
Computational Optimization Methods in Statistics, Econometrics and Finance

www.comisef.eu

WPS-011 13/07/2009

M. Gilli
E. Schumann

- Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 -

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6405609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Robust regression with optimisation heuristics ★

Manfred Gilli a and Enrico Schumann a,∗

aDepartment of Econometrics, University of Geneva

Abstract

Linear regression is widely-used in finance. While the standard method to obtain
parameter estimates, Least Squares, has very appealing theoretical and numerical
properties, obtained estimates are often unstable in the presence of extreme obser-
vations which are rather common in financial time series. One approach to deal
with such extreme observations is the application of robust or resistant estimators,
like Least Quantile of Squares estimators. Unfortunately, for many such alterna-
tive approaches, the estimation is much more difficult than in the Least Squares
case, as the objective function is not convex and often has many local optima. We
apply different heuristic methods like Differential Evolution, Particle Swarm and
Threshold Accepting to obtain parameter estimates. Particular emphasis is put on
the convergence properties of these techniques for fixed computational resources,
and the techniques’ sensitivity for different parameter settings.

Last changes: 8 July 2009.

Key words: Optimisation heuristics, Robust Regression, Least Median of Squares

★ The authors gratefully acknowledge financial support from the eu Commission
through mrtn-ct-2006-034270 comisef.∗ Corresponding author: Department of Econometrics, University of Geneva,
Bd du Pont d’Arve 40, 1211 Geneva 4, Switzerland. Tel.: + 41 22 379 8218; fax:
+ 41 22 379 8299.

Email addresses: Manfred.Gilli@unige.ch (Manfred Gilli),
Enrico.Schumann@unige.ch (Enrico Schumann).

1 Introduction

Linear regression is a widely-used tool in finance. A common practice is,
for instance, to model the returns of single assets as a linear combination
of the returns of various types of ‘factors’. Such regressions can then be
used to explain past returns, or in attempts to forecast future returns. In
financial economics such factor models are the main tools for asset pricing,
for instance in the Capital Asset Pricing Model (capm), or in the Arbitrage
Pricing Theory (apt). Even if these models, when interpreted as equilib-
rium models, do not hold in practice, the underlying regressions are still
valuable. A main area of application is risk management, where the re-
gression estimates can be used to construct variance–covariance matrices.
There is considerable evidence of the usefulness of such models in this
context (Chan et al., 1999).

Regression models may not only be used to inform financial decisions by
analysing assets, but may be more explicitly used when constructing port-
folios. For instance, a possible approach to replicate a portfolio or an index
is to find investable assets whose returns ‘explain’ the chosen regressand
(eg, the index); see for instance Rudolf et al. (1999). Assume we have p
assets, and let the symbol xi stand for the return of asset i at some point in
time; we use x∗i for the excess return over a constant riskfree rate. If a risk-
free asset exists, mean–variance portfolio optimisation reduces to finding
the portfolio with the maximum Sharpe ratio. This optimisation problem
can be rewritten as

1 = θ1x∗1 + θ2x∗2 + ⋅ ⋅ ⋅+ θpx∗p + ε

where θi are the coefficients to be estimated, and ε holds the errors. Esti-
mating the θi with Least Squares and rescaling them to conform with the
budget constraint is equivalent to solving a mean–variance problem for the
tangency portfolio weights, see Britten-Jones (1999).

We can also find the global minimum-variance portfolio by running a re-
gression (Kempf and Memmel, 2006). We write the portfolio return as the
sum of its expectation µ and an error ε, hence

µ + ε = θ1x1 + θ2x2 + ⋅ ⋅ ⋅+ θpxp .

2

Imposing the budget constraint ∑ w = 1 and rearranging we get

xp = µ + θ1(xp − x1) + θ2(xp − x2) + ⋅ ⋅ ⋅+ θp−1(xp − xp−1) + ε .

We can directly read off the portfolio weights from the regression; the
weight of the pth position is determined via the budget constraint.

Finally, linear models are used to evaluate the ex post performance of
investment managers: since Sharpe (1992), ‘style analysis’ has become a
building block in performance measurement and evaluation. The regres-
sion coefficients are then interpreted as portfolio weights and the residuals
as managerial skill (or luck).

The standard method to obtain parameter estimates for a linear regression
model is Least Squares (ls). ls has very appealing theoretical and numer-
ical properties, but the resulting estimates are often unstable if there ex-
ist extreme observations which are common in financial time series (Chan
and Lakonishok, 1992; Knez and Ready, 1997; Genton and Ronchetti, 2008).
In fact, a few or even a single extreme data point can heavily influence
the resulting estimates. A much-studied example is the estimation of β-
coefficients for the capm, where small changes in the data (resulting, for
instance, from a moving-window scheme) often lead to large changes in
the estimated β-values. Earlier contributions in the finance literature sug-
gested some form of shrinkage of extreme coefficients towards more rea-
sonable levels, with different theoretical justifications (see for example
Blume (1971); Vasicek (1973); Klemkosky and Martin (1975)). An alterna-
tive approach, which we will deal with in this Chapter, is the application
of robust or resistant estimation methods (Chan and Lakonishok, 1992;
Martin and Simin, 2003).

There is of course a conceptual question as to what constitutes an extreme
observation or outlier in financial time series. Extreme returns may occur
rather regularly, and completely disregarding such returns by dropping
or winsorising them could mean to throw away information. Errors in the
data, though, for example stock splits that have not been accounted for,
are clearly outliers. Such data errors occur on a wide scale, even with com-
mercial data providers (Ince and Porter, 2006). Hence in particular if data
are processed automatically, alternative techniques like robust estimation
methods may be advisable.

