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POST-ℓ1-PENALIZED ESTIMATORS IN HIGH-DIMENSIONAL LINEAR

REGRESSION MODELS

ALEXANDRE BELLONI AND VICTOR CHERNOZHUKOV

Abstract. In this paper we study post-penalized estimators which apply ordinary, unpenal-

ized linear regression to the model selected by first-step penalized estimators, typically LASSO.

It is well known that LASSO can estimate the regression function at nearly the oracle rate, and

is thus hard to improve upon. We show that post-LASSO performs at least as well as LASSO

in terms of the rate of convergence, and has the advantage of a smaller bias. Remarkably, this

performance occurs even if the LASSO-based model selection “fails” in the sense of missing

some components of the “true” regression model. By the “true” model we mean here the best

s-dimensional approximation to the regression function chosen by the oracle. Furthermore,

post-LASSO can perform strictly better than LASSO, in the sense of a strictly faster rate

of convergence, if the LASSO-based model selection correctly includes all components of the

“true” model as a subset and also achieves a sufficient sparsity. In the extreme case, when

LASSO perfectly selects the “true” model, the post-LASSO estimator becomes the oracle esti-

mator. An important ingredient in our analysis is a new sparsity bound on the dimension of the

model selected by LASSO which guarantees that this dimension is at most of the same order

as the dimension of the “true” model. Our rate results are non-asymptotic and hold in both

parametric and nonparametric models. Moreover, our analysis is not limited to the LASSO es-

timator in the first step, but also applies to other estimators, for example, the trimmed LASSO,

Dantzig selector, or any other estimator with good rates and good sparsity. Our analysis covers

both traditional trimming and a new practical, completely data-driven trimming scheme that

induces maximal sparsity subject to maintaining a certain goodness-of-fit. The latter scheme

has theoretical guarantees similar to those of LASSO or post-LASSO, but it dominates these

procedures as well as traditional trimming in a wide variety of experiments.
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1. Introduction

In this work we study post-model selected estimators for linear regression in high-dimensio-

nal sparse models (HDSMs). In such models, the overall number of regressors p is very large,

possibly much larger than the sample size n. However, the number s of significant regressors –

those having a non-zero impact on the response variable – is smaller than the sample size, that

is, s = o(n). HDSMs ([6], [13]) have emerged to deal with many new applications arising in

biometrics, signal processing, machine learning, econometrics, and other areas of data analysis

where high-dimensional data sets have become widely available.

Several papers have begun to investigate estimation of HDSMs, primarily focusing on penal-

ized mean regression, with the ℓ1-norm acting as a penalty function [2, 6, 10, 13, 17, 20, 19].

[2, 6, 10, 13, 20, 19] demonstrated the fundamental result that ℓ1-penalized least squares es-

timators achieve the rate
√

s/n
√
log p, which is very close to the oracle rate

√
s/n achievable

when the true model is known. [17] demonstrated a similar fundamental result on the excess

forecasting error loss under both quadratic and non-quadratic loss functions. Thus the estima-

tor can be consistent and can have excellent forecasting performance even under very rapid,

nearly exponential growth of the total number of regressors p. [1] investigated the ℓ1-penalized

quantile regression process, obtaining similar results. See [9, 2, 3, 4, 5, 11, 12, 15] for many

other interesting developments and a detailed review of the existing literature.

In this paper we derive theoretical properties of post-penalized estimators which apply ordi-

nary, unpenalized linear least squares regression to the model selected by first-step penalized

estimators, typically LASSO. It is well known that LASSO can estimate the mean regression

function at nearly the oracle rate, and hence is hard to improve upon. We show that post-

LASSO can perform at least as well as LASSO in terms of the rate of convergence, and has

the advantage of a smaller bias. This nice performance occurs even if the LASSO-based model

selection “fails” in the sense of missing some components of the “true” regression model. Here

by the “true” model we mean the best s-dimensional approximation to the regression function

chosen by the oracle. The intuition for this result is that LASSO-based model selection omits

only those components with relatively small coefficients. Furthermore, post-LASSO can per-

form strictly better than LASSO, in the sense of a strictly faster rate of convergence, if the

LASSO-based model correctly includes all components of the “true” model as a subset and is

sufficiently sparse. Of course, in the extreme case, when LASSO perfectly selects the “true”

model, the post-LASSO estimator becomes the oracle estimator.
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Importantly, our rate analysis is not limited to the LASSO estimator in the first step, but

applies to a wide variety of other first-step estimators, including, for example, trimmed LASSO,

the Dantzig selector, and their various modifications. We give generic rate results that cover any

first-step estimator for which a rate and a sparsity bound are available. We also give a generic

result on trimmed first-step estimators, where trimming can be performed by a traditional hard-

thresholding scheme or by a new trimming scheme we introduce in the paper. Our new trimming

scheme induces maximal sparsity subject to maintaining a certain goodness-of-fit (goof) in the

sample, and is completely data-driven. We show that our post-goof-trimmed estimator performs

at least as well as the first-step estimator; for example, the post-goof-trimmed LASSO performs

at least as well as LASSO, but can be strictly better under good model selection properties.

It should also be noted that traditional trimming schemes do not in general have such nice

theoretical guarantees, even in simple diagonal models.

Finally, we conduct a series of computational experiments and find that the results confirm

our theoretical findings. In particular, we find that the post-goof-trimmed LASSO and post-

LASSO emerge clearly as the best and second best, both substantially outperforming LASSO

and the post-traditional-trimmed LASSO estimators.

To the best of our knowledge, our paper is the first to establish the aforementioned rate

results on post-LASSO and the proposed post-goof-trimmed LASSO in the mean regression

problem. Our analysis builds upon the ideas in [1], who established the properties of post-

penalized procedures for the related, but different, problem of median regression. Our analysis

also builds on the fundamental results of [2] and the other works cited above that established

the properties of the first-step LASSO-type estimators. An important ingredient in our analysis

is a new sparsity bound on the dimension of the model selected by LASSO, which guarantees

that this dimension is at most of the same order as the dimension of the “true” model. This

result builds on some inequalities for sparse eigenvalues and reasoning previously given in [1] in

the context of median regression. Our sparsity bounds for LASSO improve upon the analogous

bounds in [2] and are comparable to the bounds in [20] obtained under a larger penalty level. We

also rely on maximal inequalities in [20] to provide primitive conditions for the sharp sparsity

bounds to hold.

We organize the remainder of the paper as follows. In Section 2, we review some benchmark

results of [2] for LASSO, albeit with a slightly improved choice of penalty, and model selection

results of [11, 13, 21]. In Section 3, we present a generic rate result on post-penalized estimators.

In Section 4, we present a generic rate result for post-trimmed-estimators, where trimming can
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be traditional or based on goodness-of-fit. In Section 5, we apply our generic results to the

post-LASSO and the post-trimmed LASSO estimators. In Section 6 we present the results of

our computational experiments.

Notation. In what follows, all parameter values are indexed by the sample size n, but we

omit the index whenever this does not cause confusion. We use the notation (a)+ = max{a, 0},
a ∨ b = max{a, b} and a ∧ b = min{a, b}. The ℓ2-norm is denoted by ‖ · ‖ and the ℓ0-norm

‖ · ‖0 denotes the number of non-zero components of a vector. Given a vector δ ∈ IRp, and a

set of indices T ⊂ {1, . . . , p}, we denote by δT the vector in which δTj = δj if j ∈ T , δTj = 0 if

j /∈ T . We also use standard notation in the empirical process literature, En[f ] = En[f(zi)] =∑n
i=1 f(zi)/n, and Gn(f) =

∑n
i=1(f(zi) − E[f(zi)])/

√
n. We use the notation a . b to denote

a ≤ cb for some constant c > 0 that does not depend on n; and a .P b to denote a = OP (b).

For an event E, we say that E wp → 1 when E occurs with probability approaching one as n

grows.

2. LASSO as a Benchmark in Parametric and Nonparametric Models

The purpose of this section is to define the models for which we state our results and also to

revisit some known results for the LASSO estimator, which we will use as a benchmark and as

inputs to subsequent proofs. In particular, we revisit the fundamental rate results of [2], but

with a slightly improved, data-driven penalty level.

2.1. Model 1: Parametric Model. Let us consider the following parametric linear regression

model:

yi = x′iβ0 + ǫi, ǫi ∼ N(0, σ2), β0 ∈ R
p, i = 1, . . . , n

T = support(β0) has s elements where s < n,but p > n,

where T is unknown, and regressors X = [x1, . . . , xn]
′ are fixed and normalized so that σ̂2

j =

En[x
2
ij] = 1 for all j = 1, . . . , p.

Given the large number of regressors p > n, some regularization is required in order to

avoid overfitting the data. The LASSO estimator [16] is one way to achieve this regularization.

Specifically, define

β̂ ∈ arg min
β∈Rp

Q̂(β) +
λ

n
‖β‖1, where Q̂(β) = En[yi − x′iβ]

2. (2.1)

Our goal is to revisit convergence results for β̂ in the prediction (pseudo) norm,

‖δ‖2,n =
√

En[x
′
iδ]

2.
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The key quantity in the analysis is the gradient at the true value:

S = 2En[xiǫi].

This gradient is the effective “noise” in the problem. Indeed, for δ = β̂ − β0, we have by the

Hölder inequality

Q̂(β̂)− Q̂(β0)− ‖δ‖22,n = 2En[ǫix
′
iδ] ≥ −‖S‖∞‖δ‖1. (2.2)

Thus, Q̂(β̂) − Q̂(β0) provides noisy information about ‖δ‖22,n, and the amount of noise is

controlled by ‖S‖∞‖δ‖1. This noise should be dominated by the penalty, so that the rate of

convergence can be deduced from a relationship between the penalty term and the quadratic

term ‖δ‖22,n.
This reasoning suggests choosing λ so that

λ ≥ cn‖S‖∞, for some fixed c > 1.

However this choice is not feasible, since we do not know S. We propose setting

λ = c · Λ(1− α|X) (2.3)

where Λ(1− α|X) is the (1− α)-quantile of n‖S‖∞, so that for this choice

λ ≥ cn‖S‖∞ with probability at least 1− α. (2.4)

Note that the quantity Λ(1−α|X) is easily computed by simulation. We refer to this choice of

λ as the data-driven choice, reflecting the dependence of the choice on the design matrix X.

Comment 2.1 (Data-driven choice vs standard choice.). The standard choice of λ employs

λ = c · σA
√

2n log p, (2.5)

where A ≥ 1 is a constant that does not depend on X, chosen so that (2.4) holds no matter what

X is. Note that
√
n‖S‖∞ is a maximum of N(0, σ2) variables, which are correlated if columns of

X are correlated, as they typically are in the sample. In order to compute A, the standard choice

uses the conservative assumption that these variables are uncorrelated. When the variables are

highly correlated, the standard choice (2.5) becomes quite conservative and may be too large.

