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Abstract

The concept of a flexible region describes an infinite variety of symmet-
rical shapes to enclose a particular region of interest within a space.
In experimental design, the properties of a function on the region
of interest is analyzed based on a set of design points. The choice
of design points can be made based on some discrepancy criterion.
This paper investigates the generation of design points on a flexible
region. It uses a recently proposed new measure of discrepancy for
this purpose, the Central Composite Discrepancy. The optimization
heuristic Threshold Accepting is used to generate low discrepancy U -
type designs. The proposed algorithm is capable to construct optimal
U -type designs under various flexible experimental regions in two or
more dimensions. The illustrative results for the two dimensional case
indicate that using an optimization heuristic in combination with an
appropriate discrepancy measure, it is possible to produce high quality
experimental designs on flexible regions.
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1 Introduction

The development of a flexible region approach by Draper and Guttman (1986)
built on previous research in experimental design. The central question is
to understand the effect from points selecting in the experimental domain
(input space) for response surface analysis, where the functional relationship
between input and output is not known. It is assumed that a sub-space
of the input space can be localized such that inputs from this sub-space
produce an output that meets some set objective. This sub-space selected
for experimental examination is coined the region of interest, represented by
a set of design points.

In standard settings, simple shapes are preferred for the region of interest
such as spherical, cuboidal, and triangular.1 The cuboidal shape, typically
multi-dimensional unit cubes, has received a great deal of attention, and
many approaches for constructing good experimental designs have been pro-
posed.2 However, for many applications, a standard shape might not provide
a good approximation of the region of interest. The target is to generate
low discrepancy designs for a given region of interest, but it is difficult to
derive appropriate designs from simple transformations. A viable solution to
overcome this obstacle are designs constructed for differently shaped regions
of interest.

The idea of a flexible region as proposed by Draper and Guttman (1986)
can be considered as a combination of the first two of the standard shapes
(spherical and cuboidal). By an adjustment of a single parameter, it becomes
possible to obtain an infinite variety of intermediate symmetrical shapes.
The approach is particularly useful as it offers the possibility for intuitive
linguistic mapping to shape types. When applying a flexible region to a real
problem Draper and Guttman (1986) point out that we do have some a priori
knowledge as to what the region of interest should ‘look like’, which is first
expressed in terms of natural language. This specification is then mapped
to a specific value of the parameter determining the shape of the flexible
region. This process offers some intriguing research possibilities for a tool to
generate suitable flexible regions systematically.3

In this paper we consider U -type designs as proposed Fang (1980) and
Wang and Fang (1981). In a U -type design all design points are located on
a fine uniform grid over the search space. No specific assumptions are made

1See Draper and Lawrence (1965, 1966).
2See, e.g., Fang et al. (2006) for a recent survey.
3In particular, fuzzy sets and fuzzy logic (Zadeh (1965, 1987)), invented to map impre-

cise linguistic specifications to numeric values, would appear to be a possible candidate
for this purpose.
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about the functional relationship between input factors and output. Thus,
the aim consists in finding a U -type design which covers the input space
as uniformly as possible, e.g., by minimizing some appropriate measure of
discrepancy. The resulting optimized U -type designs have the attractive
feature to gather the maximum amount of information for a given number
of design points without assuming any a priori knowledge.

There are several common measures for uniformity, amongst which the
centered L2-discrepancy proposed by Hickernell (1996) would appear at first
glance to be a reasonable choice given that a flexible region is a symmetrical
shape with its origin at the center of the region of interest. However, in
common with other discrepancy measures, the discrepancy value is defined
for a hypercube and cannot be directly adapted for other shape types. The
central composite discrepancy (CCD) suggested by Chuang and Hung (2009)
is not fixed at a constant point from which to calculate the discrepancy
value, which removes the constraint on the shape type and hence makes it
possible to apply it also for a flexible region. At present, there is no closed
form expression for the CCD. Therefore, the calculation of the CCD for a
given design is computational intensive imposing binding constraints on the
dimension and size of designs to be considered in an optimization approach.

The process of generating low discrepancy designs on a flexible region is
framed as an optimization problem, with the CCD the objective function to
be minimized. Threshold Accepting (TA) is the heuristic technique imple-
mented to tackle this optimization problem. It has been applied successfully
to many experimental design problems (see, e.g., Fang et al. (2000), Winker
(2001, Ch. 11), and Fang et al. (2005)). For some problem instances, lower
bounds could be derived which could be achieved by the TA implementation
(Fang et al. 2003).

In this paper, we describe how to produce designs of low discrepancy
for different flexible region shapes and different design configurations. The
results show that the TA implementation is able to derive U -type designs
with low values of the CCD for different regions of interest.

