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1 Introduction

Concentrations in a bank’s credit portfolio are key drivers of credit risk. These risk concentrations may be
caused by material concentrations of exposure to individual names as well as large exposures to single sectors
(geographic regions or industries) or to several highly correlated sectors. The most common approach to
introduce sector concentration into a credit portfolio model is through systematic factors affecting multiple
borrowers. The specification of the factor model, which determines the dependence structure of rating
migrations and defaults, is a central problem in credit portfolio modeling.

Different data sources can be used as input for the calibration of factor models, i.e., equity data, credit
spreads or default and rating information. The most frequent approach is based on information from equity
markets, mainly due to the good quality and wide coverage of this data source. Since individual firm returns
are available, methodologies based on equity information allow for firm-specific pairwise correlations and
more granular industry definitions than historical rating data methods. The main disadvantage of equity
data is the fact that equity prices do not solely reflect the credit quality of companies but also information
that is unrelated to credit risk, e.g. liquidity issues, risk aversion of market participants, etc.

Historical rating and default data, on the other hand, are not distorted by information unrelated to
credit quality but require some aggregation, typically by rating class, country or industry. Hence, these
data sources are natural candidates for validating the dependence structure of credit portfolio models on an
aggregate level. In this paper, we shall review the most frequently used techniques for deriving correlations
from default and rating data: moment estimators (Lucas, 1995; Bahar and Nagpal, 2001; de Servigny and
Renault, 2002; Frey and McNeil, 2003; Jobst and de Servigny, 2005) and maximum likelihood estimators
(Gordy and Heitfield, 2002; Demey et al., 2004). Our empirical results are based on S&P rating data from
1981 to 2009. We group the rated companies into cohorts that correspond to industry segments, rating
classes or combinations of both. Intra-cohort and inter-cohort correlations are calculated using maximum
likelihood estimation. Our results are broadly in line with previous studies reported in the literature:

(i) Correlations within industry segments are consistently higher than correlations between industry seg-
ments. In particular, this observation confirms that correlations are usually underestimated if industry
information is ignored in the specification of the cohorts, i.e., if cohorts correspond to rating classes.

(ii) Correlations strongly vary across industries and over time.

(iii) On average, correlations derived from historical default and rating data are lower than equity corre-
lations. In addition, we observed a significant difference between correlations obtained from default
data and correlations obtained from rating data.

∗The views expressed in this paper are those of the authors and do not necessarily reflect the position of Deutsche Bank AG.
†Financial support from the EU Commission through MRTN-CT-2006-034270 COMISEF is gratefully acknowledged.
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Most of our calculations are based on the standard assumption that the risk factors follow a multivariate
normal distribution. In addition, we perform calculations using t-distributions and skew normal distribu-
tions. The best calibration results are obtained with a multivariate t-distribution with a high degree of
freedom, e.g. in the range of 65.

The paper has the following structure. In Section 2, we give a formal specification of the structural
credit portfolio model, which is used for the analysis of historical default data, together with a review of the
concepts of default and asset correlations. Different approaches for calibrating and validating factor models
are discussed in Section 3. The next section is devoted to the derivation of moment estimators and maximum
likelihood estimators when applied to historical default data. The actual calibration results based on S&P
data are presented in Section 5. We generalize the credit portfolio model to cover rating migration and
apply maximum likelihood estimation to S&P rating data in Section 6. Calibration results for non-Gaussian
risk factors are presented in Section 7. In addition, we review different concepts for incorporating the credit
cycle. In Section 8, we conclude the paper by comparing equity correlations with correlations derived from
historical default and rating data.

2 Credit portfolio model for default risk

2.1 Definition of the model

Credit portfolio models can be divided into reduced-form models and structural (or firm-value) models. We
refer to Crouhy et al. (2000), Bluhm et al. (2002) and McNeil et al. (2005) for a survey on credit portfolio
modeling. In this paper, we use a structural credit portfolio model similar to CreditMetrics (Gupton et al.,
1997).

The progenitor of all structural models is the model of Merton (1974), which links the default of a
firm to the relationship between the firm’s assets and liabilities at the end of a given time period [0, T ].
More precisely, in a structural credit portfolio model the j-th obligor defaults if at time T its ability-to-pay
variable Aj is below a default threshold cj : the default event is defined as {Aj ≤ cj} ⊆ Ω, where Aj is
a real-valued random variable on the probability space (Ω,A,P) and cj ∈ R. The corresponding default
indicator is denoted by

Ij = 1{Aj≤cj}. (1)

If Aj is standardized and normally distributed then the default threshold cj is linked to the default probability
pj ∈ [0, 1] via cj = N−1(pj), where N denotes the distribution function of a standardized normal distribution.

For each obligor, a loss variable is defined by Lj = lj · Ij , where lj ∈ R denotes the loss-at-default. In
order to aggregate the loss variables Lj of the individual obligors to a loss variable L of the entire portfolio
a dependence structure of the Aj is specified. This is done via the introduction of a factor model consisting
of systematic and idiosyncratic factors. More precisely, each ability-to-pay variable Aj is decomposed into
a sum of systematic factors Ψ1, . . . ,Ψm and an idiosyncratic (or specific) factor εj , that is,

Aj =
√

R2
j

m∑

i=1

wjiΨi +
√

1−R2
jεj . (2)

The idiosyncratic factors are independent of each other as well as independent of the systematic factors. It is
usually assumed that the idiosyncratic and systematic factors are centered and follow a multivariate Gaussian
distribution. The systematic weights wj1, . . . , wjm ∈ R are scaled such that the systematic component
φj :=

∑m
i=1 wjiΨi is a standardized normally distributed variable. Each R2

j ∈ [0, 1] determines the impact
of the systematic component on Aj and therefore the correlation between Aj and φj : it immediately follows
from (2) that R2

j = Corr(Aj , φj)2. Finally, the portfolio loss variable L : Ω → R is the sum of the loss
variables of the obligors, that is

L =
n∑

j=1

Lj =
n∑

j=1

lj · Ij . (3)
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An important instance of this model class is the homogeneous one-factor model: assume that all obligors
have the same loss-at-default l ∈ R, default probability p with corresponding default threshold c := N−1(p)
and the same R2. In this case, (2) and (3) specialize to

Aj =
√

R2Ψ +
√

1−R2εj , L =
n∑

j=1

Lj = l ·
n∑

j=1

Ij , (4)

where Ψ is a standardized normally distributed variable.

