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Abstract

In many economic applications, the variate of interest is non-negative and

its distribution is characterized by a mass-point at zero and a long right-tail.

Many regression strategies have been proposed to deal with data of this type.

Although there has been a long debate in the literature on the appropriateness

of different models, formal statistical tests to choose between the competing

specifications, or to assess the validity of the preferred model, are not often

used in practice. In this paper we propose a novel and simple regression-based

specification test that can be used to test these models against each other.
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1. INTRODUCTION

In many empirical applications, the variate of interest, say y, is non-negative and

has a mixed distribution characterized by the coexistence of a long right-tail and a

mass-point at zero. Applications using this sort of data are typical in health and

international economics, but datasets with these characteristics are also found in

many other areas.1 A stark example of data with a mixed distribution in interna-

tional economics is the case of bilateral trade flows, where the zeros may result from

the existence of fixed costs or access costs that preclude firms or countries to sell into

some destinations (see, for example, Melitz, 2003, Helpman, Melitz, and Yeaple, 2004,

Chaney, 2008, and Arkolakis, 2008). What is common to all the cases we are consider-

ing is that the many zeros are not the result of some observability problem, but rather

correspond to the existence of the so-called “corner-solutions”(Wooldridge, 2002).2

In this type of application, researchers and policymakers are ultimately interested

in the effects of the covariates on the distribution of the fully observable dependent

variable y.

Linear models are generally inappropriate to describe corner-solutions data, and

many alternative specifications have been suggested to try to accommodate the pe-

culiar characteristics of this sort of data. The specifications that have been suggested

can broadly be divided into one- and two-equation models. The one-equation mod-

els include different versions of the Tobit (Tobin, 1958, Eaton and Tamura, 1994),

and models with an exponential conditional expectation function (Mullahy, 1998, and

Santos Silva and Tenreyro, 2006). The two-equation models allow the covariates to

1See Jones (2000) for a survey of applications in health economics, and Helpman, Melitz, and

Rubinstein (2008), and Anderson and Yotov (2010), for recent examples of applications in interna-

tional economics. La Porta, López-de-Silanes, and Zamarripa (2003) is an example of the use of this

type of data in finance.
2Therefore, this situation is different from the sample selection found in labour economics where

the zeros in wage data are a just a convenient way to indicate that the individual does not participate

in the labour market.
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affect the conditional distribution of y in two different ways, modelling separately the

probability of observing a zero and the positive observations, or, more frequently, their

logarithm. The class of two-equation models includes the so-called two-part model

of Duan, Manning, Morris, and Newhouse (1983), and models based on Heckman’s

(1979) sample selection estimator.

Although there has been a long debate in the literature on the relative merits of

different models for corner-solutions data (see, e.g., Duan et al., 1983 and 1984, Hay

and Olsen, 1984, Manning, Duan, and Rogers, 1987, and Mullahy, 1998), in practice,

the choice between the competing specifications is often based on convenience, or on

the beliefs of the researcher about how the zeros where generated. Strikingly, formal

statistical tests are rarely used to help choosing the most suitable specification, or to

assess the validity of the preferred model.

However, having an appropriate test to choose between competing models is impor-

tant for several reasons. First, because none of the proposed specifications generally

dominates its competitors, deciding which of the models is more appropriate is an

empirical question that has to be answered for each specific dataset the researcher is

considering. Second, and related, the test may help to empirically discriminate among

competing theories and thus shed more light on the mechanisms affecting the variable

of interest. Thus, for example, the structural gravity model for trade of Anderson and

Yotov (2010), which in turn builds on Anderson and van Wincoop (2003), leads to a

one-equation specification with minimal distributional assumptions at the estimation

stage; instead, the model of Helpman, Melitz and Rubinstein (2008) leads to a two-

equation specification. The gain in flexibility provided by the two-part model in this

case comes at the cost of stronger distributional assumptions at the estimation stage;

the test we propose implicitly weighs in these costs and benefits to judge the appro-

priateness of the different specifications for a given dataset. Even if the researcher

favours one specification on theoretical grounds, it is important to check its adequacy

by testing it against competing specifications; this can help confirm (or reject) the
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researcher’s views on the models. Finally, the choice of the correct model plays a

critical role in the estimation of marginal effects and elasticities that are often used

to assess the impact of different public policies; and, as said, corner-solutions data

are of high prevalence in key areas of public policy such as health and international

economics.

One of the reasons that may explain why statistical tests are not routinely used to

choose between competing models for corner-solutions data is that it is not obvious

how such tests could be performed. Indeed, because the various specifications that

have been proposed are based on very different modelling strategies, it is not imme-

diately clear what test can be used to choose between the competing alternatives.

In this paper we argue that existing econometric tests are inappropriate to dis-

criminate between alternative models for corner-solutions data and we propose a

novel regression-based test that can achieve this goal. Our approach is based on the

observation that, although the models being considered are based on very different

modelling approaches and differ widely in the nature of the assumptions they make,

implicitly or explicitly they all define the conditional expectation of y. Therefore, the

suitability of each of the competing models can be gauged by testing the correspond-

ing conditional expectation against that of any of the alternatives being considered.

Heuristically, our test will check whether the estimate of the conditional expectation

of y obtained under the alternative can be used to improve the prediction of y ob-

tained under the null. If that is the case, we have evidence against the null because

this implies that the model under the null is not explaining some features of the data

that are captured by the alternative.

The remainder of the paper is organised as follows. The next section summarizes the

more popular competing specifications that have been used to model corner-solutions

data. Section 3 describes the testing strategy we adopt and the proposed specification

test. Section 4 presents the results of a small simulation study illustrating the finite

sample performance of the proposed test, and Section 5 employs two well-known
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datasets to illustrate the practical use of the approach we suggest. Finally, Section

6 contains brief concluding remarks and an Appendix gives technical details on the

proposed testing procedure.

2. A CATALOGUE OF MODELS

Table 1 lists some prominent nonlinear models that have been used in an attempt to

deal with the challenges posed by corner-solutions data.3 Besides the basic description

of the model, Table 1 also includes the form of E [y|x], the conditional expectation of

y given a set of covariates x, implied by the different specifications.

