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La diffusione di conoscenze scientifico-tecnologiche a livello na-
zionale e internazionale è una determinante fondamentale del pro-
gresso economico. In questo articolo presentiamo una rassegna del-
la letteratura sulla diffusione di conoscenza e proponiamo un me-
todo per stimare tale diffusione usando citazioni tra brevetti. Cita-
zioni tra brevetti rivelano diffusione di idee alla frontiera tecnologi-
ca. Usiamo dati di 147 regioni in Europa e Nord America durante
il periodo 1975-1996. La nostra analisi rivela che la distanza geo-
grafica e tecnologica costituiscono un’importante barriera alla dif-
fusione di conoscenza. Inoltre tali flussi di conoscenza paiono ave-
re un effetto positivo, ma piccolo, sulla produttività delle regioni.

National and international flows of knowledge are fundamen-
tal determinants of technological progress. In this article we review
the existing literature on knowledge flows and we propose a method
for estimating them, based on patent citations. Citations are links
between inventions that reveal a learning process at the techno-
logical frontier. We use data for the period 1975-1996 for 147 sub-
national regions in Europe and North America. We find that geo-
graphical distance and technological differences constitute major
barriers to knowledge flows. We also show that these flows may
have positive, but small, effect on total factor productivity. [JEL
Code: O47, R11, F02].

1. - Introduction

The concepts of knowledge flows and knowledge spillovers have
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pervasively populated the theoretical literature on economic growth
for the last ten years. Innovation is the engine of growth, has been
argued, and spillovers from existing knowledge are the “renewable”
fuel for this engine. While it is clear how to characterize the source
and the effect of these spillovers within the frame of specific theo-
retical models such as Aghion and Howitt (1992), Grossman and
Helpman (1991) or Romer (1990), it is much less clear how to mea-
sure them in a precise but robust way using the data. First and
foremost it is not clear that there are data that allow us to mea-
sure such an elusive concept as knowledge flows, or their effect on
productivity, without adding several other assumptions.

Knowledge spillovers hinge on the diffusion of ideas, a pro-
cess that leaves no track in the data. Economists have assumed,
in order to estimate these spillovers, that diffusion of ideas de-
pends on proximity in space, in technological specialization or in
economic development. These are plausible assumptions but ea-
ch of them is potentially controversial and should be tested. In
particular we do not have a good measure of the quantitative de-
pendence of knowledge diffusion on distance or technological
proximity. Alternatively, several studies have decided to proxy dif-
fusion of ideas with diffusion of goods and have used data on tra-
de or foreign direct investment to track spillovers of research and
development (e.g. Coe and Helpman, 1995). Interestingly, the theo-
retical tradegrowth literature has emphasized in several influen-
tial studies the importance of analyzing international knowledge
flows as channels of productivity diffusion and growth, differen-
tiating them from trade flows. Influential authors have argued that
knowledge (rather trade) flows, are responsible for development
and growth. Rivera Batiz and Romer (1991) show that «... trade
in goods has no effect on the long-run rate of growth “while” ...al-
lowing flows of ideas (i.e. knowledge flows) results in a perma-
nently higher growth rate.  — They go on stating that — [f]lows
of ideas deserve attention comparable to that devoted to flows of
goods». Grossman and Helpman (1991) in Chapter 9 of their very
influential book Innovation and Growth point out that «[T]he
growth effect of knowledge spillovers and those of commodity tra-
de are conceptually distinct — and they develop models that show
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how — “the most important benefit to a country from participa-
ting in the international economy might be the access that such
integration affords to the knowledge base in the world at large”».
Feenstra (1996) argues that convergence in growth rates across
countries takes place only if «... Trade occurs simultaneously with
international diffusion of knowledge» while if no diffusion of
knowledge occurs, trade could actually generate divergence. Mo-
reover, scientific and technological knowledge has been recogni-
zed for a long time as an important factor of production on par
with labor and capital (Solow, 1956) and its growth regarded as
the propellant of economic growth (Solow, 1957). Stimulated by
these theoretical speculations one would think that the empirical
trade-growth literature has made an effort to develop better mea-
sures of international knowledge flows, explicitly differentiating
them from trade flows, and explicitly analyzing their effect on pro-
ductivity growth. This has not happened in a significant way, yet.
Certainly knowledge flows are hard to define, observe and mea-
sure so that our understanding of knowledge flows is still in its
infancy if compared to the analysis of trade flows.

The goal of this paper is to survey different methods and da-
ta used in the literature to measure knowledge flows and their ef-
fects. We also present and develop a new and interesting method
that uses data on patented innovation and citations across patents
to measure the strength of knowledge flows across subnational re-
gions covering Western Europe and North America. Finally, we
use our estimated flows to calculate their impact on total factor
productivity (TFP) across these regions. So our procedure and our
article develops two subsequent steps. First we establish the pre-
sence of knowledge flows tracking “learning” of ideas across re-
gions with the use of patent to patent citations. Second we esta-
blish the impact of flow-weighted R&D on the productivity of re-
gions. Previous existing work (with the notable exception of Ca-
ballero and Jaffe, 1993) merges or assimilates these two phases.
Either some mechanical assumption is made on the availability
of ideas across space (as in Coe and Helpman, 1995 and Keller,
2002a) so that only a productivity equation is estimated, or know-
ledge flows are measured without worrying about their effect on
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productivity (Jaffe et Al., 1992; Jaffe and Trajtenberg, 2002). Our
data on patent citations extend from 1975 to 1996 and allow us
to track diffusion over a fairly long period of time. We find that
knowledge flows depend on several factors and they are well de-
scribed, like trade flows, using a gravity-like equation. Most im-
portantly geographical and technological proximity and crossing
a national border affect the intensity of diffusion of ideas. On the
other hand we find that flow-weighted R&D from other regions
has only small effects in determining regional productivity.

The rest of the paper is organized as follows: Section 2 in-
troduces an easy framework to think about knowledge flows and
their effects on productivity. Section 3 reviews the existing litera-
ture on knowledge flows and spillovers, Section 4 describes the
measures of total factor productivity that we calculate for the re-
gions. Section 5 presents the estimates of the intensity of know-
ledge flows obtained using data on patent to patent citations and
section 6 presents the estimates of regional productivity and so-
me preliminary estimates of the impact of knowledge flows on
productivity. Section 7 concludes the paper.

2. - Basic Framework

Consider the measure Qit as an index of the technological de-
velopment of economic unit i at time t. Frequently in the litera-
ture some measure of total factor productivity has been used to
capture Qit. Total factor productivity determines how much out-
put could be generated keeping the quantity and quality of labor
and capital inputs constant. The units chosen are sub-national re-
gions. Assuming that R&D activity is the main source of techno-
logical development, Qit is produced as follows:

(1) Qit = (Ait)
γ (Aa

it)
µ

Ait is the stock of past accumulated R&D resources invested
yearly in region i (we indicate them as R&Dit). A

a
it is the stock of

past accumulated R&D resources invested in regions other than i
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and “accessible” (hence the a superscript) to region i at time t.
The objective of our analysis is to construct a measure of the two
stocks Ait and Aa

it for European and North-American regions and
to estimate their impact, captured by γ and µ, on the regional tech-
nological level. The accumulation of Ait is simply described as ∆Ait

= R&Dit - δAit where the depreciation rate of R&D capital is equal
to δ. We apply such “perpetual inventory method” to calculate the
value of such stock.

