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Abstract
We undertake a generalization of the cumulative sum of squares (CUSQ)

test to the case of non-stationary autoregressive distributed lag models with
quite general deterministic time trends. The test may be validly implemented
with either ordinary least squares residuals or standardized forecast errors.
Simulations suggest that there is little at stake in the choice between the two
in the unit root case under Gaussian innovations, and that there is only very
modest variation in the finite sample distribution across the parameter space.

1 Introduction

Brown, Durbin, and Evans (1975) suggested looking at a cumulative sum of squared
recursive residuals (CUSQ). In the context of fixed regressors and normal innova-
tions they could derive finite sample distributional results. Ploberger and Krämer
(1986) derived asymptotic results for time series situations with stationary regressors
and martingale difference innovations. This was recently generalized to time series
regressions with correlated errors by Deng and Perron (2008a). When it comes to
trending data Lu, Maekawa, and Lee (2008) have shown how the CUSQ-statistics
could be applied to differenced data. Here we investigate the behaviour of the CUSQ-
statistics when applied directly to the levels of the trending data. We show that usual
asymptotic distributions also apply in the context of autoregressive distributed lag
models with trending regressors, including the possibility of unit roots, explosive
roots and deterministic terms. This shows that the CUSQ test and variants thereof
can be applied in autoregressive modelling without prejudice to subsequent infer-
ences. This in turn supports the usage of the CUSQ test in explorative analysis, to
use the terminology of Dufour (1982).

Brown, Durbin, and Evans (1975) considered the linear regression

yt = β′xt + εt for t = 1, . . . , T, (1.1)
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where yt is a scalar, xt is an M -dimensional regressor and the errors are independently
normal, N(0, σ2)-distributed. Computing recursive least squares estimators as

β̂t = (
t∑

s=1

xsx
′
s)
−1

t∑
s=1

xsys for t = M, . . . , T, (1.2)

along with the recursive forecast residuals

ε̃t = {1 + x′t(
t−1∑
s=1

xsx
′
s)
−1xt}−1/2(yt − β̂′t−1xt) for t > M, (1.3)

the cumulative sums of squares plot with recursive residuals is defined as

CUSQREC
t,T =

√
T

(∑t
s=M ε̃2

s∑T
s=M ε̃2

s

− t−M

T −M

)
for t ≥ M. (1.4)

Assuming fixed regressors and Gaussian innovations Brown, Durbin, and Evans
(1975) derived the finite sample distribution of CUSQREC

t,T .
In passing Brown, Durbin, and Evans (1975) mentioned an alternative statistic,

which was analysed by McCabe and Harrison (1980). Computing recursive residual
variances

σ̂t = t−1

t∑
s=1

ε̂2
s,t for M ≤ t. (1.5)

based on the least squares residuals

ε̂s,t = ys − β̂′txs for M ≤ t. (1.6)

the cumulative sums of squares plot with least squares residuals is defined as

CUSQOLS
t,T =

√
T

(
σ̂t

σ̂T

− t

T

)
=
√

T

(∑t
s=1 ε̂2

s,t∑T
s=1 ε̂2

s,T

− t

T

)
for t > M. (1.7)

The two CUSQ-statistics have the same asymptotic distribution in a range of situ-
ations: Viewed as processes in t they converge in distribution to a Brownian bridge.
Deng and Perron (2008a) prove this for stationary autoregressions. Here, this result
is generalized to autoregressions with trending behaviour.

In the presented analysis the regression (1.1) is generalized to an autoregressive
distributed lags regression including deterministic terms. The variables involves are
assumed to satisfy a vector autoregression which can have stationary roots, unit
roots, and explosive roots, while the deterministic terms include constants, linear
trends and seasonal dummies. The analysis can then be based on the results of
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Lai and Wei (1985) and Nielsen (2005). The asymptotic analysis is easiest for the
CUSQOLS-statistic, where it is not necessary to pay much attention to the different
types of components of the process involved.

The asymptotic results are broadly the same the CUSQREC-statistic and the
CUSQOLS-statistic, although proven in slightly more generality for the latter. In-
terestingly, a small scale Monte Carlo study indicates that there is not very much
difference in terms of finite sample behaviour for the two statistics. This adheres to
the findings of Deng and Perron (2008a) that, in the context of stationary models,
there is not much difference in size or power when applying the statistics to test for
changes in the residual variance.

A variant of the CUSQOLS-statistic is the recursively computed residual sum
of squared innovations used without confidence bands as an graphical exploratory
device in for instance the software PcGive, see Hendry (1986), Doornik and Hendry
(2007). Confidence bands are derived from the results for the CUSQOLS-statistic.

The paper is organized so that the time series regressions and the model assump-
tions are presented in §2. The asymptotic results for the CUSQOLS- and CUSQREC-
statistics are presented in §3 and §4, respectively. §5 contains a simulation study
involving first order autoregressions. The proofs are given in an appendix.

2 Model and assumptions

To facilitate an analysis of trending time series we focus on autoregressive distributed
lag regressions and assume vector autoregressive behaviour for the variables involved.