Model 1, the Exponential Conditional Expectation (ECE) model, is the simplest

specification and it can be estimated using a pseudo-maximum likelihood estimator of

the family considered by Gourieroux, Monfort and Trognon (1984). This specification

has been used, for example, by Santos Silva and Tenreyro (2006) and Anderson and

Yotov (2010) in the context of trade data. Mullahy (1998) suggested this specification

to model the demand for health care, and Manning and Mullahy (2001) studied its

performance for the case in which the dependent variable is strictly positive. Although

it is not pursued here, we note that this model can be made more flexible by the

introduction of a shape parameter, as in Wooldridge (1992) and Basu, Arondekar

and Rathouz (2006).

TABLE 1 ABOUT HERE

Model 2 is the two-part model (2PM) proposed by Duan et al. (1983). This specifi-

cation has been extensively used to model demand for health care and it is described

in Wooldridge’s (2002) textbook. The use of this model has led to some controversy

3This list is by no means exhaustive. Other models that have been used in this context include

the four-part model of Duan et al. (1983), the threshold Tobit of Eaton and Tamura (1994), the

generalized gamma model of Manning, Basu, and Mullahy (2005), and the two-equation model of

Helpman, Melitz and Rubinstein (2008), among many others.
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in the literature, which is elegantly summarized in Jones (2000). Model 3 is the

modified two-part model (M-2PM) of Mullahy (1998), in which the first part is also

a binary model for the probability that yi > 0.4 The second part is an ECE model

estimated on the positive observations only. Although this model has seen little use

in practice, it is an attractive alternative to the standard 2PM because it leads to a

specification of E [y|x] which does not depend on incidental assumptions about the

distribution of the errors in the second stage.

Model 4 is the Tobit (Tobin, 1958), which has often been used to model non-

censored data with many zeros. See Wooldridge (2002) for a discussion of the use

of the Tobit in this context and for a derivation of E [y|x]. Leading examples of the

use of the Tobit to model non-censored data with mixed distributions are La Porta,

López-de-Silanes and Zamarripa (2003), and Rose (2004).5

Finally, Models 5 and 6 are based on Heckman’s (1979) sample selection estimator

and have been extensively used to model data with mixed distributions.6 Wooldridge

(2002) discusses the use of the sample selection models in this context and gives the

expression of E [y|x] for the model in levels (Model 5). The expression of E [y|x] for the

model in logs (Model 6) can be traced back to van de Ven and van Praag (1981). For

examples of the use of these models in health economics, see, among many others,

the discussion in Mullahy (1998) and the survey of Jones (2000). Hallack (2006)

and Helpman, Melitz and Rubinstein (2008) are leading examples of the use of this

approach in modelling international trade.

4Mullahy (1998) models the first stage as a logit, but he notes that other binary choice models

can be used. Here we use a probit in the first part because that tends to be the choice of most

practitioners.
5Eaton and Tamura (1994) proposed a modified Tobit estimator that has been used mainly in

the context of the estimation of gravity models.
6When Models 5 and 6 are used to describe genuine sample selection data, Pr (yi > 0|xi) should

be interpreted as the conditional probability that yi is observed.
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It is important to note that the models in Table 1 not only specify E [y|x], but

they also prescribe a method to estimate the parameters of interest. Therefore, al-

though some models (1, 2, 3, and 6) essentially specify conditional means of the form

exp
(
x′iβ

∗
j + ln Φ

(
x′iγ
∗
j

))
,7 in practice, the estimates of E [y|x] they lead to can be very

different because they are evaluated at different estimates of the parameters, whose

probability limits will in general be distinct. Notice also that for Models 2 and 6,

the parameters of interest cannot be estimated using just information from the con-

ditional mean as it does not identify the intercepts of at least one of the two parts of

the model.

3. TESTING STRATEGIES

Common to all the models regularly used to describe corner-solutions data is that,

implicitly or explicitly, they all specify the conditional mean of y given x. More-

over, E [y|x] is actually the object of interest in the kind of applications we have in

mind because it is the function needed to compute key quantities of interest, such as

marginal effects and elasticities, which in turn can shed light on welfare effects (e.g.

Arkolakis, Costinot and Rodríguez-Clare, 2009). Therefore, like Mullahy (1998), we

compare the different models on the basis of the adequacy of the implied conditional

expectations.

Naturally, as done by Mullahy (1998), one can use standard tests to separately

check the specification of E [y|x] in each model, for example using some version of the

simple RESET test (Ramsey, 1969, and Ramsey and Schmidt, 1976). However, this

approach ignores the information provided by the alternative models and therefore

we suggest exploring this information by testing the specification of E [y|x] implied

by one model against alternatives in the direction of competing specifications. This

can be done by framing the problem as a test of non-nested hypothesis.

7The notation β∗j and γ
∗
j is used to denote βj and γj with the intercepts appropriately shifted.

The ECE specification is obtained, for example, by letting the intercept in γ∗ pass to infinity.
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The motivation for using tests for non-nested hypotheses is obvious when the pur-

pose is to compare models whose implied conditional expectations are non-nested, in

the sense that they cannot be obtained by imposing restrictions on the parameters of

the competing specifications. For instance, the Heckit does not nest, and is not nested

by, its logarithmic specification. But, perhaps less obviously, we argue that the use

of the non-nested hypotheses framework is justified (and indeed needed) even when

the functional form of the conditional expectation of one model is identical to, or

nested within, that of the competing alternative. This is because, as noted above, the

models imply not only a functional form for E [y|x], but also an estimation method

for its parameters. Therefore, even if two models specify the same functional form for

E [y|x], the implied conditional expectations will generally be different because they

are evaluated at different points, even asymptotically. In this case, none of the models

leads to an estimated conditional expectation that nests the others in the sense that

it will always fit the data at least as well as that of its competitors.

Most tests for non-nested hypotheses require the specification of the entire condi-

tional density of y given x (Cox, 1961, Atkinson, 1970, Quandt, 1974, Gourieroux

and Monfort, 1994, and Santos Silva, 2001), and therefore are not appropriate in

this context. However, Davidson and MacKinnon (1981) introduced several tests for

non-nested hypotheses that only require the specification of the conditional mean,

and therefore are appropriate for our purpose. In this section we build on the results

of Davidson and MacKinnon (1981) to develop testing procedures to discriminate

between competing models for corner-solutions data.