3

In this Chapter, we will discuss the application of robust estimators. Such
estimators were specially designed not to be influenced too heavily by
outliers, even though this characteristic often comes at the price of low effi-
ciency if the data actually contain no outliers. Robust estimators are often
characterised by their breakdown value. In words, the breakdown point
is the smallest percentage of contaminated (outlying) data that may cause
the estimator to be affected by an arbitrary bias (Rousseeuw, 1997). While
ls has a breakdown point of 0%, other estimators have breakdown points
of up to 50%. Unfortunately, the estimation becomes much more difficult,
and for many models only approximative solutions exist. We will describe
the application of heuristics to such optimisation problems. More precisely,
we will compare different optimisation methods, namely Differential Evo-
lution, Particle Swarm, and Threshold Accepting.

The remaining Chapter is structured as follows: Section 2 will introduce
the linear regression model and several alternative optimisation criteria for
parameter estimation. Section 3 will discuss numerical estimation strate-
gies, ie, we will discuss different optimisation procedures. In Section 4
then, we use the Monte-Carlo setup from Salibian-Barrera and Yohai (2006)
to test the convergence behaviour of the different optimisation methods
when used for a specific estimator, Least Median of Squares. Section 5
concludes.

2 The model

We consider the linear regression model

y =

[
x1 ⋅ ⋅ ⋅ xp

]
⎡
⎢⎢⎢⎢⎣

θ1

...

θp

⎤
⎥⎥⎥⎥⎦
+ ε .

Here, y is a vector of n observations of the independent variable; there are
p regressors whose observations are stored in the column vectors xj. We
will usually collect the regressors in a matrix X =

[
x1 ⋅ ⋅ ⋅ xp

]
, and write

θ for the vector of all coefficients. The jth coefficient is denoted θj. We will
normally include a constant as a regressor, hence x1 will be a vector of
ones.

4

The residuals r (ie, the estimates for the ε), are computed as

r = y − Xθ̂

where θ̂ is an estimate for θ. Least Squares (ls) requires to minimise the
sum or, equivalently, the mean of the squared residuals, hence the estima-
tor is defined as

θ̂ls = argmin
θ

1
n

n

∑
i=1

r2
i .

The advantage of this estimator is its computational tractability: the ls
solution is found by solving the system of normal equations

(X′X)θ = X′y

for θ.

Rousseeuw (1984) suggested to replace the mean of the squared residuals
with their median. The resulting Least Median of Squares (lms) estimator
can be shown to be less sensitive to outliers than ls; in fact, lms’s break-
down point is almost 50%. More formally, lms is defined as

θ̂lms = argmin
θ

median(r2) .

lms can be generalised to the Least Quantile of Squares (lqs) estimator.
Let Qq be the qth quantile of the squared residuals, that is

Qq = CDF−1(q) = min{r2
i ∣ CDF(r2

i) ≥ q} , (1)

where q may range from 0% to 100% (we drop the %-sign in subscripts).
Hence the lms estimator becomes

θ̂lms = argmin
θ

Q50(r2) ,

and more generally we have

θ̂lqs = argmin
θ

Qq(r2) .

For a given sample, several numbers satisfy definition (1), see Hyndman

5

and Fan (1996). A convenient approach is to work directly with the order
statistics [r2

[1] r2
[2] . . . r2

[n]]
′. For lms, for instance, the maximum breakdown

point is achieved not by minimising Q50(r2), but by defining

h =
⌊n

2

⌋
+

⌊ p + 1
2

⌋
(2)

and minimising r2
[h] (Rousseeuw, 1984, p. 873).

The Least Trimmed Squares (lts) estimator requires to minimise the order
statistics of r2 up to some maximum order k. Formally,

θ̂lts = argmin
θ

1
k

k

∑
i=1

r2
[i] .

To achieve a high breakdown value, the number k is set to roughly ⌊1/2(n+

p + 1)⌋, or the order statistic defined in Equation (2).

lqs and lts estimators are sometimes called ‘resistant’ estimators, since
they do not just reduce the weighting of outlying points, but essentially
ignore them. This property in turn results in a low efficiency if there are
no outliers. However, we can sometimes exploit this characteristic when
we implement specific estimators.

3 Estimation

3.1 Strategies

Robust estimation is computationally more difficult than ls estimation. A
straightforward estimation strategy is to directly map the coefficients of
a model into the objective function values, and then to evolve the coeffi-
cients according to a given optimisation method until a ‘good’ solution
is found. For lms, for instance, we may start with a ‘guess’ of the pa-
rameters θ and then change θ iteratively until the median squared resid-
ual cannot be reduced any further. We will refer to this strategy as the
‘direct approach’. The difficulty with the direct approach arises from the
many local minima that the objective function exhibits. This is illustrated
in Figure 1 which shows the mapping from a given set of coefficients into

6

the median squared residual (ie, the search space) for a capm regression
y = θ1 + θ2x + ε.

−0.5

0

0.5

1

−0.5

0

0.5

1
1

2

3

4

x 10
−4

θ
1

θ
2

m
ed

ia
n(

r2)

Figure 1. Search space for lms.

Heuristic methods deploy different strategies to overcome such local min-
ima. We will compare three different techniques – Differential Evolution,
Particle Swarm, and Threshold Accepting – for the direct approach.

Since many resistant estimators essentially fit models on only a subset of
the data, we may also associate such subsets with particular objective func-
tion values – hence transform the estimation into a combinatorial problem.
An intuitive example is the lts estimator: since the objective is to min-
imise the sum of the k smallest squared residuals, we could also, for every
subset of size k, estimate ls-coefficients. The subset with the minimum ob-
jective function will give us the exact solution to the problem. Since such
a complete enumeration strategy is clearly infeasible for even moderately-
sized models, we will investigate an alternative search strategy based on
Threshold Accepting. We refer to this estimation strategy as the ‘subset
approach’.