The X-dependent choice of penalty (2.3) takes advantage of the in-sample correlations induced

by the design matrix and yields smaller penalties. To illustrate this point, we simulated many

designs X by drawing x̃i as i.i.d. from N(0,Σ), and defining xij = x̃ij/
√

En[x̃2ij ], with Σjj = 1,

and varying correlations Σjk for j 6= k among three design options: 0, ρ|j−k|, or ρ. We then
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computed X-dependent penalty levels (2.3). Figure 1 plots the sorted realized values of the X-

dependent λ and illustrates the impact of in-sample correlation on these values. As expected, for

a fixed confidence level 1−α, the more correlated the regressors are, the smaller the data-driven

penalty (2.3) is relative to the standard conservative choice (2.5).
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Figure 1. Realized values of Λ(0.95|X) sorted in increasing order. X is drawn by generating

xi as i.i.d. N(0,Σ), where for j 6= k design 1 has Σjk = 0, design 2 has Σjk = (1/2)|j−k|, and

design 3 has Σjk = 1/2. We used n = 100, p = 500 and σ2 = 1. For each design 100 design

matrices were drawn.

Under (2.3), δ = β̂ − β0 will obey the following “restricted condition” with probability at

least 1− α:

‖δT c‖1 ≤ c̄‖δT ‖1, where c̄ :=
c+ 1

c− 1
. (2.6)

Therefore, in order to get convergence rates in the prediction norm ‖δ‖2,n =
√

En[x′iδ]
2, we

consider the following modulus of continuity between the penalty and the prediction norm:

RE.1(c) κ1(T ) := min
‖δTc‖1≤c̄‖δT ‖1,δ 6=0

√
s‖δ‖2,n
‖δT ‖1

,

where κ1(T ) can depend on n. In turn, the convergence rate in the usual Euclidian norm ‖δ‖
is determined by the following modulus of continuity between the prediction norm and the

Euclidian norm:

RE.2 (c) κ2(T ) := min
‖δTc‖1≤c̄‖δT ‖1,δ 6=0

‖δ‖2,n
‖δ‖ ,
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where κ2(T ) can depend on n. Conditions RE.1 and RE.2 are simply variants of the original

restricted eigenvalue conditions imposed in Bickel, Ritov and Tsybakov [2]. In what follows, we

suppress dependence on T whenever convenient.

Lemma 1 below states the rate of convergence in the prediction norm under a data-driven

choice of penalty.

Lemma 1 (Essentially in Bickel, Ritov, and Tsybakov [2]). If λ ≥ cn‖S‖∞, then

‖β̂ − β0‖2,n ≤
(
1 +

1

c

)
λ
√
s

nκ1
.

Under the data-driven choice (2.3), we have with probability at least 1− α

‖β̂ − β0‖2,n ≤ (1 + c)

√
s

nκ1
Λ(1− α|X),

where Λ(1− α|X) ≤ σ
√

2n log(p/α).

Thus, provided κ1 is bounded away from zero, LASSO estimates the regression function at

nearly the rate
√

s/n (achievable when the true model T is known) with probability at least

1− α. Since δ = β̂ − β0 obeys the restricted condition with probability at least 1− α, the rate

in the Euclidian norm immediately follows from the relation

‖β̂ − β0‖2 ≤ ‖β̂ − β0‖2,n/κ2, (2.7)

which also holds with probability at least 1 − α. Thus, if κ2 is also bounded away from zero,

LASSO estimates the regression coefficients at a near
√

s/n rate with probability at least 1−α.

Note that the
√

s/n rate is not the oracle rate in general, but under some further conditions

stated in Section 2.3, namely when the parametric model is the oracle model, this rate is an

oracle rate.

2.2. Model 2: Nonparametric model. Next we consider the nonparametric model given by

yi = f(zi) + ǫi, ǫi ∼ N(0, σ2), i = 1, ...n,

where yi are the outcomes, zi are vectors of fixed regressors, and ǫi are disturbances. For

xi = p(zi), where p(zi) is a p-vector of transformations of zi and any conformable vector β0,

and fi = f(zi), we can rewrite

yi = x′iβ0 + ui, ui = ri + ǫi, where ri := fi − x′iβ0.
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Next we choose our target or “true” β0, with the corresponding cardinality of its support

s = ‖β0‖0 = |T | as any solution to the following “oracle” risk minimization problem:

min
0≤k≤p∧n

min
‖β‖0≤k

En[(x
′
iβ − fi)

2] + σ2 k

n
. (2.8)

Letting

c2s := En[r
2
i ] = En[(x

′
iβ0 − fi)

2]

denote the error from approximating fi by x′iβ0, then c2s + σ2s/n is the optimal value of (2.8).

In order to simplify exposition, we focus some results and discussions on the case where the

following holds:

c2s ≤ Kσ2s/n (2.9)

with K = 1 which covers most cases of interest. Alternatively, we could consider an arbitrary

K which does not affect the results’ modulo constants.

Note that c2s+σ2s/n is the the expected estimation error E[En[fi−x′iβ̂
o]2] of the (infeasible)

oracle estimator β̂o that minimizes the expected estimation error among all k-sparse least square

estimators, by searching for the best k-dimensional model and then choosing k to balance

approximation error with the sampling error, which the oracle knows how to compute. The

rate of convergence of the oracle estimator
√

c2s + σ2s/n becomes an ideal goal for the rate

of convergence, and in general can be achieved only up to logarithmic terms in most cases

(see Donoho and Jonstone [7] and Rigollet and Tsybakov [14]), except under very special

circumstances, such as when it becomes possible to perform perfect model selection. Finally,

note that when the approximation error, cs, is zero the oracle model becomes the parametric

model of the previous section where we had rt = 0.

Next we state a rate of convergence in the prediction norm under the data-driven choice of

penalty.

Lemma 2 (Essentially in Bickel, Ritov, and Tsybakov [2]). If λ ≥ cn‖S‖∞, then

‖β̂ − β0‖2,n ≤
(
1 +

1

c

)
λ
√
s

nκ1
+ 2cs.

Under the data-driven choice (2.3), we have with probability at least 1− α

‖β̂ − β0‖2,n ≤ (1 + c)

√
s

nκ1
Λ(1− α|X) + 2cs,

where Λ(1− α|X) ≤ σ
√

2n log(p/α).
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Thus, provided κ1 is bounded away from zero, LASSO estimates the regression function at

a near-oracle rate with probability at least 1 − α. Furthermore, the bound on empirical risk

follows from the triangle inequality:
√

En[x′iβ̂ − fi]2 ≤ ‖β̂ − β0‖2,n + cs. (2.10)

2.3. Model Selection Properties. The primary results we develop do not require the first-

step estimators like LASSO to perfectly select the true model. In fact, we are specifically

interested in the most common cases where these estimators do not perfectly select the true

model. For these cases, we will prove that post-model selection estimators such as post-LASSO

achieve near-oracle rates like those of LASSO. However, in some special cases, where perfect

model selection is possible, these estimators can achieve the exact oracle rates, and thus can

be even better than LASSO. The purpose of this section is to describe these very special cases

where perfect model selection is possible.

In the discussion of our results on post-penalized estimators we will refer to the following

model selection results for the parametric case.

Lemma 3 (Essentially in Meinshausen and Yu [13] and Lounici [11]). 1) In the parametric

model, if the coefficients are well separated from zero, that is

min
j∈T

|β0j | > ℓ+ t, for t ≥ ℓ := max
j=1,...,p

|β̂j − β0j |,

then the true model is a subset of the selected model, T := support(β0) ⊆ T̂ := support(β̂).

Moreover T can be perfectly selected by applying trimming of level t to β̂:

T = T̃ (t) :=
{
j ∈ {1, . . . , p} : |β̂j | > t

}
.

2) In particular, if λ ≥ cn‖S‖∞, then

ℓ ≤
(
1 +

1

c

)
λ
√
s

nκ1κ2
.

3) In particular, if λ ≥ cn‖S‖∞, and there is a u ≥ 1 such that the design matrix satisfies

|En[xijxik]| ≤ 1/(u(1 + 2c̄)s) for all 1 ≤ j < k ≤ p, then

ℓ ≤ λ

n

(
1 +

2√
u2 − u

)
.

Thus, we see from parts 1) and 2), which follow from [13] and Lemma 2, that perfect model

selection is possible under strong assumptions on the coefficients’ separation away from zero.

We also see from part 3), which is due to [11], that the strong separation of coefficients can be
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considerably weakened in exchange for a strong assumption on the design matrix. Finally, the

following extreme result also requires strong assumptions on separation of coefficients and the

design matrix.

Lemma 4 (Essentially in Zhao and Yu [21]). In the parametric model, under more restrictive

conditions on the design, separation of non-zero coefficients, and penalty parameter, specified

in [21], with a high probability

T = support(β0) = T̂ = support(β̂).

Comment 2.2. We only review model selection in the parametric case. There are two reasons

for this: first, the results stated above have been developed for the parametric case only, and

extending them to nonparametric cases is outside the main focus of this paper. Second, it

is clear from the stated conditions that in the nonparametric context, in order to select the

oracle model T perfectly, the oracle models have to be either (a) parametric (i.e. cs = 0) or (b)

very close to parametric (with cs much smaller than σ2s/n) and satisfy other strong conditions

similar to those stated above. Since we only argue that post-LASSO and related estimators are

as good as LASSO and can be strictly better only in some cases, it suffices to demonstrate the

latter for case (a). Moreover, if oracle performance is achieved for case (a), then by continuity

of empirical risk with respect to the underlying model, the oracle performance should extend

to a neighborhood of case (a), which is case (b).

3. A Generic Result on Post-Model Selection Estimators

Let β̂ be any first-step estimator acting as a model selection device and denote by

T̂ := support(β̂)

the model selected by this estimator; we assume |T̂ | ≤ n throughout. Define the post-model

selection estimator as

β̃ = arg min
β
T̂ c=0

Q̂(β). (3.11)

If model selection works perfectly (as it will under some rather stringent conditions), then this

estimator is simply the oracle estimator and its properties are well known. However, of more

interest is the case when model selection does not work perfectly, as occurs for many designs

of interest in applications. In this section we derive a generic result on the performance of any

post-model selection estimator.
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In order to derive rates, we need the following minimal restricted sparse eigenvalue

RSE.1(m) κ̃(m)2 := min
‖δTc‖0≤m,δ 6=0

‖δ‖22,n
‖δ‖2

as well as the following maximal restricted sparse eigenvalue

RSE.2(m) φ(m) := max
‖δTc‖0≤m,δ 6=0

‖δ‖22,n
‖δ‖2

where m is the restriction on the number of non-zero components outside the support T . It

will be convenient to define the following condition number associated with the sample design

matrix:

µm =

√
φ(m)

κ̃(m)
. (3.12)

The following theorem establishes bounds on the prediction error of a generic second-step

estimator.