Suppose a p-dimensional time series X1−k, . . . , X0, . . . , XT is observed and that
Xt is partitioned as (Yt, Z

′
t)
′ where Yt is univariate and Zt is of dimension p− 1 ≥ 0.

The autoregressive distributed lag regression of order k is given by

Yt = ρZt +
k∑

j=1

αjYt−j +
k∑

j=1

β′jZt−j + νDt−1 + εt, t = 1, . . . T. (2.1)

Here Dt is a deterministic term such as a constant, a linear trend or a seasonal
dummy. A frequently used variant of the regression omits the contemporaneous
regressor Zt giving the regression

Yt =
k∑

j=1

αjYt−j +
k∑

j=1

β′jZt−j + νDt−1 + εt, t = 1, . . . T. (2.2)

When the observed time series is univariate so p = 1 and Xt = Yt the regression (2.2)
reduces to a univariate autoregression of order k.

In order to characterize the asymptotic distribution of our test statistics, the joint
distribution of the time series Xt = (Yt, Z

′
t)
′ needs to be specified. We will assume
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that Xt satisfies the vector autoregression

Xt =
k∑

j=1

AjXt−j + µDt−1 + ξt t = 1, . . . T, (2.3)

Dt = DDt−1. (2.4)

where ξt is a martingale difference sequence with respect to an increasing sequence
of σ-fields Ft. The innovations have to satisfy the following assumption.

Assumption A. Let (ξt,Ft) be a martingale difference sequence, so E(ξt|Ft−1) = 0.
Let the initial values X0, . . . , X1−k be F0-measurable and

sup
t

E{(ξ′tξt)
λ/2|Ft−1}

a.s.
< ∞ for some λ > 4, (2.5)

E(ξtξ
′
t|Ft−1)

a.s.
= Ω where Ω is positive definite. (2.6)

The formulation for the deterministic term Dt allows a joint autoregressive com-
panion representation of Xt, Dt. The matrix D has characteristic roots on the com-
plex unit circle, so Dt is a vector of terms such as a constant, a linear trend, or
periodic functions like seasonal dummies. For example,

D =

(
1 1
0 1

)
with D0 =

(
0
1

)
will generate a linear trend and a constant, whereas

D =

(
1 0
1 −1

)
with D0 =

(
1
1

)
will generate a constant and a dummy for a bi-annual frequency. The deterministic
term Dt is assumed to be of polynomial order with linearly independent coordinates.

Assumption B. |eigen (D)| = 1 and rank (D1, . . . , DdimD) = dimD.

Nearly all values of autoregressive parameters Aj are allowed in the vector autore-
gression (2.3). This includes stationary roots, roots on the unit circle and a range of
explosive roots. The only restriction on the parameter space relates to the explosive
roots of the companion matrix

B =

{
(A1, . . . , Ak−1) Ak

Ip(k−1) 0

}
. (2.7)

Assumption C. All explosive roots of B have geometric multiplicity of unity. That
is, for all complex λ so |λ| > 1 then rank(B− λIpk) ≥ pk − 1.
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Assumption C is always satisfied for univariate autoregressions, where p = 1,
and for vector autoregressions with at most one explosive root. For multivariate
autoregressions, Anderson (1959) and Duflo, Senoussi, and Touati (1991) pointed
out that this assumption is needed for consistency of the least squares estimators as
it ensures positive definiteness of the normalized information matrix associated with
the explosive roots; see also Nielsen (2008) for a discussion.

The parameters and innovations of the regressions (2.1) and (2.2) can be linked
to the vector autoregression (2.3) through the limits of the least squares estimators
arising from (2.1) and (2.2). This also leads to a definition of the innovation terms
εt appearing in (2.1) and (2.2). For this purpose define

ξt =

(
ξy,t

ξz,t

)
, Ω =

(
Ωyy Ωyz

Ωzy Ωzz

)
,

conformably with Xt = (Yt, Z
′
t)
′. It then holds that for equation (2.1) that

ρ = ΩyzΩ
−1
zz , εt = (1,−ρ)ξt, (αj, β

′
j) = (1,−ρ)Aj, σ2 = Ωyy − ΩyzΩ

−1
zz Ωzy,

where σ2 is the variance of the innovation εt. Similarly, for equation (2.2) it holds

(αj, β
′
j) = (1, 0)Aj, εt = (1, 0)ξt, σ2 = Ωyy.

For the asymptotic results the above assumptions suffice to establish that the
sum of squared residuals is close to the sum of squared innovations. In addition a
condition is needed to ensure that the normalized partial sums of squared innovations
converge to a Brownian motion. Various conditions could be used here. In line with
Assumption A the following assumption suffices.

Assumption D. For the regression (2.1) let Gt−1 be the σ-field over Zt and Ft−1,
while Gt = Ft for the regression (2.2). Let (ε2

t −σ2,Gt) be a martingale difference se-
quence satisfying Var(ε2

t −σ2|Gt−1) = ϕ2 a.s. for some ϕ > 0 and supt E(|εt|λ|Gt−1) <
∞ a.s. for some λ > 4.

In the case of independent normally distributed innovations then ϕ2 = 2σ4. For
the estimation of ϕ in non-normal situations one further assumption is needed.