In the remainder of this Chapter, we will limit ourselves to lms estimation.
The direct approach is, however, applicable to any estimation criterion that
allows to directly connect the coefficients to the residual vector r. The sub-
set approach presented later is applicable to lqs estimation; it could easily
be modified (in fact, simplified) for lts. Next we outline the different algo-

7

rithms.

3.2 Differential Evolution

Differential Evolution (de) was developed for continuous optimisation prob-
lems (Storn and Price, 1997), we outline the procedure in Algorithm 1. de
evolves a population of nP solutions, stored in real-valued vectors of length
p (ie, the number of coefficients of the regression model). The population
P may be visualised as a matrix of size p × nP, where each column holds
one candidate solution. In every iteration (or ‘generation’), the algorithm
goes through the columns of this matrix and creates a new candidate solu-
tion for each existing solution P(0)

⋅,i . This candidate solution is constructed
by taking the difference between two other solutions, weighting this differ-
ence by a parameter F, and adding it to a third solution. Then an element-
wise crossover takes place with probability CR between this auxiliary solu-
tion P(v)

⋅,i and the existing solution P(0)
⋅,i (the symbol ζ represents a random

variable that is uniformly distributed between zero and one). If this final
candidate solution P(u)

⋅,i is better than P(0)
⋅,i , it replaces it; if not, the old

solution P(0)
⋅,i is kept.

Algorithm 1 Differential Evolution.
1: initialise parameters nP, nG, F and CR

2: initialise population P(1)
j,i , j = 1, . . . , p, i = 1, . . . , nP

3: for k = 1 to nG do
4: P(0) = P(1)

5: for i = 1 to nP do
6: generate r1, r2, r3 ∈ {1, . . . , nP}, r1 ∕= r2 ∕= r3 ∕= i
7: compute P(v)

⋅,i = P(0)
⋅,r1 + F× (P(0)

⋅,r2 − P(0)
⋅,r3)

8: for j = 1 to p do
9: if ζ < CR then P(u)

j,i = P(v)
j,i else P(u)

j,i = P(0)
j,i

10: end for
11: if Φ(P(u)

⋅,i) < Φ(P(0)
⋅,i) then P(1)

⋅,i = P(u)
⋅,i else P(1)

⋅,i = P(0)
⋅,i

12: end for
13: end for

3.3 Particle Swarm Optimisation

The narrative for Particle Swarm Optimisation (ps) is based on swarms of
animals like birds or fish that look for food (Eberhart and Kennedy, 1995).

8

Like de, ps is applicable to continuous problems; Algorithm 2 details the
procedure. We have, again, a population that comprises nP solutions, stored
in real-valued vectors. In every generation, a solution is updated by adding
another vector called velocity vi. We may think of a solution as a position
in the search space, and of velocity as a direction into which the solution
is moved. Velocity changes over the course of the optimisation, the magni-
tude of change is the sum of two components: the direction towards the
best solution found so far by the particular solution, Pbesti, and the direc-
tion towards the best solution of the whole population, Pbestgbest. These
two directions are perturbed via multiplication with a uniform random
variable ζ and constants c(⋅), and summed, see Statement 7. The vector
so obtained is added to the previous vi, the resulting updated velocity
is added to the respective solution. In some implementations, the veloci-
ties are reduced in every generation by setting the parameter δ to a value
smaller than unity.

Algorithm 2 Particle Swarm.
1: initialise parameters nP, nG, δ, c1 and c2

2: initialise particles P(0)
i and velocity v(0)i , i = 1, . . . , nP

3: evaluate objective function Fi = Φ(P(0)
i), i = 1, . . . , nP

4: Pbest = P(0), Fbest = F, Gbest = mini(Fi), gbest = argmini(Fi)
5: for k = 1 to nG do
6: for i = 1 to nP do
7: △vi = c1 × ζ1 × (Pbesti − P(k−1)

i) + c2 × ζ2 × (Pbestgbest − P(k−1)
i)

8: v(k)i = δv(k−1)+ △vi

9: P(k)
i = P(k−1)

i + v(k)i
10: end for
11: evaluate objective function Fi = Φ(P(k)

i), i = 1, . . . , nP

12: for i = 1 to nP do
13: if Fi < Fbesti then Pbesti = P(k)

i and Fbesti = Fi
14: if Fi < Gbest then Gbest = Fi and gbest = i
15: end for
16: end for

3.4 Threshold Accepting (direct approach)

Threshold Accepting (ta) is a descendant of Simulated Annealing and was
introduced by Dueck and Scheuer (1990). Other than de and ps, ta is a so-
called trajectory method and evolves only a single solution. It is based on
a local search (Gilli and Winker, 2009) but may, like Simulated Annealing,

9

also move ‘uphill’ in the search space. More specifically, it accepts new
solutions that are inferior when compared with the current solution, as
long as the deterioration does not exceed a specified threshold, thus the
method’s name. Over time, this threshold decreases to zero, and so ta
turns into a classical local search. Algorithm 3 describes the procedure; for
an in-depth description see Winker (2001).

Algorithm 3 Threshold Accepting.
1: initialise nRounds and nSteps

2: compute threshold sequence τ
3: randomly generate current solution θc

4: for r = 1 : nRounds do
5: for i = 1 : nSteps do
6: generate θn ∈ N (θc) and compute ∆ = Φ(θn)− Φ(θc)
7: if ∆ < τr then θc = θn

8: end for
9: end for

10: θsol = θc

Here, θc denotes the current solution, and θn is the ‘new’ (or neighbour)
solution. For each of the nRounds thresholds, stored in the vector τ, the algo-
rithm performs nSteps iterations, so the number of objective function evalu-
ations is nRounds × nSteps.