2.2 Default and asset correlations

Via equation (1), the credit portfolio model specifies a dependence structure for the default indicators Ii.
We shall measure dependence by calculating default and asset correlations. This subsection provides a short
review of the definitions and main properties.

The default or event correlation ρD
ij of obligors i and j is defined as the correlation of the respective

default indicators. Because

Var(Ii) = E(I2
i )− (E(Ii))2 = E(Ii)− (E(Ii))2 = pi − p2

i ,

the default correlation equals

ρD
ij = Corr(Ii, Ij) =

E(IiIj)− pipj√
(pi − p2

i )(pj − p2
j )

. (5)

If the vector of default indicators I = (I1, . . . , In) is exchangeable1 the default correlation ρD
ij has a

particularly simple form (equality (7) below). To show that, we first introduce a notation for joint default
probabilities:

πk := P(Ii1 = 1, . . . , Iik = 1), {i1, . . . , ik} ⊆ {1, . . . , n}, k ≤ n, (6)

i.e., πk is the probability that an arbitrarily selected subgroup of k obligors defaults. Note that for all
i, j ∈ {1, . . . , n} with i 6= j,

E(Ii) = P(Ii = 1) = pi = π1,

E(IiIj) = P(Ii = 1, Ij = 1) = π2,

so that Cov(Ii, Ij) = π2 − π2
1. This implies that for all i, j with i 6= j the default correlation in (5) is given

by

ρD := ρD
ij =

π2 − π2
1

π1 − π2
1

, (7)

which is a simple function of the first- and second-order default probabilities.
In the credit portfolio model introduced in Section 2.1, the indicator variables Ii are defined in terms

of ability-to-pay variables Ai, which are often interpreted as log-returns of asset values. The correlation
Corr(Ai, Aj) is therefore called the asset correlation ρA

ij of obligors i 6= j. As an immediate consequence of
(2), the correlation as well as the covariance of the ability-to-pay variables of the counterparties i and j are
given by

Corr(Ai, Aj) = Cov(Ai, Aj) =
√

R2
i

√
R2

j

m∑

k,l=1

wikwjlCov(Ψk,Ψl). (8)

Note that to specify the covariance structure of all n ability-to-pay variables it suffices to define the covariance
matrix of the m systematic factors and the systematic weights and R2s of all counterparties. Since m is
usually much smaller than n, the factor model approach leads to a significant reduction in the amount of
input data, i.e., the number of parameters is of the order of m(m + n) instead of n2.

1A vector of random variables X = (X1, . . . , Xn) is called exchangeable if for any permutation Π : {1, . . . , n} → {1, . . . , n}
the vectors (X1, . . . , Xn) and (XΠ(1), . . . , XΠ(n)) have the same distributions.
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There exists an obvious link between default and asset correlations. For given default probabilities, the
default correlations ρD

ij are determined by E(IiIj) according to (5). It follows from (1) that

E(IiIj) = P(Ai ≤ ci, Aj ≤ cj) =
∫ ci

−∞

∫ cj

−∞
fij(u, v)dudv,

where fij(u, v) is the joint density function of Ai and Aj . Hence, default correlations depend on the joint
distribution of Ai and Aj . If (Ai, Aj) is bivariate normal the correlation of Ai and Aj determines the copula
of their joint distribution and hence the default correlation:

E(IiIj) =
1

2π
√

1− ρA
ij

2

∫ ci

−∞

∫ cj

−∞
exp

(
−u2 − 2ρA

ijuv + v2

2(1− ρA
ij

2)

)
dudv. (9)

Note that for general ability-to-pay variables outside the multivariate normal class, the asset correlations
do not fully determine the default correlations.

2.3 Counting defaults

Let D : Ω → R specify the number of defaults, i.e., D :=
∑n

j=1 Ij . We shall now derive a formula for the
distribution of D, which will be used in the calibration techniques presented later. The derivation is based
on the fact that the vector of default indicators I = (I1, . . . , In) satisfies the definition of a Bernoulli mixture
model if m < n (McNeil et al., 2005). More precisely, there exist functions p̄j : Rm → [0, 1], 1 ≤ j ≤ n,
such that, conditional on Ψ = (Ψ1, . . . ,Ψm), the default indicator I = (I1, . . . , In) is a vector of independent
Bernoulli random variables with

P(Ij = 1|Ψ = ψ) = p̄j(ψ), for ψ ∈ Rm.

For a given value ψ of the systematic factors, the conditional independence of the Ij follows from the
independence of the εj . The functions p̄j have the form

p̄j(ψ) = P (Aj ≤ cj | Ψ = ψ) = P


εj ≤

cj −
√

R2
j

∑m
i=1 wjiψi

√
1−R2

j


 = N


cj −

√
R2

j

∑m
i=1 wjiψi

√
1−R2

j


 ,

since the εj are N(0, 1)-distributed variables.
For the rest of this subsection we make the simplifying assumption that the vector of default indicators

I = (I1, . . . , In) is exchangeable. As a consequence, the functions p̄1, . . . , p̄n are identical and we therefore
drop the subscript. Conditional on Ψ = ψ, the number of defaults D is the sum of n independent Bernoulli
variables with parameter p̄(ψ). Hence, D has a binomial distribution with parameters p̄(ψ) and n, i.e.,

P(D = j | Ψ = ψ) =
(

n

j

)
p̄(ψ)j(1− p̄(ψ))n−j . (10)

The unconditional distribution of D is obtained by integrating over the distribution F of the systematic
factors Ψ:

P(D = j) =
∫

Rm

P(D = j | Ψ = ψ) dF (ψ) =
(

n

j

) ∫

Rm

p̄(ψ)j(1− p̄(ψ))n−j dF (ψ).