Theorem 1 (Performance of a generic second-step estimator). In either the parametric model

or the nonparametric model, let β̂ be any first-step estimator with support T̂ , define

Bn := Q̂(β̂)− Q̂(β0) and Cn := Q̂(β
0T̂

)− Q̂(β0),

and let β̃ the second-step estimator. For any ε > 0, there is a constant Kε independent of n

such that with probability at least 1− ε, we have that for m̂ := |T̂ \ T |

‖β̃ − β0‖2,n ≤ Kεσ

√
m̂ log p+ (m̂+ s) log µm̂

n
+ 2cs +

√
(Bn)+ ∧ (Cn)+,

where cs = 0 in the parametric model. Furthermore, Bn and Cn obey bounds (3.13) stated

below.

The following lemma bounds Bn and Cn, although in many cases we can bound Bn by other

means, as we shall do in the LASSO case.

Lemma 5 (Generic control of Bn and Cn). Let m̂ = |T̂ \ T | be the number of wrong regressors

selected and k̂ = |T \ T̂ | be the number of correct regressors missed. For any ε > 0 there is a

constant Kε independent of n such that with probability at least 1− ε,

Bn ≤ ‖β̂ − β0‖22,n +

[
Kεσ

√
m̂ log p+ (m̂+ s) log µm̂

n
+ 2cs

]
‖β̂ − β0‖2,n

Cn ≤ 1{T 6⊆ T̂}


‖β

0T̂ c‖22,n +


Kεσ

√
log
(
s
k̂

)
+ k̂ log µ0

n
+ 2cs


 ‖β

0T̂ c‖2,n


 . (3.13)
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Three implications of Theorem 1 are worth noting. Firstly and most importantly, note that

the bounds on the prediction norm stated in Theorem 1 and Lemma 5 apply to any generic post-

model selection estimator, provided we can bound both the rate of convergence ‖β̂−β0‖2,n of the

first-step estimator and m̂, the number of wrong regressors selected by the first-step estimator.

Secondly, note that if the selected model contains the true model, T ⊆ T̂ , then we have

(Bn)+ ∧ (Cn)+ = Cn = 0, and Bn does not affect the rate at all, and the performance of the

second-step estimator is dictated by the sparsity m̂ of the first-step estimator, which controls

the magnitude of the empirical errors. Otherwise, if the selected model fails to contain the

true model, that is, T 6⊆ T̂ , the performance of the second-step estimator is determined by

both the sparsity m̂ and the minimum between Bn and Cn. Intuitively, Bn measures the in-

sample goodness-of-fit (or loss-of-fit) induced by the first-step estimator relative to the “true”

parameter value β0, and Cn measures the in-sample loss-of-fit induced by truncating the “true”

parameter β0 outside the selected model T̂ .

Finally, note that rates in other norms of interest immediately follow from the following

relations:

√
En[x

′
iβ̃ − fi]2 ≤ ‖β̃ − β0‖2,n + cs, ‖β̃ − β0‖2 ≤ ‖β̃ − β0‖2,n/κ̃(m̂), (3.14)

where m̂ = |T̂ \ T |.
The proof of Theorem 1 and Lemma 5 relies on the sparsity-based control of the empirical

error provided by the following lemma.

Lemma 6 (Sparsity-based control of noise). 1) For any ε > 0, there is a constant Kε indepen-

dent of n such that with probability at least 1− ε,

|Q̂(β0 + δ) − Q̂(β0)− ‖δ‖22,n| ≤ Kεσ

√
m log p+ (m+ s) log µm

n
‖δ‖2,n + 2cs‖δ‖2,n,

uniformly for all δ ∈ R
p such that ‖δT c‖0 ≤ m, and uniformly over m ≤ n,

where cs = 0 in the parametric model. 2) Furthermore, with at least the same probability,

|Q̂(β
0T̃

)− Q̂(β0)− ‖β
0T̃ c‖22,n| ≤ Kεσ

√
log
(
s
k

)
+ k log µ0

n
‖β

0T̃ c‖2,n + 2cs‖β0T̃ c‖2,n,

uniformly for all T̃ ⊂ T such that |T \ T̃ | = k, and uniformly over k ≤ s,

where cs = 0 in the parametric model.
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The proof of the lemma in turn relies on the following maximal inequality, which we state as

a separate theorem since it may be of independent interest. The proof of the theorem involves

the use of Samorodnitsky-Talagrand’s inequality.

Theorem 2 (Maximal inequality for a collection of empirical processes). Let ǫi ∼ N(0, σ2) be

independent for i = 1, . . . , n, and for m = 1, . . . , n define

en(m, η) := σ2
√
2

(√
log

(
p

m

)
+
√

(m+ s) log (Dµm) +
√

(m+ s) log(1/η)

)

for any η ∈ (0, 1) and some universal constant D. Then

sup
‖δTc‖0≤m,‖δ‖2,n>0

∣∣∣∣Gn

(
ǫix

′
iδ

‖δ‖2,n

)∣∣∣∣ ≤ en(m, η), for all m ≤ n,

with probability at least 1− ηe−s/(1 − 1/e).

Proof. Step 0. Note that we can restrict the supremum over ‖δ‖ = 1 since the function is

homogenous of degree zero.

Step 1. For each non-negative integer m ≤ n, and each set T̃ ⊂ {1, . . . , p}, with |T̃ \T | ≤ m,

define the class of functions

G
T̃
= {ǫix′iδ/‖δ‖2,n : support(δ) ⊆ T̃ , ‖δ‖ = 1}. (3.15)

Also define

Fm = {G
T̃
: T̃ ⊂ {1, . . . , p} : |T̃ \ T | ≤ m}.

It follows that

P

(
sup
f∈Fm

|Gn(f)| ≥ en(m, η)

)
≤
(
p

m

)
max

|T̃\T |≤m

P

(
sup
f∈G

T̃

|Gn(f)| ≥ en(m, η)

)
. (3.16)

We apply Samorodnitsky-Talagrand’s inequality (Proposition A.2.7 in van der Vaart and

Wellner [18]) to bound the right hand side of (3.16). Let

ρ(f, g) :=
√

Eǫ[Gn(f)−Gn(g)]2 =
√

EǫEn[(f − g)2]

for f, g ∈ G
T̃
; by Step 2 below, the covering number of G

T̃
with respect to ρ obeys

N(ε,G
T̃
, ρ) ≤ (6σµm/ε)m+s, for each 0 < ε ≤ σ, (3.17)

and σ2(G
T̃
) := maxf∈G

T̃
E[Gn(f)]

2 = σ2. Then, by Samorodnitsky-Talagrand’s inequality

P

(
sup
f∈G

T̃

|Gn(f)| ≥ en(m, η)

)
≤
(
Dσµmen(m, η)√

m+ sσ2

)m+s

Φ̄(en(m, η)/σ)
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for some universal constant D ≥ 1. For en(m, η) defined in the statement of the theorem, it

follows that

P

(
sup
f∈G

T̃

|Gn(f)| ≥ en(m, η)

)
≤ ηe−m−s/

(
p

m

)
.

Then,

P

(
sup
f∈Fm

|Gn(f)| > en(m, η),∃m ≤ n

)
≤

n∑

m=0

P

(
sup
f∈Fm

|Gn(f)| > en(m, η)

)

≤
n∑

m=0

ηe−m−s ≤ ηe−s/(1 − 1/e),

which proves the claim of the theorem.

Step 2. This step establishes (3.17). For t ∈ R
p and t̃ ∈ R

p, consider any two functions

ǫi
(x′it)
‖t‖2,n

and ǫi
(x′it̃)

‖t̃‖2,n
in G

T̃
, for a given T̃ ⊂ {1, ..., p} : |T̃ \ T | ≤ m.

We have that
√√√√√EǫEn


ǫ2i

(
(x′it)

‖t‖2,n
− (x′i t̃)

‖t̃‖2,n

)2

 ≤

√√√√EǫEn

[
ǫ2i
(x′i(t− t̃))2

‖t‖22,n

]
+

√√√√√EǫEn


ǫ2i

(
(x′it̃)

‖t‖2,n
− (x′i t̃)

‖t̃‖2,n

)2

.

By definition of G
T̃
in (3.15), support(t) ⊆ T̃ and support(t̃) ⊆ T̃ , so that support(t− t̃) ⊆ T̃ ,

|T̃ \ T | ≤ m, and ‖t‖ = 1 by (3.15). Hence by definitions RSE.1(m) and RSE.2(m),

EǫEn

[
ǫ2i
(x′i(t− t̃))2

‖t‖22,n

]
≤ σ2φ(m)‖t − t̃‖2/κ̃(m)2, and

EǫEn


ǫ2i

(
(x′it̃)
‖t‖2,n

− (x′i t̃)

‖t̃‖2,n

)2

 = EǫEn


ǫ2i

(x′i t̃)
2

‖t̃‖22,n

(
‖t̃‖2,n − ‖t‖2,n

‖t‖2,n

)2



= σ2

(
‖t̃‖2,n − ‖t‖2,n

‖t‖2,n

)2

≤ σ2‖t̃− t‖22,n/‖t‖22,n

≤ σ2φ(m)‖t̃ − t‖2/κ̃(m)2.

Thus
√√√√√EǫEn


ǫ2i

(
(x′it)

‖t‖2,n
− (x′it̃)

‖t̃‖2,n

)2

 ≤ 2σ‖t− t̃‖

√
φ(m)/κ̃(m) = 2σµm‖t− t̃‖.

Then the bound (3.17) follows from the bound in [18] page 94 with R = 2σµm for any ε ≤ σ.
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�

Proof of Theorem 1. Let δ̃ := β̃−β0. By definition of the second-step estimator, it follows

that Q̂(β̃) ≤ Q̂(β̂) and Q̂(β̃) ≤ Q̂(β
0T̂

). Thus,

Q̂(β̃)− Q̂(β0) ≤
(
Q̂(β̂)− Q̂(β0)

)
∧
(
Q̂(β

0T̂
)− Q̂(β0)

)
≤ Bn ∧ Cn.