Our main focus, however, is on the construction of Aa
it and on

the estimate of µ. In the presence of complete and immediate dif-
fusion of R&D results from any region of origin into any other
region the total external stock of R&D (or the “pool” of R&D, as
defined by Griliches, 1992) available in i would be Aa

it=∑ j≠i Ajt. How-
ever, considering less than perfect diffusion across regions, total
accessible R&D in region i would be given by Aa

it=∑ j≠i φijAjt. In this
expression φji ∈ [0, 1] is the percentage of R&D results generated
in region j by time t and accessible to region i. This notation im-
plies that if a certain percentage of R&D results from region j are
available to region i it is as if region i had an indirect access to
R&D resources of region j. Substituting this last expression for Aa

it

into equation (1), taking logs on both sides and re-arranging we
have the following equation:

(2)

Equation (2) says that the log of productivity in region i,
ln(Qit), depends on the log level of the own stock of regional R&D
ln(Ait) and on the log level of the stock of external accessible R&D
ln(∑ j≠i φjiAjt). The above parametrization allows us to draw a clear
distinction between knowledge flows and their effects. The para-
meters φji capture the intensity of knowledge flows which could
depend on several bilateral characteristics of the regions, their
technological differences, their distance and so on. The parame-
ter µ, on the other hand, captures the impact of “accessible ex-
ternal research” on technology also called R&D spillovers. These

  

ln ln lnQ A Ait it ji jt
j i

( ) = ( ) +










≠
∑γ µ φ
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two parameters are conceptually and empirically very different
and separating them would be important for our understanding
of the knowledge-productivity link as well as for our ability of pre-
scribing policy implications. For instance, finding a small effect
of research in region j on productivity of region i could be due to
little knowledge flows between the two regions (small φji) or to a
small impact of accessible external knowledge on productivity in
region i (small µ). In the first case removing hurdles of commu-
nication between the two regions would result in higher innova-
tive output of region i, in the second case it would not. We can
use this simple frame for a selective, but still useful, review of the
literature. We organize the review distinguishing between studies
in the micro-productivity tradition that focus on firms and stud-
ies in the trade-growth tradition that focus on international R&D
spillovers.

3. - Review of the Literature

3.1 The Micro-Productivity Literature

A little more than a decade ago Griliches (1992) made the
point and set the agenda of “the search for R&D spillovers”. Se-
veral pieces of empirical research followed that seminal paper and
improved our understanding of the process of knowledge diffu-
sion and of R&D spillovers. In actuality, the micro-productivity
studies were simply the continuation and the refinements of an
empirical tradition that had analyzed R&D spillovers for a long
time1. We consider here mostly work produced during the last ten
years2.

A first simple method used to proxy knowledge flows across
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firms assumed that only firms within the same “technological
group” (for instance two or three digit SIC sector) experience
knowledge flows between each other. Using the notation develo-
ped in the previous section we can summarize this assumption
as restricting φji to be equal to 1 for firms in the same group whi-
le φji = 0 for firms in different groups. This approach was used,
for instance, by Bernstein and Nadiri (1989a), (1989b) for the US
high-tech industries and Bernstien and Mohen (1998) for US and
Japan. Similar to this “discrete” form of weighting are also tho-
se methods that use geographical information to establish loca-
tion of a firm within or outside a certain area. These studies im-
pose φji = 1 for firms in the same county, region or within a cer-
tain radius of distance and φji = 0 outside that (see for instance
Anselin et Al. 1997).

More sophisticated measures of knowledge flows define tech-
nological distance as a truly bilateral concept and allow φji to be
different for each pair of firms. Jaffe (1986) describes each firm
as the vector of shares of R&D (or innovative activity) of the firm
in each sector. The flow φji is calculated as the uncentered corre-
lation coefficient between the vector of firm i and the vector of
firm j. Perfect coincidence in the sectors’ shares results in a cor-
relation of 1 between firm i and j while perfect complementarity
generates a value of 0 of the correlation coefficient. Using a si-
milar methodology Branstetter (2001) analyzes the impact of do-
mestic and foreign R&D spillovers for US and Japanese firms. Still
trying to proxy φji with some technological distance other authors
have used “flows” connecting firms (or sectors) i and j. Among
these Wolf and Nadiri (1987) used input-output matrices, Terlecky
(1980) used flows of intermediate capital goods and Scherer (1984)
constructed a matrix of origin-use of patents. Recently Kaiser
(2002) has tried to establish some comparisons among the above
described methods. Once φji have been used to construct Aa

it mo-
st of the articles analyze the impact of the accessible stock of
knowledge on total factor productivity or on the innovation out-
put of firms. There is a wide range of estimates but most of the
studies find an elasticity to external accessible R&D (µ) between
50% and 100% of the elasticity to own R&D (γ).
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Finally and notably in the most recent years, thanks to the
availability of new data, from the US patent office and also from
the European patent office, the parameters φji have been estima-
ted using patent citations. This method stands out because it is
the only one in which “signs” of the presence of learning flows
are actually observed in the data. Patent citations provide evidence
on learning flows without making any a-priori assumption on their
determinants (such as technological or geographical proximity).
Using these data Jaffe et Al. (1992) test that distance matters for
knowledge flows within the US, Jaffe and Trajtenberg (2002, Chap-
ter 8 and 9), Adams (2002) and Jozefowicz (2002) compare know-
ledge flows originating in Universities, Federal Labs and firms,
Globerman et Al. (2000) analyze knowledge flows for Swedish
firms, Maruseth and Verspagen (2002) analyze knowledge flows
across European regions and Jaffe and Trajtenberg (2002, Chap-
ter 7) analyze knowledge flows across countries. While certainly
more accurate and superior in estimating knowledge flows (φji)
those studies do not attempt to assess the impact of these flows
on productivity.

3.2 The Trade-Growth Literature

A large part of the tradition in the trade-growth literature fol-
lowed the practice of Coe and Helpman (1995) and measured φji

using trade (imports or exports) shares between country i and j.
Several “improvements” to that paper followed. Keller (1998) rai-
sed some doubts on the methodology of the Coe and Helpman
(1995) study, Edmond (2001) and Kao et Al. (1999) applied panel
cointegration techniques to the analysis. Frantzen (2002) added
human capital and some estimation improvements. Coe et Al.
(1997) extended the analysis of R&D spillovers to seventy-seven
developing countries and Madden et Al. (2001) to six Asian coun-
tries. Most of these studies confirmed the original findings of
strong R&D externalities (µ as large as γ) especially from develo-
ped to developing economies. A natural extension to the use of
trade is to use flows of foreign direct investments to proxy for
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knowledge flows. FDI’s have long been consider as a mean of te-
chnological transfer and imply movement of capital and know-
how. Several studies such as Braconier and Sjoholm (1998) find
that FDI’s facilitate spillovers (within sectors across countries but
not across sectors). Blomstrom and Kokko (1998) review the main
contributions of this literature. A distinctive line of analysis pur-
sued by Eaton and Kortum (1996) adopts a more complete and
structural model of trade and growth across countries. They iden-
tify φji using flows of cross-country patenting. In particular the
share of inventions originated in country i and patented in coun-
try j is used to estimate φji .

Finally, some recent studies on international R&D spillovers
often do not use any information on flows in order to estimate φji

but they estimate it simultaneously with µ by exploiting the cor-
relation structure of data on R&D, productivity and growth. Con-
ley and Ligon (2002) analyze the correlation across long-term
growth rates and find that it positively depends on “economic di-
stance” while Keller (2002a) identifies φji and µ contemporaneou-
sly by estimating the effect on TFP of domestic R&D and R&D
from the G5 countries. Identification relies on the specified func-
tional form and on the dependence of φji on geographical distan-
ce. Again, the overall message from this literature is that µ is po-
sitive, its estimates however, vary widely.

