problem arises in revealed preference analysis con-
ducted with non random variables where the statistical power is, by definition, one. There have been a number
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This issue is well known, and a number of ways of accounting for it have been suggested3 .
The problem is that existing approaches lack a sound theoretical grounding and this creates two
difficulties. First, there is no basis for choosing among competing proposals all of which may be
plausible. Second, it is unclear how existing methods, which generally rely on the geometric intuition
of the weak axiom of revealed preference, might extend to other more complex restrictions in the
broad revealed preference family4 .

F
���� 1: A two good, two choice example of an inability to detect violation.
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In the next section, we develop a way to account for the ability (or lack thereof) of revealed pref-
erence methods to reject optimising behaviour. Our approach is based on a measure of predictive
success proposed by Selten and Krischker (1983) and Selten (1991) in the context of experimental
game theory. A key feature of the proposed measure is that it has transparent theoretical under-
pinnings. We show that a set of axioms, which capture some desirable attributes of such a measure,
cardinally identify the proposed measure. Section 3 shows that this approach is not just theoreti-
cally based but is also useful; we show that reporting revealed preference results using our proposed
methods is far more informative than the usual approach of simply reporting pass rates.

2 Predictive Success in Revealed Preference Tests

Revealed preference restrictions confine a consumer’s observed choices to lie in a specific, well-
defined set. To illustrate, consider Figure 2, which shows a two-good, two-choice example where
prices are p1 = [3, 4]

′
p2 = [4, 3]

′
and budgets are 10 in each period. If a consumer with concave,

monotonic, continuous, non-satiated preferences were to make choices from these two budget sets
then those choices must satisfy the Generalised Axiom of Revealed Preference (GARP).5

of contributions which discuss the statistical power of revealed preference tests on stochastic variables including
Varian (1985), Epstein and Yatchew (1985), Bronars (1987), Famulari (1997), Aizcorbe (2001) and Blundell et al

(2008) who build on the work of Andrews and Guggenburger (2007). In the future the Andrews and Guggenberger
(2007) approach might be usefully combined with the methods developed here to deal with both the statistical and
non-statistical aspects of rejectability in revealed preference tests.

3See Andreoni and Harbaugh (2008) for a recent discussion of the issue, a review of the various measures which have
been proposed, suggestions for a number of novel approaches and a comparative empirical study of the performance
for all of the indices.

4This includes revealed preference type approaches to profit maximisation and cost minimisation by perfectly
competitive and monopolistic firms (Hanoch and Rothschild, 1972); the strong rational expectations hypothesis
(Browning, 1989); expected utility theory (Bar-Shiva, 1992); household sharing models (Cherchye, De Rock and Ver-
muelen, 2007); firm investment behaviour (Varian, 1983); characteristics models (Blow et al, 2008); habits (Crawford,
2009), and so on.

5Afriat (1967), Diewert (1972), Varian (1982).
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F
���� 2: A two good, two choice example with predictive ability.
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F
���� 3: The area of the GARP restrictions in Figure 2.
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A simple two-dimensional way of representing the restrictions on choices implied by GARP is to
illustrate the set of GARP-consistent budget shares for one of the goods (w1,t denotes the budget
share of good 1 on budget constraint t) in a unit square — where the budget share of the other
good is implied by adding up. This is illustrated in Figure 3, where the shaded area S shows the
set of all budget shares for good 1 which are consistent with GARP6 and the unit square P is the
set of all possible budget-shares for this good. When we check GARP on observed choices, we are
essentially looking to see if the observed shares lie in the predicted set. A useful analogy is that the
set of demands admissible under the theory defines a target for the choice data and we then check
to see if the consumer’s choices have hit the target.

Now reconsider the nature of revealed preference restrictions in the price-budget environment
depicted in Figure 1. If we plotted the revealed preference-consistent budget shares for those budget
constraints, the whole of the unit square corresponding to Figure 3 would be shaded. In that case,
the set of outcomes predicted by the theory is also the set of all possible outcomes; the theory rules
nothing out and as a result it is impossible for observed choices to reject the restrictions.