Assumption E. Let (ε3
t ,Gt) be a martingale difference sequence, so E(ε3

t |Gt−1) = 0
and supt E(|εt|λ|Gt−1) < ∞ a.s. for some λ > 6.

3 Asymptotic analysis of the CUSQOLS-statistic

We now consider the CUSQOLS-statistic (1.7) based on the autoregressive distributed
lags residuals of (2.1) or (2.2). The key to the asymptotic analysis is to generalize
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Lemma 2 of Deng and Perron (2008a) showing that the sum of squared residuals is
close to the sum of squared innovations. The following Lemma is proved in Appendix
§A.1.

Lemma 3.1. Assume A, B, C. Then supt≤T T−1/2|
∑t

s=1(ε̂
2
s,t − ε2

s)| → 0 a.s.

The normalized partial sums of squared innovation are asymptotically Brownian.
This follows through a direct application of Chan and Wei (1988, Theorem 2.2), as
stated in the next result.

Lemma 3.2. Assume D. Let B be a standard Brownian motion and let D[0, 1]
denote the space of right-continuous functions on [0, 1] with left limits. Then, for
0 ≤ u ≤ 1, it holds T−1/2

∑Tu
s=1(ε

2
u − σ2) → ϕBu in distribution on D[0, 1].

The above result involves a nuisance parameter ϕ which needs to be estimated.
In the case of normal innovations ϕ2 = 2σ4 so ϕ can be estimated from the sample
variance of the residuals. For non-normal innovations a more natural estimator
involves the fourth moment of the residuals. The consistency of such an estimator is
given in the next result which is proved in Appendix §A.2.

Theorem 3.3. A, B, C, D, E. Then ϕ̂2
t = t−1

∑t
s=1 ε̂4

s,t − (t−1
∑t

s=1 ε̂2
s,t)

2 → ϕ2 a.s.

The main result concerning the CUSQOLS-statistic now follows, with a proof
given in Appendix §A.1.

Theorem 3.4. Assume A, B, C, D. Let B◦ be a standard Brownian bridge. Then
(i) CUSQOLS

int(Tu),T → ϕB◦u in distribution on D[0, 1].

(ii) supt≤T |CUSQOLS
t,T | → supu≤1 |ϕB◦u| in distribution on R.

Note that Theorem 3.3 provides consistent estimators for ϕ.

An alternative graphical variance constancy diagnostic is considered without con-
fidence bands by Hendry (1986), Doornik and Hendry (2007). The idea is to plot
a normalized residual sum of squared residuals, t−1RSSt where RSSt =

∑t
s=1 ε̂2

s,t.

The asymptotic behaviour of T−1/2RSSint(Tu) follows readily from Lemmas 3.1 and
3.2. Since the function u−11(u≥ν) is in D[0, 1] for all ν > 0, although not for ν = 0, it
can be multiplied with T−1/2RSSint(Tu) and the asymptotic distribution follows from
the continuous mapping theorem.

Corollary 3.5. Assume A, B, C, D. Let B be standard Brownian. Then, for ν > 0,
(Tu)−1/2{RSSint(Tu) − σ2Tu}1(u≥ν) → 1(u≥ν)ϕu−1/2Bu in distribution on D[0, 1].
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4 Asymptotic behaviour of the CUSQREC-test

We now turn to the asymptotic behaviour of the CUSQREC-statistic (1.4) applied
to the regressions (2.1) and (2.2). This statistic is more complicated to describe
than the CUSQOLS-statistic. The asymptotic results are not quite as general in
that the vector autoregression is assumed to be either purely non-explosive or purely
explosive.

In order to formulate a generalization of Deng and Perron (2008a, Lemma 2)
it is necessary to decompose the vector autoregression into its non-explosive and
explosive parts. Thus, define the companion vector St−1 = (X ′

t−1, . . . X
′
t−k, D

′
t−1)

and the selection matrix ι = (Ip, 0(pk−p+dimD)×p)
′. Recalling the companion matrix

B defined in (2.7) the vector autoregression satisfies a first order vector autoregression
St = BSt−1 + ιξt. As noted in for instance Nielsen (2005, §3), there exists a real
matrix M so MBM−1 is block diagonal and

MSt =

(
Rt

Wt

)
=

(
R 0
0 W

)(
Rt−1

Wt−1

)
+

(
eR,t

eW,t

)
, (4.1)

where the absolute values of the eigenvalues of R and W are at most one and at
greater than one, respectively. The deterministic components are subsumed into the
Rt -process.

Lemma 2 of Deng and Perron (2008a) is now generalized, albeit to a lesser ex-
tent than seen for the situation of OLS residuals in Lemma 3.1. The issue is that
cross terms between explosive and non-explosive terms are not easy to deal with as
explained in Remark A.2 in the Appendix §A.3 and are therefore ruled out. Even
with that restriction the proof of the following Lemma given in Appendix §A.3 is
more involving than that of Lemma 3.1 and requires the additional Assumption D.

Lemma 4.1. Assume A, B, C, D. Assume the process is either purely non-explosive
or purely explosive. Then supt≤T T−1/2|

∑t
s=1(ε̃

2
s − ε2

s)| → 0 a.s.