4. - Regional Productivity

We assume a Cobb-Douglas production function at the regio-
nal level with constant return to scale. This implies that the ela-
sticity of income to labor and to capital equal the respective sha-
res of income going to each of the two factors. Calling α the sha-
re of income going to labor and (1 – α) the share going to capi-
tal, we assume, following the literature, that their value is equal
to 0.66 and 0.33. As we use regional data we may rely on the
within country variation to define total factor productivity, disre-
garding the (probably large) differences in total factor producti-
vity across countries due to institutional and political features of
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the economies. The cross-regional differences in TFP can be mo-
re appropriately interpreted as differences in the level of techno-
logy used (adopted) there. The disadvantage is that we do not ha-
ve data on physical capital at the regional level. We may ne-
vertheless recover the contribution of regional TFP to production
per worker in one of the following two ways. We either assume
that physical capital moves across regions in order to equate its
real return within a country (narrower definition) or we impose
the same capital labor-ratio across regions of the same country
(broader definition). The first method produces a lower bound of
the region-specific TFP differentials, as it attributes part of the re-
gional production per worker differences to capital intensity. The
second method produces an upper bound of these differentials as
it attributes the whole region-specific differentials in output per
worker to differences in regional TFP. We perform both decom-
positions. To be precise, the first one distinguishes among the fol-
lowing three contributions to differentials in output per worker:
1) Differences in regional capital intensity (capital-labor ratios); 2)
Differences in country-specific total factor productivity; 3) Diffe-
rences in region-specific TFP. The second decomposition, on the
other hand, distinguishes among the following contributions: 1)
Differences in country-specific TFP; 2) Differences in country-spe-
cific capital-output ratios; 3) Differences in region-specific TFP.

4.1 Narrow TFP Definition

Let’s assume that teach region i produces a perfectly tradable
good, Y, according to the following production function:

(3) Yi = QcQi(Li)
α(Ki)

1–α

where Yi is total output of region i, Li is total labor input, Ki to-
tal capital input, Qc is the average TFP of country c to which the
region belongs and Qi is a region-specific TFP factor such that if
Qi > 1, region i has larger total factor productivity than the coun-
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try as a whole while if Qi < 1 then the region has lower TFP than
the country as a whole. Also we assume that

which implies that the average log TFP for regions of a country
is equal to the aggregate country’s log TFP. α is the elasticity of
output to labor that equals the income share of labor. In order to
decompose total income in the contribution of each component
we assume that within country c the return paid to capital is the
same in each region i due to the mobility of capital. This implies:

(4)

Marginal productivity of capital at the country level is also
equal to rc. Denoting with kc = (Kc/Lc) the capital-labor ratio for
the country. Equation (4) implies that we can write total capital
in region i as:

(5)

Substituting equation (5) into the production function and re-
arranging we obtain the following expression for output per capi-
ta in region i:

(6)

Defining output per worker in region i, as yi = Yi/Li and ta-
king log of both sides of expression (6) we obtain a variation of
the classic growth accounting equation:

(7) ln ln ln lny k Q Qi c c i− −( ) = +1
1

α
α

Y
L

Q K Qi

i
c c i= −1

1
α α

K k Q Li c i i=
1
α

  

∂
∂

α
α αY

K
Q Q L K ri

i
c i i i c= −( ) ( ) ( ) =

−
1

  

ln Qi
j c

( ) =
∈
∑ 0
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The above notation is helpful to understand how to construct
each single component of the equation. The left hand side is ob-
tained as log GDP per worker in the region minus the share of
capital times the national capital-labor ratio. To obtain the right
hand side we can regress the left hand side on a set of country
dummies (standardizing one to 0) and the residuals will measure
the region-specific TFP term: 1/α ln Qi. Once we calculate these
terms we can re-write the above equation in the following way,
that captures exactly the contribution to regional productivity gi-
ven by regional capital intensity, national TFP and region-specific
TFP:

(8) ln ln ln ln       lny k Q Q Qi c i c i= −( ) +
−







 + +1

1
α

α
α
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contribution TFP TFP

We call this measure of regional TFP the “narrow” TFP defi-
nition.

4.2 Broad TFP Definition

The second method assumes simply that kc = ki, i.e. that the
capital labor ratio in each region is equal to the average capital
labor-ratio of a country. Under this condition, we simply divide
both sides of equation (3) by Li, we substitute the condition above
and take logs. The decomposition of output per worker results as
follows:

(9)   
ln ln      ln         lny k Q Qi c c i= −( )[ ] + +1 α

Country capital Country Broad regional
contribution TFP TFP

Note the similarity of the above decomposition with equation
(8). Now, as kc is assumed constant within countries, the diffe-
rentials left after controlling for country-specific factors, are at-



tributed completely to regional TFP differentials. Compared to the
previous method, it is as if the direct effect of TFP and its indi-
rect effect, caused by larger physical capital in the region, are mer-
ged together. As TFP differences are the cause for the existence of
both terms in the decomposition (8), it makes sense to consider
also this second method. We call this measure of regional TFP the
“broad” TFP definition. In the implementation of both of these ac-
counting equations we standardize to one the average output per
worker, capital per worker and the average national TFP in the
US.

5. - Knowledge Flows and Patent Citations

5.1 Identification and Data

We indicate the probability that a non-obsolete3 idea genera-
ted in region i at time t0 is learned in region j by time t1 = t0 + τ
as φij(τ). This notation emphasizes the fact that such probability
depends on characteristics of the couple of regions i, j, and on τ,
the time elapsed between the invention and the act of learning. If
there is a large number of ideas created in a region then, for the
law of large numbers, φij(τ) is the range of ideas learned in region
j out of those generated in region i within interval τ since their
invention. Inspired by what is done in the “micro-productivity” li-
terature, in particular by Jaffe and Trajtenberg (2002, chapter 6
and 7) and by Caballero and Jaffe (1993), we model the share φij(τ)
as follows:

(10) φij(τ) = xef(i,j) (1 – e–βτ)

The term 1–e–βτ captures the fact that ideas generated in re-
gion i become available in larger share to any other location j
as time passes. If the event of learning an idea happens with a
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constant probability over time then this term captures the cu-
mulative density of probability of learning the idea within τ
years. However, the term ef (i,j) depends on a whole set of bilate-
ral characteristics, indicated that the intensity of learning de-
pends on the sending region i as well as on the receiving region
j. The main simplifying assumption embedded in (10) is that the
effect of bilateral characteristics f(i, j) and the effect of time τ
interact in a multiplicative way in determining knowledge diffu-
sion. This means that, as time passes, more ideas that origina-
ted in region i are learned in any region, including itself, but su-
ch an increase is proportionally the same for any region so that
the relative absorption of ideas originated from region i is con-
stant over time. In our empirical analysis we experiment with
different time intervals between generated and learned ideas τ =
2, 4, 6 and 10.