The remainder of this paper is structured as follows: In Section 2 we
discuss Draper and Guttman’s (1986) formulation of a flexible region; in
Section 3 we cover U -type design and the CCD as measure of uniformity; in
Section 4 we state the algorithm TA in the context of design optimization;
in Section 5 we describe the experiment set up and results; and in the final
Section 6 we summarize our findings and consider the next steps for research.
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2 Flexible Region Formulation

For any positive value of m, Draper and Guttman (1986) define a flexible
region R in dimension s by the following constraint on the potential design
points x = (x1, . . . , xs):

|x1|
m + |x2|

m+, · · · , +|xs|
m ≤ 1. (1)

This definition if for the hypercube [−1, 1]s, while in recent work on exper-
imental design the hypercube Cs = [0, 1)s is considered. To account for
this change, the original definition is modified as follows: for a given shape
parameter m > 0, the flexible region Rm is defined by

Rm = {x ∈ [0, 1]s | (|2(x1 − 0.5)|m + . . . + |2(xs − 0.5)|m) ≤ 1}. (2)

In both original and modified definition, the parameter m determines the
shape of the flexible region. Figure 1 shows some examples for different
values of m in the two dimensional case. Referring to the concept of U -type
designs, for this figures – as in the following optimization approach – only
design points lying on a grid over the unit cube are considered. Specifically,
the unit cube is covered by a grid of q2 points, where q = 49 for the current
application.

As can be seen, when m → ∞ then the entire input space is the region
of interest, and when m = 0.3 only the very center and the extreme points
extending to one edge cover the region of interest.4

With regard to the goal of a uniform covering of the input space by only
a few design points, it is obvious from Figure 1 that using good designs
for hypercubes, that corresponds to m → ∞, is not a feasible approach for
smaller values of m. In particular, a simple projection of a good design on
Cs to Rm will contain only few points for small values of m which might
not be scattered uniformly on Rm. Constructing more refined mappings and
keeping the number of design points fixed while minimizing the discrepancy
on Rm appears not possible. Therefore, we consider explicit construction
of low discrepancy designs on flexible regions in the following based on a
measure of discrepancy appropriate for each flexible region case.

4It might be observed that as m gets smaller the flexible region transformation is a
deformation and rotation of three types of symmetrical shape, which are, in their most
basic form, a square, circle, and astroid.
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Figure 1: Examples of Flexible Regions
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3 U-Type Design and Central Composite Dis-

crepancy

We define a U -type design P as a set of n points, P = {xxx1, . . . ,xxxn}, sampled
from the s-dimensional unit cube Cs on a grid with qs points. This set of
points can also be described by a n × s design matrix U , where each row
corresponds to one run and each column to one factor. Thereby, the factors
can take on l = 1, . . . , q different levels. The correspondence between the
set of design point sets and the set of design matrices U(n, qs) is given by
the transformation 2l−1

2q
, l = 1, . . . , q. Obviously, the number of possible grid

points grows at rate qs. Therefore, each design will only consist of a number
n of grid points which typically is much smaller than qs.

Having to represent the input space by a subset of grid points results in
the problem to select these points in an optimal way. To this end, first one
has to define properties of ‘good’ point sets. This is done using measures of
design uniformity (Fang et al. 2006, Ch. 3). The lower the design discrepancy
value, the more uniform the design. Several discrepancy formulations have
been proposed for the case of unit hypercubes (Hickernell 1996). However,
these measures are not appropriate for a flexible region when m is small. In
fact, aiming at low discrepancy designs based on these standard measures
results in designs on the flexible region putting almost all design points on
its boundary.

The central composite discrepancy (CCD), as proposed by Chuang and
Hung (2009), measures uniformity only with regard to the flexible region,
i.e., considering subsets falling within the flexible region. While the concept
is similar to the centered L2-discrepancy proposed by Hickernell (1996), it
provides a useful discrepancy measure which is suitable for differently shaped
regions of interest. The CCD for a set of points P in a region of interest R
is defined by

CCDp(P) =

{

1

v(R)

∫

R

1

2s

2s

∑

k=1

∣

∣

∣

∣

N(Rk(x),P)

n
−

v(Rk(x))

v(R)

∣

∣

∣

∣

p

dx

}1/p

, (3)

where p > 0 is a parameter defining the underlying norm (for our application,
p = 2 is used, corresponding to the L2-norm); v(R) is the volume of the
region R and v(Rk(x)) the volume of Rk(x), a subregion of R defined below;
n is the number of all design points, and N(Rk(x),P) the number of design
points in subregion Rk(x). In contrast to the centered L2-discrepancy, no
simple analytical expression is available for CCDp on general flexible regions.
Therefore, we resort to an approximation based on the qs grid on [0, 1]s
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introduced above. The volume of R is approximated by the number of these
grid points falling into R and similarly for Rk(x).