Figures 1, 2 and 3 are instructive. They suggest that merely recording the pass rate of revealed
preference tests in a consumer panel survey may not, on its own, be a very good guide as to the

6For example, the point (1, 0) in Figure 3 shows a budget share of 100% on good 1 (and so 0% on good 2) when
the consumer faces the prices p1 = [3, 4]′, and a budget share of 0% on good 1 (and so 100% on good 2) when the
consumer faces the prices p2 = [4, 3]

′. This corresponds to demands q1 = [3.333, 0] ′ and q2 = [0, 333]
′ which satisfy

GARP. Therefore (1, 0) ∈ S.
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success or otherwise of the model. To the extent that the constraints imposed by the revealed
preference restrictions may represent “unmissable targets”, the simple pass rate may be entirely
uninformative about the performance of the model. It would seem to be important to find a way of
accounting for this. Figure 3 suggests a possible solution. The size of the set defined by the revealed
preference restrictions (S) relative to the size of the set of all possible outcomes (P ) is a natural
measure of the discipline imposed by the restrictions. In Figure 2, the relative size of the predicted
set as a proportion of the outcome space is 40/49 ≈ 81.6%. In this case, 19.4% of possible outcomes
are ruled out by the revealed preference restrictions - it is at least possible to miss the target. It
therefore seems that we should take the size of the target area as well as the pass/fail indicator into
account when evaluating the outcome of a revealed preference test: a model should be counted as
more successful in situations in which we observe both good pass rates and demanding restrictions.

In what follows we denote the pass/fail indicator by r ∈ {0, 1} and the relative area of the target
a ∈ [0, 1] (i.e. the size of S relative to P where the relative area of the empty set 0 and the relative
area of the whole outcome space is 1). If the measure of success - which we denote m (r, a) - should
depend on both pass rate and area, the question of the functional form of m (r, a) remains open.
To address this, we begin by asking what properties should such a measure have? Consider the
following:

Monotonicity: m (1, 0) > m (0, 1) .
Equivalence: m (0, 0) = m (1, 1) .
Aggregability:m (λr1 + (1− λ) r2, λa1 + (1− λ) a2) = λm (r1, a1)+(1− λ)m (r2, a2) .

Monotonicity says that a model for which the data satisfy extremely demanding (point) restric-
tions should be judged as more successful than one in which the data fails to satisfy entirely unde-
manding restrictions. The idea of Equivalence is that a situation in which there are no restrictions
and a situation in which nothing is ruled out are equally (un)informative about the performance of
a model. Aggregability says that it is desirable that the measure should be additively decomposable
when it is applied to heterogeneous consumers so that it is relatively straightfoward to calculate
an overall average performance measure for a sample of data and to make inferences about the
expected value of m in the population. Given these axioms, we have the following result:

Selten’s Theorem. The function, m = r−a satisfies monotonicity, equivalence and ag-

gregability. If m̃ (r, a) also satisfies these axioms then there exist real numbers {β, γ > 0}
such that m̃ (r, a) = β + γm.

Proof: See Appendix.7 �

Selten’s Theorem says that not only does the simple difference measure of pass rate minus area
satisfy these axioms, but all measures which satisfy these axioms are positive linear transformations
of this difference. The implication is that we might as well use the simple difference8 . The resulting
measurem ∈ [−1, 1] can be viewed as a pass/fail indicator, corrected for the ability to find rejections.
The interpretation of m is very straightforward. As m approaches one we know that we have a
situation in which the restrictions are extremely demanding, coupled with data which satisfy them:
the sign of a quantitatively successful model. As m approaches minus one we know that we have
restrictions which allow almost any observed behaviour and yet the data fail to conform: the sign

7The Theorem is proved in Selten (1991). The proof in this paper is a simpler alternative using standard results
on functional equations.

8Selten also provides an ordinal characterisation of m = r−a which replaces aggregability with a continuity axiom
and an axiom which says that two theories should be compared on the basis of the difference in their respective pass
rates and areas.

4



of an almost pathologically unsuccessful model. As m approaches zero we know we have a situation
in which the apparent accuracy of the data simply mirrors the size of the target.

To conclude this section we propose a generalisation of the ideas discussed above. Revealed pref-
erence methods (somewhat notoriously) give rather hit/miss results; the outcome for an individual
consumer is r = 1 if they pass and r = 0 if they fail. Even though this has the benefit of clarity it
might be argued that it comes at the expense of recognising a qualitative difference between near
misses and data that are way off target. A simple way in which to generalise the binary pass/fail
result is to compute the Euclidean distance (d) between the observed data and the target area and
use this in place of r. Unfortunately, such a measure is unsuitable for several reasons9 . A better
alternative is to measure the extent of the miss proportionally to the maximum possible distance
(denoted dmax) between a feasible outcome and the target area (this would be at (0, 1) in Figure
3, for example). The new hit rate rd = 1− d/dmax lies in the interval zero-one and takes the value
one if the data satisfy the revealed preference restrictions, and zero if it misses by the maximum
possible amount. This way of measuring hits and misses smooths out a binary result by penalising
close shaves and wild misses differently and, since it lies in the unit interval, the overall measure of
predictive success md = rd − a continues to satisfy Selten’s Theorem.