3.4.1 Neighbourhood definition

While ta was originally introduced for combinatorial (ie, discrete) prob-
lems, it can easily be modified for continuous functions. We implement
the neighbourhood function N as a small perturbation of the current co-
efficients vector. We use a random step size that is proportional to the re-
spective coefficient (see Algorithm 4). Variations are possible; Winker et al.
(2009) for example suggest to shrink the step size over time.

Algorithm 4 Threshold Accepting – Neighbourhood definition.
1: θn = θc

2: randomly select j ∈ {1, . . . , p}
3: randomly generate ζ ∈ [−z, z]
4: θn

j = θc
j + ζ × (1 + ∣θc

j ∣)

The constant 1 is added in Statement 4 to make a sign-change for the given
parameter more probable: without such a constant, when a coefficient gets
closer to zero in absolute terms, its variation also goes to zero.

10

3.4.2 Threshold sequence

To compute the threshold sequence we take a random walk through the
solution space under the specified neighbourhood function and record the
changes in the objective function. The thresholds are then equidistant quan-
tiles of the distribution of the absolute values of the changes. For the ratio-
nale of this approach see Winker and Fang (1997); Gilli et al. (2006).

Algorithm 5 Computing the threshold sequence.
1: randomly choose θc

2: for i = 1 : nDeltas do
3: compute θn ∈ N (θc) and ∆i = ∣Φ(θc)− Φ(θn)∣
4: θc = θn

5: end for
6: compute empirical distribution CDF of ∆i, i = 1, . . . , nDeltas

7: compute threshold sequence τr = CDF−1
(nRounds−r

nRounds

)
, r = 1, . . . , nRounds

This procedure requires the number of thresholds nRounds to be set in ad-
vance. We set nRounds to 10, even though ta is robust for other choices. There
is some evidence, though, that for very small numbers of thresholds, for
instance 2 or 3, the performance of the algorithm deteriorates (Gilli and
Schumann, forthcoming).

3.5 Threshold Accepting (subset approach)

Let r2
[h] denote the median order statistic of the squared residuals. Stromberg

(1993) noted that an estimator that minimises r2
[h] is equivalent to an estima-

tor that minimises the largest squared residual for a subset of size h. This
is almost equivalent to the so-called Chebyshev estimator for this subset,
defined by

θ̂c = argmin
θ

max ∣ri∣ .

(Only ‘almost equivalent’ because of using the absolute value instead of
squaring the residuals.) A convenient fact about θ̂c is that there exists also
a subset of size p + 1 that yields the same fit as a h-subset. More generally,
the lqs estimator for any order statistic h (not just lms) corresponds to a
Chebyshev estimate of some subset of size p + 1. Thus a solution with this
approach is identified by p + 1 indices, pointing to specific rows in [y X].
Then, by computing θ̂c for this subset, we obtain a link from the subset

11

into an objective function value for the total data set. Stromberg (1993)
suggested to examine all subsets of size p + 1, which is infeasible even
for small models. We will thus apply ta to this subset selection problem.
Algorithms 3 and 5 remain valid; the neighbourhood is implemented as
an exchange of one element from the solution against an index that is
currently not in the solution. (A similar approach is taken in Fitzenberger
and Winker (2007) for quantile regression.)

We thus need to solve two nested optimisation problems: the outer loop
moves through different subsets, while the inner loop needs to find θ̂c for
the given subset. Fortunately, for a subset of size p + 1, there exists an
exact and fast method to compute the Chebyshev-fit. Let Xs be a subset
of X of size (p + 1) × p, the corresponding entries of y are stored in the
vector ys. Then Algorithm 6 describes a method, based on ls, to obtain the
Chebyshev-fit (Stromberg, 1993; Agulló, 1997).

Algorithm 6 Chebyshev regression for p + 1 subset.
1: solve (X′

sXs)θ = X′
sys for θ

2: compute rs = ys − Xsθ
3: compute ω = ∑ r2

s / ∑ ∣rs∣
4: compute σ = sign(rs)
5: compute y∗s = ys − ωσ
6: solve (X′

sXs)θ = X′
sy∗s for θ

7: θc = θ

4 Numerical Experiments

All the considered optimisation techniques are stochastic algorithms, so
restarting the same algorithm several times for the same data will result in
different solutions. We characterise a solution θ by its associated objective
function value. We may now describe the solution obtained from one opti-
misation run as the realisation of a random variable with an unknown dis-
tribution ℱ . For a given data set and a model to estimate (lms in our case),
the shape of ℱ will depend on the particular optimisation technique, and
on the amount of computational resources spent on an optimisation run.
Heuristic methods are specially designed such that they can move away
from local optima, hence if we allow more iterations, we would expect the
method to produce better results on average. In fact, for an ever increasing
number of iterations, we would finally expect ℱ to degenerate to a single

12

point, the global minimum. In practice, we cannot let an algorithm run
forever, hence we are interested in the convergence of specific algorithms
for finite amounts of computational resources. ‘Convergence’ here means
the change in the shape of ℱ when we increase the number of iterations.
Fortunately, it is straightforward to investigate ℱ : fix the settings for a
method (data, parameters, numbers of iterations) and repeatedly restart
the algorithm. Thus we obtain a sample of draws from ℱ , from which we
can compute an empirical distribution function as an estimate for ℱ .

