
Optimal Bidding with
Announcement of the 

Reservation Price

Giovanni Walter Puopolo*
Università «Federico II», Napoli

This paper is aimed at introducing a model of the symmetric
Bayes-Nash equilibrium in a FPSB auction, when the auctioneer
announces the reservation price known at all bidders. Following the
specification of the ways in which the existing literature treats this
matter and, in particular Carey (1993), it is established an alterna-
tive model based on the “nature’s move” tipical of bayesian games.
Finally, in the conclusion, there is a treatment of the difference be-
tween the optimal bidding strategy which concludes this work and
the one of Carey, after that the data have been made homogeneous
for ease of comparison. [JEL CODE: D44, C70].

1 - Introduction

For almost twenty years, beginning from the pioneristic work
of Vickrey (1961), the contribution of economic theory to auctions
has been rather scanty. Generally speaking, the main areas of re-
search moved towards two parallel paths which were, at the same
time, tightly linked: on the one hand, they addressed the classifi-
cation of the main types of auctions and their equivalence (under
certain circumstances) and, on the other, they concentrated on the
optimal bidding mechanism which maximized the bidder expec-
ted profits.
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Only in the early ‘80s, different models started to appear in
the economic literature; these were able to analize, in a quite gene-
ral way, the most important elements which characterize an auc-
tion, i.e. the award rule, the payment rule and the economic va-
luation of the object and were able to take account of the diffe-
rent environments linked with common value, indipendent value
and correlated value auctions. The focal point turned from “opti-
mal bidding” to “optimal auction” and considerable importance
was dedicated to the normative analisys and to the game’s rules,
emphasizing the auctioneer’s crucial role1.

Within this approach, many papers attributed importance to
the means, often very simple, used by the auctioneer to enhance
the result which he expect to gain from selling. The simplest of
these means, and also the most analysed in theory, is the reser-
vation price, i.e. that value below which the auctioneer is not wil-
ling to accept bids2. In other words, by anticipating the bidder’s
optimal bidding function, the auctioneer chooses the value b+
which maximizes his own expected revenue, bearing, at the same
time, the risk of no-auction3.

What characterized these models, however, was the circum-
stance that the optimal bidding mechanism was not analyzed in
detail, since the emphasis was mainly put on the normative a-
spects of the auction and, in particular, on the choice of the op-
timal reservation price. Furthermore, it was assumed that the on-
ly relevant difference with more general models which did not in-
clude the presence of a reservation price, was the more restricted
space of possible bids, whereas all the other hypotheses held on4.
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More specifically, however, it must be stressed that by intro-
ducing a minimum bid known to all competitors, it may happen
that not all the potential bidders are still able to compete for the
allocation of the good or the service, since some could obtain a
negative pay-off if obliged to submit allowable bids, and they
would therefore prefer not to take part in the auction. The effec-
tive number of bidders, in this case, not only is not clear any
more, since it is a variable depending on the level of the reserva-
tion price, but it is also possible, as an extreme hypothesis, that
no awarding happens.

In the literature, different papers dealing with the problems
linked to the effective numerousness of bidders when the auc-
tioneer introduces a reservation price exist, but they usually con-
centrate upon the effects on the bidders reaction function. A no-
table exception is Carey (1993)5 who considers this problem in a
model aimed at comparing expected revenue for a buyer auc-
tioneer when adopting two alternative strategies; a) to announce
a reservation price known at all, or b) to announce that a reser-
vation price exists without disclosing its true value. Beyond the
comparison between the two alternatives available to the monop-
sonistic buyer, the paper emphasises that optimal equilibrium
strategies take into account the fact that the number of bidders,
is not exogenous anymore, but, on the contrary, directly linked to
the value of b+.

In this paper we propose an alternative approach to the issue
of symmetrical equilibria and of optimal bidding in the case where
the bid-taker announces a ceiling to offers. The model tries to ap-
proach this problem within the natural environment of game the-
ory, and therefore, it is quite different from previous models. The
most important issue here is the information on the number of
bidders and, as a consequence, on how this is perceived by the
competitors, and, therefore, embodied in the optimal bidding
function.

In this game, indeed, the number of competitors depends
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strictly on the value of the reservation price which is known on-
ly ex-post. On the other hand, this number, ex-ante, is not a de-
terministic value, but a stochastic one distributed according to a
binomial random variable depending on the reservation price and
on the initial numerousness of potential bidders; within this in-
formative context, we analyze how the auction game is affected
by auctioneer behaviour.

Rather than considering the competitive factor depending ex-
clusively on the average number of bidders, we introduce the idea
of “nature’s move”, a tipical concept of bayesian games. Nature
chooses the tree’s branch, characterized by the real bidders num-
ber, or, in other words, it chooses the path in which competition
takes place effectively, but this choice, like any other bayesian sce-
nario, is not visible to bidders; as a consequence, in this context,
this information is not common knowledge and it is replaced by
the probability function about nature’s move.