We fix the same interval of time τ for all regions so that bi-
lateral flows can be written as φij. On the other hand we can
proxy the relative intensity of knowledge flows across regions
with the relative citation frequencies. There is a close relation-
ship between learning of ideas (knowledge flows) and patent ci-
tations. Patent applicants are required to identify the “prior art”
used in order to produce their innovative ideas. They do so by
including citations to previous patents that had some relevance
in developing the idea. These citations inform us that the re-
searcher knew about the cited idea and that such idea had some
relevance in the research process leading to the new discovery.
For our purposes if we had only the citations included by the
authors of the patent we would have the best information avai-
lable to establish the existence of knowledge flows4. What intro-
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duces noise for our use of citations is the fact that reviewers ad-
ded citations to the patent. These added citations do not neces-
sarily reveal ideas known to the author. Jaffe et Al. (1992) argue
that the reviewers are expert in the area and they do a systema-
tic search in the field so that these “added” citations should not
have any (or much less of a) geographical pattern. We assume
that they simply add noise to the relation between knowledge
flows and patent citations. A survey study (Jaffe and Trajtenberg,
2002, chapter 12) confirms that while citations are not a perfect
measure of the inventors’ learned knowledge they contain a lar-
ge amount of information about it. We rely on the extremely lar-
ge amount of citation couples used (about 4.5 millions in total
implying an average of about two hundreds citations for each re-
gional couple) to reduce the random noise. Defining as cij the
count of citations from patent in region i to patents originated
in region j and as Pi and Pj the number of patents (ideas) origi-
nated in region i and j respectively we can proxy the unobser-
vable relative flows of knowledge φij with the observable relative
citation frequencies (cij /Pj)/(cii /Pi). In assigning a patent to a re-
gion, we choose the region of residence of its first inventor. This
method, as documented by Jaffe et Al. (1992), allows us to loca-
te each patent in the region where the idea was actually develo-
ped by its inventor(s) rather than in the region where the pa-
perwork for the filing procedure was prepared (headquarters of
the assignee company). The regions considered in our analysis
are sub-national territorial units in eighteen countries in Europe
and North America. They correspond to areas with some terri-
torial unity and identity as well as administrative and policy au-
tonomy. They are fifty federal states plus DC, Puerto Rico, Guam
and Virgin Islands for the US, ten federal provinces plus Yukon
and Northwestern Territories for Canada and the so-called “NUTS
15” regions within each of sixteen European countries (EU15 plus
Switzerland) for a total of 147 regions covering the whole We-
stern European and North American continents. Our measure of
relative knowledge flows imposes the standardization of fii = 1.
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We explicitly allow the function ef(i,j) to depend on bilateral cha-
racteristics and we estimate the following regression:

(11) (cij/Pj)/(cii/Pi) = exp[ϑi + ϕj + b1(out–region)ij +

+ b2(out next)ij + b3(out country)ij + b4(out lang)ij +

+ b5(out trbl)ij + b6(dist)ij + γ(Controls)ij + εij]

Equation (11) states that the (time-invariant) relative in-
tensity of knowledge flows from region i to region j depends on
an exponential function of several bilateral regional characteri-
stics. We include citing region fixed effects ϕi as well as cited
region fixed effects ϑi. These effects control for any region-spe-
cific characteristic affecting creation and reception of knowled-
ge. We also explicitly consider six geographic characteristics
which we want to analyze in detail, while the others, concer-
ning technological and productive characteristics of the regions
are bundled in the vector of Controls and will be considered ex-
plicitly in the empirical sections. The bilateral characteristics
considered here as determinants of the intensity of learning
from i to j are mostly dummies. (out_region)ij is a dummy whi-
ch equals zero if i = j and one otherwise and indicates whether
ideas crossed one regional border. (out_next)ij is equal to zero if
i = j or if region i and j share a border and 1 otherwise, it in-
dicates whether ideas crossed two regional borders. (out_coun-
try)ij is zero if the two regions belong to the same country and
zero otherwise, it indicates whether ideas passed a national bor-
der. (out_lang)ij is zero if the two regions speak the same lan-
guage and 1 otherwise. It indicates whether ideas passed a lin-
guistic border. (out_trbl)ij is one if the two regions belong to the
same trade block and one otherwise. It indicates whether ideas
passed a trading-block border. Finally (dist)ij is simply the geo-
graphical distance between region i and region j. Estimates of
the parameters b1-b6 and of γ would provide a detailed charac-
terization of how geographic, technological and productive cha-
racteristics affect the flows of ideas across regions. The term εij

is a zero-mean random error.
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Regression (11) is familiar to the micro-productivity literature
and is often estimated using a non linear least squares regression
(e.g. Jaffe and Trajtenberg, 2002, chapter 7) or, more frequently,
due to the count-data nature of citations, using a negative bino-
mial regression (Branstetter, 2001) or, given the mass of observa-
tion at 0, using a Tobit regression (e.g. Maruseth and Verspagen,
2002).

On the other hand if we take logs on both sides of (11) we
obtain a linear regression. Such regression is reminiscent of one
that is heavily used in the trade-growth literature, mainly to analy-
ze trade and is known as “gravity equation”. In such equation a
flow (of knowledge in this case) between region i and region j is
regressed on “sending regions” and “receiving regions” characte-
ristics and on a measure of distance between them as well as so-
me other bilateral characteristics (such as belonging to the same
country or sharing a border). Our specification is the most gene-
ral form of a gravity equation as we control very generally for any
sending and receiving regional fixed effect and we estimate para-
meters relative to the crossing of several geographical borders and
relative to traveling geographic and technological distances. Typi-
cally, the trade literature estimates such equation using a linear
regression and omits (as logs are taken on both sides) the couple
of regions for which a zero trade link is present. In Section 5 we
estimate several variations of equation (11) using all the methods
mentioned above. Luckily different estimation methods give very
similar coefficient estimates.

The patent and citation data used are from the NBER Patent
and Citation Dataset, which is publicly available and described
in detail in Jaffe and Trajtenberg (2002, chapter 13). This data-
set contains all the patents granted by the US patent office and,
since 1975, all the citations made by each patent. It includes in-
formation on the technological class of the patent and several
data on the applicants and inventors. We choose the sample of
patents granted between 1975 and 1996 whose inventor is resi-
dent of one of the eighteen countries considered and listed in
the appendix of Peri (2003). From the address of the first in-
ventor we assigned patents to sub-national regions. Our final
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sample contains about 1.5 million patents and about 4.5 million
citation couples, distributed across 147 regions. We use all the
bilateral relationships among the 147 regions (total of 21,609
pairs some of which with 0 citations) when we estimate the
“gravity-like” equation (11). Table 1 reports some summary sta-
tistics at the regional level. It shows average and standard devi-
ation for the number of patents granted each year to residents
of the 147 regions. The average region had 426 patents granted
per year (clearly large variation over time is hidden in this table)
but very large disparities across regions exist. The least innova-
tive region was granted a patent every four years (0.27 yearly)
and the most innovative was granted 6,434 patents per year. The
top innovator, with a very large lead on the second region, is
California, that was granted more than 6,000 patents per year.
High in the ranking are also some German, French and British
regions (mostly the regions corresponding to large cities such as
London, Paris and Hannover). They all have one thousand or
more patents granted each year. The bottom of the list is taken
by Greek, Spanish and East German regions that are granted one
or less than one patent per year.
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TABLE 1