Since we deal with different heuristics – population-based techniques and
trajectory methods – we define computational resources as the number of
objective functions evaluations. For de and ps, this is equal to the number
of generations times the population size, for ta it is the number thresholds
times the steps per threshold. This is justified for lms regression since the
overhead incurred from evolving solutions is small compared with the run
time necessary to compute the median of the squared residuals (which re-
quires a least a partial sorting of the squared residuals). Fixing the number
of function evaluations has the advantage of allowing us to compare the
performance of different methods for a given amount of computational re-
sources. However, we cannot directly compare the subset approach with
the direct approach, since in the former the objective function is much
more expensive.

We use the experimental setting described in Salibian-Barrera and Yohai
(2006), thus we consider the regression model

y = Xθ + ε , (3)

where X is of size n × p, θ is the p-vector of coefficients, and ε is Gaussian
noise, ie, ε∼N(0, 1). We always include a constant, so the first column of
X is a vector of ones. The remaining elements of X and y are normally
distributed with a mean of zero and a variance of one. Thus, the true
θ-values are all zero, and the estimated values should be close to zero.
We replace, however, about 10% of the observations with outliers. More
precisely, if a row in [y X] is contaminated with an outlier, it is replaced by

[M 1 100 0 . . . 0]

where M is a value between 90 and 200. This setting results in a region of
local minima in the search space where θ2 will be approximately M/100. In

13

their paper, Salibian-Barrera and Yohai (2006) analyse how often a given
estimator converges to this wrong solution. This analysis, however, con-
founds two issues: the ability of a given estimator to identify the outliers
on the one hand, and the numerical optimisation on the other. Since we are
interested in the optimisation, we will not compare coefficients, but look
at the value of the objective function.

We set M to 150, and vary the number of regressors p between 2 and 20.
The number of observations n is fixed at 400.

4.1 Results: direct approach

All the methods employed require us to set a number of parameters. We
start with ‘typical’ parameter values: for de, we set the population size nP

to 10 times the number of coefficients; CR and F are set to 0.9 and 0.75,
respectively. Thus we stay closely with the recommendations of K. Price
and R. Storn (see http://www.icsi.berkeley.edu/~storn/code.html). For
ps, we set nP to 200, c1 to 1 and c2 to 2. Inertia (δ) is set to 1, hence velocity is
not reduced systematically. For ta, there are no typical parameter choices,
in particular since the neighbourhood function (Algorithm 4) is problem-
specific. The variable z, which controls the size of the step, was initially set
to 0.2.

Figures 2, 3 and 4 give the results for models with 5, 10, and 20 coefficients,
respectively. The three panels (top to bottom) in every graphic show the
resulting objective function values for 10 000, 20 000, and 30 000 function
evaluations. We estimated the distributions by restarting the algorithms
1 000 times.

For the model with 5 coefficients (which is, in practice, a reasonably-sized
model), de gives the best results. The de runs, with more function evalua-
tions, converge on a small number of local minima. The performance of de
deteriorates, though, with more coefficients, ie, larger models. For p = 20
no solution for de is visibile any more in Figure 4, the distribution is too
far to the right. ps performs best for such larger models, even though the
distribution is skewed to the right. In other words, the method occasionally
converges on a comparatively bad solution. ta gives reasonable solutions,
though generally either de or ps give better results. In particular, the distri-
bution of solutions for ta is rather dispersed. Take for instance the model

14

0

0.5

1

10 000 function evaluations

de

ps
ta

0

0.5

20 000 function evaluations

de

ps ta

0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

0.5

objective function

30 000 function evaluations

de

ps
ta

Figure 2. Direct approach with p = 5.

0

0.5

1

10 000 function evaluations

de

ps

ta

0

0.5 20 000 function evaluations

de

ps

ta

0.45 0.5 0.55 0.6 0.65 0.7
0

0.5

objective function

30 000 function evaluationsde
ps

ta

Figure 3. Direct approach with p = 10.

with p = 20 and 30 000 function evaluations: the probability of reaching
with ta the median solution of ps is only about 1%.

These results are conditional on the chosen values for the method’s param-
eters. An important part of implementing heuristics is hence the ‘tuning’
of the algorithm, ie, finding ‘good’ parameter values. This search is again

15

0

0.5

1

10 000 function evaluations

ps

ta

0

0.5 20 000 function evaluations
ps

ta

0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.5

objective function

30 000 function evaluations

ps

ta

Figure 4. Direct approach with p = 20.

an optimisation problem: find those parameter values that lead to optimal
(or ‘good’) results in every restart, ie, parameter values that lead to a ‘good’
ℱ . Since all methods need several parameters to be set, this optimisation
problem is not trivial, in particular since the objective function has to be
evaluated from simulation and thus will be noisy. Though this is an (in-
teresting) problem to be investigated, for our purposes here, we do not
need such an optimisation – quite the opposite actually. Parameter setting
is sometimes portrayed as an advantage, for it allows to adapt methods to
different problems. True. But at the same time it requires the analyst who
wishes to apply the method to have a much deeper understanding of the
respective method. In other words, the analyst will have to be a specialist
in optimisation, rather than in finance or econometrics.

Boyd and Vandenberghe (2004, p. 5) call a method for solving a particular
problem ‘a (mature) technology, [if it] can be reliably used by many people
who do not know, and do not need to know, the details.’ (Their example is,
fittingly, ls.) If heuristics are to become a technology in this sense, the more
pressing question is not whether we have used the ‘optimal’ parameters,
but how sensitive our method’s solutions are to specific parameter settings.
Since this is a volume on computational finance, let us give a financial
analogy: while parameter optimisation may be regarded equivalent to the
trading side of a business, we are more interested in risk management.