By Lemma 6 part (1), for any ε > 0 there exists a constant Kε such that with probability at

least 1− ε:

|Q̂(β̃)− Q̂(β0)− ‖δ̃‖22,n| ≤ Aε,n‖δ̃‖2,n + 2cs‖δ̃‖2,n
where

Aε,n := Kεσ
√

(m̂ log p+ (m̂+ s) log µm̂)/n.

Combining these relations we obtain the inequality

‖δ̃‖22,n −Aε,n‖δ̃‖2,n − 2cs‖δ̃‖2,n ≤ Bn ∧ Cn,

solving which we obtain the stated result:

‖δ̃‖2,n ≤ Aε,n + 2cs +
√

(Bn)+ ∧ (Cn)+.

�

4. A Generic Result on Post-Trimmed Estimators

In this section we investigate post-trimmed estimators that arise from applying unpenalized

least squares in the second-step to the models selected by trimmed estimators in the first step.

Formally, given a first-step estimator β̂, we define its trimmed support at level t ≥ 0 as

T̃ (t) := {j ∈ {1, . . . , p} : |β̂j | > t}.

We then define the post-trimmed estimator as

β̃t = arg min
β
T̃ c(t)

=0
Q̂(β). (4.18)

The traditional trimming scheme sets the trimming threshold t ≥ ℓ = max1≤j≤p |β̂j − β0j |,
so that to trim all small coefficient estimates smaller than the uniform estimation error ℓ. As

discussed in Section 2.3, this method is particularly appealing in parametric models in which

the non-zero components are well separated from zero, where it acts as a very effective model

selection device. Unfortunately, this scheme may perform poorly in parametric models with

true coefficients not well separated from zero and in nonparametric models. Indeed, even in
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parametric models with many small but non-zero true coefficients, trimming the estimates

too aggressively may result in large goodness-of-fit losses, and consequently in slow rates of

convergence and even inconsistency for the second-step estimators. This issue directly motivates

our new goodness-of-fit based trimming method, which trims small coefficient estimates as much

as possible subject to maintaining a certain goodness-of-fit level. Unlike traditional trimming,

our new method is completely data-driven, which makes it appealing for practice. Moreover,

our method is at least as good as LASSO or post-LASSO theoretically, but performs better

than both of these methods in a wide range of experiments, practically. In the remainder of the

section we present generic performance bounds for both the new method and the traditional

trimming method.

4.1. Goodness-of-Fit Trimming. Here we propose a trimming method that selects the trim-

ming level t based on the goodness-of-fit of the post-trimmed estimator. Let γ ≤ 0 denoted the

maximal allowed loss (gain) in goodness-of-fit (goof) relative to the first-step estimator. We

define the goof-trimming threshold tγ as the solution to

tγ := max
t≥0

{t : Q̂(β̃t)− Q̂(β̂) ≤ γ}. (4.19)

Then we define the selected model and the post-goof-trimmed estimators as:

T̃ := T̃ (tγ) and β̃ := β̃tγ . (4.20)

Our construction (4.19) and (4.20) selects the most aggressive trimming threshold subject to

maintaining a certain level of goodness-of-fit as measured by the least squares criterion function.

Note that we can compute the data-driven trimming threshold (4.19) very effectively using a

binary search procedure described below.

Theorem 3 (Performance of a generic post-goof-trimmed estimator). In either the parametric

or the nonparametric model, let β̂ be any first-step estimator, m̃ := |T̃ \ T |, and Bn := Q̂(β̂)−
Q̂(β0) and Cn := Q̂(β

0T̃
)− Q̂(β0). For any ε > 0, there is a constant Kε independent of n such

that with probability at least 1− ε

‖β̃ − β0‖2,n ≤ Kεσ

√
m̃ log p+ (m̃+ s) log µm̃

n
+ 2cs +

√
(γ +Bn)+ ∧ (Cn)+, (4.21)

where cs = 0 in the parametric model. Furthermore, Bn and Cn obey bounds (3.13) stated

earlier, with T̂ = T̃ .

Note that the bounds on the prediction norm stated in Theorem 3 and equation of (3.13)

in Lemma 5 apply to any generic post-goof-trimmed estimator, provided we can bound both
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the rate of convergence ‖β̂ − β0‖2,n of the first-step estimator and m̃, the number of wrong

regressors selected by the trimmed first-step estimator. For the purpose of obtaining rates,

we can often use the bound m̃ ≤ m̂, where m̂ is the number of wrong regressors selected by

the first-step estimator, provided the bounds on m̂ are tight, as, for example, in the case of

LASSO. Of course, m̃ is potentially much smaller than m̂, resulting in a smaller variance for

the post-goof-trimmed estimator. For instance, in the case of LASSO, we can even have m̃ = 0,

if the conditions of Lemma 3 on perfect model selection in the parametric model hold with the

threshold t = tγ .

Also, note that if the selected model contains the true model, that is T ⊆ T̃ , then we have

(Bn)+ ∧ (Cn)+ = Cn = 0, and these terms drop out of the rate. Lemma 3 provides sufficient

conditions for this to hold for the given threshold t = tγ . Otherwise, if the selected model fails

to contain the true model, that is, T 6⊆ T̃ , the performance of the second-step estimator is

determined by both m̃ and Bn ∧ Cn.

Comment 4.1 (Recommended choice of γ). A nice feature of the theorem above is that it

allows for a wide range of choices of γ. The simplest choice with good theoretical guarantees is

γ = 0,

which requires there to be no loss of fit relative to the first-step estimator. We can also use

any (feasible) γ ≤ 0, since a negative γ actually requires the second-step estimator to gain fit

relative to the first-step estimator. This makes sense, since the first-step estimator can suffer

from a large regularization bias. Consequently, our recommended data-driven choice is

γ =
Q̂(β̃0)− Q̂(β̂)

2
< 0, (4.22)

where β̃0 is the post-trimmed estimator for t = 0. The theoretical guarantees of this choice are

comparable to that of γ = 0, but this proposal led to the best performance in our computational

experiments. Note that if we could set γ+Bn = 0 , which is not practical and not always feasible,

we would eliminate the second term in the rate bound (4.21). Since Bn ≈ Q̂(β̂)− σ2 > 0 , if β̂

has a substantial regularization bias, then we have γ < 0. Although this choice is not available

in general, it provides a simple rationale for choosing γ < 0 as we did in (4.22).

Comment 4.2 (Efficient computation of tγ). For any γ, we can compute the value tγ by a

binary search over t. Since there are at most |T̂ | possible relevant values of t, we can compute

tγ exactly by running at most
⌈
log2 |T̂ |

⌉
unpenalized least squares problems.
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Proof of Theorem 3. Let δ̃ := β̃ − β0. By definition Q̂(β̃) ≤ Q̂(β̂) + γ, so that

Q̂(β̃)− Q̂(β0) ≤ γ + Q̂(β̂)− Q̂(β0) = γ +Bn.

On the other hand, since β̃ is a minimizer of Q̂ over the support T̃ , Q̂(β̃) ≤ Q̂(β
0T̃

) so that

Q̂(β̃)− Q̂(β0) ≤ Q̂(β
0T̃

)− Q̂(β0) = Cn.

By Lemma 6 part (1), for any ε > 0, there is a constant Kε such that with probability at least

1− ε

‖δ̃‖22,n −Aε,n‖δ̃‖2,n − 2cs‖δ̃‖2,n ≤ Q̂(β̃)− Q̂(β0),

where

Aε,n := Kεσ
√

(m̃ log p+ (m̃+ s) log µm̃)/n.

Combining the inequalities gives

‖δ̃‖22,n −Aε,n‖δ̃‖2,n − 2cs‖δ̃‖2,n ≤ (γ +Bn) ∧ Cn.

Solving this inequality for ‖δ̃‖2,n gives the stated result. �

4.2. Traditional Trimming. Next we consider the traditional trimming scheme, which is

based on the magnitude of the estimated coefficients. Given the first-step estimator β̂, define

the trimmed first-step estimator β̂t by setting β̂tj = β̂j1{|β̂j | ≥ t} for j = 1, ..., p. Finally define

the selected model and the post-trimmed estimator as

T̃ = T̃ (t) and β̃ = β̃t. (4.23)

Let m̃; = |T̃ \ T | denote the components selected outside the support T , mt := |T̂ \ T̃ | the
number of trimmed components of the first-step estimator, and γt := ‖β̂t− β̂‖2,n the prediction

norm distance from the first-step estimator β̂ to the trimmed estimator β̂t.

Theorem 4 (Performance of a generic post-traditional-trimmed estimator). In either the para-

metric or the nonparametric model, let β̂ be any first-step estimator, and let Bn := Q̂(β̂)−Q̂(β0)

and Cn := Q̂(β
0T̃

) − Q̂(β0). For any ε > 0, there is a constant Kε independent of n such that

with probability at least 1− ε

‖β̃ − β0‖2,n ≤ Kεσ
√

(m̃ log p+ (m̃+ s) log µm̃)/n+ 2cs +

+

√
γt(KεσGt + 2cs + γt + 2‖β̂ − β0‖2,n) + (Bn)+ ∧

√
(Cn)+,

where Gt =
√

mt log(pµmt)/n, γt ≤ t
√

φ(mt)mt, and cs = 0 in the parametric model. Further-

more, Bn and Cn obey bounds (3.13) stated earlier, with T̂ = T̃ .
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Note that the bounds on the prediction norm stated in Theorem 4 and equation (3.13) in

Lemma 5 apply to any generic post-traditional-trimmed estimator. All components of the

bounds are easily controlled, just as in the case of Theorem 3. A major determinant of the

performance is γt which measures loss-of-fit due to trimming. If the trimming threshold is too

aggressive, for example, as suggested in the model selection Lemma 3 (2), then γt can be very

large. Indeed, in the parametric models with true coefficients not well separated from zero and

in the nonparametric models, aggressive trimming can result in large goodness-of-fit losses γt,

and consequently in very slow rates of convergence and even inconsistency for the second-step

estimators. We further discuss this issue in the next section in the context of LASSO. There

are of course exceptional cases where good model selection is possible. One example is the

parametric model with well-separated coefficients, where T ⊆ T̃ wp → 1 so that Cn = 0 wp

→ 1, which eliminates dependence of performance bounds on γt completely.

Comment 4.3 (Traditional trimming based on goodness-of-fit). We can fix some drawbacks

of traditional trimming by selecting the threshold t to imply at most a specific loss of fit γt. For

a given γt ≥ 0, we can set t = max{t : ‖β̂t − β̂‖2,n ≤ γt}. This choice uses maximal trimming

subject to maintaining a certain goodness-of-fit level, as measured by the prediction norm. Our

theorem above formally covers this choice. However, it is not easy to specify practical, data-

driven γt. Our main proposal described in the previous subsection resolves just such difficulties.