DESCRIPTIVE STATISTICS RELATIVE TO 147 REGIONS
IN EUROPE AND NORTH AMERICA

Variable Mean Std. Min Max
deviation

Number of average yearly granted 
patents 1975-1996 426 830 0.27 6.434

Share of GDP spent in R&D
average 1975-1996 % 1.77 1.23 0.27 7.69

Number of total region to region 
citations without self, cij 171 1147 0 99.137

Geographical distance (in thousands
of km) 4.44 3.22 0 13.70



5.2 Estimation Results

5.2.1 Aggregate Flows, Geographical Determinants

We present in this Section the results of estimating the basic
specification (11). These estimates provide a measure of aggrega-
te knowledge flows which could depend also on the sector- com-
position of regional ideas. We devote the following two sections to
a detailed treatment of technological distance and of differences
across technological categories. Specification I in Table 2 is the ba-
seline regression for this section. We estimate equation (11) taking
logs of both sides and using OLS with 147 citing-region and 147
cited-region fixed effects and we report the heteroskedasticity ro-
bust standard errors. The dependent variable is the log of the count
of citation links, omitting self-citations6, between patents of region
i and patents of region j generated within the first 10 years since
the cited patent is granted. We are confident that this time-span
is long enough to capture the most relevant part of knowledge dif-
fusion. If an idea has not been learned in ten years it is likely that
it will not be very useful for innovation. However, we analyze flows
also after 2, 6 years and after the longest available period in our
sample (more on this below). As some regional couples have no
citations, we simply drop those observations. This is why of the
21,609 possible couples (147 by 147) the first specification is only
estimated on 15,839. The equation and the estimation method are
akin to what the trade literature calls a “generalized” gravity equa-
tion used for trade flows. We choose this as basic specification for
its simplicity and for the comparability of the coefficients to tho-
se obtained by the trade literature. Each coefficient captures the
drop in knowledge flows as we move out of the region of origin
and as we pass several borders. For instance the first coefficient
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6 Self-citations are citations between patents assigned to the same institution.
Those citations denote, arguably, knowledge flows, but probably should not be in-
cluded in the analysis of pure R&D externalities. Companies may reward their in-
ventors for citing each other and for knowing about each other work. We esti-
mated specifications including self-citations and the only difference is that the co-
effcient on “Crossing Region Border” is increased by roughly 10-15%.



says that in moving out of the region of origin average knowled-
ge flows drop to (e–1.91) = 0.15 of their initial level. Another way of
saying it is that 85% of knowledge generated in the average region
is not learned outside it but remains local. The second coefficient
says that only (e–0.43) = 65% of the 15% of knowledge flowing out
of the regional border passes the next regional border. Only 9.75%
(=15%*65%) of the initial knowledge, that is, flows outside the re-
gions that share a border with the original one. Another 20% (= 1
– e–0.19) is lost passing the country-border leaving about 8% of the
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TABLE 2

GEOGRAPHICAL DETERMINANTS OF AVERAGE 
KNOWLEDGE FLOWSa

Specification I II III IV
Baseline: Negative Tobit Same

within binomial within 3-digit
10 years within 10 years within

10 years

Crossing -1.91* -2.05* -1.98* -1.91*
region border (0.07) (0.04) (0.06) (0.02)
Crossing -0.43* -0.45* -0.45* -0.44*
next-region border (0.02) (0.02) (0.03) (0.03)
Crossing -0.19* -0.18* -0.19* -0.19*
country border (0.02) (0.01) (0.02) (0.02)
Crossing 0.05 0.06* 0.05 0.05
trade-block border (0.03) (0.03) (0.03) (0.03)
Crossing -0.19* -0.20* -0.19* -0.17*
linguistic border (0.01) (0.01) (0.02) (0.02)
1000 Km further -0.05* -0.05* -0.05* -0.05*

(0.002) (0.001) (0.002) (0.002)
Citing region yes yes yes yes
fixed effects
Cited region yes yes yes yes
fixed effects
Observations 15,378 21,609 21,609 14,395
Log-likelihood -65,584.92
R2 0.91 na na 0.89
Original total number
of citations 2,864,298 2,864,298 2,864,298 1,589,958

a Citations are calculated omitting self-citations, i.e. citation within the same in-
stitution. Heteroskedasticity-robust standard errors in parenthesis. *= significant
at 1% confidence level.
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TABLE 2 (cont)

GEOGRAPHICAL DETERMINANTS OF AVERAGE 
KNOWLEDGE FLOWSa

Specification V VI VII VIII
Within Negative Within All
2 years binomial 6 years couples

within
2 years

Crossing 1.80* -2.05* -1.91* -1.90*
region border (0.05) (0.05) (0.07) (0.07)
Crossing -0.37* -0.40* -0.42* -0.43*
next-Region border (0.03) (0.03) (0.02) (0.02)
Crossing -0.21* -0.18* 0.20* -0.20*
country border (0.02) (0.02) (0.02) (0.02)
Crossing 0.06 0.05 0.06 0.04
trade-block border (0.03) (0.03) (0.03) (0.03)
Crossing -0.11* -0.20* -0.18* -0.17*
linguistic border (0.02) (0.02) (0.01) (0.01)
1000 Km farther -0.05* -0.05* -0.05* -0.05*

(0.002) (0.002) (0.002) (0.002)
Citing region yes yes yes yes
fixed effects
Cited region yes yes yes yes
fixed effects
Observations 12,807 21,609 14,019 15,839
Log-likelihood 
R2 0.86 na 0.89 0.92
Original total number
of citations 528,829 528,829 1,977,435 4,710,215

initial knowledge. Crossing a trade block border has basically no
effect, while passing a linguistic border further reduces the flow
by 19%. On top of these effects, geographical distance adds a 5%
decrease for each 1,000 kilometers traveled. Each coefficient is very
precisely estimated, they are all very significantly negative (except
for the effect of crossing a trade block border that is essentially
zero) and extremely robust across specifications. The estimated
drop in learning as consequence of geography is quite substantial.
On the other hand, by far the most drastic drop takes place as we
move out of the region itself, proving the very large local compo-
nent of learning.



In order to gain confidence that the count-data nature of ci-
tations and the relatively large number of zeroes do not distort
our linear estimates we use in column II and III the techniques
that handle these issues explicitly. In column II we report esti-
mates of equation (11) in levels and using a negative binomial
regression. The advantage of this method is that we include the
zeroes and that, by assuming a generalized Poisson process as
generating the data, we account for the fact that citations are
“count data”. The method used to estimate this model is maxi-
mum likelihood. Column III uses a Tobit regression. In particu-
lar, as there is a large mass of data at 0, we assume that log flows
have a linear dependence on their geographical determinants but,
for observation smaller than 0, we observe the variable trunca-
ted at 0. This specification is estimated using maximum like-
lihood. Column II and III of Table 2 show that these two methods
of estimation deliver coefficient estimates almost identical to the
simple log linear regression. In particular all coefficients are li-
terally identical up to a 2% difference except for the first one (re-
gional border effect) that is slightly higher in absolute value when
estimated with the negative binomial regression (–2.1) or with the
Tobit (–1.98). Even for this coefficient, however, both estimates
are within two standard deviations of the linear one, and quan-
titatively they make very little difference7. We perform negative
binomial estimates of our coefficients throughout the paper and
when they are significantly different from OLS, due to the treat-
ment of the zero observations, we report and prefer them. Howe-
ver it is normally the case that these estimates are rather simi-
lar to the OLS basic specification in which case we report only
the OLS estimates.

Column IV in Table 2 investigates whether flows within a
sector of technological innovation are more or less localized
than flows across them. In this specification we select only ci-
tation links within the same 3-digit class (in the International
Patent Classification code). These classes are rather specific, and
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the Tobit 14% of regional knowledge learned outside the region. This as opposed
to 15% estimated using the linear regression.



there are about 400 of them8. We may think that diffusion of
knowledge within a narrow field is farther reaching than diffu-
sion across fields. Estimates of column IV are very similar to
the baseline, providing evidence that diffusion of knowledge
across fields does not exhibit significantly different localization
pattern from diffusion within fields. Such feature was already
pointed out by Jaffe, Trajtenberg and Henderson (see Jaffe and
Trajtenberg, 2002 p. 175) when they found that within class ci-
tations do not have more tendency to be co-located than across-
class citations.