The principle idea of the CCD, and the reason why it can be applied to
flexible regions, is that measurement is not taken from one fixed point: every
point in R is considered a center point. At a given grid point we divide R into
2s subregions. The dividing hyperplanes pass through the grid point and are
parallel to one axis. For example, in the two dimensional case, R is cut into 4
subregions, divided by a horizontal and vertical line crossing at the grid point.
For each resulting subregion Rk the share of design points in that subregion
from all design points ( N(Rk(x),P)/n) is compared with the relative volume
of the subspace which is approximated by the fraction of grid points falling
into Rk(x) versus R. The absolute values of this differences are taken to
the p-th power before adding up over all 2s subregions. Multiplication by
1
2s

provides the average over the subregions. This calculation is repeated for
all grid points in R. The resulting integral (which is again approximated
by a finite sum as only points on the qs grid are considered) provides the
discrepancy measurement after normalization with 1

v(R)
.

An optimal U -type design P∗ on R is obtained if the n design points from
P are distributed in R in a way to minimize CCDp(n,P), or more formally,

P∗ = arg min
P

CCDp(P) . (4)

4 Threshold Accepting

The local search algorithm TA, first devised by Dueck and Scheuer (1990),
is an optimization technique that has been applied successfully to construct
low discrepancy designs on unit cubes using centered discrepancy and several
other discrepancy measures by, e.g., Fang et al. (2000) and Fang et al. (2002).
Based on theoretical lower bounds for the discrepancy, Fang et al. (2003) and
Fang et al. (2005) obtain uniform designs, i.e., U -type designs with the lowest
possible discrepancy, for several problem instances using this methodology. It
is highly flexible (non problem specific) and simple to implement and adapt.
The new algorithm for the construction of low discrepancy designs on flexible
regions is given by Algorithm 1. Is is adapted from the algorithm suggested
by Winker (2001, Ch. 11) for the uniform design problem on the unit cube.
The fact that no closed form analytical expression for CCDp is available
requires additional attention. Some of these issues will be addressed after
discussing the general outline of the algorithm.

First (1:), we initialize the algorithm with a U -type design U c on Rm,
a design with points chosen from the qs grid points falling into Rm. To
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Algorithm 1 TA Algorithm for Design Optimization.
1: Initialize design U c ∈ U
2: Initialize nR, nS , and threshold sequence τr, r = 1, . . . , nR

3: for r = 1 to nR do

4: for i = 1 to nS do

5: Generate at random a solution Un ∈ N (U c)
6: if CCD(Un) − CCD(U c) < τr then

7: U c = Un

8: end if

9: end for

10: end for

this end, each column of U c is filled with n uniform random numbers drawn
from 1, . . . , q. Obviously, the resulting design points x (rows of U c after
transformation to [0, 1)) may not fall in the flexible region Rm as desired.
Therefore, the initial design matrix U c is iterated through row by row. The
corresponding design point x is in the region of interest Rm if

∑s
j=1 |xj|m ≤ 1.

Any point that is found to lie outside the flexible region is subsequently
moved until it is inside. Once all points are inside the region of interest, the
objective function, the CCD value, is then calculated for this design.

The next stage of the initialization phase is to generate the threshold
sequence, a critical component of the algorithm and one that controls the
criteria for accepting and rejecting the design changes at each iteration i. A
data-driven approach as outlined by Fang and Winker (1997) is implemented
to perform this task. It takes the initial design and selects a design point
element – a row and column index – at random. A level is drawn at random
from {1, . . . , q} to replace the previous point element. The new point is
tested as before to check whether it falls into Rm. If it is rejected, then
the level selection process is repeated until the point is in the region of
interest. The objective function value is calculated for this modified design
and subtracted from the original objective function value; the absolute value
of the difference is stored in a vector of length nR. This process is repeated
nR times and the resulting vector is sorted in descending order providing the
threshold sequence.

In the main body of the algorithm, from line 3:, we begin optimization of
the initial design matrix. At each iteration we select a new design matrix Un

in a neighborhood of the current one (N (U c)) at random. The neighborhood
mimics the idea of a natural ordering (Winker 2001, Ch. 11) where a neigh-
borhood is defined by a generalization of the Hamming distance. This states
that the new design Un might differ from the previous one U c by entries in
k ≤ s columns. We set k = s, and select each column at random, i.e., we
might have several changes in one column. A row from that column is se-

8



lected at random and the point element is replaced. The new point element
can take any level, as long as the point is inside the flexible region – if it
is outside we repeat the replacement procedure until a feasible neighbor is
found, in exactly the same way as done in the threshold sequence generation.