Proof of Theorem 4. Let δ̃ := β̃ − β0, δ̂
t := β̂t − β0, and δ̂ := β̂ − β0. By definition of the

estimator, Q̂(β̃) ≤ Q̂(β̂t) ∧ Q̂(β
0T̃

), so that

Q̂(β̃)− Q̂(β0) ≤
(
Q̂(β̂t)− Q̂(β0)

)
∧
(
Q̂(β

0T̃
)− Q̂(β0)

)
≤
(
Q̂(β̂t)− Q̂(β̂) +Bn

)
∧ Cn

since Bn = Q̂(β̂)− Q̂(β0).

By Lemma 6 (1), for any ε > 0 there is a constant Kε,1 such that with probability at least

1− ε/2

‖δ̃‖22,n −Aε,n‖δ̃‖2,n − 2cs‖δ̃‖2,n ≤ Q̂(β̃)− Q̂(β0),

where

Aε,n := Kε,1σ
√

(m̃ log p+ (m̃+ s) log µm̃)/n.

On the other hand, we have

Q̂(β̂t)− Q̂(β̂) = Q̂(β̂t)− Q̂(β0) + Q̂(β0)− Q̂(β̂)

= 2En[ǫix
′
i(β̂t − β̂)] + 2En[rix

′
i(β̂t − β̂)] + ‖δ̂t‖22,n − ‖δ̂‖22,n.
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To bound the terms above, note first that by Theorem 2, there is a constant Kε,2 such that

with probability at least 1− ε/2

|2En[ǫix
′
i(β̂t − β̂)]| ≤ σKε,2Gt‖β̂t − β̂‖2,n,

and, second, by Cauchy-Schwartz |2En[rix
′
i(β̂t − β̂)]| ≤ 2cs‖β̂t − β̂‖2,n. Moreover,

‖δ̂t‖22,n − ‖δ̂‖22,n = (‖δ̂t‖2,n − ‖δ̂‖2,n)(‖δ̂t‖2,n + ‖δ̂‖2,n)
≤ ‖β̂t − β̂‖2,n(‖β̂t − β̂‖2,n + 2‖δ̂‖2,n).

Combining these inequalities and using that γt = ‖β̂t − β̂‖2,n, we obtain with probability at

least 1− ε

‖δ̃‖22,n −Aε,n‖δ̃‖2,n − 2cs‖δ̃‖2,n ≤
(
σKε,2Gtγt + 2csγt + γt(γt + 2‖δ̂‖2,n) +Bn

)
∧ Cn.

Thus, solving the resulting quadratic inequality for ‖δ̃‖2,n, we obtain

‖δ̃‖2,n ≤ Aε,n + 2cs +

√(
σKε,2Gtγt + 2csγt + γt(γt + 2‖δ̂‖2,n) + (Bn)+

)
∧ (Cn)+,

which gives the stated result by taking Kε = Kε,1 ∨ Kε,2. Also, note that γt ≤ t
√

φ(mt)mt

follows by the Cauchy-Schwartz inequality and the definition of φ(mt). �

5. Post Model Selection Results for LASSO

In this section we specialize our results on post-penalized estimators to the case of LASSO

being the first-step estimator. The previous generic results allow us to use sparsity bounds and

rate of convergence of LASSO to derive the rate of convergence of post-penalized estimators

in the parametric and nonparametric models. We also derive new sharp sparsity bounds for

LASSO, which may be of independent interest.

5.1. A new, oracle sparsity bound for LASSO. We begin with a preliminary sparsity

bound for LASSO.

Lemma 7 (Empirical pre-sparsity for LASSO). In either the parametric model or the nonpara-

metric model, let m̂ = |T̂ \ T | and λ ≥ c · n‖S‖∞. We have

√
m̂ ≤

√
s
√

φ(m̂) 2c̄/κ1 + 3(c̄+ 1)
√

φ(m̂) ncs/λ,

where cs = 0 in the parametric model.
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The lemma above states that LASSO achieves the oracle sparsity up to a factor of φ(m̂).

The lemma above immediately yields the simple upper bound on the sparsity of the form

m̂ .P sφ(n), (5.24)

as obtained for example in [2] and [13]. Unfortunately, this bound is sharp only when φ(n) is

bounded. When φ(n) diverges, for example when φ(n) &P

√
log p in the Gaussian design with

p ≥ 2n, the bound is not sharp. However, for this case we can construct a sharp sparsity bound

by combining the preceding pre-sparsity result with the following sub-linearity property of the

restricted sparse eigenvalues.

Lemma 8 (Sub-linearity of restricted sparse eigenvalues). For any integer k ≥ 0 and constant

ℓ ≥ 1 we have φ(⌈ℓk⌉) ≤ ⌈ℓ⌉φ(k).

A version of this lemma for unrestricted eigenvalues has been previously proven in [1]. The

combination of the preceding two lemmas gives the following sparsity theorem. Recall that we

assume cs ≤ σ
√

s/n and for α ≤ 1/4 we have Λ(1− α|X) ≥ σ
√
n.

Theorem 5 (Sparsity bound for LASSO under data-driven penalty). In either the parametric

model or the nonparametric model, consider the LASSO estimator with λ ≥ cΛ(1 − α|X),

α ≤ 1/4, cs ≤ σ
√

s/n, and let m̂ := |T̂ \ T |. Consider the set M = {m ∈ N : m >

sφ(m ∧ n) · 2(2c̄/κ1 + 3(c̄− 1))2}. With probability at least 1− α

m̂ ≤ s · min
m∈M

φ(m ∧ n)

(
2c̄

κ1
+ 3(c̄− 1)

)2

.

The main implication of Theorem 5 is that if minm∈M φ(m ∧ n) .P 1, which we show below

to be valid in Lemmas 9 and 10 for important designs, then with probability at least 1− α

m̂ .P s. (5.25)

Consequently, for these designs, LASSO’s sparsity is of the same order as the oracle sparsity,

namely ŝ := |T̂ | ≤ s+m̂ .P s with high probability. The reason for this is that minm∈M φ(m) ≪
φ(n) for these designs, which allows us to sharpen the previous sparsity bound (5.24) considered

in [2] and [13]. Also, our new bound is comparable to the bounds in [20] in terms of order of

sharpness, but it requires a smaller penalty level λ which also does not depend on the unknown

sparse eigenvalues as in [20].

Next we show that minm∈M φ(m∧ n) .P 1 for two very common designs of interest, so that

the bound (5.25) holds as a consequence. As a side contribution, we also show that for these

designs all the restricted sparse eigenvalues and restricted eigenvalues defined earlier behave
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nicely. We state these results in asymptotic form for the sake of exposition, although we can

convert them to finite sample form using the results in [20] and Lemma 7.

The following lemma deals with a Gaussian design; it uses the standard concept of (unre-

stricted) sparse eigenvalues (see, e.g. [2]) to state a primitive condition on the population design

matrix.

Lemma 9 (Gaussian design). Suppose x̃i, i = 1, . . . , n, are i.i.d. zero-mean Gaussian random

vectors, such that the population design matrix E[x̃ix̃
′
i] has ones on the diagonal, and its s log n-

sparse eigenvalues are bounded from above by ϕ < ∞ and bounded from below by κ2 > 0. Define

xi as a normalized form of x̃i, namely xij = x̃ij/
√

En[x̃2ij]. Then for any m ≤ (s log(n/e)) ∧
(n/[16 log p]), with probability at least 1− 2 exp(−n/16),

φ(m) ≤ 8ϕ, κ̃(m)2 ≥ κ2/72, and µm ≤ 24
√
ϕ/κ.

Therefore, under the conditions of Theorem 5 and n/(s log p) → ∞, we have that as n → ∞

m̂ ≤ s · (8ϕ)
(
2c̄

κ1
+ 3(c̄− 1)

)2

with probability approaching at least 1− α, where we can take κ1 ≥ κ/24.

The following lemma deals with arbitrary bounded regressors.

Lemma 10 (Bounded design). Suppose x̃i i = 1, . . . , n, are i.i.d. bounded zero-mean random

vectors, with max1≤i≤n,1≤j≤p |x̃ij | ≤ KB for all n and p. Assume that the population design

matrix E[x̃ix̃
′
i] has ones on the diagonal, and its s log n-sparse eigenvalues are bounded from

above by ϕ < ∞ and bounded from below by κ2 > 0. Define xi as a normalized form of x̃i,

namely xij = x̃ij/
√

En[x̃2ij]. Then there is a constant ǫ > 0 such that if
√
n/KB → ∞ and

m ≤ (s log(n/e)) ∧ ([ǫ/KB ]
√

n/ log p), we have that as n → ∞

φ(m) ≤ 4ϕ, κ̃(m)2 ≥ κ2/4, and µm ≤ 4
√
ϕ/κ,

with probability approaching 1. Therefore, under the conditions of Theorem 5 and provided
√
n/(KBs

√
log p) → ∞, we have that as n → ∞,

m̂ ≤ s · (4ϕ)
(
2c̄

κ1
+ 3(c̄− 1)

)2

with probability approaching at least 1− α, where we can take κ1 ≥ κ/8.
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Proof of Theorem 5. The choice of λ implies that with probability at least 1 − α we have

λ ≥ c · n‖S‖∞. In that event, by Lemma 7

√
m̂ ≤

√
φ(m̂) · 2c̄

√
s/κ1 + 3(c̄+ 1)

√
φ(m̂) · ncs/λ,

which can be rewritten as

m̂ ≤ s · φ(m̂)

(
2c̄

κ1
+ 3(c̄ + 1)

ncs
λ
√
s

)2

. (5.26)

Note that m̂ ≤ n by optimality conditions. Consider any M ∈ M, and suppose m̂ > M .

Therefore by Lemma 8 on sublinearity of sparse eigenvalues

m̂ ≤ s ·
⌈
m̂

M

⌉
φ(M)

(
2c̄

κ1
+ 3(c̄+ 1)

ncs
λ
√
s

)2

.

Thus, since ⌈k⌉ ≤ 2k for any k ≥ 1 we have

M ≤ s · 2φ(M)

(
2c̄

κ1
+ 3(c̄+ 1)

ncs
λ
√
s

)2

which violates the condition on M and s since cs ≤ σ
√

s/n, λ ≥ cσ
√
n, and (c̄+ 1)/c = c̄− 1.

Therefore, we must have m̂ ≤ M .

In turn, applying (5.26) once more with m̂ ≤ (M ∧ n) we obtain

m̂ ≤ s · φ(M ∧ n)

(
2c̄

κ1
+ 3(c̄ + 1)

ncs
λ
√
s

)2

.