3.1. The P and C tests

As in Davidson and MacKinnon (1981), suppose that we want to test Model A,

characterized by

MA : E [yi|xi] = fA (xi, λ) ,
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against Model B, which implies

MB : E [yi|xi] = fB (xi, µ) .

The approach suggested by Davidson and MacKinnon (1981) to test MA against

alternatives in the direction of MB is based on the nesting of MA and MB within an

artificial compound model of the form

MC : E [yi|xi] = (1− α) fA (xi, λ) + αfB (xi, µ) ,

where the correct specification of MA can be checked by testing H0 : α = 0 against

H1 : α = 1.8 Essentially, this test checks a moment condition of the form

E [(yi − fA (x, λ)) (fB (xi, µ)− fA (xi, λ))] = 0.

That is, the test checks the correct specification of fA (x, λ) by testing whether the

errors y − fA (x, λ) have zero expectation, giving more weight to the observations

for which the difference between the conditional means implied by MA and MB are

larger.

In general, unrestricted estimation ofMC does not identify α. Therefore, Davidson

and MacKinnon (1981) suggest performing the test conditioning on the estimates of

µ obtained under the alternative. Moreover, Davidson and MacKinnon (1981) note

that estimation of this non-linear model can be avoided by using a linearization of

MC around λ = λ̂, where λ̂ denotes the estimate of λ under the null. That is, the test

can be performed as a t-test for the significance of α in the auxiliary linear regression

yi − fA
(
xi, λ̂

)
= ∇λfA

(
xi, λ̂

)
δ + α

(
fB (xi, µ̂)− fA

(
xi, λ̂

))
+ ηi,

8A two-tailed test could also be used. However, here we follow Fisher and McAleer (1979),

who argue that, when the purpose is to discriminate between two competing models, one-sided (in

the direction of the alternative) tests should be used. This is in line with the seminal procedure

developed by Cox (1961).
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where ∇λfA

(
xi, λ̂

)
denotes a vector containing the derivatives of fA (x, λ) with re-

spect to λ, evaluated at λ̂, and µ̂ represents any consistent estimate of µ. This

procedure is named P test by Davidson and MacKinnon (1981).9

The P test can be used to discriminate between many of the models described in

the previous section. In particular, it can be used whenever fB (xi, µ) is not a special

case of fA (xi, λ). For example, the P test can be used to test the Heckit against its

logarithmic specification, and vice-versa, and it is also appropriate when the ECE is

the null and the Heckit or the two-part models are the alternative.

However, because the P test does not condition on the estimates obtained under

the null, the test will have power equal to size when fA (xi, λ) and fB (xi, µ) have the

same functional form, or when fB (xi, µ) is a special case of fA (xi, λ).10 This happens

because the P test checks whether there is some set of parameters such that the

conditional mean under the null is correctly specified, but it does not check whether

the estimation method implied by the null identifies these parameters. Therefore, the

P test cannot be used to compare some of the more popular models, like the Heckit

in logs and the 2PM, because both these models specify conditional expectations of

the form exp
(
x′iβ

∗
j + ln Φ

(
x′iγ
∗
j

))
, where the notation β∗j and γ

∗
j is used, as before, to

denote βj and γj with the intercepts appropriately shifted.

A possible avenue to follow at this point would be to resort to the seldom-used C

test (Davidson and MacKinnon, 1981), and estimate MC conditioning both on λ̂ and

on µ̂. That is, the C test would check the significance of α in the auxiliary linear

regression

yi − fA
(
xi, λ̂

)
= α

(
fB (xi, µ̂)− fA

(
xi, λ̂

))
+ ζ i.

The disadvantage of this procedure, however, is that the standard t-statistic for the

significance of α ignores that the dependent variable in the regression is evaluated at
9The J test described in Davidson and MacKinnon (1981) could also be used in this context.

However, this procedure is not as attractive as the P test because its implementation is cumbersome

when the null is a nonlinear model.
10This problem is documented, in a related context, by Ramalho, Ramalho and Murteira, (2010).
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λ̂ rather than at λ, and consequently has an asymptotic variance smaller than one.

Therefore, a test based on this statistic is likely to be severely undersized and will lack

power. Davidson and MacKinnon (1981) provide a valid estimator of the variance of

the estimate of α with which it is possible to construct an asymptotically valid test,

but that procedure is likely to be too cumbersome for most practitioners to use it

routinely.

The C test is the only approach that is feasible when fA (xi, λ) and fB (xi, µ) have

the same functional form. However, when this is not the case, a more attractive

procedure is available. In the remainder of this section we use the results of Davidson

and MacKinnon (1981) to develop a new test that is specifically designed to deal with

the situation where fB (xi, µ) is a special case of, but not identical to, fA (xi, λ) like,

for example, when the Heckit in logs is tested against the ECE. The test can also be

used when fA (xi, λ) is a special case of, but not identical to, fB (xi, µ), being closely

related to the P test in this case. The new test thus builds on the C and P tests, and

it explicitly takes into consideration that this type of data is typically characterized

by strong heteroskedasticity.

3.2. The proposed test

In what follows, we will focus on models that specify conditional expectations of

the form exp
(
x′iβ

∗
j + zji

)
, where zji = ln Φ

(
x′iγ
∗
j

)
.11 Suppose that we want to test

Model j, j ∈ {1, 2, 3, 6}, implying

Mj : E [yi|xi] = exp
(
x′iβ

∗
j + zji

)
,

against Model k, k ∈ {1, 2, 3, 6} and k 6= j, which leads to

Mk : E [yi|xi] = exp
(
x′iβ

∗
k + zki

)
.

11It is trivial to develop an analogous procedure for more general specifications of the conditional

mean, but that is not pursued here.
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Although the conditional expectations implied by both models have the same func-

tional form, the different models imply that these functions are evaluated at different

sets of parameters and in that sense they are non-nested.