After the changes are applied, the objective function CCD(Un) is calcu-
lated for the new design Un. Finally (6:), the new objective function value
is subtracted from the objective function of the previous design matrix and
the result compared against the current threshold value τr. The new design
is deterministically adopted if this result is lower than the current threshold
value.

At each step r the next value in the threshold sequence is taken, having
the effect of tightening the condition on accepting a design that is worse,
by some degree, than the previous design. Thereby, it is expected that the
final design after the nR times nS iterations of the algorithm should have
a small CCD value, and hence design points are distributed uniformly over
the flexible region. Whether we are able to find an optimal design, one with
lowest CCD value among all feasible designs, will be discussed in the results
section.

The algorithm of the method to calculate the CCD along with a simple
working example is presented in Appendix A. This is achieved by exploiting
the symmetry of the flexible region in concert with manipulation of simple
data structures in the two dimensional case. Its real worth is in its potential
for extension into higher dimensions. Useful as any development in this
direction may be, research effort ought to be concentrated on finding a general
closed form solution to calculate the CCD in a flexible region, potentially
allowing even to derive lower bounds.

5 Experiment Description and Results

5.1 Experimental Setup

In order to analyze the performance of the TA implementation for generating
low discrepancy U -type designs on flexible regions, a set of experiments is
run. In particular, different flexible region shapes (corresponding to different
values of the parameter m) are considered as well as different numbers of
design points n. Although the proposed algorithm is capable to construct
optimized designs in higher dimensions, we use d = 2 for illustration. Fi-
nally, the TA algorithm is run with different values for the total number of
iterations, i.e., nR × nS. For each of these problem instances, the best de-
sign obtained during the run of the TA algorithm is recorded as well as the
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corresponding CCD value.
All experiments are implemented using Matlab 2008a, with the objective

function code written using Matlab’s interface to a C compiler. To use com-
piled code for calculating the objective function results in a relevant speed
up reducing execution time by approximately a third. The algorithm is exe-
cuted on an Intel 2 Core Quad, clocking at 2.83 GHz, with 8 GB of RAM, and
with Windows XP Professional x64 Edition, 2003 operating system. Taking
the most intensive experiment, execution time was approximately 26 hours
for 20 design configurations, with 10 separate runs for each configuration to
take account for the stochastic component of TA and at each run a design
optimized over nR × nS = 106 iterations.5

For all designs U(n, qs) in the experiment we set the dimensions s = 2,
and the number of levels q = 31. A smaller number of levels would make the
optimization process a trivial task, especially for flexible regions with m < 1.
The level needs to be of fine enough resolution to well cover smaller regions
(for small values of m) and allow the optimization process the opportunity
to be effective in lowering the discrepancy once points are moved into the
flexible region. Basically, for higher values of q, there are more points to
choose from. Having an odd number of levels increases the space available
for regions of interest for values m < 1.

The number of runs (design points), n, is one of the two varying factors
in the experiment. We select four values for n, {5,7,9,11}. The parameter
characterizing the shape of the flexible region, m, is the other varying factor.
We select five values for m, {9999,2,1,0.5,0.3}, which represents a general
sample of flexible region shape types. Note that due to the constraint on
U -type designs on the qs grid, the first value results in a covering of all grid
points for the given design parameters.

In addition to discussing the stochastic properties of TA applied to de-
sign problems, Winker (2006) provides some suggestions as to how to best
concentrate computational resources in relation to the rate of convergence
towards a global optimum. The algorithm is run with a total of I itera-
tions (I = nr × nS, threshold reductions × design change iterations), and R
replications, the number of times we restart an individual experiment with
different random design to start with and different random numbers for the
selection of neighbors. Thus, total computational resources used for one
problem instance are C = I ×R. If the design matrix is small and the num-
ber of levels few, then it is suggested that it is possible to find an optimum
design for R = C

I
, where I ≥ 5000 might be sufficient, although most of

the instances considered here might be classified as medium sized problem

5All code and any other experiment details are available on request.
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instances, owing to the number of levels. Of course, the specific shape of
the flexible region might possibly alter the problem type classification, e.g.,
for small m, the actual number of feasible grid points becomes rather small.
These subtleties are not explored here. In general, it is not clear how to
select I and R for given C in order to increase the possibility to find good
or even optimal designs. The suggestion, in light of the resources at our dis-
posal, is to select a large I and 10 ≤ R ≤ 20 as suggested by Winker (2001,
p. 129ff). We select R = 10. The computational load for a single evaluation
of the objective function CCD directly influences the upper limit of I. We
select I ∈ {100 000, 1 000 000}, so we are able to see if the empirical results
conform to convergence theory, i.e., the quality of the results improves with
increasing I.