Column V to VIII explore the robustness of our estimates
when we allow shorter or longer interval of time between the ci-
ting and the cited patents. Column V and VI include citations
within the first 2 years, column VII within the first 6 years, and
column VIII all citations couples in the 1975-1996 period so that
ideas generated early in the period include learning up to 20 years
from their invention. Column VII and VIII show estimates basi-
cally identical to column I. Only for the 2-year interval there is
some difference, which is probably driven by the larger number
of zeroes omitted in the OLS regression, as the negative binomial
regression is extremely similar to the 10-year one. In any case
even the OLS estimates do not exhibit any important difference
with the basic 10-year case, and certainly not stronger localiza-
tion for the 2-year interval. Knowledge flows maintain their rela-
tive spatial distribution as time elapses, so that while knowledge
of an invention becomes more available over time it does not be-
come relatively more available far away than it is in the region.
The pattern of regional diffusion within 2 years is pretty much re-
presentative of the overall pattern allowing for longer delays. The
way we chose to model space and time diffusion keeping them
multiplicatively interactive seems reasonably good to analyze our
data. This is very fortunate as we can focus here on geographic
diffusion without risking to have a very different analysis depen-
ding on the lag that we consider.
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“batteries”.
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GRAPH 1
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Borders and distances

Before moving to further specifications it is useful to sum-
marize the results of this section using a couple of pictures.
Graphs 1 and 2 represent the estimated decay of knowledge
flows as one moves from a region, out of it, out of its neigh-
bor, out of the country, out of the linguistic area, out of the
trade block and travels by steps of 1000 Km. In Graph 1 the
total amount of knowledge generated in a region is standardi-
zed to 100. As we move from left to right the lines show the
fall in knowledge flows as we pass borders and as we travel
farther and farther. Six lines are reported and they correspond
to the values obtained using estimates in column I, II, III, V,
VI and VII of Table 2 respectively. What is clear is the predo-
minance of the first drop (when moving out of the region) re-



lative to all others and the extreme similarity of rate of decay
estimated using any specification. In order to have a better vi-
sual sense of the further decay out of the region, in Graph 2
we simply consider only what we call “Exported Knowledge”,
i.e. knowledge flows once the own regional border has been
crossed. We standardize that level to 100 and we track the de-
cay from there on. Again we report six lines corresponding to
the estimates I, II, III, V, VI and VII in Table 2. We can still
appreciate the extreme similarity in patterns across different
estimates. Now we see that a very significant percentage of the
exported knowledge (about one half of it) flows all the way out
of the trade block.
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GRAPH 2

DECAY OF “EXPORTED” KNOWLEDGE FLOWS
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5.2.2 Aggregate Flows, Technological Determinants

The estimates of the previous section provide a very intere-
sting characterization of the effect of geography and borders on
average knowledge flows, once we have controlled for citing and
cited region effects. However, some important bilateral determi-
nants of knowledge flows are missing. In particular, some mea-
sure of distance in technological space capturing the difference in
technological fields of specialization should certainly be included.
As we noted above the trade-growth literature has focused on ag-
gregate flows and productivity and has not paid much attention
to the relevance of technological space. However there is a huge
body of evidence from the micro-productivity literature analyzing
this issue. In particular, as regions with similar level of technolo-
gical specialization could be located close to each other, failing to
control for “technological distance” may result in overestimating
the effect of geography. Table 3 shows the estimation of the basic
specifications with a measure of technological distance added as
control.

The index of technological distance is constructed following
Jaffe (1986) and had a very large use in the micro-productivity li-
terature. Specifically all patents granted to a region (call it region
i) are grouped into 36 technological classes. These classes consti-
tute specific areas of research, defined following the international
patent classification and reported in the appendix of Peri (2003).
The shares of regional patents (1975-1996) generated by region i in
each technological class s is calculated. A vector of shares Shi =
(shi1, shi2...shi36) is then associated to each region. The uncentered
correlation coefficient (or angular distance) between the vector of
region i and j, calculated as (TecCorr)ij = (Sh’iShj)/ [Σs(shis)

2Σs(shjs)
2]1/2

is a measure of “similarity” in technological space. Its value is
between 0 and 1 and it is closer to one the larger is the “overlap”
in technological classes of specialization. For perfect overlap the in-
dex is 1, for no overlap at all the index is 0. We use (TecDis)ij = 1–
(TecCorr)ij as a control in Table 3.

The estimates of the effect of this variable is statistically and
economically extremely significant. The OLS estimates for both
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the ten and two year delay specifications (Column I and III) pro-
duce similar results. The flow between two regions specialized in
totally different areas is 87-90%9 lower than the flow between two
regions with identical technological specialization. As the standard
deviation of (TecDis)ij is 0.17 increasing the difference in speciali-
zation by one standard deviation reduces learning by 31-33%.
Even more dramatically, the negative Binomial estimates imply a
decay of knowledge flows between 95 and 97% going from iden-
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TABLE 3

ROBUSTNESS CHECKSa

Specification I II III IV
OLS Neg. Bin. OLS Neg. Bin.

within within within within
10 years 10 years 2 years 2 years

Crossing -1.34* -1.50* -1.30* -1.45*
region border (0.06) (0.06) (0.05) (0.06)
Crossing -0.32* -0.32* -0.29* -0.27*
next-region border (0.02) (0.02) (0.02) (0.02)
Crossing -0.22* -0.20* -0.24* -0.19*
country border (0.02) (0.02) (0.02) (0.02)
Crossing 0.05 0.04 0.05 0.04
trade-block border (0.03) (0.02) (0.03) (0.03)
Crossing -0.16* -0.18* -0.15* -0.17*
linguistic border (0.02) (0.01) (0.02) (0.02)
1000 Km farther -0.05* -0.04* -0.05* -0.05*

(0.002) (0.002) (0.002) (0.002)
Technological distance -2.27* -2.86* -2.01* -3.10*

(0.06) (0.04) (0.07) (0.06)
Citing region 
fixed effects yes yes yes yes
Cited region 
fixed effects yes yes yes yes
Observations 15,361 21,609 14,065 21,609
Log likelihood -56,555.16 -36,753.69
R2 0.92 na 0.87 na

a Citations are calculated omitting self-citations, i.e. citation within the same in-
stitution. Heteroskedasticity-robust standard errors in parenthesis. *= significant
at 1% confidence level.

9 0.87 = (1 – e-2.01), 0.90 = (1 – e–2.27).



tical to completely different specialization. Moreover the inclusion
of proxies of technological differences reduces the geographical
effects. Particularly the effect of crossing the own region border
and the next region border are reduced, respectively from 1.8-1.9
to 1.3-1.5 and from 0.4 to 0.3. About twenty percent of the pre-
viously estimated attrition in learning when moving out of the ori-
ginating region and attributed to geographical factors is, in rea-
lity, the result of technological distance.

5.2.3 Sectors, Periods and Continents

While our focus is on aggregate knowledge flows, as techno-
logical specialization plays an important role in determining what
flows a region gets, we analyze in greater detail here, the geo-
graphical behavior of flows dividing them in large technological
sectors. Moreover, as we assumed stable behavior of these region
to region flows over the years and across the two analyzed conti-
nents (Europe and North America) we explore here to what ex-
tent the data support such assumptions.