A limiting result for the CUSQRES then follows by exactly the same argument
as that of Theorem 3.4.

Theorem 4.2. Assume A, B, C, D. Assume the process is either purely non-
explosive or purely explosive. Let B◦ be a standard Brownian bridge. Then
(i) CUSQREC

int(Tu),T → ϕB◦u in distribution on D[0, 1].

(ii) supt≤T |CUSQREC
t,T | → supu≤1 |ϕB◦u| in distribution on R.

Note that Theorem 3.3 provides consistent estimators for ϕ.
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Table 1: Statistics for which there is no significant variation accross a range of of
values of autoregressive parameter α

SOLS SREC

standard deviation 0.256 0.256
95% quantile 1.27 1.28

p-value of asymptotic 95% quantile 0.032 0.033
MCSE for above p-value 0.0002 0.0002

5 Simulation study

Theorems 3.4 and 4.2 show that the two types of CUSQ-statistics have the same
limit distribution in many situations. For the CUSQOLS-statistic, in particular,
this does not depend on the autoregressive parameters apart from the regularity
assumption C for the explosive roots. This leaves the questions whether the finite
sample distributions are different for the two statistics and whether they depend on
the autoregressive parameters. These questions are addressed through a small-scale
Monte Carlo study. For the important question of the power of these tests we refer
to the studies by Deng and Perron (2008a), Deng and Perron (2008b).

The data generating process is a univariate first order autoregression, Xt =
αXt−1 + εt for t = 1, . . . , T = 100 with initial value X0 = 0, innovation variance
of unity and a range for the autoregressive parameters α. The statistics of inter-
est are the supremum statistics SOLS = maxM≤t≤T |CUSQOLS

t,T |/ϕ̂T and SREC =
maxM≤t≤T |CUSQREC

t,T |/ϕ̂T , where ϕ̂2
T = 2σ̂4

T , see (1.5). The theorems 3.4 and 4.2
show that these statistics converge in distribution to the supremum of a Brownian
Bridge. Billingsley (1999, pp. 101-104) gives an analytic expression for the distribu-
tion function. In particular the 95%-quantile is 1.36, see Schumacher (1984, Table
9).

The results for the simulation study are reported in Tables 1, 2. The variation
of the distribution for the two supremum statistics is very small and could hardly
be picked up with 106 repetitions. Table 1 reports statistics like standard deviation,
95%-quantile and p-value of the asymptotic 95%-quantile for which there was no
significant variation for different values of α, whereas Table 2 reports mean and
median for which one can just about discern a slight variation in α.

Two conclusions emerge from this small scale Monte Carlo study. First, there is
not much difference in finite sample distribution for the two statistics. Secondly, there
is very little variation in the finite sample distribution with the unknown parameter.
This suggests that very simple finite sample corrections could be used.
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Table 2: Statistics for which there is a slight significant variation accross a range of
of values of autoregressive parameter α

SOLS SREC

α mean median mean median

-1.2 0.790 0.750 0.797 0.758
-1.0 0.789 0.749 0.796 0.757
-0.9 0.789 0.748 0.795 0.756
0.0 0.788 0.748 0.795 0.756
0.9 0.789 0.748 0.795 0.756
1.0 0.789 0.749 0.796 0.757
1.2 0.790 0.749 0.797 0.758

6 Example: United States GDP 1947-2006

To illustrate the results log quarterly, seasonally adjusted GDP data for the US for
1947:1 to 2006:1 are considered. The data originate from the Bureau of Economic
Analysis; see also Hendry and Nielsen (2007). In the figure, panel (a) show the
time series in levels. A fourth order autoregression with a constant and a linear
trend was fitted recursively. Panel (b) shows cumulative sums of the model residuals
with point-wise confidence bands. Panel (c) shows the recursive residual variance
estimator with point-wise confidence bands. Panel (d) shows the CUSQOLS-statistic
in panel (d), with simultaneous confidence bands. All bands are draw for the 5%
significance level. We note that there is evidence against constancy of the residual
variance. This finding is consistent with that of McConnell and Perez-Quiros (2000),
who apply the CUSUM of Squares test to levels of demeaned post-war US GDP
data. Our finding is supported by our theory that validates the use of the CUSUM
of Squares test in this context. Furthermore, it is based on residuals from a regression
model, which is often preferred to the approach using demeaned data as pointed out
by Deng and Perron (2008b).
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Figure 1: US log GDP data and recursive statistics.
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Appendix: Proofs

Notation: for a matrix m let m⊗2 = mm′ and ‖m‖2 = λmax (m⊗2), where λ (max)
gives the greatest eigenvalue of the matrix.

A.1 The case of least squares residuals

Proof of Lemma 3.1. Partition ξt as (ξ
(1)
t , ξ

(2)
t )′ and partition the least squares

residuals, ξ̂s,t, of Xt on Xt−1, . . . Xt−k and Dt−1 conformably. We start by arguing

1

t

t∑
s=1

(ε̂2
s,t − ε2

s)
a.s.
= o(t−1/2). (A.1)

First, if Zt is excluded as regressor as in (2.2) then
∑t

s=1 ε̂2
s,t =

∑t
s=1(ξ̂

(1)
s,t )2.