In particular, for the homogeneous one-factor model defined in (4) the vector of default indicators I =
(I1, . . . , In) is exchangeable and the unconditional distribution of D is

P(D = j) =
(

n

j

) ∫

R
p̄(ψ)j(1− p̄(ψ))n−jdN(ψ)

=
1

(2π)1/2

(
n

j

)∫

R
p̄(ψ)j(1− p̄(ψ))n−je−ψ2/2dψ, (11)

where p̄ is specified by

p̄(ψ) = N

(
c−

√
R2ψ√

1−R2

)
. (12)
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3 Calibration and validation of factor models

3.1 The calibration problem

The central problem in credit portfolio modeling is the specification of the dependence structure of defaults.
In the quantitative framework introduced in the previous section the probability of joint defaults is specified
through a factor model consisting of systematic and idiosyncratic factors. The calibration of the factor
model consists of the following steps:

(i) identification of appropriate systematic factors Ψ1, . . . , Ψm,

(ii) estimation of the correlations of Ψ1, . . . ,Ψm,

(iii) estimation of the systematic weights wji and R2
j , where j = 1, . . . , n and i = 1, . . . ,m.

Historical time-series of default indicators or of ability-to-pay variables are typically used as input for the
calibration procedure. For example, observations (a1(1), . . . , an(1)), . . . , (a1(s), . . . , an(s)) ∈ Rn of equity
or asset returns at different time points are often interpreted as realizations of the ability-to-pay variables
A = (A1, . . . , An).

Several statistical techniques can be applied to the calibration of the factor model. These techniques
estimate the parameters of the factor model in order to replicate the dependence of the input time-series
as closely as possible. Additional requirements arise from the application of credit portfolio models in
risk management. In particular, the systematic factors should have a clear economic interpretation, such
as representing individual countries or industries. Furthermore, all obligors should have plausible factor
weights. These features are important for the economic interpretation of risk concentrations identified
by the portfolio model. They are also necessary for the implementation of economic stress scenarios in
the model. These non-statistical model requirements are one of the reasons why statistical techniques for
factor model calibration are usually complemented by qualitative assessments. For example, country and
industry weights may be derived from balance sheet and legal information to avoid counterintuitive results
from regression on market data. Note, however, that there is typically a trade-off between the accurate
replication of the dependence structure of the input data and the economic interpretation of the model.

3.2 Calibration with equity data

The calibration of factor models can be classified according to the data source used as input, i.e., equity
data, credit spreads or default and rating information. The most frequent approach is based on information
from equity markets. The main advantage is that equity information has wider coverage both in terms
of industry and geography. The information comes from liquid markets, is of good quality, and is readily
available. Thus, unlike the ratings-based approach, one can empirically observe nuances between firms on
a global basis. Since individual firm returns are available, methodologies based on equity information allow
for firm-specific pairwise correlations and more granular industry definitions than historical rating data
methods. With these methodologies, however, there is a concern that equity prices reflect - in addition to
credit related information - information that is unrelated to credit risk, such as liquidity issues, risk aversion
of market participants, etc.

Another important issue is the question of whether equity or asset returns can be used for the calibration
of ability-to-pay variables. Following Merton’s approach, a company defaults if the value of its assets is no
longer sufficient to cover its liabilities. Default correlations are therefore determined by the corresponding
asset correlations and default probabilities. Since asset processes cannot be observed in the market and
are difficult to determine, an alternative approach is to derive default correlations from equity correlations
instead of asset correlations. However, this raises the question of whether equity correlations are reliable
proxies for asset correlations. The relationship between asset and equity correlations is still a controversial
issue in the literature since authors come to rather different conclusions, see, for example, Zeng and Zhang
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(2002) and de Servigny and Renault (2002). In Section 8, we will compare equity correlations to correlations
derived from historical default and rating data.

3.3 Validation with historical default information

The main objective of the factor model in (2) is the specification of the dependence structure of default
indicators I1, . . . , In. It is therefore natural to use historical default data for model calibration. Compared
to other data sources such as equity data the use of historical defaults has the important advantage that
the calibration results are not distorted by information unrelated to credit quality. Time series of historical
defaults are provided by rating agencies for a large pool of companies with a particularly good coverage
in the US. Despite these advantages it is uncommon in the industry to rely on historical default data for
formal statistical estimation of model parameters. There are good reasons for this, the main one being
that, particularly for higher-rated companies, defaults are rare events. In other words, there is simply not
enough relevant data on historical defaults to obtain reliable parameter estimates for individual companies
by formal inference alone. As a consequence, methodologies based on historical default data require some
aggregation, typically by rating class, country or industry. Hence, the main application of default data is
the validation of portfolio models calibrated to equity data or credit spreads.

4 Estimators applied to default data

4.1 Homogeneous cohorts

In the following, we analyze different techniques for estimating dependence in time-series of default data.
The methods we describe are motivated by the format of the data we consider, which comprises observations
of the default or non-default of groups of monitored companies in a number of time periods t = 1, . . . , s. This
kind of data is readily available from rating agencies. In each time period t = 1, . . . , s we group the monitored
companies into cohorts. Let n(t) denote the number of obligors in a given cohort at the start of period t

and d(t) the number of observed defaults during that period. The companies within a cohort are assumed
to be homogeneous in the following sense: conditionally on systematic factors Ψ(t) = (Ψ1(t), . . . , Ψm(t))
their default indicators I1(t), . . . , In(t)(t) are independent and identically distributed. Hence, in each time
period the defaults of a cohort are generated by an exchangeable Bernoulli mixture model. Furthermore,
the random variable D(t) that counts the number of defaults is conditionally binomially distributed and
its unconditional distribution has the form (11). Note that d(1), . . . , d(s) are observations of the random
variables D(1), . . . , D(s). Finally, we assume that the vectors of systematic factors Ψ(1), . . . ,Ψ(s) as well as
the random variables D(1), . . . , D(s) are independent.

We consider two methods for estimating the dependence structure of default indicators I1(t), . . . , In(t)(t),
t = 1, . . . , s, from the time-series d(1), . . . , d(s) of default counts. The method of moments calculates the
joint default probabilities πk specified in (6) within a cohort (intra-correlations) and between different
cohorts (inter-correlations). The maximum likelihood method uses the parametric form of the conditional
probability function p̄ specified in (12) to calibrate the parameters of the factor model.