As in Davidson and MacKinnon (1981), we start by nesting the competing specifi-

cations in a compound model of the form

Ml : E [yi|xi] = (1− α) exp
(
x′iβ

∗
j + zji

)
+ α exp

(
x′iβ

∗
k + zki

)
,

and want to check the correct specification of Mj by testing H0 : α = 0 against

H1 : α = 1. As before, α is not generally identified and therefore the test has to be

performed by conditioning on parameter estimates. In particular, as in the C test,

we propose testing H0 : α = 0 versus H1 : α = 1 conditioning on estimates obtained

both under the alternative and under the null. However, unlike in the C test, we will

not condition on all estimates under the null, but only on the estimates of γ∗j , the

parameters determining the probability of observing yi = 0. That is, β∗j is allowed to

be freely estimated, and the hypothesis of interest is tested in the artificial regression

yi = (1− α) exp
(
x′iβ

∗ + ẑji
)

+ α
(

exp
(
x′iβ̂

∗
k + ẑki

))
+ ξi, (1)

where ẑai = ln Φ (x′iγ̂
∗
a) and β̂

∗
a and γ̂a denote estimates obtained under model a ∈

{j, k}.

Like in the P test, estimation of (1) can be avoided by linearizing the model around

β∗ = β̂
∗
j . Moreover, in the specific context we have in mind, the variance of ξi is likely

to increase with E [yi|xi], and therefore we suggest estimating the linearization of (1)

by weighted least squares, under the assumption that Var [yi|xi] ∝ exp
(
x′iβ

∗
j + zji

)
.

This modification is not only likely to improve the performance of the test in finite

samples, but it also has a second interesting consequence. Indeed, the test based on

the weighted regression checks a moment condition of the form

E

[(
yi − exp

(
x′iβ

∗
j + zji

)) exp
(
x′iβ

∗
k + zki

)
− exp

(
x′iβ

∗
j + zji

)
exp

(
x′iβ

∗
j + zji

) ]
= 0.
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That is, like the tests proposed by Davidson and MacKinnon (1981), the test proposed

here checks whether the errors of the model under the null have zero expectation

when the weight given to each observation depends on the difference between the

conditional expectations of the two models. The difference here is that, because of

the weights accounting for the presence of heteroskedasticity, a percentage difference

between the two conditional means is used as a weight. The use of a percentage

difference is appropriate and attractive in this particular context because all models

being considered imply specifications of the conditional mean of yi which are strictly

positive, but can be close to zero for a large proportion of the observations in the

sample. These observations, which are critical in distinguishing between one- and two-

equation models, would be essentially ignored if the weights were just the difference

between the two sets of fitted values, as in the P test, and not a percentage difference,

as in the proposed test.

Implementing the test in practice is very simple. Defining ŷai = exp
(
x′iβ̂

∗
a + ẑai

)
and δ = β̂

∗
k − β, the proposed test is just a t-test for H0 : α = 0 against H1 : α = 1

in the OLS estimation of an artificial model of the form

yi − ŷji√
ŷji

=

√
ŷjix

′
iδ + α

ŷki − ŷ
j
i√

ŷji

+ νi, (2)

which can be conveniently performed, for example, in Stata (StataCorp., 2009), as a

least squares regression of
(
yi − ŷji

)/
ŷji on x and

(
ŷki − ŷ

j
i

)/
ŷji , using ŷ

j
i as weights.

Like in the C test (Davidson and MacKinnon, 1981), the asymptotic variance of

the usual t-statistic for the significance of α in (2) is not equal to 1 because the test

does not take into consideration that ẑji is evaluated at estimates under the null.

Indeed, as it is shown in the Appendix (see also Davidson and MacKinnon, 1981,

and Pierce, 1982), when ẑji is is evaluated at the maximum likelihood estimates of γ
∗
j ,

the standard t-test for H0 : α = 0 in (2) will be asymptotically undersized. Still, we

expect this problem to be much less severe than in the C test because the proposed

procedure does not condition on β̂
∗
j . Naturally, an asymptotically correct estimator
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of the variance of the estimate of α can be obtained using the misspecification-robust

version of the methods presented in Davidson and MacKinnon (1981), as detailed in

the Appendix. However, in the next section we present some Monte Carlo evidence

which suggests that the test suffers only from small size distortions even when it is

based on the uncorrected estimate of the variance. Therefore, we conjecture that, for

most empirical applications, the additional computational burden of correcting the

covariance estimator may not be justified.

It is noteworthy that, when the null is the ECE model (j = 1), the variance of

the estimate of α does not need to be corrected because ẑji = 0 and therefore, under

the null, γ̂∗j vanishes from the model. In this case, the test based on (2) is just

an heteroskedasticity adjusted P test, and consequently the standard t-statistic will

asymptotically have the correct size.

Finally, it is important to mention that, as is standard with tests for non-nested

hypotheses, the roles of the null and alternative can be reversed. This leads to three

possible outcomes of the proposed test: one model may be rejected and the other

accepted, both models may be accepted, or both rejected. Therefore, unlike model

selection criteria that always choose one of the models being compared, the proposed

test has the ability to reject both specifications when neither is appropriate. On the

other hand, if two specifications are very close and the sample is not rich enough, the

test may be unable to discriminate between the two competitors.

4. SIMULATION RESULTS

In this section we report the results of a small scale Monte Carlo study evaluating

the performance of the proposed test. More specifically, two sets of simulations were

performed. In the first set, we focus on the tests comparing the Heckit in logs,

estimated by maximum likelihood, with the ECEmodel, estimated by Poisson pseudo-

maximum likelihood (PPML). In the second set of simulations the models being

compared are the ECE, again estimated by PPML, and the M-2PM for which the
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first part is a probit and the second part is an ECE estimated by PPML. This choice

of models to include in the simulations is motivated by the empirical illustrations in

the next section in which these specifications are tested against each other.

In the experiments in which the Heckit in logs or the M-2PM is the corect model,

data are generated as

Pr (yi > 0|xi) = Pr (0.2xi1 + 0.8xi2 + ei > 0|xi) ,

for yi > 0 : ln (yi) = 1 + 0.8xi1 + 0.0xi2 + ui, ei
u
i

 ∼ N
 0

0

 ,
 1 ρσ

ρσ σ2

 .