Further, using again that cs ≤ σ
√

s/n and λ ≥ cσ
√
n we have

m̂ ≤ s · φ(M ∧ n)

(
2c̄

κ1
+ 3(c̄− 1)

)2

,

since (c̄+ 1)/c = c̄− 1. The result follows by minimizing the bound over M ∈ M. �

5.2. Performance of the post-LASSO Estimator. Here we show that the post-LASSO

estimator enjoys good theoretical performance despite possibly “poor” selection of the model

by LASSO.

Theorem 6 (Performance of post-LASSO). In either the parametric model or the nonparamet-

ric model, if λ ≥ cn‖S‖∞, for any ε > 0 there is a constant Kε independent of n such that with

probability at least 1− ε

‖β̃ − β0‖2,n ≤ Kεσ

√
m̂ log p+ (m̂+ s) log µm̂

n
+ 2cs + 1{T 6⊆ T̂}

√
λ
√
s

nκ1
·
(
(1 + c)λ

√
s

cnκ1
+ 2cs

)
,
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where m̂ := |T̂ \ T | and cs = 0 in the parametric model. In particular, under the data-driven

choice of λ specified in (2.3) with log(1/α) . log p, for any ε > 0 there is a constant K ′
ε,α such

that

‖β̃ − β0‖2,n ≤ K ′
ε,ασ

[√
m̂ log(pµm̂)

n
+

√
s log µm̂

n
+ 1{T 6⊆ T̂}

√
s log p

n

1

κ1

]
(5.27)

with probability at least 1− α− ε.

Proof of Theorem 6. Note that by the optimality of β̂ in the LASSO problem, and letting

δ̂ = β̂ − β0,

Bn := Q̂(β̂)− Q̂(β0) ≤ λ
n
(‖β0‖1 − ‖β̂‖1) ≤ λ

n
(‖δ̂T ‖1 − ‖δ̂T c‖1). (5.28)

If Bn := ‖δ̂T c‖1 > c̄‖δ̂T ‖1, we have Q̂(β̂)−Q̂(β0) ≤ 0 since c̄ ≥ 1. Otherwise, if ‖δ̂T c‖1 ≤ c̄‖δ̂T ‖1,
by RE.1(c) we have

Bn := Q̂(β̂)− Q̂(β0) ≤
λ

n
‖δ̂T ‖1 ≤

λ

n

√
s‖δ̂‖2,n
κ1

. (5.29)

The result follows by applying Lemma 2 to bound ‖δ̂‖2,n and Theorem 1, and also noting that

if T ⊆ T̂ we have Cn = 0 so that Bn ∧ Cn ≤ 1{T 6⊆ T̂}Bn.

The second claim is immediate from the first, using the condition that cs . σ
√

s/n, relation

(2.9), in the case of the nonparametric model. �

This theorem provides a performance bound for post-LASSO as a function of 1) LASSO’s

sparsity characterized by m̂, 2) LASSO’s rate of convergence, and 3) LASSO’s model selection

ability. For common designs this bound implies that post-LASSO performs at least as well as

LASSO, but it can be strictly better in some cases, and has smaller regularization bias. We pro-

vide further theoretical comparisons in what follows, and computational examples supporting

these comparisons appear in Section 6. It is also worth repeating here that performance bounds

in other norms of interest immediately follow by the triangle inequality and by definition of κ̃:
√

En[x′iβ̃ − fi]2 ≤ ‖β̃ − β0‖2,n + cs and ‖β̃ − β0‖2 ≤ ‖β̃ − β0‖2,n/κ̃(m̂). (5.30)

Comment 5.1 (Comparison of the performance of post-LASSO vs LASSO). In order to carry

out complete and formal comparisons between LASSO and post-LASSO, we assume that

φ(m̂) .P 1, κ1 &P 1, µm̂ .P 1, log(1/α) . log p and α = o(1). (5.31)

We established fairly general sufficient conditions for the first three relations in Lemmas 9 and

10. The fourth relation is a mild condition on the choice of α in the definition of the data-driven
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choice (2.3) of penalty level λ, which simplifies the probability statements in what follows. We

first note that under (5.31) post-LASSO with the data-driven penalty level λ specified in (2.3)

obeys:

‖β̃ − β0‖2,n .P σ

[√
m̂ log p

n
+

√
s

n
+ 1{T 6⊆ T̂}

√
s log p

n

]
.

In addition, conditions (5.31) and Theorem 5 imply the oracle sparsity m̂ .P s.

It follows that post-LASSO generally achieves the same near-oracle rate as LASSO:

‖β̃ − β0‖2,n .P σ

√
s log p

n
. (5.32)

Notably, this occurs despite the fact that LASSO may in general fail to correctly select the

oracle model T as a subset, that is T 6⊆ T̂ .

Furthermore, there is a class of well-behaved models – a neighborhood of parametric models

with well-separated coefficients – in which post-LASSO strictly improves upon LASSO. Specif-

ically, if m̂ = oP (s) and T ⊆ T̂ wp → 1, as under conditions of Lemmas 3 and 4, then

‖β̃ − β0‖2,n .P σ

[√
o(s) log p

n
+

√
s

n

]
. (5.33)

That is, post-LASSO strictly improves upon LASSO’s rate. Finally, in the extreme case of

perfect model selection, when m̂ = 0 and T ⊆ T̂ wp → 1, as under conditions of Lemma 4,

post-LASSO naturally achieves the oracle performance: ‖β̃ − β0‖2,n .P σ
√

s/n. �

5.3. Performance of the post-goof-trimmed LASSO estimator. In what follows we pro-

vide performance bounds for the post-goof-trimmed estimator β̃ defined in equation (4.20) for

the case where the first-step estimator β̂ is LASSO.

Theorem 7 (Performance of post-goof-trimmed LASSO). In either the parametric model or

the nonparametric model, if λ ≥ cn‖S‖∞, for any ε > 0 there is a constant Kε independent of

n such that with probability at least 1− ε

‖β̃ − β0‖2,n ≤ Kεσ

√
m̃ log p+ (m̃+ s) log µm̃

n
+ 2cs + 1{T 6⊆ T̃}

√
λ
√
s

nκ1

(
(1 + c)λ

√
s

cnκ1
+ 2cs

)
,

where m̃ := |T̃ \ T | and cs = 0 in the parametric case. Under the data-driven choice of λ

specified in (2.3) with log(1/α) . log p, for any ε > 0 there is a constant K ′
ε,α such that

‖β̃ − β0‖2,n ≤ K ′
ε,ασ

[√
m̃ log(pµm̃)

n
+

√
s log µm̃

n
+ 1{T 6⊆ T̃}

√
s log p

n

1

κ1

]
(5.34)

with probability at least 1− α− ε.
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Proof. The proof of the first claim follows the same steps as the proof of Theorem 6, invoking

Theorem 3 in the last step. The second claim follows immediately from the first, where we also

use the condition cs . σ
√

s/n from (2.9) in the nonparametric model, in addition the condition

γ ≤ 0 imposed in the construction of the estimator. �

This theorem provides a performance bound for post-goof-trimmed LASSO as a function of

1) its sparsity characterized by m̃, 2) LASSO’s rate of convergence, and 3) the model selection

ability of the trimming scheme. Generally, this bound is at least as good as the bound for post-

LASSO, since the post-goof-trimmed LASSO trims as much as possible subject to maintaining

certain goodness-of-fit. It is also appealing that this estimator determines the trimming level in a

completely data-driven fashion. Moreover, by construction the estimated model is sparser than

post-LASSO’s model, which leads to the superior performance of post-goof-trimmed LASSO

over post-LASSO in some cases. We further provide further theoretical comparisons below and

computational examples in Section 6.

Comment 5.2 (Comparison of the performance of post-goof-trimmed LASSO vs LASSO and

post-LASSO). In order to carry out complete and formal comparisons, we assume condition

(5.31) as before. Under these conditions, post-goof-trimmed LASSO obeys the following per-

formance bound:

‖β̃ − β0‖2,n .P σ

[√
m̃ log p

n
+

√
s

n
+ 1{T 6⊆ T̃}

√
s log p

n

]
,

which is analogous to the bound for post-LASSO, since m̃ ≤ m̂ .P s by conditions (5.31) and

Theorem 5. It follows that in general post-goof-trimmed LASSO matches the near oracle rate

of convergence of LASSO and post-LASSO:

‖β̃ − β0‖2,n .P σ

√
s log p

n
. (5.35)

Nonetheless, there is a class of models – a neighborhood of parametric models with well-

separated coefficients – for which improvements upon the rate of convergence of LASSO is

possible. Specifically, if m̃ = oP (s) and T ⊆ T̃ wp → 1 then we obtain the performance bound

(5.33), that is, post-goof-trimmed LASSO strictly improves upon LASSO’s rate. Furthermore,

if m̃ = oP (m̂) and T ⊆ T̃ wp → 1, post-goof-trimmed LASSO also outperforms post-LASSO:

‖β̃ − β0‖2,n .P σ

[√
o(m̂) log p

n
+

√
s

n

]
.
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Lastly, under conditions of Lemma 3 holding for t = tγ , post-goof-trimmed LASSO achieves

the oracle performance, ‖β̃ − β0‖2,n .P σ
√

s/n. �

5.4. Performance of the post-traditional-trimmed LASSO estimator. Next we con-

sider the traditional trimming scheme which truncates to zero all components below a set

threshold t. This is arguably the most used trimming scheme in the literature. To state the

result, recall that β̂tj = β̂j1{|β̂j | > t}, m̃ := |T̃ \ T |, mt := |T̂ \ T̃ | and γt := ‖β̂t − β̂‖2,n where

β̂ is the LASSO estimator.

Theorem 8 (Performance of post-traditional-trimmed LASSO). In either the parametric model

or the nonparametric model, if λ ≥ cn‖S‖∞, for any ε > 0 there is a constant Kε independent

of n such that with probability at least 1− ε we have

‖β̃ − β0‖2,n ≤ Kεσ

√
m̃ log p+ (m̃+ s) log µm̃

n
+ 2cs +

+1{T 6⊆ T̃}
√

γt(KεσGt + 6cs + γt) +
λ
√
s

nκ1

(
2γt(1 + c)

c
+

(1 + c)λ
√
s

cnκ1
+ 2cs

)
,

where Gt =
√
mt log(pµmt)/

√
n and γt ≤ t

√
φ(mt)mt. Under the data-driven choice of λ

specified in (2.3) for log(1/α) . log p, for any ε > 0 there is a constant K ′
ε,α such that with

probability at least 1− α− ε

‖β̃ − β0‖2,n ≤ K ′
ε,α

[
σ

√
m̃ log(pµm̃)

n
+ σ

√
s log µm̃

n
+

+1{T 6⊆ T̃}


γt +

√

γtσ

√
mt log(pµmt)

n
+ σ

√
s log p

n

1

κ1




 .