4.2 Moment estimator

The application of moment estimators is based on the following generalization of the default count D(t),
see McNeil et al. (2005). Define the random variable

D(k)(t) :=
∑

{i1,...,ik}⊆{1,...,n(t)}
Ii1(t) · · · Iik(t) =

(
D(t)

k

)
(13)
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representing the number of possible subgroups of k obligors among the defaulting obligors in period t.
Obviously, D(1)(t) equals D(t). By taking expectations in (13) we get

E(D(k)(t)) =
(

n(t)
k

)
πk,

where πk specifies the joint default probability of an arbitrarily selected subgroup of k exchangeable obligors,
see (6). Hence, the unknown default probability πk can be easily estimated from the first moment of the
generalized default count D(k)(t) by taking the empirical average of s years of data. More precisely, the
estimator for πk is defined by

π̂k :=
1
s

s∑

t=1

D(k)(t)/
(

n(t)
k

)
=

1
s

s∑

t=1

(
D(t)

k

)
/

(
n(t)
k

)
.

For a given time-series of default counts d(1), . . . , d(s) we obtain

π̂k =
1
s

s∑

t=1

d(t)(d(t)− 1) · · · (d(t)− k + 1)
n(t)(n(t)− 1) · · · (n(t)− k + 1)

.

For k = 1, 2 we get the estimators

π̂1 =
1
s

s∑

t=1

d(t)
n(t)

, π̂2 =
1
s

s∑

t=1

d(t)(d(t)− 1)
n(t)(n(t)− 1)

. (14)

The default correlation ρD can be estimated by (7). The estimator π̂k is unbiased and consistent, see Frey
and McNeil (2001). However, de Servigny and Renault (2002) have argued that for low-default cohorts
the estimator π̂2 might lead to spurious negative correlations and proposed the following (biased) estimator
instead

π̃2 =
1
s

s∑

t=1

d(t)2

n(t)2
. (15)

The estimators π̂2 and π̃2 are used for calculating the default correlation of two obligors in a homogeneous
cohort. The methodology can be easily extended to default correlations of obligors in different cohorts. More
precisely, let n1(t) and n2(t) be the number of observed companies at the start of period t in cohort 1 and
cohort 2, respectively. The corresponding numbers of defaults are denoted by d1(t) and d2(t). Assume that
obligor i is in the first cohort and obligor j is in the second cohort. Their joint default probability E(IiIj)
is estimated by

1
s

s∑

t=1

d1(t)d2(t)
n1(t)n2(t)

(16)

and the corresponding default correlation is specified by (5).

4.3 Maximum likelihood estimator

To implement a maximum likelihood procedure we assume a parametric form for the function p̄b : Rm →
[0, 1] with parameters b = (b1, . . . , bj), where p̄b(ψ) determines the binomial distribution (10) of the default
count D(t) conditionally on Ψ(t) = ψ. The likelihood function L(b | d) is the product of the unconditional
probabilities of the default counts D(1), . . . , D(s) evaluated at observed defaults d = (d(1), . . . , d(s)):

L(b | d) =
s∏

t=1

P(D(t) = d(t))

=
s∏

t=1

(
n(t)
d(t)

)∫

Rm

p̄b(ψ)d(t)(1− p̄b(ψ))n(t)−d(t) dF (ψ), (17)
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where F is the distribution function of the systematic factors ψ. The parameters b = (b1, . . . , bj) can be
calculated by maximizing the likelihood function L(b | d) or the log-likelihood function log(L(b | d)) with
respect to b. The log-likelihood function

log(L(b | d)) =
s∑

t=1

log(P(D(t) = d(t))) (18)

has the same maxima as L(b | d) but its maximization is usually easier from a numerical point of view.
We shall now apply the maximum likelihood estimator to the homogeneous one-factor model (4). More

precisely, we assume that the homogeneous default probability p has already been specified. Hence, the
default threshold is determined by c = N−1(p). We will apply maximum likelihood estimation to the
remaining model parameter, the R2. It follows from the unconditional distribution (11) of D(t) that the
likelihood function has the following form:

L(R2 | d) =
s∏

t=1

(
n(t)
d(t)

) ∫

R
p̄R2(ψ)d(t)(1− p̄R2(ψ))n(t)−d(t) dN(ψ), (19)

where

p̄R2 = N

(
c−

√
R2ψ√

1−R2

)
.

The integrals in (19) are easily evaluated numerically.
Again, the methodology can be extended to default correlations of obligors in different cohorts. For

example, consider two homogeneous groups of obligors, e.g. cohorts 1 and 2. We assume that all obligors
in cohort i depend only on the systematic factor Ψi and have the same default threshold ci and R2

i . The
systematic factors Ψ1 and Ψ2 are standardized and follow a bivariate normal distribution Nρ with correlation
ρ.

We assume that observations for s time periods are given: the cohort size and the number of defaults in
the first and second cohort are denoted by n1(t), n2(t) and d1(t), d2(t) respectively, the corresponding count
variables are specified by D1(t) and D2(t). We apply maximum likelihood estimation to the parameters
R2

1, R
2
2, ρ and obtain the likelihood function

L(R2
1, R

2
2, ρ | d1, d2) =

s∏

t=1

∫

R2

2∏

i=1

P(Di(t) = di(t) | Ψi = ψi) dNρ(ψ1, ψ2) (20)

=
s∏

t=1

∫

R2

2∏

i=1

(
ni(t)
di(t)

)
p̄R2

i
(ψi)di(t)(1− p̄R2

i
(ψi))ni(t)−di(t) dNρ(ψ1, ψ2).

5 Model validation based on default data

5.1 Correlations of rating cohorts

We now apply the estimators presented in the previous section to Standard & Poor’s data set CreditPro
consisting of data from July 1981 to June 2009. Each of the companies included in this data set is rated
according to the eight rating categories AAA, AA, A, BBB, BB, B, CCC and Default and classified with
respect to 13 industry segments, which are listed in Table 2.

In this subsection, we ignore industry information and partition the set of rated companies into 7 cohorts
that correspond to rating classes AAA to CCC. We model each cohort as a homogeneous one-factor model:
the ability-to-pay variable of each obligor j in rating class k = AAA, . . . , CCC has the form

Aj =
√

R2
kΨk +

√
1−R2

kεj , (21)

where ΨAAA, . . . , ΨCCC are the 7 systematic factors of the model. The default threshold ck is derived from
the average default rate of the companies in rating class k.
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Twelve time-series with non-overlapping 1y observation periods are constructed for each rating class, say
BB. The time-series cover 27 years, their starting dates are shifted by one month: the first time-series covers
July 1981 to July 2008, the second starts in August 1981 and the last time-series covers June 1982 to June
2009. Each of these BB time-series d(1), . . . , d(27) counts the number of defaults d(t) of those companies
that had a BB rating at the beginning of period t and defaulted within the next 12 months. Correlation
estimates are derived separately from every BB time-series and then averaged. This procedure is motivated
by the observation that the correlation estimates are rather sensitive to the precise bucketing of defaults. For
example, correlation estimates derived from data sets July 1981 to July 2008 and January 1982 to January
2009 might differ significantly.