Combine this with Nielsen (2005, Corollary 2.6) to see that t−1
∑t

s=1(ξ̂
⊗2
s,t − ξ2

s ) =

o(t−1/2) a.s., assuming A, B, C. The result (A.1) then follows.
Secondly, if Zt is included as regressor as in (2.1) then

t∑
s=1

ε̂2
s,t =

t∑
s=1

(ξ̂
(1)
s,t )2 −

t∑
s=1

ξ̂
(1)
s,t ξ̂

(2)′
s,t {

t∑
s=1

(ξ̂
(2)
s,t )⊗2}−1

t∑
s=1

ξ̂
(2)
s,t ξ̂

(1)
s,t .

By Nielsen (2005, Corollary 2.6) then

t∑
s=1

ε̂2
s,t

a.s.
= [

t∑
s=1

(ξ
(1)
s )2 −

t∑
s=1

ξ
(1)
s ξ

(2)′
s {

t∑
s=1

(ξ
(2)
s )⊗2}−1

t∑
s=1

ξ
(2)
s ξ

(1)
s ]{1 + o(t−1/2)}.

Since ξ
(1)
s = εs + ρξ

(2)
s then

t∑
s=1

ε̂2
s,t

a.s.
= [

t∑
s=1

(εs)
2 −

t∑
s=1

εsξ
(2)′
s {

t∑
s=1

(ξ
(2)
s )⊗2}−1

t∑
s=1

ξ
(2)
s εs]{1 + o(t−1/2)}.

Using that (1,−ρ)Ω(0, I)′ = 0 along with Nielsen (2005, Theorem 2.8), shows that

t−1
∑t

s=1 εsξ
(2)′
s = o(t−1/4) a.s. so that (A.1) follows.

Now, (A.1) implies that for almost every outcome and for any ε > 0, there exists
a finite t0 such that

1

t

t∑
s=1

(ε̂2
s,t − ε2

s) <
ε√
t

∀ t > t0.

Moreover, since t ≤ T , then T−1/2t ≤ t1/2 for all t > t0, which implies

1√
T

t∑
s=1

(ε̂2
s,t − ε2

s) < ε ∀ t > t0 (A.2)

11



Since t0 is finite, we also have maxt≤t0{t−1
∑t

s=1(ε̂
2
s,t − ε2

s)} is finite, whereas T−1/2t
vanishes for t < t0 and T →∞. In combination we have that for T sufficiently large

1√
T

t∑
s=1

(ε̂2
s,t − ε2

s) < ε. (A.3)

Combining (A.2) and (A.3) gives the desired result.

Proof of Theorem 3.4. (i) Note that

int(Tu)∑
s=1

(ε̂2
s,int(Tu) − σ2) =

int(Tu)∑
s=1

(ε̂2
s,int(Tu) − ε2

s) +
int(Tu)∑

s=1

(ε2
s − σ2).

The Lemmas 3.1 and 3.2 imply T−1/2
∑int(Tu)

s=1 (ε̂2
s,int(Tu) − σ2)→ϕBu in distribution.

Next, rewrite the CUSQ-statistic as

CUSQOLS
int(Tu),T = T 1/2

(∑int(Tu)
s=1 ε̂2

s,int(Tu)∑T
s=1 ε̂2

s,T

− t

T

)

=
T−1/2{

∑int(Tu)
s=1 (ε̂2

s,int(Tu) − σ2)− t
T

∑T
s=1(ε̂

2
s,T − σ2)}

T−1
∑T

s=1 ε̂2
s,T

.

Then insert the above convergence result for the partial sums.
(ii) Taking supremum entails taking a continuous mapping on D[0, 1].

A.2 Consistency of ϕ̂t

Proof of Theorem 3.3. The result is proved for the regression (2.1) included Zt

as regressor. The argument for the regression (2.2) can be deduced in a similar way.
Due to Lemma 3.1 the second moments of the residuals and of the innovations

have the same limit. If the same is shown for the fourth moments t−1
∑t

s=1 ε̂4
s,t then

the desired result follows from a Law of Large Numbers applied to the squares of the
martingale differences εs = (1,−ρ)ξs and ε2

s − σ2, assuming A, D.
Recall the companion vector St−1 = (X ′

t−1, . . . , X
′
t−k, Dt−1)

′. Since the residuals

from regressing Zt on St equal those of regressing ξ
(2)
t on St the regressor is then

xt = (ξ
(2)′
t , S ′t−1)

′. Define

Pt =
t∑

s=1

εsx
′
s(

t∑
s=1

x⊗2
s )−1/2, Qs,t = (

t∑
s=1

x⊗2
s )−1/2xs.

The residuals satisfy ε̂s,t = εt − PtQs,t. A binomial expansion of ε̂4
s,t shows that it

suffices to prove that Im =
∑t

s=1(PtQs,t)
mε4−m

s = o(t) a.s. for m = 1, . . . , 4.
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First, argue that Pt = o(t1/4) a.s. The components of xs = (ξ
(2)′
s , S ′s−1)

′ are
asymptotically uncorrelated due to Nielsen (2005, Theorem 2.4) assuming A, B, C.
Thus

Pt
a.s.
= {

t∑
s=1

εsξ
(2)′
s (

t∑
s=1

ξ
(2)⊗2
s )−1/2 +

t∑
s=1

εsS
′
s−1(

t∑
s=1

S⊗2
s−1)

−1/2}{1 + o(1)}.