16

CR F median best worst
2.01.51.00.50

0.2 0.2 0.47 0.424 0.507 q
0.4 0.53 0.464 0.575 q
0.6 0.75 0.560 0.962 q
0.8 1.54 0.988 2.080 q

0.4 0.2 0.44 0.399 0.472 q
0.4 0.49 0.437 0.558 q
0.6 0.91 0.631 1.190 q
0.8 2.81 1.660 4.030 not pictured

0.6 0.2 0.41 0.356 0.443 q
0.4 0.48 0.410 0.512 q
0.6 1.39 0.848 1.880 q
0.8 5.36 2.350 7.730 not pictured

0.8 0.2 0.38 0.338 0.432 q
0.4 0.48 0.409 0.523 q
0.6 2.29 1.200 3.640 not pictured

0.8 9.05 3.360 12.770 not pictured

2.01.51.00.50%Table 1
Parameter sensitivity de.

To illustrate this point, we look at the model with p = 20 which proved
the most difficult, and solve it with different settings for the parameters.
The number of function evaluations was set to 30 000. For every parameter
setting we conducted 1 000 restarts. All calculations are based on the same
data, hence the results in the following tables are directly comparable for
different methods.

4.1.1 Parameter sensitivity for Differential Evolution

Table 1 shows the results when we vary F and CR. We include the median,
best, and worst value of the obtained solutions. Furthermore we include
quartile plots (Tufte, 2001; Gilli and Schumann, 2009) of the distributions.
A quartile plot is constructed like a boxplot, but without the box: it only
shows the median (the dot in the middle) and the ‘whiskers’.

The solutions returned by de improve drastically when we set F to low val-
ues while different choices for CR have less influence. This suggests that for
lms-regression, using de needs to be accompanied by testing of the robust-
ness of the solutions. With small F, we evolve the solutions by adding small
changes at several dimensions of the solution. In a sense, then, we have a

17

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.46 0.384 0.921 q
1.0 0.45 0.376 0.944 q
1.5 0.45 0.394 0.985 q
2.0 0.45 0.399 0.938 q

1.0 0.5 0.47 0.404 0.872 q
1.0 0.46 0.391 0.910 q
1.5 0.45 0.371 0.936 q
2.0 0.45 0.402 1.030 q

1.5 0.5 0.46 0.406 0.960 q
1.0 0.46 0.395 0.890 q
1.5 0.45 0.399 0.926 q
2.0 0.45 0.402 0.829 q

2.0 0.5 0.46 0.402 1.120 q
1.0 0.46 0.390 1.010 q
1.5 0.45 0.401 0.850 q
2.0 0.45 0.392 0.833 q

2.01.51.00.50%Table 2
Parameter sensitivity ps for δ = 1.

population of local searches, or at least of slowly-moving individuals.

4.1.2 Parameter sensitivity for Particle Swarm Optimisation

Tables 2–5 give the result for ps; here the picture is different. While there
are differences in the results for different settings of the parameters, the
results are more stable when we vary δ, c1 and c2. Each table gives results
for different values of c1 and c2, with δ fixed for the whole table. The most
salient result is that velocity should not be reduced too fast, hence δ should
be below but close to one.

Though not reported here, we also reran our initial tests (Figures 2, 3 and
4). With ‘improved’ parameter values for both de and ps, both methods
performed equally well for small models, but ps still was superior for large
models.

18

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.61 0.416 1.230 q
1.0 0.59 0.409 1.010 q
1.5 0.59 0.419 0.935 q
2.0 0.58 0.401 0.962 q

1.0 0.5 0.57 0.385 1.090 q
1.0 0.55 0.372 1.040 q
1.5 0.54 0.366 0.854 q
2.0 0.52 0.343 0.890 q

1.5 0.5 0.53 0.353 1.030 q
1.0 0.53 0.361 1.050 q
1.5 0.50 0.360 0.924 q
2.0 0.48 0.339 1.070 q

2.0 0.5 0.50 0.348 0.933 q
1.0 0.49 0.337 0.900 q
1.5 0.46 0.331 0.867 q
2.0 0.44 0.330 0.835 q

2.01.51.00.50%Table 3
Parameter sensitivity ps for δ = 0.5.

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.47 0.348 0.890 q
1.0 0.46 0.339 0.923 q
1.5 0.45 0.339 0.797 q
2.0 0.43 0.327 0.806 q

1.0 0.5 0.46 0.333 0.881 q
1.0 0.44 0.324 0.822 q
1.5 0.43 0.326 0.810 q
2.0 0.41 0.327 0.800 q

1.5 0.5 0.43 0.328 0.834 q
1.0 0.43 0.316 0.818 q
1.5 0.42 0.316 0.840 q
2.0 0.42 0.338 0.847 q

2.0 0.5 0.42 0.332 0.818 q
1.0 0.42 0.337 0.878 q
1.5 0.43 0.327 0.774 q
2.0 0.44 0.358 0.873 q

2.01.51.00.50%Table 4
Parameter sensitivity ps for δ = 0.75.

19

c2 c1 median best worst
2.01.51.00.50

0.5 0.5 0.41 0.330 0.879 q
1.0 0.41 0.328 0.820 q
1.5 0.41 0.335 0.776 q
2.0 0.42 0.348 0.766 q

1.0 0.5 0.42 0.335 0.913 q
1.0 0.42 0.332 0.884 q
1.5 0.42 0.356 0.845 q
2.0 0.43 0.365 0.758 q

1.5 0.5 0.44 0.366 0.882 q
1.0 0.44 0.361 0.830 q
1.5 0.44 0.367 0.781 q
2.0 0.44 0.377 0.832 q

2.0 0.5 0.45 0.375 0.790 q
1.0 0.45 0.386 0.858 q
1.5 0.44 0.380 0.922 q
2.0 0.44 0.364 0.891 q

2.01.51.00.50%Table 5
Parameter sensitivity ps for δ = 0.9.

z median best worst
2.01.51.00.50

0.05 0.58 0.372 6.860 q
0.10 0.63 0.402 4.840 q
0.20 0.77 0.425 3.320 q

2.01.51.00.50%Table 6
Parameter sensitivity ta.