Since the default indicators of each rating cohort form an exchangeable Bernoulli mixture model we can
use the moment estimators π̂2 and π̃2 defined in (14) and (15) for calculating the joint default probabilities
within each rating cohort. The corresponding asset correlations are derived from equality (9). Asset corre-
lations between different cohorts are calculated with estimator (16) and equality (9). Intra-correlations for
the rating classes2 A, BBB, BB, B and CCC as well as the average inter-correlation are given in the first
three rows of Table 1.

We now turn to maximum likelihood estimation. Note that each rating cohort specifies a likelihood
function of the form (19). The ML estimate of each R2

k in (21) is calculated by maximizing this likelihood
function.3 In a second step, the correlation between two systematic factors is estimated by maximizing (20).
The results obtained with both ML estimators are shown in rows 4 and 5 of Table 1.

Intra Inter
in % A BBB BB B CCC Avg Avg

Moment estimator (14) 7.8 2.8 7.8 8.9 7.2 6.9
Moment estimator (15) 13.6 8.2 10.5 9.9 12.3 10.9
Moment estimator (16) 4.7
ML estimator (19) 11.8 6.2 9.5 11.1 7.9 9.3
ML estimator (20) 5.9

Table 1: Asset correlations of rating cohorts

In the Basel II Accord (Basel Committee on Banking Supervision, 2006) asset correlations for corpo-
rates, sovereigns and banks are modeled as a decreasing function of default probabilities. The correlation
estimates in Table 1 do not support a systematic dependence between asset correlations and credit quality.
Furthermore, the estimates for intra-correlations are smaller than the Basel II asset correlations for large cor-
porates, which range between 12% and 24%. The difference is even more pronounced for inter-correlations.
In the following subsection we will show that these differences can be partly reconciled by taking industry
information into account.

Note that the estimates calculated with the unbiased moment estimator (14) are always lower than the
ML estimates. The biased moment estimator (15) produces the highest estimates for all but one rating
class. These results seem to confirm that the first moment estimator tends to underestimate correlations
in small or low-default cohorts whereas the second moment estimator overestimates correlations for these
cohorts.4 These observations are in line with a Monte Carlo study in Gordy and Heitfield (2002), where
ML estimators outperform moment estimators. Hence, in the rest of the paper we will focus on maximum
likelihood estimation.

2Rating classes AAA and AA are not displayed since no reliable estimates of their intra-correlations could be calculated due

to the low number of defaults.
3As mentioned above, the correlation estimates are very sensitive to the precise bucketing of defaults. For example, the

intra-correlation of 9.5% for BB has been obtained as the average of ML estimates that vary between 7.5% (Nov 81 - Nov 08)

and 11.9% (Sep 81 - Sep 08).
4A comprehensive theoretical analysis of the different estimators will be presented in the PhD thesis of the second author.
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5.2 Correlations of industry cohorts

The correlation estimates in Table 1 were calculated without using the S&P industry classification. We
now apply the same MLE methodology to 13 cohorts that correspond to the S&P industry segments. The
estimates for the 13 intra-correlations are presented in the first column of Table 2. Demey et al. (2004)
and Demey and Roncalli (2004) apply the same setup to S&P data covering 22 years from 1981 to 2002. In
addition to the one-factor MLE model, they also present an ML estimator based on two systematic factors
for each cohort. Both sets of results are given in columns 4 and 5 of Table 2 for comparison.

Note that each of these industry cohorts consists of companies with different ratings. In order to ensure
that the rating profiles of the cohorts are homogeneous we partition each industry cohort into 7 subcohorts
corresponding to the different rating classes. More precisely, the improved model has the following form:

(i) 91 cohorts are specified by taking all combinations of 7 rating classes and 13 industries.

(ii) The model has 13 systematic factors Ψi that correspond to the 13 industries.

(iii) All companies in an industry depend only on the systematic industry factor and have the same R2.
More formally, if a company j is in industry i then the ability-to-pay variable Aj has the form

Aj =
√

R2
i Ψi +

√
1−R2

i εj .

(iv) The default threshold of a cohort is specified by the average default rate of the companies in the
cohort.

Conditions (ii) and (iii) ensure that only 13 R2s and 78 correlation parameters have to be estimated. The
ML estimate of each R2

i is derived from the 7 time-series corresponding to the different rating cohorts of
the i-th industry. In order to apply the ML estimator simultaneously to 7 cohorts the maximum likelihood
function (19) is generalized to

L(R2
i | di1, . . . , di7) =

s∏

t=1

∫

R

7∏

k=1

(
nik(t)
dik(t)

)
p̄R2

i
(ψ)dik(t)(1− p̄R2

i
(ψ))nik(t)−dik(t) dN(ψ), (22)

where dik and nik are the time-series of observed defaults and cohorts size for i = 1, . . . , 13 and k = 1, . . . , 7.
The maximum likelihood function (20) for estimating the correlations of the systematic factors is generalized
in the same way. We will use this MLE model in all subsequent calculations.

The second column in Table 2 displays the R2 estimates obtained by maximizing likelihood function (22).
As in all previous calculations, the underlying time-series consist of 27 default counts for 1y observation
periods. It is obvious that the defaults are concentrated in the low rating classes since each observation
period covers only one year. In contrast, the results in the third column are obtained by applying the ML
estimator (22) to time-series with 3y observation periods.

A comparison of the results in Tables 1 and 2 clearly shows that the average intra-correlation of the
industry cohorts in Table 2 is significantly higher than the average intra-correlation of the rating cohorts in
Table 1. The increased correlations seem to be caused by the higher homogenity of the industry cohorts.
This explanation is also supported by a comparison of the first and the second columns in Table 2: for all but
one industry segment intra-correlations increased if the estimates are derived from cohorts that correspond
to combinations of industries and ratings. The third column shows that the intra-correlation are relatively
stable if the same ML estimator is applied to 3y observation periods.