Proof. The proof of the first claim follows the same steps as the proof of Theorem 6; invoking

Theorem 4 in the last step. The second claim follows from the first, where we also use the

condition cs . σ
√

s/n, relation (2.9), for the nonparametric model. �

This theorem provides a performance bound for post-traditional-trimmed LASSO as a func-

tion of 1) its sparsity characterized by m̃ and improvements in sparsity over LASSO char-

acterized by mt, 2) LASSO’s rate of convergence, 3) the trimming threshold t and resulting

goodness-of-fit loss γt relative to LASSO induced by trimming, and 4) model selection ability

of the trimming scheme. Generally, this bound may be worse than the bound for LASSO, and
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this arises because the post-traditional-trimmed LASSO may potentially use too much trim-

ming resulting in large goodness-of-fit losses γt. We provide further theoretical comparisons

below and computational examples in Section 6.

Comment 5.3 (Comparison of the performance of post-traditional-trimmed LASSO vs LASSO

and post-LASSO). In this discussion we also assume conditions (5.31) made in the previous for-

mal comparisons. Under these conditions, post-traditional-trimmed LASSO obeys the bound:

‖β̃ − β0‖2,n ≤ σ

√
m̃ log p

n
+ σ

√
s

n
+ 1{T 6⊆ T̃}

(
γt ∨ σ

√
s log p

n

)
. (5.36)

In this case we have m̃∨mt ≤ s+m̂ .P s by Theorem 5, and, in general, the rate above cannot

improve upon LASSO’s rate of convergence given in Lemma 2.

As expected, the choice of t, which controls γt via the the bound γt ≤ t
√

φ(mt)mt, can have

a large impact on the performance bounds:

t . σ

√
log p

n
=⇒ ‖β̃ − β0‖2,n .P σ

√
s log p

n
(5.37)

t . σ

√
s log p

n
=⇒ ‖β̃ − β0‖2,n .P σ

√
s2 log p

n
. (5.38)

Both options are standard suggestions in the literature on model selection via LASSO, as we

reviewed in Lemma 3 parts (2) and (3). The first choice (5.37), suggested by [11], is theoretically

sound, since it guarantees that post-traditional-trimmed LASSO achieves the near-oracle rate

of LASSO. The second choice, however, results in a very poor performance bound, and even

suggests inconsistency if s2 is large relative to n. Note that to implement the first choice (5.37)

in practice we can set t = λ/n.

Furthermore, there is a special class of models – a neighborhood of parametric models with

well-separated coefficients – for which improvements upon the rate of convergence of LASSO is

possible. Specifically, if m̃ = oP (s) and T ⊆ T̃ wp → 1 then we recover the performance bound

(5.33), that is, post-traditional-trimmed LASSO strictly improves upon LASSO’s rate. Further-

more, if m̃ = oP (m̂) and T ⊆ T̃ wp → 1, post-traditional-trimmed LASSO also outperforms

post-LASSO:

‖β̃ − β0‖2,n .P σ

[√
o(m̂) log p

n
+

√
s

n

]
.

Lastly, under the conditions of Lemma 3 holding for the given t, post-traditional-trimmed

LASSO achieves the oracle performance, ‖β̃ − β0‖2,n .P σ
√

s/n. �
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6. Empirical Performance Relative to LASSO

In this section we assess the finite sample performance of the following estimators: 1) LASSO,

which is our benchmark, 2) post-LASSO, 3) post-goof-trimmed LASSO, and 4) post-traditional-

trimmed LASSO with the trimming threshold t = λ/n suggested by Lemma 3 part (3). We

consider a “parametric” and a “nonparametric” model of the form:

yi = fi + ǫi, fi = x′iθ0, ǫi ∼ N(0, σ2), i = 1, ..., n,

where in the parametric model

θ0 = C · [1, 1, 1, 1, 1, 0, 0, ..., 0]′ , (6.39)

and in the nonparametric model

θ0 = C · [1, 1/2, 1/3, ..., 1/p]′ . (6.40)

The parameter C determines the size of the coefficients, representing the “strength of the

signal”, and we vary C between 0 and 2. The number of regressors is p = 500, the sample size

is n = 100, the variance of the noise is σ2 = 1, and we used 1000 simulations for each design.

We generate regressors from the normal law xi ∼ N(0,Σ), and consider three designs of the

covariance matrix Σ: a) the isotropic design with Σjk = 0 for j 6= k, b) the Toeplitz design

with Σjk = (1/2)|j−k|, and c) the equi-correlated design with Σjk = 1/2 for j 6= k; in all designs

Σjj = 1. Thus our parametric model is very sparse and offers a rather favorable setting for

applying LASSO-type methods, while our nonparametric model is non-sparse and much less

favorable.

We present the results of computational experiments for each design a)-c) in Figures 2-4. The

left column of each figure reports the results for the parametric model, and the right column

of each figure reports the results for the nonparametric model. For each model the figures plot

the following as a function of the signal strength for each estimator β̃:

• in the top panel, the number of regressors selected, |T̃ |,
• in the middle panel, the norm of the bias, namely ‖E[β̃ − θ0]‖,
• in the bottom panel, the average empirical risk, namely E[En[fi − x′iβ̃]

2].

We will focus the discussion on the isotropic design, and only highlight differences for other

designs.

Figure 2, left panel, shows the results for the parametric model with the isotropic design. We

see from the bottom panel that, for a wide range of signal strength C, both post-LASSO and
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post-goof-trimmed LASSO significantly outperform both LASSO and post-traditional-trimmed

LASSO in terms of empirical risk. The middle panel shows that the first two estimators’

superior performance stems from their much smaller bias. We see from the top panel that

LASSO achieves good sparsity, ensuring that post-LASSO performs well, but post-goof-trimmed

LASSO achieves even better sparsity. Under very high signal strength, post-goof-trimmed

LASSO achieves the performance of the oracle estimator; post-traditional-trimmed LASSO

also achieves this performance; post-LASSO nearly matches it; while LASSO does not match

this performance. Interestingly, the post-traditional-trimmed LASSO performs very poorly for

intermediate ranges of signal.

Figure 2, right panel, shows the results for the nonparametric model with the isotropic

design. We see from the bottom panel that, as in the parametric model, both post-LASSO and

post-goof-trimmed LASSO significantly outperform both LASSO and post-traditional-trimmed

LASSO in terms of empirical risk. As in the parametric model, the middle panel shows that the

first two estimators are able to outperform the last two because they have a much smaller bias.

We also see from the top panel that, as in the parametric model, LASSO achieves good sparsity,

while post-goof-trimmed LASSO achieves excellent sparsity. In contrast to the parametric

model, in the nonparametric setting the post-traditional-trimmed LASSO performs poorly in

terms of empirical risk for almost all signals, except for very weak signals. Also in contrast to

the parametric model, no estimator achieves the exact oracle performance, although LASSO,

and especially post-LASSO and post-goof-trimmed LASSO perform nearly as well, as we would

expect from the theoretical results.

Figure 3 shows the results for the parametric and nonparametric model with the Toeplitz

design. This design deviates only moderately from the isotropic design, and we see that all of

the previous findings continue to hold. Figure 4 shows the results under the equi-correlated

design. This design strongly deviates from the isotropic design, but we still see that the previous

findings continue to hold with only a few differences. Specifically, we see from the top panels

that in this case LASSO no longer selects very sparse models, while post-goof-trimmed LASSO

continues to perform well and selects very sparse models. Consequently, in the case of the

parametric model, post-goof-trimmed LASSO substantially outperforms post-LASSO in terms

of empirical risk, as the bottom-left panel shows. In contrast, we see from the bottom right

panel that in the nonparametric model, post-goof-trimmed LASSO performs equally as well as

post-LASSO in terms of empirical risk, despite the fact that it uses a much sparser model for

estimation.
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The findings above confirm our theoretical results on post-penalized estimators in parametric

and nonparametric models. Indeed, we see that post-goof-trimmed LASSO and post-LASSO are

at least as good as LASSO, and often perform considerably better since they remove penalization

bias. Post-goof-trimmed LASSO outperforms post-LASSO whenever LASSO does not produce

excellent sparsity. Moreover, when the signal is strong and the model is parametric and sparse

(or very close to being such), the LASSO-based model selection permits the selection of oracle

or near-oracle model. That allows for post-model selection estimators to achieve improvements

in empirical risk over LASSO. Of particular note is the excellent performance of post-goof-

trimmed LASSO, which uses data-driven trimming to select a sparse model. This performance

is fully consistent with our theoretical results. Finally, traditional trimming performs poorly

for intermediate ranges of signal. In particular, it exhibits very large biases leading to large

goodness-of-fit losses.

Appendix A. Proofs of Lemmas 1 and 2

Proof of Lemma 1. Following Bickel, Ritov and Tsybakov [2], to establish the result we

make the use of the following relations for δ = β̂ − β and for λ ≥ cn‖S‖∞:

Q̂(β̂)− Q̂(β0) ≥ −‖S‖∞‖δ‖1 + ‖δ‖22,n ≥ − λ

cn
(‖δT ‖1 + ‖δT c‖1) + ‖δ‖22,n (A.41)

‖β0‖1 − ‖β̂‖1 = ‖β0T ‖1 − ‖β̂T ‖1 − ‖β̂T c‖1 ≤ ‖δT ‖1 − ‖δT c‖1. (A.42)

By definition of β̂, Q̂(β̂)− Q̂(β0) ≤ λ
n
‖β0‖1 − λ

n
‖β̂‖1, which, by (A.41) and (A.42), implies that

− λ

cn
(‖δT ‖1 + ‖δT c‖1) + ‖δ‖22,n ≤ λ

n
(‖δT ‖1 − ‖δT c‖1). (A.43)

Since ‖δ‖22,n ≥ 0,

‖δT c‖1 ≤
c+ 1

c− 1
· ‖δT ‖1 = c̄‖δT ‖1. (A.44)

Going back to (A.43), we get that:

‖δ‖22,n ≤
(
1 +

1

c

)
λ

n
‖δT ‖1 ≤

(
1 +

1

c

)
λ

n

√
s
‖δ‖2,n
κ1

where we used that c ≥ 1 and invoked RE.1(c) since (A.44) holds. Solve for ‖δ‖2,n.
Finally, the bound on Λ(1−α|X) follows from the union bound and a probability inequality

for Gaussian random variables, P (|ξ| > M) ≤ exp(−M2/2) if ξ ∼ N(0, 1), see Proposition