5.2 Results

The results in Tables 1 and 2 are for the two values of I. Given that we run 10
replications for each problem instance, the results obtained can be interpreted
as an empirical distribution. To provide relevant distributional information
along the guidelines suggested by Gilli and Winker (2007), the best and worse
objective function values obtained by optimization are reported, along with
the empirical mean µ̂ and standard deviation σ̂, and the frequency at which
the best objective function was obtained.

To corroborate the quality of these designs, Figure 2 shows the distribu-
tion of points in the flexible region for the designs corresponding to the best
discrepancy values reported in Table 2.

It can be seen that the points are evenly distributed over the design
space, exploiting the space available as best possible, most noticeably when
the flexible region is contracted. Therefore, it appears that using the CCD as
a measure of uniformity is suitable for design optimization on flexible regions.

It might be worth mentioning that, e.g., the designs obtained for m = 0.5
and five design points in Tables 1 and 2 exhibit the same discrepancy, but
have different design patterns as shown in Figure 3. Obviously, the designs
can be obtained from one another by a straight 90 degree rotation of points
about the center of the region of interest. This is an expected outcome as
the CCD meets a key requirement for discrepancy measures, namely to be
invariant under rotation of the coordinates.

The statistical distribution of the discrepancy for optimized designs, as
discussed by Winker (2006), are assumed to have a left truncated distribu-
tion. Furthermore, as I increases, µ̂ should converge to this lower truncation
point, while σ̂2 decreases to zero. The ten fold increase in I in Table 2, as
predicted, produces lower discrepancy values for m > 0.5, where it is less
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Table 1: CCD Values for Optimized Designs U(n, 312) with I = 105 Itera-
tions, Different Values of n and m

Freq. of
n Best Worst Mean Std. dev. Best

m → ∞
5 6.0681e-003 7.1194e-003 6.4929e-003 4.0000e-004 1/10
7 3.6402e-003 4.6933e-003 3.9936e-003 3.2609e-004 1/10
9 2.3389e-003 3.1732e-003 2.6469e-003 2.5964e-004 1/10

11 1.8123e-003 2.1523e-003 2.0140e-003 1.3008e-004 1/10
m = 2

5 8.0134e-003 9.6182e-003 8.6211e-003 5.3071e-004 1/10
7 4.6813e-003 5.6177e-003 5.1166e-003 3.0959e-004 1/10
9 3.0772e-003 4.7956e-003 3.4864e-003 5.5378e-004 1/10

11 2.1632e-003 2.8732e-003 2.4491e-003 2.0259e-004 1/10
m = 1

5 10.7050e-003 10.7472e-003 10.7261e-003 2.2235e-005 4/10
7 5.7358e-003 6.1671e-003 5.7849e-003 1.3447e-004 1/10
9 3.5994e-003 3.9127e-003 3.7410e-003 1.0789e-004 1/10

11 2.4599e-003 3.2180e-003 2.6714e-003 2.1715e-004 1/10
m = 0.5

5 9.2659e-003 9.4682e-003 9.3266e-003 9.7756e-005 7/10
7 4.8260e-003 4.8260e-003 4.8260e-003 0 10/10
9 3.3279e-003 3.5391e-003 3.4238e-003 6.1905e-005 1/10

11 2.6070e-003 2.7642e-003 2.6936e-003 5.0525e-005 1/10
m = 0.3

5 8.9374e-003 8.9374e-003 8.9374e-003 0 10/10
7 2.9999e-003 3.0804e-003 3.0080e-003 2.5451e-005 9/10
9 3.3042e-003 4.2841e-003 3.5982e-003 3.4669e-004 5/10

11 1.2396e-003 1.3358e-003 1.2589e-003 4.0559e-005 8/10
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Table 2: CCD Values for Optimized Designs U(n, 312) with I = 106 Itera-
tions, Different Values of n and m

Freq. of
n Best Worst Mean Std. dev. Best

m → ∞
n Best Worst µ̂ σ̂ Freq of Best

5 5.7737e-003 6.9729e-003 6.1026e-003 4.2891e-004 1/10
7 3.2194e-003 3.7075e-003 3.4968e-003 1.6254e-004 1/10
9 2.1007e-003 3.8121e-003 2.4168e-003 5.0041e-004 1/10