On average, the intra-correlations calculated in Demey et al. (2004) and Demey and Roncalli (2004)
are lower, see also Jobst and de Servigny (2005). The main reason is that correlations increased for most
industries in the period 2003 to 2009, which is not covered in these papers. In fact, correlations vary
significantly over time as illustrated in Table 3. The correlation estimates in Table 3 were computed for
time-series of non-overlapping 1y observation periods that cover 18 years. The 18y periods are shifted by
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Intra Correlations
in % Industry 1y Ind / Rat 1y Ind / Rat 3y Demey 1F Demey 2F

Aerospace / Automotive 8.2 8.9 11.5 11.6 11.2
Consumer / Service Sector 6.4 9.7 7.5 7.5 8.7
Energy & Natural Resources 16.5 26.2 23.9 11.5 21.3
Financial Institutions 12.6 15.8 19.9 12.2 15.7
Forest & Building Products 10.9 17.1 10.5 14.5 6.8
Health Care / Chemicals 8.5 11.3 12.3 9.2 8.3
High Technology 14.5 17.7 16.6 4.7 6.8
Insurance 9.2 10.3 11.4 7.6 12.2
Leisure Time / Media 10.8 18.0 20.6 7.0 7.0
Real Estate 44.7 51.0 59.1 27.7 35.9
Telecommunications 34.9 31.1 27.5 34.3 27.1
Transportation 7.8 11.2 9.5 8.3 6.8
Utility 27.1 29.8 26.8 21.2 18.3
Average 16.3 19.8 19.8 13.6 14.3

Table 2: Intra-correlations of industry cohorts

one year, i.e., the first period covers 1982 to 1999, the last period covers 1991 to 2008. The calculations
are performed for all industry segments. For example, Table 3 shows that, for High Technology, the initial
intra-correlation of 6.3% in the period 1982 - 1999 increases to 17.7% in the last period 1991-2008.

Time period
in % 82-99 83-00 84-01 85-02 86-03 87-04 88-05 89-06 90-07 91-08

Aerospace / Automotive 4.5 5.3 10.0 9.3 9.0 8.2 8.2 7.8 9.2 10.2
Consumer / Service Sector 5.2 6.1 7.9 7.5 6.9 6.1 6.8 9.0 10.3 10.2
Energy & Natural Resources 21.2 21.4 20.7 19.0 18.2 6.4 7.2 10.3 14.1 14.4
Financial Institutions 14.1 17.7 14.9 14.3 16.1 19.6 20.8 21.8 17.6 14.2
Forest & Building Products 16.6 15.1 14.5 15.0 14.5 15.1 18.3 19.7 19.4 17.4
Health Care / Chemicals 6.4 9.2 7.8 5.7 4.8 7.4 8.8 12.5 14.7 13.5
High Technology 6.3 6.6 8.5 8.7 9.8 13.9 14.7 13.6 16.4 17.7
Insurance 14.0 13.3 11.3 9.8 8.8 7.2 9.3 9.3 11.5 10.4
Leisure Time / Media 13.4 12.6 10.9 8.9 10.3 14.0 14.9 17.4 17.8 13.5
Real Estate 44.9 52.6 54.0 54.1 57.4 60.1 62.3 66.4 66.3 51.5
Telecommunications 11.7 7.6 19.7 22.9 23.7 25.6 29.4 30.0 32.0 38.3
Transportation 9.4 9.6 8.5 10.4 10.6 12.2 10.6 10.2 13.2 12.1
Utility 42.8 30.2 18.9 25.6 22.3 25.0 24.6 27.0 28.8 29.8

Table 3: Variation of intra-correlations over time

In addition to intra-correlations, we calculated inter-correlations for each pair of the 13 industries using
the same model as in the second column of Table 2. The average inter-correlation is 10.1%, which is
approximately half the size of the average intra-correlation of 19.8%.
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6 Validation based on rating data

6.1 Credit portfolio model for default and migration risk

The portfolio model defined in Section 2.1 distinguishes only between two states: default and non-default.
We shall now extend the model to cover rating migrations, which provides the appropriate framework for
deriving correlation estimates from time-series of rating data. More precisely, instead of focusing on defaults
within a given cohort we shall now consider time-series that specify the entire rating distribution of a cohort
at the end of each observation period.

Let r be the number of rating classes including default and define thresholds

−∞ = cr,j ≤ cr−1,j ≤ . . . ≤ c1,j ≤ c0,j = ∞, j = 1, . . . , n

for each of the n obligors. The event {ck,j < Aj ≤ ck−1,j} is interpreted as the j-th obligor being in rating
class k at the end of the time period [0, T ]. The corresponding migration probabilities

pk,j := P(ck,j < Aj ≤ ck−1,j) (23)

are usually taken from a rating migration matrix. Note that the default probability is defined by pr,j =
P(Aj ≤ cr−1,j). The vector (l1,j , . . . , lr,j) ∈ Rr with l1,j ≤ . . . ≤ lr,j specifies the loss lk,j if the j-th obligor
migrates to rating class k.5 Hence, the loss variable Lj : Ω → R of the j-th obligor is generalized to

Lj :=
r∑

k=1

lk,j · 1{ck,j<Aj≤ck−1,j}.

The definition of portfolio loss remains unchanged, i.e., L =
∑n

j=1 Lj . Note that if r = 2, then the multi-state
model is just the two-state model from Section 2.1.

6.2 Counting rating migrations

The objective of this subsection is the generalization of the one-dimensional random variable D that counts
defaults to an r-dimensional variable M that counts rating migrations. First of all, we define for k = 1, . . . , r

and j = 1, . . . , n a rating indicator
Ik,j := 1{ck,j<Aj≤ck−1,j}. (24)

Note that Ir,j is the default indicator. Let Mk :=
∑n

j=1 Ik,j specify the number of obligors in rating class k

at time T .
For the rest of this subsection, we assume that the n-dimensional vector

((I1,1, . . . , Ir,1), . . . , (I1,n, . . . , Ir,n)) (25)

is exchangeable. As a consequence, each obligor has the same vector of migration thresholds (c0, . . . , cr) and
there exist functions p̄k : Rm → [0, 1], 1 ≤ k ≤ r, which specify the conditional migration probabilities for
all obligors:

p̄k(ψ) = P(ck,j < Aj ≤ ck−1,j | Ψ = ψ)

for all ψ ∈ Rm and j = 1, . . . , n.
We will now compute conditional and unconditional distributions of M = (M1, . . . , Mr). Conditional on

Ψ = ψ, the probability that M equals j = (j1, . . . , jr) with
∑r

k=1 jk = n is given by

P(M = j | Ψ = ψ) =
n!∏r

k=1 jk!

r∏

k=1

p̄k(ψ)jk .