Table 4 reports the estimates of distance and crossing borders
on knowledge flows within each of six sectors. As we are only
analyzing flows within a sector we omit the controls for differen-
ces in technological specialization. We choose only patents and ci-
tations within each sector (within ten years from the originating
patent) and we perform OLS estimation including citing and ci-
ted region effects and we report heteroskedasticity-robust standard
errors. The sector estimates are reported in column I to VI. Inte-
restingly, the negative effect of the first two dummies (crossing re-
gional border and crossing next region border) on knowledge flows
grows in absolute value moving from computers to “other sec-
tors”. The computer sector exhibits by far the largest geographi-
cal diffusion of knowledge. Close to 40% of computer-related
knowledge generated in a region is learned outside of it and 25%
of it flows all the way out of the country and linguistic area. In
contrast the mechanical sector seems much more localized with
only 18% of knowledge flowing out of the originating region and
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a slim 7% making it out of the country and linguistic area. Table
4 provides a representation of the “degree of globalization” of ea-
ch sector. If we think that the sector “others” contains technolo-
gical classes such as “agriculture”, “apparel”, “furniture” and “hea-
ting” we find that knowledge in “newer” technological fields, su-
ch as computers or biotech (contained in the category Drugs) rea-
ches further than knowledge in more “traditional” technologies,
such as mechanical or chemical. Interestingly almost all of the
geographical hurdles seem to cause a stronger attrition as we mo-
ve from computer to “others”. Of the “exported knowledge”, i.e.
of that share of knowledge learned outside the region of origin,
fully 50% of computer-related knowledge reaches regions as far as
10,000 Kilometers out of the country and linguistic area. To the
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TABLE 4

KNOWLEDGE FLOWS FOR SIX TECHNOLOGICAL SECTORSa

Specification I II III IV V VI
Computers Drugs Electronics Chemical Mechanical Others

10 years 10 years 10 years 10 years 10 years 10 years

Crossing -1.00* -1.43* -1.50* -1.61* -1.67* -1.82*
region border (0.07) (0.06) (0.07) (0.06) (0.05) (0.06)
Crossing -0.17* -0.10* -0.25* -0.33* -0.38* -0.44*
next-region border (0.04) (0.03) (0.03) (0.03) (0.03) (0.03)
Crossing -0.16* -0.21* -0.21* -0.12* -0.13* -0.20*
country border (0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
Crossing 0.06 0.01 0.06 0.05 0.04 0.06
trade-block border (0.03) (0.03) (0.04) (0.04) (0.04) (0.04)
Crossing -0.07* -0.04* -0.07* -0.12* -0.08* -0.12*
linguistic border (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
1000 Km farther -0.04* -0.04* -0.04* -0.04* -0.05* -0.06*

(0.002) (0.003) (0.003) (0.003) (0.002) (0.02)
Citing region yes yes yes yes yes yes
fixed effects
Cited region
fixed effects yes yes yes yes yes yes
Observations 7,173 8,662 9,573 10,446 11,231 11,842
R2 0.80 0.79 0.83 0.81 0.83 0.84
Original number
of citations 243,563 243,902 333,637 342,572 356,614 486,513

a Citations are calculated omitting self-citations, i.e. citation within the same in-
stitution. Heteroskedasticity-robust standard errors in parenthesis. *= significant
at 1% confidence level.



contrary for knowledge in “other” sectors only 25% of the “ex-
ported knowledge” reaches 10,000 Km of distance outside the
country and language area. While in the remainder of the work
we analyze aggregate flows of knowledge the above discussed re-
sults make us aware that the technological composition of know-
ledge affects the geographical reach of its flows.

As for the geographical reach of knowledge flows across dif-
ferent decades or in different continents (Europe versus North
America) Table 5 provides us some reassurance that the assump-
tion of stability of coefficients is reasonably good. All estimates
use maximum likelihood negative binomial method because the
handling of zeroes seems to make some difference in this case.
Column I and II of Table 5 show estimates for knowledge flows
(within 2 years) for the 1975-1986 period and for the 1986-1996
period, respectively. The only coeffcients that are somewhat diffe-
rent across the two decades are the effect of crossing the own re-
gional border (–1.33 versus –1.45) and the effect of crossing the
country border (–0.12 versus –0.20). Let’s remind the reader that
the estimates in each sub-period, using fewer observations than
the overall estimates, are less precise. Given that differences are
not very significant and are in the direction of slightly larger lo-
calization of knowledge flows in the later period (while we would
expect, if anything the opposite), we interpret the differences as
due to noise and we confirm our assumption of basically identi-
cal effects. Column III and IV of Table 5 report the estimates of
the effects of geographical characteristics on knowledge flows of
the computer sector, also splitting the period between 1975-1986
and 1986-1996. The computer sector has been the one whose sha-
re of innovation has increased most in this period. The reader
may be worried that if the geographical reach of knowledge flows
for this sector has changed, this could affect the perspectives of
knowledge flows and their future behavior. Although some small
differences exist, there is no clear pattern of stronger localization
in the earlier period. Even for this sector our simplifying as-
sumption of similar geographical diffusion before and after 1986
seems reasonable. Finally column V and VI compare the impact
of geographical characteristics on knowledge flows in Europe and
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North America. As probably expected, there is a slightly stronger
localization in Europe. Moving out of the region and its neigh-
bors reduces learning flow by 83% of their initial value relative to
a reduction of 79% for north American regions. However these
differences are small, and it appears that linguistic borders play
more of a role in Europe than in North America10. On the other
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TABLE 5

KNOWLEDGE FLOWS IN DIFFERENT DECADES/CONTINENTSa

Specification I II III IV V VI
Average Average Computers Computers Average Average

flows flows 2 years lag 2 years lag sector sector
2 years lag 2 years lag 1975-1986 1986-1996 10 years lag North
1975-1986 1986-1996 negative negative Europe America
negative negative binomial binomial negative 10 years
binomial binomial 10 years binomial negative

binomial

Crossing -1.33* -1.49* -0.85* -0.94* -1.50* -1.30*
region border (0.10) (0.10) (0.09) (0.08) (0.10) (0.13)
Crossing -0.28* -0.26* -0.18* -0.07* -0.26* -0.23*
next-region border (0.03) (0.03) (0.04) (0.04) (0.04) (0.03)
Crossing -0.12* -0.20* -0.06 -0.14* -0.30* -0.41*
country border (0.03) (0.03) (0.04) (0.04) (0.04) (0.05)
Crossing trade -0.07 0.05 0.04 0.04
block rorder (0.04) (0.03) (0.04) (0.04)
Crossing -0.20* -0.19* -0.06 -0.05 -0.18* -0.08
linguistic border (0.02) (0.02) (0.04) (0.04) (0.02) (0.07)
1000 Km farther -0.05* -0.05* 0.04* -0.05* -0.04* -0.05*

(0.003) (0.002) (0.005) (0.005) (0.01) (0.01)
R&D difference -0.12* -0.09* -0.04* -0.09*

(0.01) (0.01) (0.02) (0.02)
Technological distance -3.3* -3.2* -2.67* -4.01*

(0.11) (0.10) (0.06) (0.14)
Citing region
fixed effects yes yes yes yes yes yes
Cited region
fixed effects yes yes yes yes yes yes
Observations 19,845 19,845 4062 4350 16,709.44 3,798
Log likelihood -23,006.902 -27,615.223 -24,023.902 -23,615.253 -44,318.62 -13,798.08

a Citations are calculated omitting self-citations, i.e. citation within the same institution. Het-
eroskedasticity-robust standard errors in parenthesis. *= significant at 1% confidence level.

10 Notice that the Language Effect for North America is very imprecisely esti-
mated as it is based on two regions only (Quebeck and Puerto Rico) that do not
speak english.



hand the effect of “technological distance” and of crossing a coun-
try border on learning flows appears larger for North American
regions.