In the first set of experiments, when the null is the Heckit, we set ρ = 0.5 and σ = 0.5.

For the second set of experiments, when the null is the M-2PM, ρ = 0 and σ = 0.5.

When the ECE model is used to generate the data, we follow Santos Silva and

Tenreyro (2009) and obtain yi as a χ2 random variable with ηi degrees of freedom,

where the ηi are draws from a negative-binomial distribution with

E [ηi|xi] = exp (0.55 + 0.88xi1 + 0.2xi2) ,

Var [ηi|xi] = 5E [ηi|xi] .

In all data generation processes, x1 is obtained as a random draw from the standard

normal distribution, and x2 is a dummy variable with Pr (x2 = 1) = 0.4. New sets

of regressors are drawn for each Monte Carlo replication. In the Heckit and M-2MP

designs, yi is equal to zero for about 40 percent of the observations, whereas in the

ECE design this percentage is close to 45 percent.

All tests are one-tailed and are based on the t-statistic for H0 : α = 0 versus

H1 : α = 1 in (2). When the Heckit in logs or the M-2PM is the null, the test is

performed both with and without the correction to the covariance matrix. Obviously,

when the ECE is the null, the correction is not needed.

The simulation results were obtained for samples of sizes 1000, 2000, and 5000 and

are based on 10, 000 Monte Carlo replications. Table 2 below presents the rejection
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frequencies at the conventional 5% level for the first set of simulations in which

the Heckit in logs and the ECE are the competing models. Table 3 presents the

corresponding results for the cases in which the M-2PM and the ECE are considered.

TABLES 2 & 3 ABOUT HERE

The results in Tables 2 and 3 suggest that, with these designs, the asymptotically

valid tests are generally mildly oversized, whereas the uncorrected test is slightly

undersized. Overall, under the null, the tests display reasonable behaviour, even

for samples which are much smaller than those currently used in most empirical

applications. When the null is false, the tests have reasonable power and, naturally,

the power increases with the sample size.

The behaviour of the tests under the alternative deserves a couple of additional

comments. First, we notice that, as expected, the uncorrected test is less powerful

than the version based on the corrected covariance matrix. However, this loss of power

is relatively small, and it vanishes reasonably quickly when the sample size increases.

Therefore, at least with reasonably sized samples, the additional cost incurred in

computing the corrected test-statistic may not be justified. The second interesting

point to note is that the tests are substantially less powerful when the null is the ECE

than when the null is either the Heckit in logs or the M-2PM. This issue deserves

further exploration, but we conjecture that this difference in power results from the

fact that the ECE is able to reasonably approximate the true conditional expectation

even when the data is generated by the competing model, while the reverse is not true.

Indeed, of all the models considered in Table 1, the ECE is the only one that directly

estimates E [yi|xi], and therefore, delivers an estimate of the conditional expectation

of yi which is optimal in some sense (depending on the estimation method), even when

the model is misspecified. This suggests that, at least for the designs considered here,

the ECE model is flexible enough to approximate the E [yi|xi] implied by the Heckit

in logs or by the M-2PM. A more complete study of the ability of the ECE model to

16



approximate the functional form of the conditional mean of other models is, however,

beyond the scope of the present paper.

5. EMPIRICAL ILLUSTRATIONS

In this section we illustrate the performance of the proposed test in applications

using two well-known data sets, one in international trade and the other in the demand

for health care. In both cases, the ECE model, estimated by PPML, is tested against

a two-equation model and vice-versa. In view of the simulation results presented in

the previous section, when the null is the two-equation model, only the results of

the test based on the uncorrected covariance matrix are presented because this is the

version of the test that is more likely to be used in practice.

5.1. A gravity model for trade

Santos Silva and Tenreyro (2006) use cross-sectional bilateral export flows data

from 137 countries to estimate different specifications of the gravity equation for

trade using a variety of methods. Besides the dependent variable, the dataset includes

traditional gravity regressors, such as the GDP of importer and exporter, bilateral

distance, and dummies indicating contiguity, common language, colonial ties, access

to water, and the existence of preferential-trade agreements. Further details on the

data, including sources and descriptive statistics, are provided in Santos Silva and

Tenreyro (2006).12 In this section we use the same data to illustrate the application

of the proposed test by testing a gravity equation estimated by the PPML, as in

Santos Silva and Tenreyro (2006), against a logarithmic specification of Heckman’s

(1979) sample selection estimator, used in this context by Hallack (2006); a related

estimator is also used by Helpman, Melitz and Rubinstein (2008).

12These data are available at http://privatewww.essex.ac.uk/~jmcss/LGW.html.
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Table 4 presents the main estimation results obtained with the Heckit in logs (es-

timated by maximum likelihood) and with the ECE model (estimated by PPML),

both with and without the multilateral resistance terms suggested by Anderson and

van Wincoop (2003).13 The last few lines of the Table also include the R2 for each

model (computed as the square of the correlation between the dependent variable and

the estimated conditional mean), and the p-value of the test of the sample selection

estimator against the ECE model and vice-versa.

Comparing the R2s for the competing models, it is possible to see that for both

specifications the ECE model fits the data substantially better than the Heckit. How-

ever, goodness-of-fit statistics give no indication about the adequacy of the models

being contrasted and therefore it is interesting to use the proposed procedure to test

the two models against each other. The results in the last row of Table 4 show that,

either with or without the multilateral resistance terms, the proposed test clearly

rejects the Heckit specification, while providing no evidence of departures of the ECE

model, estimated by PPML, in the direction of its competitor. Naturally, this result is

specific to this particular example and it should therefore not be viewed as indicating

that the ECE model is generally preferable to the Heckit in applications describing

bilateral export flows.