5Note that lk,j can also be negative, i.e., lk,j represents a gain.

12



The unconditional distribution of M is obtained by integrating over the distribution F of the systematic
factors Ψ:

P(M = j) =
∫

Rm

P(M = j | Ψ = ψ) dF (ψ) =
n!∏r

k=1 jk!

∫

Rm

r∏

k=1

p̄k(ψ)jk dF (ψ).

As in the two-state case we consider the example of a homogeneous one-factor model: assume that all
obligors have the same migration probabilities p1, . . . , pr with corresponding thresholds c0, . . . , cr specified
by (23) and the same R2. For this model class the vector of rating indicators (25) is exchangeable and the
unconditional distribution of M equals

P(M = j) =
n!∏r

k=1 jk!

∫

R

r∏

k=1

p̄k(ψ)jk dN(ψ)

=
1

(2π)1/2

n!∏r
k=1 jk!

∫

R

r∏

k=1

p̄k(ψ)jke−ψ2/2dψ, (26)

where p̄k is specified by

p̄k(ψ) = N

(
ck−1 −

√
R2ψ√

1−R2

)
−N

(
ck −

√
R2ψ√

1−R2

)
. (27)

6.3 Maximum likelihood estimator for rating data

In Section 3.3, moment estimators and MLE techniques were presented to derive parameters of the factor
model from default data. We shall now generalize maximum likelihood estimation to rating data. The
replacement of default data by rating data significantly increases the amount of information available for
calibration of the model: we now infer dependence not only from joint defaults but also from rating up-
grades and downgrades. This is an important improvement, particularly for good rating classes, which are
characterized by a low number of defaults.

The setup is similar to that of Section 3.3. In each time period t = 1, . . . , s we group the monitored
companies into cohorts. Let n(t) denote the number of obligors in a given cohort at the start of period t and
m(t) = (m1(t), . . . , mr(t)) the rating vector of the cohort. More precisely, mk(t) specifies the number of oblig-
ors in rating class k at the end of period t. The companies within a cohort are assumed to be homogeneous,
i.e., conditionally on systematic factors their vectors of rating indicators (I1,1, . . . , Ir,1), . . . , (I1,n, . . . , Ir,n)
are independent and identically distributed.

The specification of the likelihood function follows a similar approach as in Section 4.3. The main
difference is that the variables D(t), which count defaults, are replaced by the more general variables
M(t) = (M1(t), . . . , Mr(t)), which specify the number of companies in the different rating classes at the end
of period t.

We shall now apply the maximum likelihood estimator to the homogeneous one-factor model. Assuming
that the homogeneous migration probabilities p1, . . . , pr with corresponding thresholds c0, . . . , cr have already
been specified it remains to apply maximum likelihood estimation to the homogeneous R2. It follows from
the unconditional distribution (26) of M(t) that the likelihood function has the following form:

L(R2 | m) =
s∏

t=1

n(t)!∏r
k=1 mk(t)!

∫

R

r∏

k=1

p̄k,R2(ψ)mk(t) dN(ψ), (28)

where p̄k,R2 is specified by

p̄k,R2(ψ) = N

(
ck−1 −

√
R2ψ√

1−R2

)
−N

(
ck −

√
R2ψ√

1−R2

)
. (29)

Finally we derive the likelihood function for the model consisting of two homogeneous cohorts that was
specified in Section 4.3. We assume that we have observations for s time periods: the rating vector for cohort
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i = 1, 2 and time period t = 1, . . . , s is denoted by mi(t) = (m1i(t), . . . , mri(t)). The likelihood function
L(R2

1, R
2
2, ρ | m1, m2) for the parameters R2

1, R
2
2, ρ equals

s∏

t=1

∫

R2

2∏

i=1

ni(t)!∏r
k=1 mk,i(t)!

r∏

k=1

p̄k,R2
i
(ψi)mk,i(t) dNρ(ψ1, ψ2),

where p̄k,R2
i

is specified by (29).

6.4 Model validation with rating data

We repeat the calculations presented in the second column of Table 2 but replace the time-series of defaults
by time-series of rating migration vectors. The ML estimation is based on the likelihood function (28). The
results are displayed in the first column of Table 4. The second column is given for comparison and presents
the corresponding estimates derived from default data (column 2, Table 2).

Intra Correlations
in % Rating Default

Aerospace / Automotive 5.5 8.9
Consumer / Service Sector 3.0 9.7
Energy & Natural Resources 11.4 26.2
Financial Institutions 13.4 15.8
Forest & Building Products 5.9 17.1
Health Care / Chemicals 5.0 11.3
High Technology 5.4 17.7
Insurance 13.9 10.3
Leisure Time / Media 9.8 18.0
Real Estate 29.0 51.0
Telecommunications 10.3 31.1
Transportation 7.6 11.2
Utility 6.1 29.8
Average 9.7 19.8

Table 4: Intra correlations using rating data

The intra-correlations derived from the rating time-series are lower for all but one industry. The average
intra-correlation is reduced by more than 50% from 19.8% to 9.7%. Inter-correlations show the same
behavior: the average inter-correlation is reduced from 10.1% to 4.5%. These estimates are in line with
the results in the literature, see for example the correlation estimates obtained with the Directional Rating
Transition Matrix in Akhavein et al. (2005). We shall discuss potential explanations for the striking
difference between correlations obtained from rating data and correlations obtained from default data in
Section 7.2.

7 Model extensions

7.1 Relaxing the normal distribution assumption

In all of the previous calculations we have assumed that the risk factors and, consequently, the ability-to-
pay variables follow a multivariate normal distribution. In the following, we relax the normal distribution
assumption to allow for fat tails and skews. More precisely, we calculate estimates for intra-correlations under
three different distribution assumptions for each of the 13 industry cohorts (with 7 rating subcohorts):
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(i) The systematic factor follows a t-distribution, the idiosyncratic factors are normally distributed.