In modelling the bidders optimal behaviour, we show the first
order condition, or, in other words, the necessary condition for
optimality which allows to characterize the Bayes-Nash equili-
brium of this game, and which, at the end, specifies the optimal
bidding strategy.

The final Section contains a comparison between the main
result obtained here and those already known in the literature.
Some simulations show that Carey overestimates optimal bidding
as calculated in our paper.

2. - The Model

Consider a general model of first-price sealed bid auction with
IPV. The auctioneer is a monopsonistic buyer and he awards the
contract for service or good X to the lowest bid (bidders). Assume
further that N is the initial number of bidders, known at all. Each
bidder i knows its own cost Ci, but he doesn’t know the others’
ones. Each competitor, however, perceives that the costs of other
bidders are distribuited according a probability function F(x),
common knowledge and the same for all bidders so that F(x) : [c,
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c–] → [0, 1] ∀i ∈ {1, 2, .., n}. Finally, payoff to bidder is bi-Ci, where
bi is the bid, while Ci is the same bidder’s cost.

Each bidder is risk-neutral and maximizes his own expected
profits, and expects competitors to behave rationally. As widely
seen in literature, simmetrical (Bayes-Nash) equilibrium6 is:

(1)

Most models, even in the ‘90s, as seen in the previous Sec-
tion, did not study in depth all the possible impications and the
important consequences upon the optimal bidding of the auc-
tioneer announcing a reservation price a– (that is a ceiling price),
known to all bidders; simply, they continued to maintain the to-
tal number of bidders N as an exogenous variable, and so un-
changed.

Usually, indeed, optimal bidding was quite similar to the pre-
vious formula just, except for a different upper bound, which from
c– became a–, and for the updating of the cumulative probability
function7:

(2)

In other words, it was implicitly assumed that, after the an-
nouncement of the price ceiling, all N bidders were able to over-
came the obstacle, and, therefore, to submit bids. In other words,
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all the competitors presented a cost lower that the ceiling to all
possible bids. Furthermore, eq. (2) implies that this fact is com-
mon knowledge among bidders who, therefore, slightly modify the
cumulative probability function, and the types’ interval, which
now is [c, a–].

The following discussion, instead, describes the optimal bid-
ding (and therefore the simmetrical Bayes-Nash equilibrium) in
the case where the bid taker announces a ceiling a– to all allow-
able bids, known to all bidders, and the final number of com-
petitors is not anymore a deterministic variable, but becomes a
random one; to do this, we will introduce both “nature’s moves”
and a bayesian context characterized by the effective number of
competitors on each branch of the auction game tree.

We maintain unchanged the general hypoteses explained at
the beginning of this Section8. Suppose that a– is the ceiling price.
Clearly a– ∈ [c, c–], otherwise it wouldn’t be economically signifi-
cant. It is not true that all initial bidders are still able to compete.
Indeed, those, whose Ci > a–, would obtain a negative payoff if sub-
mitted bids; only types whose Ci ≤ a– ∀i can then take part in the
auction.

The number of effective sellers, in this case, is a random vari-
able R which takes on an integer value between 0 and N and di-
stributes according to a binomial probability with parameters a– and
N. R is unknown to bidders, who could formulate their bidding
strategies based on the final value of the final expected number of
competitors, a–N9. In this paper instead, we propose a model based
on non cooperative bayesian games, in which the “nature’s move”
chooses types, and so the number of those who can submit bids.

From the point of view of bidder i, he knows whether his cost
is less than the ceiling a–. Assume it is. The final number of resi-
dual competitors follows the same binomial distribution but now
parameters are a– and N-1. R10 is a r.v. with probability

RIVISTA DI POLITICA ECONOMICA NOVEMBER-DECEMBER 2003

122

8 This also to facilitate the comparison between the two different functional
specification: Carey’s one and (6) concluding this Section.

9 This idea is exactly the same which Carey’s equilibrium is modelled on.
10 For semplicity, for all the treatment, R will be, the expected number of re-

sidual bidders.



where F(a–) is the probability that Cj which is in the interval [c,
a–] can partecipate.

For each value of R, there exists not only a certain probabi-
lity associated to it, but also a standard auction game in which
the number of bidders is well defined and related to the “nature’s
move”. Incomplete information on the number becomes now in-
complete information on the kind of game (or the branches of
tree), and probabilities on the effective number R become now
probabilities on the branch type.