6. - Impact on Productivity

6.1 Measures of Regional Productivity

The source of data used to perform regional accounting are
described in detail in the Appendix of Peri (2003). In general, da-
ta on gross regional product and total regional employment are
from the region dataset for the EU countries, from the national
statistical offices for Norway and Switzerland, from the Bureau
of Economic Analysis for US states and from Cansim for Cana-
dian Provinces. For each region we take the average value for the
1991-1996 period, in order to smooth any effect from business cy-
cle fluctuations. The capital-labor ratio at the country level is ta-
ken from Hall and Jones (1999) and is relative to year 1988. The
share of labor is assumed to be the same across regions and equal
to 0.66. This Section documents that variation of region specific
total factor productivity explains a substantial part of the differ-
ences in regional labor productivity. Differences across regions
within countries are as important as differences across countries
in explaining productivity differentials in Europe-North America.
The cross-regional variation of ln(yi), decomposed in a cross-coun-
try component and a cross-region, within-country component re-
veals that 48% of the total variance is explained by country-vari-
ation and 52% by regional variation.

We then perform the accounting exercise described in sec-
tion 4 where we standardize the average output per worker, the
average capital per worker and the average country TFP of the
US to be equal to 1 (therefore their log is 0). We rank regions
according to their output per worker (average current $ 1991-
1996) from the most productive (Bruxelles) to the least (Portu-
gal). The contribution of each component (capital-labor ratio,
country TFP and region TFP) to the differences in output per
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worker for each region, using the “narrow” and the “broad” re-
gional TFP definition can be requested from the author. In Table
6 (a)-(b) we simply report the decomposition into components of
the differences in productivity between the Top and the bottom
regions. On average between 17% and 48% of the differences in
output of regions in the top10 group versus regions in the bot-
tom 10 group are explained by regional TFP when we use the
narrow definition. The percentage increases to 24-73% when we
use the broad definition. Differences in regional factor produc-
tivity are very relevant in explaining differences in output per
worker. Considering them as a measure of technological ad-
vancement across regions we now analyze the impact of R&D
and of knowledge spillovers on them.
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TABLE 6

CROSS-REGION ACCOUNTING ON OUTPUT PER WORKER
(1991-1996 AVERAGES, 141 REGIONS)

% explained by
∆ln (kregio) ∆ln (TFPcountry) ∆ln (TFPregio) ∆ln (y) ∆ln (TFPregio)

a)
Narrow definition of regional TFP

Top - Bottom 0.42 0.90 0.25 1.57 17
Top2 - Bottom2 0.38 0.52 0.43 1.34 32
Top5 - Bottom5 0.54 0.01 0.51 1.05 48
Top10- Bottom10 0.37 0.10 0.25 0.72 35

% explained by
∆ln (kcountry) ∆ln (TFPcountry) ∆ln (TFPregio) ∆ln (y) ∆ln (TFPregio)

b)
Broad definition of regional TFP

Top - Bottom 0.30 0.90 0.38 1.57 24
Top2 - Bottom2 0.17 0.52 0.66 1.34 49
Top5 - Bottom5 0.28 0.01 0.77 1.06 73
Top10- Bottom10 0.24 0.10 0.38 0.72 52



6.2 Estimates of the Impact of Knowledge Flows

Table 7 reports the estimates of equation (2). We use the ba-
sic coefficient estimates from equation (11) from Table 2, Column
I to calculate for each couple of regions, and then we construct
for each region the “accessible” stock of R&D Aa

it =Σj≠i φjiAjt. The
estimates reported in Table 7 are those for the parameters γ and
µ using a cross-section (average 1991-1996 TFP) of 141 regions.
Column I uses the “narrow TFP” definition as dependent variable,
while column II uses the “broad” definition. First of all, the ela-
sticity of regional TFP to local R&D resources spent is between
0.067 and 0.10 and is estimated rather precisely in both specifi-
cations. The coefficient is magnified when we consider the effect
of R&D on broadly defined regional TFP (column II) rather than
on narrowly defined regional TFP (column I). These estimates can
be compared with those in Coe and Helpman (1995) and with tho-
se in Keller (2002b). Both works estimate this elasticity using the
time-series variation of R&D and total factor productivity at the
country level. Coe and Helpman using the long-run cointegrating
relation find a number between 0.078 and 0.097, very close to the
effect we estimate on broad TFP. As Coe and Helpman (1995) use
the long-run cointegrating relation among variables we think they
are using the same information as we are. Keller (2002b), who
estimates this elasticity using sector-country yearly data finds a
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TABLE 7

IMPACT OF KNOWLEDGE FLOWS ON PRODUCTIVITYa

Dep. var: ln (Qi) I II

ln(Ait), Own R&D 0.067* 0.10*
(0.01) (0.01)

ln(Aa
it), External Accessible R&D 0.03 0.05

(0.03) (0.04)
Observations 141 141
R2 0.23 0.23

a Heteroskedasticity-robust standard errors in parenthesis. *= significant at 1%
confidence level.



value somewhat lower between 0.04 and 0.055. This can be due
to the shorter time horizon (yearly data) of his analysis. The ef-
fect of external available R&D, µ, is also estimated to be positive,
and about 50% of the own R&D effect (0.03-0.05). However the
standard error is large and we cannot conclusively rule out zero
effect. There are several factors that may concur to finding a small
effect of external R&D on productivity. First, diffusion of disem-
bodied knowledge may be more important for innovation than for
production. Peri (2003) shows that the impact of these flows is
positive on innovation. Second, effects on production may also
need transfers of embodied knowledge via trade, or via direct in-
vestments. Third, the diffusion of knowledge may help producti-
vity but may also crowd out local knowledge having an overall
ambiguous effect. Fourth, total factor productivity may be a par-
tial and imperfect measure of technological advancement being
based on residuals and not on positive observations. From our
analysis external R&D appears to have a positive but small im-
pact on productivity. Further research and better data on regio-
nal capital, however, may be needed in order to measure more
precisely that effect.

7. - Conclusions

The present study analyzes the process of knowledge diffu-
sion as evidenced by data on patent citations and the effect of the-
se flows on TFP. While diffusion of ideas is needed in order to
have externalities of knowledge there is no reason to believe that
simply by measuring the intensity and scope of this knowledge
diffusion, we have a measure of knowledge externalities. Diffusion
of new ideas, in fact, brings not only “new inspiration” to resear-
chers but also introduces higher standards of innovation, and it
reduces the unexplored territories of human knowledge. These ef-
fects may offset the positive spillovers. Our study finds that the-
re are very important positive and negative determinants of know-
ledge diffusion: regions farther away from each other, in different
countries, specialized in different sectors and speaking different
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languages exhibit much lower flows of knowledge than close, si-
milar regions in the same country. These flows, likely to be im-
portant for innovation and knowledge diffusion, as shown in Pe-
ri (2003) do not seem to bring large significant effects on pro-
ductivity, at least as it is measured by regional TFP.

Several reasons may generate this weak result. On one side,
as stated above, positive and negative effect of knowledge diffu-
sion may in part balance each other, on the other TFP may not
be the best measure of technological progress and more direct
measures of innovation and R&D output could be more intensely
affected by this type of knowledge flows.

Our study, however, indicate a new procedure, new data and
an original approach to capture knowledge flows at the technolo-
gical frontier. We are convinced that pursuing these line of re-
search further we may learn much about generation of ideas, te-
chnology and its diffusion.
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