11 1.5385e-003 2.0494e-003 1.6968e-003 1.4887e-004 1/10
m = 2

5 7.7919e-003 10.9979e-003 8.4362e-003 9.9699e-004 2/10
7 4.3638e-003 4.9518e-003 4.5883e-003 1.9771e-004 1/10
9 2.7309e-003 4.3870e-003 3.0636e-003 5.4863e-004 1/10

11 1.9115e-003 2.2086e-003 2.0380e-003 9.7840e-005 1/10
m = 1

5 10.7050e-003 10.7050e-003 10.7050e-003 0 10/10
7 5.7358e-003 5.7499e-003 5.7390e-003 4.2796e-006 4/10
9 3.4662e-003 3.7450e-003 3.5827e-003 9.9585e-005 2/10

11 2.3577e-003 2.5776e-003 2.4564e-003 6.9362e-005 1/10
m = 0.5

5 9.2659e-003 9.2659e-003 9.2659e-003 0 10/10
7 4.8260e-003 4.9250e-003 4.8359e-003 3.1300e-005 9/10
9 3.3031e-003 3.4597e-003 3.3998e-003 6.1503e-005 3/10

11 2.6070e-003 2.7216e-003 2.6541e-003 4.7005e-005 2/10
m = 0.3

5 8.9374e-003 8.9374e-003 8.9374e-003 0 10/10
7 2.9999e-003 2.9999e-003 2.9999e-003 0 10/10
9 3.3042e-003 3.3042e-003 3.3042e-003 0 10/10

11 1.2396e-003 1.3358e-003 1.2493e-003 3.0420e-005 9/10
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Figure 2: Optimized Designs U(n, 312) for I = 106 Iterations, Different Val-
ues of n and m
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likely to consistently find the global minimum. The mean, µ̂, moves closer
to the lowest value found, and the variance σ̂2 is reduced. In the case m = 1,
U(5, 312), at row 9, the best value is found in all 10 runs, which suggests –
although does not prove – that this is the global minimum with an optimal
design. Indeed, as m < 1, the frequency of finding the best value increases,
and at m = 0.3, we have all but the last result always finding the best value.
For larger flexible regions, i.e., m > 1, we cannot state how close our values
of CCD are to the global minimum as no lower bounds are known. Figure 4
shows the difficulty in design optimization for these larger regions. Designs
can be produced of the same discrepancy value but where the design pattern
is quite different – not just a straight rotation of points.6 Simply we have
more points to play with, but we are still able to produce low discrepancy
designs.

Figure 4: Optimized Designs U(7, 312) with Equal CCD Value
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5.3 Evaluation of Results

So far the results presented could demonstrate that the TA implementation
is able to produce designs of low discrepancy on flexible regions. However,
given that no lower bounds are available for the CCD, it cannot be proven
that these designs are actually optimum designs. We provide some additional
evidence on the quality of the results based on a comparison with randomly
generated U -type designs on the flexible region. In passing note that con-
sidering the projections of uniform designs for the unit cube on the flexible
region would not represent a reasonable benchmark as the actual number of
points falling into the flexible region is hard to control for. Thus, we construct

6In fact, in this case, each design point is a reflection of another with the origin of the
axis of reflection at the center of the flexible region.
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I = 105 random designs on the flexible region. The empirical distribution
of the CCD values for these randomly generated designs provides a bench-
mark for evaluating the optimized designs. Some statistics of the empirical
distribution are presented in Table 3 in Appendix B.

It can be seen that random designs have a much worse statistical profile
than optimized designs in all cases: the CCD values are substantially higher
in mean (µ̂) and exhibit a larger standard deviation (σ̂). Furthermore, it is
worth mentioning, that not only the mean results for the optimized designs
are always better than the 1%-quantile of the randomly generated designs,
but that the same finding even holds for the worst outcomes of the optimiza-
tion procedure even with only I = 105 iterations. This serves to reinforce the
point that optimization is absolutely worth the additional time and effort
required to obtain better designs.

6 Conclusion

In this paper we analyze the construction of designs for flexible regions, as
devised by Draper and Guttman (1986), that enclose some region of interest
within a larger design space. We select points on a grid from the region
of interest, resulting in U -type designs. A TA implementation is used to
optimize these U -type designs with regard the CCD, the discrepancy measure
applied,is well suited for flexible regions. In the empirical application we
consider several design configurations and flexible region shapes. The results
indicate that using the TA heuristic, it is possible to produce optimized, low
discrepancy designs that distribute design points uniformly over the region
of interest. In some cases, in particular for small flexible regions, it might
be speculated that the resulting designs are in fact already optimal designs.
The same results are found for most design configurations considered.