This is of the desired order due to Nielsen (2005, Theorems 2.4, 2.8, Corollary 2.6)
assuming A, B, C, and the construction (1,−ρ)Ω(0, I)′ = 0.

Secondly, consider I1 = Pt(
∑t

s=1 x⊗2
s )−1/2

∑t
s=1 xsε

3
t . Recall the decomposition

MSs = (R′
s, W

′
s)
′ in (4.1). The components are asymptotically uncorrelated due to

Nielsen (2005, Theorems 9.1, 9.2) assuming A, B, C. Thus

I1
a.s.
= Pt{

t∑
s=1

 ξ
(2)⊗2
s 0 0
0 R⊗2

s−1 0
0 0 W⊗2

s−1

}−1/2
t∑

s=1

 ξ
(2)
s

Rs−1

Ws−1

 ε3
t{1 + o(1)}

The term Pt was dealt with above.
The terms involving ξ

(2)
s are O{(log log t)1/2} due to Nielsen (2005, Theorem 2.4)

assuming E.
The terms involving Rs are O{(log t)1/2} due to Lai and Wei (1982, Lemma 1),

Nielsen (2005, Theorems 7.1) assuming A, B, E.
The terms involving Ws can be bounded by

‖
t∑

s=1

(W−tWs−1)
⊗2‖−1/2(

t∑
s=1

‖W−tWs−1‖) maxs≤t ‖εs‖3

The first two terms are convergent due to Nielsen (2005, Corollaries 5.3, 7.2) assuming
A, C. The latter term is o(t3/4) since εt = o(t1/4) by Nielsen (2005, Theorem 5.1)
assuming A.

Secondly, consider Im for m ≥ 2. The following bound holds

Im ≤ ‖Pt‖m max
s≤t

‖εs‖4−m
t∑

s=1

(P ′
s,tPs,t)

m/2.

The first two terms are o(t) by the arguments above. For the latter term note that
P ′

s,tPs,t ≤ 1. Thus, for m/2 > 1, then,

t∑
s=1

(P ′
s,tPs,t)

m/2 ≤
t∑

s=1

P ′
s,tPs,t =

t∑
s=1

tr(Ps,tP
′
s,t) = tr(Ipk) = pk,

so the last term is bounded.

13



A.3 The case of recursive residuals

Lemma 4.1 is proved in three steps. As in the proof of Lemma 3.3 only the regression
(2.1) including Zt as a regressor is considered, whereas the argument for the regression

(2.2) is slightly simpler. The regressor is written as xt = (ξ
(2)′
t , R′

t−1, W
′
t−1)

′, where

ξ
(2)
t is the innovation term for the contemporaneous regressor Zt while Rt and Wt are

the non-explosive and explosive components. The residuals ε̃t will be decomposed in
a similar way. Thus, define:

at = εt −
t−1∑
s=1

εsW
′
s−1(

t−1∑
s=1

W⊗2
s−1)

−1Wt−1, At = W ′
t−1(

t−1∑
s=1

W⊗2
s−1)

−1Wt−1,

bt =
t−1∑
s=1

εsξ
(2)′
s (

t−1∑
s=1

ξ
(2)⊗2
s )−1ξ

(2)
t , Bt = ξ

(2)′
t (

t−1∑
s=1

ξ
(2)⊗2
s )−1ξ

(2)
t ,

ct =
t−1∑
s=1

εsR
′
s−1(

t−1∑
s=1

R⊗2
s−1)

−1Rt−1, Ct = R′
t−1(

t−1∑
s=1

R⊗2
s−1)

−1Rt−1,

f 2
t = 1 + At + Bt + Ct. Iaa =

t∑
s=1

a2
s

f 2
s

A modified version of Lemma 2 of Lai and Wei (1982) is needed.

Lemma A.1. Assume A, B, C. Then
∑t

s=1 ε̃2
s = Iaa + o(t1/2) a.s.

Proof of Lemma A.1. Purely explosive case: Result trivial.
Purely non-explosive case: Note at = εt, At = 0, and the regressor decomposes as
xt = (ξ

(2)′
t , R′

t−1)
′.

The components of xt are asymptotically uncorrelated due to Nielsen (2005, The-
orem 2.4) assuming A, B, C. The recursive forecast residual (1.3) then satisfies
ε̃t = {(at − bt − ct)/ft}{1 + o(1)} a.s. It has to be argued that terms involving bs or
cs are o(t1/2).

Consider Ibb =
∑t

s=1 b2
s/f

2
s . The denominator satisfies f 2

s ≥ 1 + Bt. By Nielsen

(2005, Theorem 2.4) then S1 =
∑t−1

s=1 εsξ
(2)′
s (
∑t−1

s=1 ξ
(2)⊗2
s )−1/2 = O{(log log t)1/2}.