2.1 Connections with the literature

The relative area is not a probability measure. Nevertheless, it does have all of the necessary
properties of a probability (it is nonnegative, the relative area of the whole outcome space is one
and the total area of two disjoint subsets of the outcome space is the sum of the areas). If one
were to interpret the relative area as a probability then an interpretation of m ≈ 0 is that the
theory performs about as well as a uniform random number generator. This interpretation provides
a link between the measure proposed above and the investigation of statistical power conducted by
Bronars (1987). Statistical power is, of course a measure of Prob (Rejecting H0 | H0 is false) but
the calculation of any statistical power measure requires an alternative hypothesis to be specified.
Bronars’ (1987) adopts Becker’s (1962) idea of uniform random choices over the outcome space as a
general alternative hypothesis to a null of optimising behaviour. The implication is that area may
be interpreted as one minus Bronars’ (1987) statistical power measure.

The original intent of the ideas developed by Selten (1991) was to find a way of measuring
predictive success in experimental game theory. Likewise the area can be thought of as a tool to
aim the better design of experiments. For example, in the context of a lab experiment designed to
test revealed preference conditions (e.g. Sippel (1997) and Harbaugh, Krause, and Berry (2001)) the
area can be used to optimise the design of the experiment by choosing the price-budget environment
to minimise the relative area and thus maximise the sensitivity of the test to non-rational behaviour.
More recently Blundell et al (2003) consider the design of revealed preference tests in the context
of observational data when the investigator observes prices and Engel curves. The Engel curves
allow the investigator to construct budget expansion paths for demands at the observed prices and
Blundell et al (2003) consider the question of how to choose the budget levels at which to evaluate
demands and conduct revealed preference tests with the object of maximising the sensitivity of
the test. Their solution - the sequential maximum power path - takes an initial price-quantity
observation and then sequentially sets the budget for the next choice such that the original choice is
exactly affordable and no more. In this way they seek sequentially to optimise the test conditional
on observed behaviour up to that point. Whilst the approach taken in Blundell et al (2003) is
quite different in spirit to that taken in this paper, it turns out that it is easy to show in a simple
two-good example their method can be interpreted as minimising the relative area conditional on

9Firstly it is unit-dependent and not constrained to lie in the unit interval. Consequently the resulting measure
of predictive success would not satisfy Selten’s Theorem. Secondly this distance measure will necessarily be inversely
related to the area (if the predicted area almost fills the outcome space then it will be impossible to miss by much).
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the sequential ordering of the path that they choose. This connection also suggests how the ideas
developed here could be used to improve their method further by considering alternative orderings
of the data aimed at minimising the area unconditionally.

3 An Illustrative Application

We now turn to a practical application of these ideas. We begin by showing how the proposed
measure is useful in interpreting a revealed preference analysis of a heterogeneous sample. We then
show how using the smoothed hit rate provides information on the nature of the failures of the
theory. Finally, we show how our approach can be used to compare alternative models.

We use data from the Spanish Continuous Family Expenditure Survey (the Encuesta Continua

de Presupuestos Familiares - ECPF). The ECPF is a quarterly budget survey of Spanish households,
which interviews about 3,200 households every quarter. Households are randomly rotated at a rate
of 12.5% per quarter. It is possible to follow a participating household for up to eight consecutive
periods. The data cover the years 1985 to 1997 and the selected sub-sample are couples with and
without children, in which the husband is in full-time employment in a non-agricultural activity
and the wife is out of the labour force (this is to minimise the effects of nonseparabilities between
consumption demands and leisure for which the empirical application does not otherwise allow).
The dataset consists of 21,866 observations on 3,134 households. It records household non-durable
expenditures aggregated into 5 broad commodity groups ("Food, Alcohol and Tobacco","Energy
and Services at Home","Non Durables","Travel" and "Personal Services"). The price data are
national price indices for the corresponding expenditure categories.