2.2.1(a) in [8]. �
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LASSO post-LASSO post-goof-trimmed post-traditional-trimmed

A. Sparsity

B. Bias

C. Empirical Risk

Parametric Nonparametric

Figure 2. This figure plots the performance of the estimators listed in the text under the

isotropic design for the covariates, Σjk = 0 if j 6= k. The left column corresponds to the

parametric case and the right column corresponds to the nonparametric case described in the

text. The number of regressors is p = 500 and the sample size is n = 100 with 1000 simulations

for each value of C.
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LASSO post-LASSO post-goof-trimmed post-traditional-trimmed

B. Bias

Nonparametric
A. Sparsity

C. Empirical Risk

Parametric

Figure 3. This figure plots the performance of the estimators listed in the text under the

Toeplitz design for the covariates, Σjk = ρ|j−k| if j 6= k. The left column corresponds to the

parametric case and the right column corresponds to the nonparametric case described in the

text. The number of regressors is p = 500 and the sample size is n = 100 with 1000 simulations

for each value of C.
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LASSO post-LASSO post-goof-trimmed post-traditional-trimmed

NonparametricParametric
A. Sparsity

C. Empirical Risk

B. Bias

Figure 4. This figure plots the performance of the estimators listed in the text under the

equi-correlated design for the covariates, Σjk = ρ if j 6= k. The left column corresponds to the

parametric case and the right column corresponds to the nonparametric case described in the

text. The number of regressors is p = 500 and the sample size is n = 100 with 1000 simulations

for each value of C.
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Proof of Lemma 2. Similar to [2], to prove Lemma 2 we make the use of the following

relation: for δ = β̂ − β0, if λ ≥ cn‖S‖∞

Q̂(β̂)− Q̂(β0)− ‖δ‖22,n = 2En[ǫix
′
iδ] + 2En[rix

′
iδ] ≥ −‖S‖∞‖δ‖1 − 2cs‖δ‖2,n

≥ − λ

cn
(‖δT ‖1 + ‖δT c‖1)− 2cs‖δ‖2,n (A.45)

By definition of β̂, Q̂(β̂)−Q(β0) ≤ λ
n
‖β0‖1 − λ

n
‖β̂‖1, which implies that

− λ

cn
(‖δT ‖1 + ‖δT c‖1) + ‖δ‖22,n − 2cs‖δ‖2,n ≤ λ

n
(‖δT ‖1 − ‖δT c‖1) (A.46)

If ‖δ‖22,n − 2cs‖δ‖2,n < 0, then we have established the bound in the statement of the theorem.

On the other hand, if ‖δ‖22,n − 2cs‖δ‖2,n ≥ 0 we get

‖δT c‖1 ≤
c+ 1

c− 1
· ‖δT ‖1 = c̄‖δT ‖1, (A.47)

and therefore δ satisfies the domination condition (2.6). From (A.46) and using RE.1(c) we get

‖δ‖22,n − 2cs‖δ‖2,n ≤
(
1 +

1

c

)
λ

n
‖δT ‖1 ≤

(
1 +

1

c

) √
sλ

n

‖δ‖2,n
κ1

which gives the result on the prediction norm. Finally, the bound on Λ(1− α|X) follows from

the union bound and a probability inequality for Gaussian random variables, P (|ξ| > M) ≤
exp(−M2/2) if ξ ∼ N(0, 1), see Proposition 2.2.1(a) in [8]. �

Appendix B. Proofs of Lemmas for Post-Model Selection Estimators

Proof of Lemma 5. The bound on Bn follows from Lemma 6 result (1). The bound on Cn

follows from Lemma 6 result (2). �

Proof of Lemma 6. Result (1) follows from the relation

|Q̂(β0 + δ) − Q̂(β0)− ‖δ‖22,n| = |2En[ǫix
′
iδ] + 2En[rix

′
iδ]|,

then applying Theorem 2 on sparse control of noise to |2En[ǫix
′
iδ]|, bounding |2En[rix

′
iδ]| by

2cs‖δ‖2,n using the Cauchy-Schwartz inequality, and bounding
(
p
m

)
by pm.

Result (2) also follows from Theorem 2 but applying it with s = 0, p = s (since only the

components in T are modified), m = k, and noting that we can take µm with m = 0. �
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Appendix C. Proofs of Lemmas for Sparsity of the LASSO estimator

Proof of Lemma 7. Let T̂ = support(β̂), and m̂ = |T̂ \ T |. We have from the optimality

conditions that

2En[xij(yi − x′iβ̂)] = sign(β̂j)λ/n for each j ∈ T̂ \ T.

Therefore we have for R = (r1, . . . , rn)
′

√
m̂λ = 2‖(X ′(Y −Xβ̂))

T̂\T ‖
≤ 2‖(X ′(Y −R−Xβ0))T̂ \T ‖+ 2‖(X ′R)

T̂\T ‖+ 2‖(X ′X(β0 − β̂))
T̂ \T ‖

≤
√
m̂ · n‖S‖∞ + 2n

√
φ(m̂)cs + 2n

√
φ(m̂)‖β̂ − β0‖2,n,

where we used that

‖(X ′X(β0 − β̂))
T̂ \T ‖ = sup‖α‖0≤m̂,‖α‖≤1 |α′X ′X(β0 − β̂)|

≤ sup‖α‖0≤m̂,‖α‖≤1 ‖α′X ′‖‖X(β0 − β̂)‖
= sup‖α‖0≤m̂,‖α‖≤1

√
|α′X ′Xα|‖X(β0 − β̂)‖

≤ n
√

φ(m̂)‖β0 − β̂‖2,n,

and similarly ‖(X ′R)
T̂\T ‖ ≤ n

√
φ(m̂)cs.

Since λ/c ≥ n‖S‖∞, and by Lemma 2, ‖β0 − β̂‖2,n ≤
(
1 + 1

c

) λ
√
s

nκ1
+ 2cs we have

(1− 1/c)
√
m̂ ≤ 2

√
φ(m̂)(1 + 1/c)

√
s/κ1 + 6

√
φ(m̂) ncs/λ.

The result follows by noting that (1− 1/c) = 2/(c̄ + 1) by definition of c̄. �

Proof of Lemma 8. Let W := En[xix
′
i] and ᾱ be such that φ(⌈ℓk⌉) = ᾱ′Wᾱ. We can decompose

ᾱ =

⌈ℓ⌉∑

i=1

αi, with

⌈ℓ⌉∑

i=1

‖αiT c‖0 = ‖ᾱT c‖0 and αiT = ᾱT / ⌈ℓ⌉ ,

where we can choose αi’s such that ‖αiT c‖0 ≤ k for each i = 1, ..., ⌈ℓ⌉, since ⌈ℓ⌉k ≥ ⌈ℓk⌉. Since
W is positive semi-definite, α′

iWαi + α′
jWαj ≥ 2 |α′

iWαj| for any pair (i, j). Therefore

φ(⌈ℓk⌉) = ᾱ′Wᾱ =

⌈ℓ⌉∑

i=1

⌈ℓ⌉∑

j=1

α′
iWαj

≤
⌈ℓ⌉∑

i=1

⌈ℓ⌉∑

j=1

α′
iWαi + α′

jWαj

2
= ⌈ℓ⌉

⌈ℓ⌉∑

i=1

α′
iWαi

≤ ⌈ℓ⌉
⌈ℓ⌉∑

i=1

‖αi‖2φ(‖αiT c‖0) ≤ ⌈ℓ⌉ max
i=1,...,⌈ℓ⌉

φ(‖αiT c‖0) ≤ ⌈ℓ⌉φ(k),



POST-ℓ1-PENALIZED ESTIMATORS 37

where we used that

⌈ℓ⌉∑

i=1

‖αi‖2 =
⌈ℓ⌉∑

i=1

(‖αiT ‖2 + ‖αiT c‖2) = ‖ᾱT ‖2
⌈ℓ⌉ +

⌈ℓ⌉∑

i=1

‖αiT c‖2 ≤ ‖ᾱ‖2 = 1.

�

Proof of Lemma 9. First note that P (max1≤j≤p |σ̂j − 1| ≤ 1/4) → 1 as n grows under the side

condition on n. Let c∗(m) and c∗(m) denote the minimum and maximum m-sparse eigenvalues

associated with En[x̃ix̃
′
i] (unnormalized covariates). It follows that φ(m) ≤ max1≤j≤p σ̂

2
j c

∗(m+

s) and κ̃(m)2 ≥ min1≤j≤p σ̂
2
j c∗(m+ s). Thus, the bound on φ(m) and κ̃(m)2 follows from [20]’s

proof of Proposition 2 (i) with ǫ1 = 1/3, ǫ2 = 1/2, and ǫ3 = ǫ4 = 1/16, which bounds the

deviation of c∗(m + s) and c∗(m + s) from their population counterparts. The bound on the

restricted eigenvalue κ1 follows from Lemma 3 (ii) in [2]. Let M = (s log(n/e))∧(n/[16 log p]) so
that as n grows M/s → ∞ under the side condition on s, and we have M ∈ M for n sufficiently

large since κ1 is bounded from below and φ(M) is bounded from above with probability going

to one. Thus, the bound on m̂ then follows from Theorem 5 if λ ≥ cn‖S‖∞ which occurs with

probability at least 1− α. �

Proof of Lemma 10. First note that P (max1≤j≤p |σ̂j − 1| ≤ 1/4) → 1 as n grows under the side

condition on n. Let c∗(m) and c∗(m) denote the minimum and maximum m-sparse eigenvalues

associated with En[x̃ix̃
′
i] (unnormalized covariates). It follows that φ(m) ≤ max1≤j≤p σ̂

2
j c

∗(m+

s) and κ̃(m)2 ≥ min1≤j≤p σ̂
2
j c∗(m + s). Thus, the bound on φ(m) and κ̃(m)2 follows from

[20]’s proof of Proposition 2 (ii) with τ∗ = 1/2 and τ∗ = 2, which bounds the deviation of

c∗(m + s) and c∗(m + s) from their population counterparts. The bound on the restricted

eigenvalue κ1 follows from Lemma 3 (ii) in [2] and the side condition on s. Next let M =

(s log(n/e)) ∧ ([ǫ/KB ]
√

n/ log p) so that as n grows M/s → ∞, under the side condition on

s, and we have M ∈ M for n sufficiently large since κ1 is bounded from below and φ(M) is

bounded from above with probability going to one. Thus, the bound on m̂ then follows from

Theorem 5 if λ ≥ cn‖S‖∞ which occurs with probability at least 1− α. �
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