Thus, for every outcome and ε > 0 then for large t and s ≤ t it holds S2
1 ≤ tηε for

all η > 0. This implies, that for large t then

Ibb ≤ tηε
t∑

s=1

{ξ(2)′
s (
∑s−1

v=1 ξ
(2)⊗2
v )−1ξ

(2)
s }/{1 + ξ

(2)′
s (
∑s−1

v=1 ξ
(2)⊗2
v )−1ξ

(2)
s }.

Due to the partitioned inversion formula

A12A
−1
22 A21(1 + A12A

−1
22 A21)

−1 = 1− (0, I)

(
1 A12

A21 A22

)−1(
0
I

)
= A12(A22 + A21A12)

−1A21 (A.4)
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then it holds Ibb ≤ tηε
∑t

s=1 ξ
(2)′
s (
∑s

v=1 ξ
(2)⊗2
v )−1ξ

(2)
s . The sum is of order O(log t)

according to Nielsen (2005, Lemma 8.6) assuming A, implying that Ibb is o(tη) =
o(t1/2) a.s.

Consider Icc =
∑t

s=1 c2
s/f

2
s . A similar argument shows Icc = o(t1/2) a.s. The

only slight difference is the bound for S2 =
∑t−1

s=1 εsR
′
s−1(

∑t−1
s=1 R⊗2

s−1)
−1/2. By Nielsen

(2005, Theorem 2.4), assuming A, B, C, this bound is S2
2 = O(log t), which is of

course still o(tη) for all η > 0.
Consider Ibc =

∑t
s=1 bscs/f

2
s . The Hölder inequality implies Ibc = o(t1/2) a.s.

Consider Iab =
∑t

s=1 asbs/f
2
s . Since as = εs and bs/f

2
s is Gt−1-measurable then

Iab is a martingale. Applying Hall and Heyde (1980, Theorem 2.18) shows t−1/2Iab

vanishes on the set where
∑∞

s=1 E(s−1ε2
sb

2
s/f

4
s |Gs−1) < ∞. Assumption D shows

that E(ε2
s|Gt−1) = σ2, so it suffices to consider the set where

∑∞
s=1 s−1b2

s/f
4
s is fi-

nite. Since
∑s−1

u=1 εuξ
(2)′
u (
∑s−1

u=1 ξ
(2)⊗2
u )−1/2 = O{(log log s)1/2}, ξ

(2)
s = o(s1/4), and

(
∑s−1

u=1 ξ
(2)⊗2
u )−1/2 = O(s−1) by Nielsen (2005, Theorems 2.4, 5.1, 6.1) while 1 ≤ f 2

s

then this set has probability one.
Consider Iac =

∑t
s=1 ascs/f

2
s . The term cs is based on the component Rs which

has both stationary and unit roots. Thus, decompose Rs into stationary and unit
root components. These are uncorrelated by Nielsen (2005, Theorem 9.4), so can be
treated separately. The stationary case matches the analysis for Iab. Thus, assume
Rs only has unit roots. A martingale argument is also made here with the difference
that

∑s−1
u=1 εuR

′
u−1(

∑s−1
u=1 R⊗2

u−1)
−1/2 = O{(log s)1/2} and R′

s−1(
∑s−1

u=1 R⊗2
u−1)

−1Rs−1 =
o(s−η) for some η > 0 by Nielsen (2005, Theorems 2.4, 8.4).

Remark A.2. The difficulty in considering the case with both explosive and non-
explosive terms arises in connection with the cross terms Iab, Iac. In general as 6= εs.
Hence these terms are not martingales.

Lemma A.3. Let h1, h2, . . . be p-dimensional vectors and let HT =
∑T

t=1 h⊗2
t . As-

sume HT is non-singular for some T0. Let λ∗T be the maximal eigenvalue of HT Then
(i)
∑T

t=T0
h′tH

−1
t ht = O(log λ∗T ) .

(ii)
∑T

t=T0+1 h′tH
−1
t−1ht = O(log λ∗T ) .

Proof of Lemma A.3. (i) is the statement of Lai and Wei (1982, Lemma 2,ii).
(ii) is proved in a similar way. By (A.4) then h′tH

−1
t−1ht = h′tH

−1
t ht/(1−h′tH

−1
t ht),

whereas by Lai and Wei (1982, Lemma 2(i)) then h′tH
−1
t ht = 1−det Ht/ det Ht−1. In

combination this shows
∑T

t=T0+1 h′tH
−1
t−1ht =

∑T
t=T0+1(det Ht − det Ht−1)/ det Ht−1.

Then complete the argument as in the proof of Lai and Wei (1982, Lemma 2,ii).

Lemma A.4. Assume A, B, C. Then
∑t

s=1{a2
s/f

2
s − a2

s/(1 + As)} = o(t1/2) a.s.
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Proof of Lemma A.4. Purely explosive case: Result trivial.
Purely non-explosive case: The expression of interest, D say, satisfies

D =
t∑

s=1

a2
s

1 + As

(
1− 1 + As

f 2
s

)
=

t∑
s=1

a2
s(Bs + Cs)

(1 + As)fs

≤ (max
s≤t

a2
s)

t∑
s=1

(Bs + Cs),

where the inequalty follows since 1 ≤ fs, 1 ≤ 1 + As, 0 ≤ Bs, and 0 ≤ Cs. Lemma
A.3 together with Nielsen (2005, Theorem 7.1) shows

∑t
s=1(Bs + Cs) = O(log t) a.s.