4.1.3 Parameter sensitivity for Threshold Accepting

We ran ta with different values for z (see Algorithm 4): 0.05, 0.10, and
0.20. Table 6 gives the results. The results indicate that z should be small;
in our setting 0.05 performed best on average. At the same time, reducing
z deteriorated the worst solution. Thus for too small step sizes, ta more
often seemed to get stuck in local, but globally suboptimal, minima.

4.2 Results: subset approach

As a first benchmark for our algorithm we ran a greedy search, described
in Algorithm 7. That is, for some random initial solution we check all
neighbours, and always move to the best one, given it improves the current

20

solution. For any given solution, there are (p + 1)(n − p − 1) neighbours,
hence visiting them all is time-consuming but still feasible. If, at some
point, no improvement can be found any more, the search stops.

Algorithm 7 Greedy search for subset selection.
1: select random initial solution θc

2: set converged = false
3: while not converged
4: choose best neighbour θbest = argminθn∈N (θc) Φ(θn)

5: if Φ(θbest) < Φ(θc)
6: θc = θbest

7: else
8: converged = true
9: end if

10: end while
11: θsol = θc

A second benchmark is a classical local search: we start with a random
solution and choose a neighbour randomly. If the neighbour is better than
the current solution, we move to this new solution. This is equivalent to
ta with just one zero-threshold. Results for both searches are shown in
Figure 5 (p = 10), again the distributions are computed from 1 000 restarts.
We also add the results for a subset-selection ta with 10 000 function evalu-
ations. Local search performs already much better than the greedy search,
and even reaches solutions as good as the ta. The ta runs result in a very
steep distribution, thus giving consistently better solutions than the bench-
marks.

0 0.5 1 1.5
0

0.5

1

objective function

ta (subsets)

local search

greedy search

Figure 5. Greedy search, local search, and ta (subsets).

To illustrate the quality of the solutions obtained with the subset approach,
we next plot results for all methods (direct approach and subset approach)
for 10 000 function evaluations. It needs to be stressed, though, that the
objective function for the subset approach is computationally much more
expensive than for the direct approach (one restart needs about 5 times

21

the computing time). We set the parameters of the direct approach tech-
niques to ‘good’ values (de: F is 0.2, CR is 0.8; ps: δ is 0.75, c1 is 2 and c2

is 1; ta: z is 0.05.) We give just selected results to outline the general find-
ings: with a low level of contamination (10%), for small models, the subset
approach gives very good solutions, but lacks behind ps once the model
grows. The subset-selection ta is, however, very robust when the degree
of contamination increases, ie, when the number of outliers increases.

Figure 6 and 7 show results for p = 2 and p = 20 with 10% outliers. The
distributions are obtained from 1 000 restarts.

0.49 0.495 0.5 0.505 0.51
0

0.5

1

← de

ps →
tata (subsets)

Figure 6. Comparison of models with 10 000 function evaluations (p = 2).

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.5

1

← de

ps

ta

ta (subsets) →

Figure 7. Comparison of models with 10 000 function evaluations (p = 20).

4.2.1 Parameter sensitivity for Threshold Accepting

We ran tests where we fixed the number of function evaluations, but varied
the distribution between thresholds (nRounds) and steps per thresholds (nSteps)
(see Algorithm 3). Figure 8 shows the resulting distributions for 10 000
function evaluations.

The algorithm performs worse for very small numbers of thresholds, but
once more than about five thresholds are used, performance becomes sta-
ble.

22

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

objective function

5, 10, 100, 500,

10 000 thresholds ⇒ ⇐ 2 thresholds

Figure 8. ta (subsets): Results for different numbers of thresholds.

5 Conclusion

In this Chapter we described how optimisation heuristics can be used
for robust regression. More precisely, we investigated whether Differen-
tial Evolution, Particle Swarm Optimisation, and Threshold Accepting are
able to minimise the median squared residual of a linear model.

While all the tested methods seem capable of giving ‘good’ solutions to the
lms-problem, the computational resources (ie, number of function evalu-
ations) would have to be increased drastically to make the distribution of
outcomes collapse to a narrow support. In other words, there always re-
mains stochasticity in the solutions. It is difficult to judge the importance
of this remaining randomness without a particular application.

For the direct approach we found that while de performed well for small
models, the obtained results were very sensitive to the specific parameter
settings once we estimated models with more coefficients. ps showed a
much more robust performance. When using good parameter values for
both de and ps, the latter method always dominated de in our tests. The
ta implementations were less efficient in the sense of having much more
variable distributions of solutions. The subset approach was more expen-
sive in terms of computing time, but had the advantage to be very robust
for different models, in particular for high levels of contamination.

Given its speed and robustness, ps would certainly be our first choice for
lms-estimation. But there are several points to be kept in mind. Firstly, all
results are conditional on our model setup. The study of Salibian-Barrera
and Yohai (2006) uses one specific data setup; for alternative data the re-
sults do not have to be similar. Furthermore, while ps performed well on

23

average, some restarts returned low-quality solutions. It is difficult to judge
the relevance of such outcomes: the errors that may occur from the optimi-
sation have to be weighted in light of the actual application, eg, a portfolio
construction process. Our suggestion for actual implementations is thus to
diversify, that is to implement several methods for given problem, at least
as benchmarks or test cases.