3.1 Predictive Success in a Consumer Panel

We independently check GARP and calculate the area for each household in our data. The aggregate
pass rate for GARP is impressively high, r = 0.957. The vast majority of households in the data
pass; we can conclude that they behave in a manner consistent with the canonical economic model.
However, given the preceding discussion, we are compelled to ask the question, how demanding
was the test? We find that the aggregate area is a = 0.912. This leads to an aggregate measure
of predictive success of m = 0.045. The implication is that the standard economic model of utility
maximisation out-performed a random number generator - but only by 4.5%. Given this, the
unadjusted pass rate of 95.7% seems a great deal less impressive and even somewhat misleading
regarding the success of the model.

F
���� 4: Frequency distribution of the areas
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F
���� 5: Frequency distribution of predictive successes
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Figure 4 plots the frequency distribution of the household-level areas and Figure 5 plots the
distribution of the household-level measures of predictive success. A key feature of the results
highlighted in Figure 4 is that for many households the relative area of the target is equal to 1 - the
theory cannot fail. As a consequence, as illustrated in Figure 5, for most of our sample the model
has a measure of predictive success equal to zero because the households’ observed choices have
simply succeeded in hitting an unmissable target. Figure 5 also shows that while the restrictions
of the model provide a modicum of discipline for some households, there are also a small number
of households in the left tail who have missed relatively large target areas. The distribution of the
individual pass/fail measures ri (not illustrated) simply has two mass points: fr (0) = 0.043 and
fr (1) = 0.957.

We now generalise the measure of predictive success to distinguish between a near miss and a
wild miss. Figure 6 shows the distribution of the modified pass/fail measure for the 133 household
in our sample that miss the theoretical target. The distribution is skewed somewhat to the left of
its theoretical zero-one range indicating that most households who fail GARP do so by less than
half the extent to which they might, but in general the distances would be hard to describe as being
massed close to zero. We might conclude that, in these data, consumers who violate GARP do
not do so narrowly. Since this calculation only applies to 4.3% of our data (the percentage that
failed) the effect of the generalised pass/fail measure on the aggregate performance index is modest:
we find that rd = 0.97 compared to r = 0.957 and the measure of predicted success is equal to
md = 0.058 compared to m = 0.045.

F
���� 6: The distribution of the modified hit rate
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Overall we can conclude that, for most of these households, those who satisfy the theory do so
because the GARP restrictions are almost completely without bite. Whilst those who fail, do not
do so narrowly. Of course, we are not claiming that these particular results apply more widely than
the dataset studied here. But we are claiming that presenting results in this way sheds a great deal
more light on the success, or otherwise, of economic theory than does the uncorrected aggregate
pass rate which is uniformly reported in the applied literature.

3.2 Model Comparison

We now turn to the issue of model comparison and consider two extensions of the basic model of
consumer choice and ask whether m might provide useful guidance in each case. These are: utility
maximisation with optimisation error and utility maximisation with measurement error.

3.2.1 Optimisation Errors

A modification of the revealed preference conditions was developed by Afriat (1967, 1972) and Var-
ian (1985, 1990) to allow for optimisation errors. This modification introduces a free parameter
into the restrictions called the Afriat efficiency parameter (denoted by e), which lies in the inter-
val zero-one.10 One minus the Afriat efficiency parameter can be interpreted as the proportion
of the household’s budget that they are allowed to waste through optimisation errors. Fixing the
Afriat efficiency at one requires perfect cost efficiency and is equivalent to a standard GARP test.
Setting it equal to zero allows complete inefficiency in which case all feasible demand data are con-
sistent with the theory. Values in between one and zero weaken the revealed preference restrictions
monotonically.

The Afriat efficiency approach is simple to apply and widely used. However, the difficulty
facing researchers is determining the appropriate level for e.11 We know that if we set the efficiency
parameter low enough, we can always get the data to pass and, in fact, lowering the efficiency
parameter just enough to get the data to pass is exactly what is done in much of the literature.12

But given the preceding discussion, we also know that simply maximising the pass rate is not the
right thing to do if it also increases the area, which is precisely what lowering the Afriat efficiency
does. The optimal choice of the efficiency parameter must depend on the balance between pass rate
and area.

F
���� 7: Aggregate predictive performance by Afriat efficiency.
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10Briefly, qtR0 (e)qs ⇔ ep′
t
qt ≥ p′

t
qsand R (e) denotes the transitive closure of R0 (e). The modified version of

GARP is then qiR (e)qk ⇒ ep′
k
qk ≤ p

′

k
qi.