TABLE 4 ABOUT HERE

5.2. Much ado about two redux

In a landmark paper, Mullahy (1998) studied the choice between one- and two-

equation models for the demand for health care. To illustrate the methods considered

in the paper, Mullahy (1998) estimates different models for the number of doctor visits

during the previous year. The data used are a sample of 36, 111 observations from

the 1992 National Health Interview Survey. Besides the dependent variable, the data

13The multilateral resistance terms are importer and exporter fixed effects.
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contains information on a number of covariates: age of the respondent, gender, ethnic

background, schooling, marital status, and dummies for health status. Mullahy (1998)

provides descriptive statistics and more information about the data.

Table 5 presents the estimation results for the M-2PM proposed by Mullahy (1998)

and for the ECE model.14 In this particular application, the R2s of the models are

all but the same, which may suggest that there is little to choose between the two

models. However, the results of the proposed test provide no evidence against the

M-2PM, while clearly rejecting the ECE model estimated by PPML. These results

are in line with those of Mullahy (1998) who, using a number specification tests and

goodness-of-fit criteria, also finds that the M-2PM specification is preferable to the

ECE model in this particular data set. Again, we emphasize that this result is specific

to the particular example being considered and should not be taken as evidence that

the M-2PM should in general be preferred to the ECE model in health care utilization

applications.

TABLE 5 ABOUT HERE

6. CONCLUDING REMARKS

The choice of the most appropriate model for corner-solutions data has been the

subject of numerous studies and even some controversy. In this paper we argue that

this problem should be addressed as a test for non-nested hypotheses and propose an

easily implementable regression-based test which is particularly suited to discriminate

between one- and two-equation models. Moreover, the proposed test explicitly takes

into account the heteroskedasticity that is likely to be present in data of this type,

14Both the second part of the M-2PM and the ECE are estimated by PPML. Notice that the

estimates reported here for these two Poisson regressions do not match exactly those reported by

Mullahy (1998). This is possibly due to more sophisticated algorithm now available for the estimation

of this type of models. Notice also that the first equation is estimated using a probit, not a logit as

in Mullahy (1998). The results hardly change if a logit is used in the first stage.
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and has an intuitive interpretation in terms of orthogonality conditions. We present

the results of a small-scale simulation study which suggest that the proposed test

is reasonably well behaved both under the null and under the alternative, at least

for the sample sizes that are commonly used in empirical studies. Two illustrative

applications show that the test can be quite useful in practice.

The test proposed here can also easily be adapted to other contexts where the

researcher wants to choose between one- and two-equation models. Examples include

the choice between count data models and their zero-inflated counterparts (Mullahy,

1986), or models for fractional data with mass-points at either bound (Ramalho,

Ramalho and Murteira, 2010).

APPENDIX: ADJUSTED COVARIANCE MATRIX

The proposed test is based on the OLS estimation of an artificial model of the form

yi − ŷji√
ŷji

=

√
ŷjix

′
iδ + α

ŷki − ŷ
j
i√

ŷji

+ ui.

The easiest way of obtaining an asymptotically valid covariance matrix for the OLS

estimates of θ = (δ, α), say θ̂ =
(
δ̂, α̂
)
, is to consider the joint estimation of θ and

φj =
(
β∗j , γ

∗
j

)
by system GMM (see, Newey, 1984).15 Let S1 and S2 denote the

vector of moment conditions for the model under the null and for the test equation,

respectively. Moreover, let H denote the expectation of the matrix of derivatives of

S1 with respect to φj and H1 and H2 denote the expectation of the derivatives of

S2 with respect to φj and θ, respectively. Then, the covariance matrix of the vector(
β̂
∗
j , γ̂
∗
j , δ̂, α̂

)
in the just-identified system-GMM estimator is given by M−1ΣM−1′,

15The results in this appendix are presented for the case in which β∗j and γ
∗
j are jointly estimated

by maximum likelihood, like in the Heckit. For models such as the 2-PM in which γ∗j can be estimated

independently of β∗j , the same results are valid if one considers only the moment conditions for the

joint estimation of γ∗j and θ.
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with

M =

[
H 0

H1 H2

]
, Σ = E

[
S1S

′
1 S1S

′
2

S2S
′
1 S2S

′
2

]
.

Noting that

M−1 =

[
H−1 0

−H−12 H1H
−1 H−12

]
,

the variance of θ̂ can then be written as

V
(
θ̂
)

= H−12 E (S2S
′
2)H

−1′
2 −H−12 E (S2S

′
1)H

−1′H ′1H
−1′
2

−H−12 H1H
−1E (S1S

′
2)H

−1′
2 +H−12 H1H

−1E (S1S
′
1)H

−1′H ′1H
−1′
2 ,

or

V
(
θ̂
)

= Vθ̂ +H−12

{
H1V

(
φ̂j

)
H ′1 − E (S2S

′
1)H

−1′H ′1 −H1H
−1E (S1S

′
2)
}
H−1′2 ,

where V
(
φ̂j

)
is the estimated variance of φ̂j =

(
β̂
∗
j , γ̂
∗
j

)
and Vθ̂ is the uncorrected

estimated variance of θ̂.

Whether V
(
θ̂
)
is smaller, larger, or equal to Vθ̂, in the positive semidefinite sense,

depends on the particular case being considered.16 In the context of the proposed

test, it is of special interest to consider the case where the two-equation model is

estimated by maximum likelihood. In this case, V
(
φ̂j

)
= H−1 and E (S2S

′
1) = H1,

and therefore

V
(
θ̂
)

= Vθ̂ −H
−1
2 H1H

−1H ′1H
−1′
2 ,

implying that V
(
θ̂
)
is smaller than Vθ̂ (see Pierce, 1982). Therefore, when the two-

equation model is estimated by maximum-likelihood, the test-statistic constructed

using the uncorrected covariance will have variance smaller than 1 and, therefore, the

test will be asymptotically undersized.