References

José Agulló. Exact Algorithms for Computing the Least Median of Squares
Estimate in Multiple Linear Regression. In Yadolah Dodge, editor, L1-
Statistical Procedures and Related Topics, volume 31 of IMS Lecture Notes –
Monograph Series, pages 133–146. IMS, 1997.

Marshall E. Blume. On the Assessment of Risk. Journal of Finance, 26(1):
1–10, 1971.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

Mark Britten-Jones. The Sampling Error in Estimates of Mean–Variance
Efficient Portfolio Weights. Journal of Finance, 54(2):655–671, 1999.

Louis K. C. Chan and Josef Lakonishok. Robust Measurement of Beta Risk.
Journal of Financial and Quantitative Analysis, 27(2):265–282, 1992.

Louis K. C. Chan, Jason Karceski, and Josef Lakonishok. On Portfolio
Optimization: Forecasting Covariances and Choosing the Risk Model.
Review of Financial Studies, 12(5):937–974, 1999.

Gunter Dueck and Tobias Scheuer. Threshold Accepting. A General Pur-
pose Optimization Algorithm Superior to Simulated Annealing. Journal
of Computational Physics, 90(1):161–175, 1990.

Russell C. Eberhart and James Kennedy. A New Optimizer Using Parti-
cle Swarm Theory. In Proceedings of the Sixth International Symposium on
Micromachine and Human Science, pages 39–43, Nagoya, Japan, 1995.

Bernd Fitzenberger and Peter Winker. Improving the Computation of Cen-
sored Quantile Regressions. Computational Statistics & Data Analysis, 52
(1):88–108, 2007.

Marc G. Genton and Elvezio Ronchetti. Robust Prediction of Beta. In
Erricos J. Kontoghiorghes, Berç Rustem, and Peter Winker, editors, Com-
putational Methods in Financial Engineering – Essays in Honour of Manfred
Gilli. Springer, 2008.

Manfred Gilli and Enrico Schumann. An Empirical Analysis of Alternative

24

Portfolio Selection Criteria. Swiss Finance Institute Research Paper No. 09-
06, 2009.

Manfred Gilli and Enrico Schumann. Distributed Optimisation of a Port-
folio’s Omega. Parallel Computing, forthcoming.

Manfred Gilli and Peter Winker. Heuristic Optimization Methods in Econo-
metrics. In David A. Belsley and Erricos Kontoghiorghes, editors, Hand-
book of Computational Econometrics. Wiley (forthcoming), 2009.

Manfred Gilli, Evis Këllezi, and Hilda Hysi. A Data-driven Optimization
Heuristic for Downside Risk Minimization. Journal of Risk, 8(3):1–18,
2006.

Rob J. Hyndman and Yanan Fan. Sample Quantiles in Statistical Packages.
The American Statistician, 50(4):361–365, 1996.

Ozgur S. Ince and R. Burt Porter. Individual Equity Return Data from
Thomson Datastream: Handle with Care! Journal of Financial Research, 29
(4):463–479, 2006.

Alexander Kempf and Christoph Memmel. Estimating the Global Min-
imum Variance Portfolio. Schmalenbach Business Review, 58(4):332–348,
2006.

Robert C. Klemkosky and John D. Martin. The Adjustment of Beta Fore-
casts. Journal of Finance, 30(4):1123–1128, 1975.

Peter J. Knez and Mark J. Ready. On the Robustness of Size and Book-
to-Market in Cross-Sectional Regressions. Journal of Finance, 52(4):1355–
1382, 1997.

R. Douglas Martin and Timothy T. Simin. Outlier-Resistant Estimates of
Beta. Financial Analysts Journal, 59(5):56–69, 2003.

Peter J. Rousseeuw. Least Median of Squares Regression. Journal of the
American Statistical Association, 79(388):871–880, 1984.

Peter J. Rousseeuw. Introduction to Positive-Breakdown Methods. In G.S.
Maddala and C.R. Rao, editors, Handbook of Statistics, volume 15, chap-
ter 5. Elsevier, 1997.

Markus Rudolf, Hans-Jürgen Wolter, and Heinz Zimmermann. A Linear
Model for Tracking Error Minimization. Journal of Banking & Finance, 23
(1):85–103, 1999.

Matías Salibian-Barrera and Víctor Yohai. A Fast Algorithm for s-
Regression Estimates. Journal of Computational and Graphical Statistics, 15
(2):414–427, 2006.

William F. Sharpe. Asset Allocation: Management Style and Performance
Measurement. Journal of Portfolio Management, 18(2):7–19, 1992.

Rainer Storn and Kenneth Price. Differential Evolution – a Simple and Effi-

25

cient Heuristic for Global Optimization over Continuous Spaces. Journal
of Global Optimization, 11(4):341–359, 1997.

Arnold J. Stromberg. Computing the Exact Least Median of Squares Es-
timate and Stability Diagnostics in Multiple Linear Regression. SIAM
Journal on Scientific Computing, 14(6):1289–1299, 1993.

Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 2nd edition, 2001.

Oldrich A. Vasicek. A Note on the Cross-Sectional Information in Bayesian
Estimation of Security Betas. Journal of Finance, 28(5):1233–1239, 1973.

Peter Winker. Optimization Heuristics in Econometrics: Applications of Thresh-
old Accepting. Wiley, 2001.

Peter Winker and Kai-Tai Fang. Application of Threshold-Accepting to
the Evaluation of the Discrepancy of a Set of Points. SIAM Journal on
Numerical Analysis, 34(5):2028–2042, 1997.

Peter Winker, Marianna Lyra, and Chris Sharpe. Least Median of Squares
Estimation by Optimization Heuristics with an Application to the capm
and a Multi Factor Model. Journal of Computational Management Science
(forthcoming), 2009.

26

	cover_page
	LMS2009