(ii) The systematic factor and the idiosyncratic factors follow a multivariate t-distribution.6

(iii) The systematic factor follows a skew normal distribution, the idiosyncratic factors are normally dis-
tributed.7

Compared to the Gaussian model, the additional parameter in each of these models improves the fit to the
data. Overall, the best calibration results are obtained in model (ii) or, more precisely, in a model that
follows a multivariate t-distribution with a high degree of freedom. Table 5 illustrates this result for rating
time-series. The first row shows the average intra-correlations (R2s) for selected degrees of freedom. The
last column labeled by ∞ corresponds to the normally distributed model. The average intra-correlation of
9.7% is consistent with the average correlation shown in Table 4. Note that intra-correlations decrease for
lower degrees of freedom, which is counterbalanced by higher tail dependencies in these models. The second
row in Table 5 displays the average value of the log-likelihood function at the 13 R2s for each of the selected
degrees of freedom. The maximum is obtained for a degree of freedom that is close to 65. A similar result
holds for default data.

Degree of freedom 4 10 30 50 60 65 70 90 ∞
Intra-correlation 4.8 5.2 6.1 6.7 6.9 7.0 7.0 7.3 9.7
Log-likelihood -847.71 -733.35 -712.80 -710.89 -710.73 -710.72 -710.76 -711.11 -726.15

Table 5: Variation of intra-correlation (in %) and log-likelihood function with degrees of freedom

Further analysis is required to decide whether it is justified to replace the Gaussian distribution by a
more complex distribution class.8

7.2 Modeling the credit cycle

Rating systems are usually characterized as point-in-time or through-the-cycle, see Basel Committee on
Banking Supervision (2000). In a point-in-time process, a rating reflects an assessment of the borrower’s
current condition and most likely future condition over the course of the chosen time horizon, typically one
year. As a consequence, the point-in-time rating changes as the borrower’s condition changes over the course
of the credit cycle. In contrast, a through-the-cycle process requires assessment of the borrower’s riskiness
based on a bottom-of-the-cycle scenario. In this case, a borrower’s rating would tend to stay the same over
the course of the credit cycle. Ratings from external rating agencies are typically characterized as through-
the-cycle. It is obvious, however, that the S&P rating system is a combination of both rating philosophies,
see Cornaglia and Morone (2009). This is highlighted by the facts that the proportion of downgrades to
upgrades as well as the actual default ratios of the different rating classes are strongly correlated with the
credit cycle.

In our analysis we have ignored these characteristics of S&P data. In fact, we made the assumptions
that risk factors do not exhibit serial dependence over time and default probabilities of rating classes are
constant over time. The application of this oversimplifying estimation model to rating data with rather
complex characteristics might explain the significant differences between estimates derived from default
data and estimates derived from rating data.

6Note that in this setup the idiosyncratic factors are no longer independent, see McNeil et al. (2005).
7The skew-normal distribution is an extension of the normal distribution allowing for the presence of skewness, see Arellano-

Valle and Azzalini (2006) for more information.
8Hamerle and Rösch (2005) analyze the impact of different distribution assumptions for the risk factors on the loss distribution

of the credit portfolio model. They come to the conclusion that even if the correct distribution is specified by a t-copula, a

misspecified Gaussian model does not necessarily underestimate risk.
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The challenge of having to cope with different rating philosophies has already been addressed in Hamerle
et al. (2003) and Rösch (2005). They also use S&P default data but mimic a point-in-time rating by including
information about the credit cycle. As a consequence, correlation estimates are significantly reduced.

McNeil and Wendin (2006, 2007) propose Generalized Linear Mixed Models (GLMM) as framework
for modeling dependent defaults and rating migration. The GLMM-setting allows for the inclusion of
observable factors (e.g. macroeconomic indicators as proxies for the credit cycle) and serial dependence
of latent risk factors. A drawback of this technique is that serially correlated latent risk factors yield
joint migration distributions in terms of high-dimensional integrals, which are difficult to calculate with
standard ML techniques. Alternative calibration methodologies are simulated ML (Koopman et al., 2005)
and Bayesian techniques. The latter approach is used in McNeil and Wendin (2006, 2007), who report
intra-correlations (inter-correlations) of 10.9% (6.5%) for S&P default data and 8.7% (2.6%) for rating data.

8 Conclusion

Let us return to our initial question and compare the correlation estimates derived from historical default
and rating data to correlations of equity time-series. Akhavein et al. (2005) apply Fitch’s Vector Model 2.0,
which is an equity-based approach, and obtain an average intra-correlation of 24.1% and an inter-correlation
of 20.9% for the 25 Fitch industry segments. We used a different set of equity time-series covering a 10y
period from 1998 to 2007. Based on the S&P industry classification we computed rather homogeneous intra-
correlations for the 13 industry segments with an average value of 24.7%. The average inter-correlation is
20.4%. These equity correlations are higher than all the estimates derived from historical default and rating
data that were presented in this paper. The difference is particularly pronounced for correlations between
industry segments. Hence, we do not see any indication that credit portfolio models underestimate joint
default probabilities if calibrated with equity data. On the contrary, there seems to be the danger that
equity correlations might underestimate diversification effects between different industries.

The difference between intra-correlations and inter-correlations also has an important consequence for the
design of a credit portfolio model. Portfolio models that use a single systematic factor across all industries
do not provide sufficient flexibility to capture the complex dependence structure exhibited in rating data.
This fact clearly highlights an important weakness of the Basel II framework for credit risk.

Historical ratings are an indispensable data source for calibrating and validating credit portfolio mod-
els. However, our analysis provides another confirmation that it is a notoriously difficult task to calibrate
a realistic dependence structure for joint defaults and rating migrations. The impact of the credit cycle
together with the complex characteristics of the historical rating data make it difficult to specify an appro-
priate estimation model. The significant differences in the correlation estimates obtained from default and
rating data further highlight this difficulty. Another problem is the volatility observed in correlations: the
estimates strongly vary across industries as well as over time, which makes it difficult to develop reliable
estimation procedures. More work is needed to better understand the dynamics of correlation changes, in
particular under stressed market conditions.
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