16For example, if H1 = 0, the two matrices are equal and when E (S2S′1) = 0, V
(
θ̂
)
is larger than

Vθ̂ in the positive semidefinite sense.
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Table 1: Models for corner solutions data

Model Specification E [y|x]

1 ECE E [yi|xi] = exp(x′iβ1) exp(x′iβ1)

2 2PM

Pr (yi > 0|xi) = Φ (x′iγ2)

for yi > 0 : ln (yi) = x′iβ2 + ei

ei ∼ N (0, σ22)

exp
(
x′iβ2 +

σ22
2

+ ln Φ (x′iγ2)
)

3 M-2PM
Pr (yi > 0|xi) = Φ (x′iγ3)

E [yi|xi, yi > 0] = exp (x′iβ3)
exp (x′iβ3 + ln Φ (x′iγ3))

4 Tobit
yi = max {0, x′iβ4 + ei}

ei ∼ N (0, σ24)
x′iβ4Φ (x′iβ4/σ4) + σ4φ (x′iβ4/σ4)

5 Heckit

Pr (yi > 0|xi) = Pr (x′iγ5 + e1i > 0|xi)
for yi > 0 : yi = x′iβ5 + e2i[

e1i

e2i

]
∼ N

([
0

0

]
,

[
1 ρ5σ5

ρ5σ5 σ25

]) x′iβ5Φ (x′iγ5) + ρ5σ5φ (x′iγ5)

6 Heckit
(in logs)

Pr (yi > 0|xi) = Pr (x′iγ6 + e1i > 0|xi)
for yi > 0 : ln (yi) = x′iβ6 + e2i[

e1i

e2i

]
∼ N

([
0

0

]
,

[
1 ρ6σ6

ρ6σ6 σ26

]) exp
(
x′iβ6+

σ26
2

+ln Φ (x′iγ6+ρ6σ6)
)

Table 2: Rejection frequencies at the 5% nominal level

Null is true Null is false

n = 1000 2000 5000 1000 2000 5000

The null is the Heckit 0.0661 0.0614 0.0594 0.9514 0.9987 1.0000

(Uncorrected test) 0.0510 0.0484 0.0509 0.9313 0.9970 1.0000

The null is the ECE 0.0855 0.0717 0.0702 0.2723 0.3771 0.6421

Table 3: Rejection frequencies at the 5% nominal level

Null is true Null is false

n = 1000 2000 5000 1000 2000 5000

The null is the M-2PM 0.0634 0.0578 0.0539 0.9588 0.9973 0.9992

(Uncorrected test) 0.0444 0.0414 0.0435 0.9324 0.9952 0.9990

The null is the ECE 0.0789 0.0685 0.0564 0.3046 0.4183 0.7031
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Table 4: Gravity equations for trade

Estimator: Heckit
1st part 2nd part ECE Heckit

1st part 2nd part ECE

Log distance −0.452 −1.200 −0.784 −0.730 −1.349 −0.750

(0.025) (0.034) (0.055) (0.029) (0.031) (0.041)

Log exp.’s GDP 0.461 0.979 0.733 – – –

(0.009) (0.012) (0.027) – – –

Log imp.’s GDP 0.329 0.826 0.741 – – –

(0.008) (0.012) (0.027) – – –

Log exp.’s GDP per capita 0.102 0.215 0.157 – – –

(0.010) (0.017) (0.053) – – –

Log imp.’s GDP per capita 0.110 0.115 0.135 – – –

(0.010) (0.017) (0.045) – – –

Common border −0.491 0.256 0.193 −0.657 0.170 0.370

(0.112) (0.129) (0.104) (0.118) (0.128) (0.091)

Common language 0.334 0.709 0.746 0.320 0.408 0.383

(0.039) (0.067) (0.135) (0.050) (0.067) (0.093)

Colonial ties 0.158 0.412 0.024 0.301 0.668 0.079

(0.040) (0.070) (0.150) (0.053) (0.069) (0.134)

Landlocked exp. 0.054 −0.061 −0.864 – – –

(0.033) (0.062) (0.157) – – –

Landlocked imp. −0.065 −0.672 −0.697 – – –

(0.034) (0.061) (0.141) – – –

Exp.’s remoteness 0.132 0.485 0.660 – – –

(0.051) (0.079) (0.134) – – –

Imp.’s remoteness −0.043 −0.204 0.561 – – –

(0.052) (0.085) (0.118) – – –

Free-trade agreement 1.156 0.480 0.181 1.097 0.3058 0.376

(0.163) (0.100) (0.088) (0.181) (0.098) (0.077)

Openness dummy 0.295 −0.130 −0.107 – – –

(0.027) (0.053) (0.131) – – –

Multilateral resistance terms No No No Yes Yes Yes

Observations 18360 18360 18360 18360

R2 0.580 0.862 0.391 0.928

Nonnested test p-values 0.000 0.999 0.029 1.000
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Table 5: Demand for health care

Estimator: M-2PM
1st part 2nd part ECE

Age 0.004 −0.008 −0.006

(0.001) (0.000) (0.000)

Male −0.535 −0.106 −0.299

(0.015) (0.005) (0.005)

White 0.090 0.151 0.185

(0.020) (0.006) (0.006)

Schooling 0.061 0.031 0.051

(0.003) (0.001) (0.001)

Married 0.070 −0.136 −0.111

(0.016) (0.005) (0.005)

Excellent −0.792 −1.575 −1.817

(0.030) (0.008) (0.007)

Very Good −0.592 −1.311 −1.476

(0.030) (0.007) (0.007)

Good −0.500 −0.847 −0.983

(0.030) (0.006) (0.006)

Observations 36111 27598 36111

R2 0.078 0.077

Nonnested test p-values 0.752 0.001

24



REFERENCES

Anderson, J and Yotov, Y. (2010). “The changing incidence of geography,”American

Economic Review, forthcoming.

Anderson J, van Wincoop E. (2003). “Gravity with gravitas: a solution to the

border puzzle,”American Economic Review 93, 170-192.

Arkolakis, C. (2008). Market penetration costs and the new consumers margin in

international trade, NBER working paper No. 14214.

Arkolakis, C, Costinot, A. and Rodríguez-Clare, A. (2009). New trade models, same

old gains?, NBER Working Paper No. 15628.

Atkinson, A.C. (1970). “A method for discriminating between models,”Journal of

the Royal Statistical Society, Series B, 32, 323-353.

Basu, A., Arondekar, B.V., and Rathouz, P.J. (2006). “Scale of interest versus scale

of estimation: comparing alternative estimators for the incremental costs of a

comorbidity,”Health Economics, 15, 1091-1107.