Payoffs, for the bidder i, are then:
(bi - Ci) if there are no competitors (with probability [1 –

F(a–)]N-1);
(bi - Ci) [Prob(bi < bj)] — when competitors are i and j (with

probability (N – 1) F (a–) [1 – F(a–)]N-2).
Clearly, this sequence of expected payoffs ends when R is

equal to N-1.
(bi - Ci) [Prob(bi < bj ∀i ≠ j)] — when all bidders N partecipate

(with probability F(a–)N-1).
Each payoff on the left side is the expected one of a tradi-

tional auction game equivalent to ours, and in which the number
of bidders is known with certainty and correspondes to one of the
possible realization of the stochastic variable R; there are as many
games as possible situation about noumerousness, from 1 to N.
Remembering that nature chooses the game or the branch, as just
explained, with a certain probability, we have to maximize the fol-
lowing expected profit.

It’s easy to show that bid bi, obtained by maximizing the above
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equation, is a strictly increasing function in Ci
11. This means12 that,

given the relationship  b(Ci) ≠ b(Cj) ⇔ Cj ≠ Ci, we can clearly ob-
tain the inverse of the bidding function, i.e. Ci = b–1(bi).

The profit Π (bi, Ci) then becomes

where b*-1(bi) is the inverse function of b*(.), whose existence is
guaranted by class E of Riley-Samuelson.

Rewriting the previous formula we obtain:

(3)

Given IPV model’s assumptions, to get the optimal bidding
strategy characterising the Bayes-Nash equilibrium of this game,
we write Ist order conditions:
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Remembering that in equilibrium b*–1(bi) = Ci

The differential equation is the first necessary condition for
optimality.

Further, initial condition is that marginal bidder must be in-
different whether winning or non-winning the auction13. It derives
that b*(a–) = a–. Moreover, this must be assured for each possible
value of individual cost Cj ∈ [c–, c–]. Integrating and taking account
of the initial condition, we have:

(4)

To simplify and help the interpretation of the differences be-
tween the two different models, we consider a probability func-
tion uniformly distributed in the interval [0.1]. The first of the fol-
lowing equations shows optimal bidding as seen in Carey’s work,
while the second (our optimal bidding function) summarizes our
model, for the same distribution.
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Rewriting formula (4)14, we obtain:

(6)

In the final and concluding section, we start from this result
and show how optimal biddings differ in the two approaches, by
a simple simulation.

3 - Conclusion

As already said, this paper intends to compare the two above
mentioned results. By simulating the different trends of the two
bidding functions with N ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50} and
a– ∈ {0,5; 0,6; 0,7; 0,8; 0,9; 1,0}, a certain regularity in their dif-
ferences can be shown.

To help understand the regularity in these differences, it is
necessary a brief analisys of the principal characteristics and of
the behaviour of these two functions. It can fairly easily be seen
that the first formula is a strictly increasing function in types and,
characterized, above all, by the peculiarity that the claim of the
marginal bidder is the same of his cost a–, exactly as in the se-
cond formula; however, the difference lies in the fact that the first
shows a trend which is linear in costs, i.e. a straight line; on the
contrary, formula (6), still being a strictly increasing function, is
convex in costs.
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On the base of these considerations it is possible to simulate
the trend of the two optimal bidding. The result underlines the
circumstance that the bidders should underbid with respect to
Carey’s strategy; in other words, they must be careful when com-
peting against each other and bid in a less cost-diverging way.

In other words, for equivalent values of bidders’ noumerous-
ness and of reservation price, optimal behaviour shown in Carey
(1993) overestimates the effective bid. However, an exception oc-
curs in the case of N=2, since for each value a–, there always e-
xists a critical value of Ci, under which our optimal bidding gives
rise to a bid function higher than Carey’s, and viceversa in the up-
per interval. This point exists also for other values of N, but it can
be ignored, since, when it exists, it assumes very small values (with
N=3 it is equal to 10-3 and even smaller for higher N).

We can therefore conclude that there exists a unique interval
of types, the one  [c, a–], i.e the original one corrected for the
reservation price, and in which the differences between the two
results show that Carey’s bid is overestimated.
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APPENDIX

Proof of formula (1):
In this Section, we start directly with the consideration that

the optimal bidding is a strictly increasing function in types Ci
15.

Given a certain strategy bi(Ci), indeed, we obtain the inverse
function ⇒ Ci = b-1(bi).

The problem of the indefinite bidder becomes

Maxbi
E [π (bi, Ci)] = (bi - Ci) [Prob (∀j ≠ i, b–1 (bi) < Cj)] =

= (bi – Ci) [1 – F (b–1 (bi))]
N–1

Given first order conditions, we obtain:

In equilibrium b*–1(bi) = Ci, and so:

This differential equation must be verified for each value of  Ci

∈ [c–, c–] and the initial condition states that the marginal bidder, i.e
the one who has the worst cost signal, in equilibrium must be in-
different whether winning or not-winning the auction; b* (c–) = c–
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With some simple algebra, the previous equation becomes:

finally, solving for b*(Ci)

where s is the integration variable.
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