Moreover, at = o(t1/4−η) a.s. for all η > 0 since εt and
∑t−1

s=1 εsW
′
s−1(

∑t−1
s=1 W⊗2

s−1)
−1/2

are o(T 1/4−η) by Nielsen (2005, Theorems 2.4, 5.1) while (
∑t−1

s=1 W⊗2
s−1)

−1/2Wt−1 is
convergent by Nielsen (2005, Corrolaries 5.3, 7.2) assuming A, B, C.

Lemma A.5. Assume A, B, C. Then
∑t

s=1{ε2
s − a2

2/(1 + As)} = o(t1/2) a.s.

Proof of Lemma A.5. Purely non-explosive case: Result trivial.
Purely explosive case: Define as =

∑s
h=1 Cs−h,sεh, where

Cs−h,s =


−W ′

s−1(
s−1∑
u=1

W⊗2
u−1)

−1Wh−1/{1 + W ′
s−1(

s−1∑
u=1

W⊗2
u−1)

−1Ws−1} for h < s,

1/{1 + W ′
s−1(

s−1∑
u=1

W⊗2
u−1)

−1Ws−1} for h = s.

With this definition and a change of summation order it holds

t∑
s=1

a2
s =

t∑
s=1

s∑
h=1

C2
s−h,sε

2
h + 2

t∑
s=1

s∑
h=1

Cs−h,sεh

h−1∑̀
=1

Cs−h+`,sεh−`

=
t∑

h=1

ε2
h +

t∑
h=1

{(
t∑

s=h

C2
s−h,s)− 1}ε2

h + 2
t∑

h=1

h−1∑̀
=1

(
t∑

s=h

Cs−h,sCs−h+`,s)εhεh−`.

It has to be argued that the sums in s of the coefficients Cs−h,s are close to zero.
Defining the quantities

Zh = W1−hWh−1 = W0 +
h−1∑
s=1

W−seW,s

Fs =
s−1∑
u=1

(W1−sWu−1)
⊗2 =

s−1∑
u=1

(Wu−sZu)
⊗2

the coefficients Cs−h,s can be rewritten as

Cs−h,s =

{
−Z ′

sF
−1
s Wh−sZh/{1 + Z ′

sF
−1
s Zs} for h < s,

1/{1 + Z ′
sF

−1
s Zs} for h = s.
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Lai and Wei (1985, Lemma 2, Corollary 2) give the convergence results

Zh
a.s.→ Z = W0 +

∞∑
s=1

W−seW,s, Fh
a.s.→ F =

∞∑
u=1

(W−uZ)⊗2. (A.5)

The limiting matrix F is positive definite a.s. under Assumption C, see Lai and Wei
(1985, Corollary 2), Nielsen (2008, Remark 2.3). Thus introduce the coefficients

C̃s−h =

{
−Z ′F−1Wh−sZ/(1 + Z ′F−1Z) for s− h > 0,

1/(1 + Z ′F−1Z) for s− h = 0.

and approximate the sums of the coefficients Cs−h,s by

t∑
s=h

C2
s−h,s ≈

∞∑
s−h=0

C̃2
s−h,

t∑
s=h

Cs−h,sCs−h+`,s ≈
∞∑

s−h=0

C̃s−hC̃s−h+`. (A.6)

The approximating sums involving C̃s−h-coefficients are identical to one and zero,
respectively, since:

∞∑
s−h=0

C̃2
s−h = (1 + Z ′F−1Z)−1{1 + Z ′F−1

∞∑
s−h=0

(Wh−sZ)⊗2F−1Z}

= (1 + Z ′F−1Z)−1(1 + Z ′F−1FF−1Z) = 1,

whereas the sum of cross products satisfies

∞∑
s−h=0

C̃s−hC̃s−h+`.

=(1 + Z ′F−1Z)−1{−Z ′F−1W`Z + Z ′F−1
∞∑

s−h=0

(Wh−sZ)⊗2(W′)`F−1Z}

=(1 + Z ′F−1Z)−1{−Z ′F−1W`Z + Z ′F−1F (W′)`F−1Z} = 0,

where the last identity follows since the scalar Z ′F−1W`Z is equal to Z ′(W′)`F−1Z.
Two observations are needed justify the approximation (A.6). First, the tail sums∑∞

s−h=t+1 C̃2
s−h and

∑∞
s−h=t+1 C̃s−hC̃s−h+` vanish exponentially with Ws−h. Secondly,

the convergence results in (A.5) also have an exponential rate. This means that if
h > H where H → ∞ at at log T -rate then the difference Cs−h,s − C̃s−h = o(T−n)
for any integer n. These observations can then be applied in argument as that of the
last paragraphs of the proof of Lemma 3.1.

Proof of Lemma 4.1. Combining this with Lemmas A.1, A.4, A.5 shows that∑t
s=1(ε̃s

2 − ε2
s) = o(t1/2). The argument is then finished as in the last paragraph of

the proof of Lemma 3.1.
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