Chaney, T. (2008). “Distorted gravity: The intensive and extensive margins of

international trade,”American Economic Review, 98, 1707-1721.

Cox, D.R. (1961). “Tests of separate families of hypotheses”, in Proceedings of the

Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I,

University of California Press, Berkeley, 105-123.

Davidson, R. and MacKinnon, J.G. (1981). “Several tests for model specification in

the presence of alternative hypotheses,”Econometrica, 49, 781-793.

Duan, N., Manning, W.G., Morris, C.N., and Newhouse, J.P. (1983). “A comparison

of alternative models for the demand for medical care,”Journal of Business and

Economic Statistics 1, 115—126.

25



Duan, N., Manning,W.G., Morris, C.N., and Newhouse, J.P. (1984). “Choosing be-

tween the sample-selection model and the multi-part model,”Journal of Busi-

ness and Economic Statistics 2, 283—289.

Eaton, J. and A. Tamura (1994). “Bilateralism and regionalism in Japanese and

US trade and direct foreign investment patterns,”Journal of the Japanese and

International Economics, 8, 478-510.

Fisher, G., and McAleer. M. (1979). “On the interpretation of the Cox test in

econometrics,”Economics Letters, 4, 145-150.

Gourieroux, C. and Monfort, A. (1994). “Testing non-nested hypotheses”, in Engle,

R.F. and McFadden, D. (eds.) Handbook of econometrics, Vol. IV, Ch. 44,

2583-2637, Amsterdam: Elsevier.

Hallak, J.C. (2006). “Product quality and the direction of trade,”Journal of Inter-

national Economics, 68, 238-265.

Hay, J.W. and Olsen, R.J. (1984). “Let them eat cake: A note on comparing

alternative models of the demand for health care,” Journal of Business and

Economic Statistics 2, 279—282.

Heckman, J.J. (1979), “Sample Selection Bias as a Specification Error,”Economet-

rica, 47, 153-161.

Helpman, E., Melitz, M.J. and Rubinstein, Y. (2008), “Estimating trade flows: Trad-

ing partners and trading volumes,”Quarterly Journal of Economics, 123, 441-

487.

Helpman, E., Melitz, M.J. & Yeaple, S.R. (2004). “Export versus FDI with hetero-

geneous firms,”American Economic Review, 94, 300-316.

Jones, A.M. (2000). “Health Econometrics,” in Newhouse, J.P. and Culyer, A.J.

(eds.) Handbook of health economics, Vol. 1A, Ch. 6, 265-344, Amsterdam:

Elsevier.

26



La Porta, R., López-de-Silanes, F. and Zamarripa, G. (2003). “Related Lending,”

The Quarterly Journal of Economics 118, 231-268.

Manning, W.G., Basu A., and Mullahy J. (2005). “Generalized Modeling Ap-

proaches to Risk Adjustment of Skewed Outcomes Data,” Journal of Health

Economics 24, 465-488.

Manning,W.G., Duan, N., and Rogers,W.H. (1987). “Monte Carlo evidence on the

choice between sample selection and two-part models,”Journal of Econometrics

35, 59—82.

Manning, W.G. and Mullahy, J. (2001). “Estimating Log Models: To Transform or

Not to Transform?,”Journal of Health Economics 20, 461-494.

Melitz, M.J. (2003). “The impact of trade on intra-industry reallocations and ag-

gregate industry productivity,”Econometrica, 71, 1695-1725.

Mullahy, J. (1986). “Specification and testing in some modified count data models,”

Journal of Econometrics, 33, 341-365.

Mullahy, J. (1998). “Much ado about two: Reconsidering retransformation and

the two-part model in health econometrics,”Journal of Health Economics 17,

247—282.

Newey, W.K. (1984). “A method of moments interpretation of sequential estima-

tors,”Economics Letters, 14, 201-206.

Pierce, D.A. (1982). “The asymptotic effect of substituting estimators for parame-

ters in certain types of statistics,”Annals of Statististics, 10, 475-478.

Quandt, R.E. (1974). “A Comparison of Methods for Testing Non-Nested Hypothe-

ses”. Review of Economics and Statistics, 56, 251-255.

Ramalho, E.A., Ramalho, J.J.S. and Murteira, J.M.R. (2010). “Alternative estimat-

ing and testing empirical strategies for fractional regression models,” Journal

of Economic Surveys, forthcoming.

27



Ramsey, J.B. (1969). “Tests for specification errors in classical linear least squares

regression analysis,”Journal of the Royal Statistical Society B, 31, 350-371.

Ramsey, J.B. and Schmidt, P. (1976). “Some further results on the use of OLS and

BLUS residuals in specification error tests,”Journal of the American Statistical

Association, 71, 389—390.

Rose, A.K. (2004). “Do we really know that the WTO increases trade?,”American

Economic Review, 94, 98-114.

Santos Silva, J.M.C. (2001). “A score test for non-nested hypotheses with applica-

tions to discrete data models,”Journal of Applied Econometrics, 16, 577-597.

Santos Silva, J.M.C. and Tenreyro, S. (2006), “The log of gravity,”The Review of

Economics and Statistics, 88, 641-658.

Santos Silva, J.M.C. and Tenreyro, S. (2009). Further simulation evidence on the

performance of the Poisson pseudo-maximum likelihood estimator, Department

of Economics, University of Essex, Discussion Paper No. 666.

StataCorp. (2009). Stata Release 11. Statistical Software. College Station (TX):

StataCorp LP.

Tobin, J. (1958). “Estimation of relationships for limited dependent variables,”

Econometrica, 26, 24—36.

van de Ven, W.P. and van Praag, B.M. (1981). “Risk aversion of deductibles in

private health insurance: Application of an adjusted Tobit model to family

health care expenditures,”in van der Gaag, J. and Perlman, M. (eds.) Health,

Economics and Health Economics, 125—148, Amsterdam: North Holland.

Wooldridge, J.M. (1992). “Some Alternatives to the Box-Cox Regression Model,”

International Economic Review, 33, 935-955.

Wooldridge, J.M. (2002). Econometric analysis of cross section and panel data,

Cambridge, MA: MIT Press.

28