11Varian’s (1990) tongue-in-cheek suggestion was e = 0.95.
12See Andreoni and Harbaugh (2008) and references therein.
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To investigate the issue we vary the Afriat efficiency and track the predictive performance of
the modified GARP conditions in our data. This is shown in Figure 7, which clearly illustrates the
effects of the Afriat efficiency index on the performance of the model. Whilst setting the required
efficiency to 95% sounds fairly demanding and indeed is sufficient to guarantee that everyone will
pass, in fact doing so enlarges the target area so as to be unmissable. The optimal level for efficiency
is much higher (99.5%) although it should be noted that even this only raises the performance of
the model to a little over 5%.

3.2.2 Measurement Errors

As discussed above, the data are composed of expenditures by households on commodity groups
collected in the ECPF, and corresponding national price indices published by the Instituto Nacional

de Estadística. Since the expenditures are recorded in the survey, but the prices are national time
series data, is seems highly possible that, if there is measurement error, most of it will be found in
the price data. To this end, we consider an extension of the basic model discussed in Varian (1985)
which allows for classical, mean zero, measurement errors in log prices.13 The error variance (which
for illustrative purposes we assume is common across commodity groups) is of course unknown, so
once again it represents a free parameter in the model.

The effects of increasing the error variance, unlike those of the Afriat efficiency parameter in the
previous example or the case of attenuation bias in statistical tests, can go either way: households
which previously passed (failed) may now fail (pass) once measurement error is allowed for, and
the effects on the area could also go in either direction. To analyse the effects on the predictive
performance of the theory we simulate the measurement error by drawing from a multivariate
N (0, σ) and compute the expected value of m for different values of σ.

F
���� 8: Aggregate predictive performance by measurement error.
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Figure 8 shows the relationship between the standard deviation of the measurement error and
the expected performance of the modified theory. With σ = 0 we have no measurement error and
so we have m = 0.045 as before. As we gradually increase the measurement error we see that the
performance of the augmented model improves. This is mainly due to the fact that even though
pass rates are dropping over the early part of this range, the area is falling faster as the increased
variance of the prices makes budget lines cross to a greater extent. However it is not the case,
in this context, that enough measurement allows you to rationalise anything; indeed there is clear
evidence that with σ � 0.35 that the predictive performance of the model begins to fall. It would
appear that a model of optimising behaviour subject to N (0, 0.35) measurement error in log prices
provides the most satisfactory of those considered for these data.

13We opt for the log specification to avoid the possibility that true prices are ever negative.
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4 Conclusions

This paper solves two long-standing problems in the revealed preference literature. First, it provides
a simple and intuitive approach to accounting for the fact that, sometimes, revealed preference tests
just cannot miss. Second, it can be applied to all of the members of the broad family of revealed
preference type methods for which an outcome space can be defined. Whilst we would not defend
to the death the particular axioms used in this paper, we would argue that the general axiomatic
approach based on pass rates and relative area is the right way to make progress on this issue. If
these axioms seem unpalatable then investigators are free to choose others, more to their liking,
which may identify another functional form for m (r, a).

Our empirical example demonstrates the potential importance of making these allowances when
interpreting the results of revealed preference analyses. In our examination of optimising behaviour,
we obtain an unadjusted pass rate of 95.7%. At first glance, this seems like a notable validation
of a fundamental economic model. But when we account for the quite undemanding nature of the
restrictions which theory places on these data, we see that the performance of the model is far less
impressive. Put a different way, in our sample, the economic model is revealed to perform about 4.5%
better than a random number generator. This should reverse our conclusions about the strength
of the empirical support for the model. The framework proposed above also allows for a far richer
description of the results of a revealed preference analysis. Generalising the pass rate to distinguish
between near misses and wild misses tells us that, at least for our sample, households that fail do
not do so narrowly. The approach is also useful as a guide to model adjustment/selection: our
example illustrates how these methods can be used to select an optimal cost efficiency parameter
or measurement error variance. We conclude that the methods developed in this paper provide a
more revealing look at revealed preference.
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Appendix - An alternative proof of Selten’s Theorem

The aggregability axiom is a Cauchy functional equation which implies that m (r, a) is affine (Azcél
(1966)) so letm = β0+βrr+βaa. Equivalence then implies that β0 = β0+βr+βa hence βr = −βa.
Denote βr = β and βa = −β. Monotonicity then implies that β

0
+ β > β

0
− β hence β > 0. Thus

m = β0+β (r − a) where β > 0. Since all functions which satisfy these axioms share this form they
are all positive affine transformations of each other.�
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