There are two obvious paths that can be taken for the next course of re-
search on flexible regions. The first is to run experiments and produce results
for higher design dimensions, although until now the absence of an analyt-
ical formula for the CCD imposes constraints on what can be achieved due
to the computational load for calculating CCD for a given design. However,
this constraint might be relaxed either by obtaining an analytical formula for
the CCD or by making use of efficient updating rules when calculating the
CCD value for a slightly modified design in the course of the optimization
procedure. The other path is to apply the method to a real meta modeling
problem, such as the example described in the original paper by Draper and
Guttman (1986) in order to demonstrate to what extent optimized U -type
designs on flexible regions might improve the results.
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Appendix

A Calculating the CCD

The procedure to calculate the CCD is summarized in Algorithm 2.

Algorithm 2 CCD Calculation Pseudo Code.
1: initialize the grid point and design volume matrices for subregions
2: while flexible region not traversed do

3: if we are not on a slope of the border, advance to the next grid point row
4: for grid points in a row do

5: if we are not on the slope of the border, update the grid point and design volume
matrices

6: calculate the discrepancy contribution at each point in the row
7: sum the discrepancy contributions for all points in the row
8: end for

9: sum the total discrepancy contributions for rows
10: end while

11: calculate and return the CCD

We shall demonstrate the workings of the algorithm using as example a
design U(2, 32) and m = 0.3, as shown in Figure 5.

The top left hand diagram shows the position of the subregions at the
start of a flexible region traversal, where the horizontal and vertical lines mark
the border lines between regions and the labels denote region partitions. The
design points are represented as black squares and the other grid points by
circles. The traversal of the flexible region area is done by row and then
column. With exception of a square flexible region, the number of moves left
to right will be slightly greater than the number or columns, to account for
edges in the slope of a border.

There are several data structures that hold information on a flexible region
to calculate the CCD contributions made at each grid point (1:). These are
now described. A flexible region profile matrix contains the grid point volume
profile and its border coordinates, the column and row numbering of which is
taken relative to the square enclosing the flexible region. For the example it
is {1,2,1; 2,1,3; 3,2,1}. Taking the first row of the border coordinate matrix,
it tells us that the start of the border of the flexible region is at column 1,
row 2, and contains in total 1 grid point in the row of that column; and so on
and so forth for all the other rows in the matrix. A design point profile is a
vector containing the number of design points in each column; another vector
contains the row coordinate of each individual design point, and is grouped
by column and sorted into ascending order. The design point volume profile
is {1, 1, 0}, and the row reference is {1,1}. A grid point volume state matrix
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Figure 5: CCD Calculation Example, U(2, 32)
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contains state data for all the regions, and is updated dynamically during
the traversal (5:). For the design example its initial state is, {0,0,0; 1,3,1}.
The first column represents Regions 1 and 2, and the other column Regions 3
and 4. Similarly, there is a design point state matrix. Its initial state is {0,
0, 0; 0,2,0}.7

At each column of the flexible region, we need to detect whether there is
a difference in grid points between two successive columns. If this is the case
it indicates a slope – a series of edge steps – and determines if the vertical
border is advanced and the state of the volume matrices require updating.
The number of moves of the horizontal border is from 0 to the number of
grid point rows in a column. On the first move, at the left extreme of the
flexible region, no changes are made to any of the volume state matrices.
A reference index for the volume data structures represents the horizontal
border partition for the regions. This index is calculated on each column
move by taking the midpoint of the levels and subtracting it from, (grid
point rows in a column +1)/2. Therefore, the initial reference index starts at
row 2, and is incremented on each row move. The grid point region volumes

7As can be seen here, we ‘know’ we have 2 design points on the second row, but we
also need the row coordinate to get the correct index to update the design point volume
state matrix.
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are, v(R1) = v(R2) = 0, v(R3) = 4 and v(R4) = 1. The design point region
volumes are N(R1) = v(R2) = 0, N(R3) = 2, and N(R4) = 0. The CCD
contribution for all regions at a given grid point in a row is calculated by
(6:),

1

2s
∗

2s

∑

k=1

∣

∣

∣

∣

grid points in Rk

total design points
−

design points in Rk

total grid points

∣

∣

∣

∣

2

,

which is accumulated for all rows in that column and then at every column
for the combined row contributions (9:).

The horizontal border line is moved up one row, as shown in the top
right hand diagram of Figure 5; the reference index for the volume data
structures is incremented to point at row 3. The grid points volumes are
v(R1) = v(R2) = 0, v(R3) = 1, and v(R4) = 4.8 The design point volumes
are N(R1) = N(R2) = 0, N(R3) = 0, and N(R4) = 2.

The vertical border is moved past the first grid point column, and the
horizontal border line moved to below the border of the flexible region, as
shown in the bottom left diagram of Figure 5. As a slope is detected (the ex-
tremes of the flexible region are special cases), this indicates that grid point
volume state needs updating every time the vertical border is moved past a
grid point. The state updating procedure for the design point volume matrix
depends on whether there are any design points in that column, and, if so,
whether the design point row coordinate is the same as the reference index,
the row value. The grid point volume state update is achieved by subtracting
1 from the grid point volume profile matrix for columns representing regions
R3 and R4 at the reference index, and then adding 1 to the columns repre-
senting Regions R1 and R2 at the same reference index. The new state is
thus, {1,2,1; 0,1,0}. This is the mechanism by which we adjust the volumes
for the horizontal partition of the regions. As this process is done dynam-
ically, we only have accurate state data for two horizontal regions, R2 and
R4. However, the total grid points in all rows at either side of the vertical
border can be obtained from the flexible region profile matrix. We subtract
the R2 and R4 values from the vertical region grid point values to obtain the
volumes for the remaining regions.

Next, from the design profile vector it is detected that a design point lies
somewhere in this column. The row coordinate vector is referenced and its
value compared against the row counter. This counter is initialized at current
row coordinate of the flexible region border, obtained from the flexible region

8In R1 and R2 we can see there is no change as the vertical border is still at the far
extreme. In R3 and R4 there is a swap in volume values, as you would expect with the
symmetry of grid point distribution in a flexible Region.
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profile matrix. The row counter is incremented as the vertical border is moved
through the row of grid points. In this instance, as the row counter matches
the value in row coordinates vector, we use the row value to perform the
subtracting and addition in the design point matrix at the correct index.
An index to reference the row coordinates vector is incremented until there
is either a change in the coordinate value (no change means that there are
multiple design points on that grid point), or there are no more design points
in the row. The new state of the design point volume matrix is {0,1,0;
0,1,0}. The grid point region volumes are v(R1) = 1, v(R2) = 0, v(R3) = 3,
and v(R4) = 1. The design point volume region volumes are N(R1) = 1,
N(R2) = 0, N(R3) = 1, and N(R4) = 0.

The horizontal border is moved up a row, as shown in the diagram at
the bottom right hand corner of Figure 5. The grid point volumes become
v(R1) = 1, v(R2) = 0, v(R3) = 3, and v(R4) = 1. The design point region
volumes are N(R1) = 1, N(R2) = 0, N(R3) = 1, and N(R4) = 0. There is
no change in state for any of the volume state matrices.

The whole process is repeated until the right extreme of the flexible region
is reached and the CCD calculation is completed.
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B Results for Random Designs

Table 3: CCD Values of Random Designs U(n, 312), Different Values of n
and m

n 1%-Quantile 5%-Quantile Mean Std. dev.
m → ∞

5 10.4719e-003 12.9712e-003 28.8015e-003 13.9609e-003
7 7.2431e-003 9.0378e-003 20.6056e-003 10.3125e-003
9 5.4937e-003 6.9260e-003 16.0290e-003 8.1655e-003

11 4.4725e-003 5.6412e-003 13.1449e-003 6.7456e-003
m = 2

5 15.2915e-003 19.0478e-003 44.8859e-003 23.1688e-003
7 10.5268e-003 13.3224e-003 32.2371e-003 17.1538e-003
9 8.1290e-003 10.3040e-003 25.1070e-003 13.5587e-003

11 6.5368e-003 8.4048e-003 20.5922e-003 11.1532e-003
m = 1

5 20.1259e-003 25.4062e-003 62.8825e-003 33.7933e-003
7 13.9074e-003 17.9494e-003 45.3668e-003 25.0180e-003
9 10.7174e-003 13.8306e-003 35.3250e-003 19.7503e-003

11 8.7272e-003 11.3008e-003 29.0611e-003 16.3076e-003
m = 0.5

5 17.8230e-003 23.0175e-003 63.5459e-003 36.3084e-003
7 12.2780e-003 16.1212e-003 45.6648e-003 26.7830e-003
9 9.4691e-003 12.7493e-003 35.8907e-003 21.2384e-003

11 7.8787e-003 10.4734e-003 29.5056e-003 17.5753e-003
m = 0.3

5 14.8372-003 17.0365e-003 60.8469e-003 38.4940e-003
7 7.9344e-003 11.6205e-003 43.5809e-003 28.4498e-003
9 6.3830e-003 8.4889e-003 33.9289e-003 22.5533e-003

11 4.9523e-003 7.3624e-003 27.8753e-003 18.7548e-003
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