
NCER Working Paper SeriesNCER Working Paper Series  
  

Detecting Common Dynamics  
in Transitory Components 

T M ChristensenT M Christensen  
A S HurnA S Hurn  
A R PaganA R Pagan  
  

  
  
  
  
Working Paper #49Working Paper #49  
November 2009November 2009  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6405481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Detecting Common Dynamics in Transitory

Components

T M Christensen

Department of Economics, Yale University

A S Hurn
School of Economics and Finance, Queensland University of Technology

A R Pagan
School of Economics and Finance, Queensland University of Technology

and
School of Economics, University of New South Wales.

Abstract

This paper considers VAR/VECM models for variables exhibiting cointegration and
common features in the transitory components. While the presence of cointegration
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1 Introduction

Cointegration between series implies that there are common factors among their permanent

components and much literature has been devoted to the twin issues of determining how many

common factors there are and extracting them from data. Vahid and Engle (1993) extended

this idea by asking whether there were common factors in the transitory components of

series. The predominant approaching to testing for common transitory components so far

is the Likelihood Ratio test (Vahid and Engle, 1993; Hecq, 2004; Hecq et al., 2000a, 2006).

Vahid and Engle (1993) also describe a Lagrange Multiplier (LM) test but this is used less

often in the literature merely because the restricted VECM model is more difficult to estimate

than its unrestricted counterpart. In general, imposing common feature restrictions, when

they are appropriate, will result in an increase in estimation efficiency (Lütkepohl, 1991) and

in the accuracy of forecasts (Vahid and Issler, 2002). Testing for the number of common

features therefore remains a relevant question of interest.

This paper makes three contributions to the existing literature on testing for common fea-

ture dynamics. First, it offers a reinterpretation of the approach to determining whether

or not there are common factors in the transitory components by checking the rank of the

matrix containing the coefficients that summarize the short-run dynamics of the system.

This opens the way for tests on the rank of a matrix of parameters to be used to determine

the the validity of common feature restrictions. A good deal of work exists on how one tests

the rank of a non-square matrix of parameters, with notable contributions being by Cragg

and Donald (1993, 1996, 1997), Robin and Smith (2000) and Kleibergen and Paap (2006).

Second, it introduces a Wald test of the hypothesis that there are common dynamics and

shows that this test is asymptotically the same as the popular LR test. This test is easy to

implement as it requires estimation of the unrestricted model only. It is also demonstrated

that when applied in the setting of a VAR/VECM the Wald test is identical to the the Cragg

and Donald (1993, 1997) minimum discrepancy test, the Robin and Smith (2000) character-

stic root test and the Kleibergen and Paap (2006) singular value decomposition test, thus

providing a link between the traditional approach to the common features problem and the

literature on testing the rank of a matrix. Third, it demonstrates how this reinterpretation
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of the common transitory components literature also leads to a way of checking if calibrated

Dynamic Stochastic General Equilibrium (DSGE) models have common dynamics.

The rest of this paper is structured as follows. Section 2 sets out the re-interpretation of

tests for common feature dynamics and Section 3 shows how this involves testing the rank

of the matrix of short-run dynamics coefficients. In Section 4 the Wald test is described

along with other tests for reduced rank. The relationships between the tests of the two

different approaches are established. Section 5 then conducts a simulation study on the

relative efficacy of the LR and Wald tests, finding that the latter seems to have higher (size-

corrected) power in small samples, although both tests show significant size distortion. The

simulation results are then used to guide an empirical investigation into common dynamics

among Latin American GDP series. Section 6 turns to the issue of how to apply these tests

to models that feature a good deal in quantitative macroeconomic work today, namely DSGE

models. In these models non-stationarity is often handled by working with a transformed

model in which the integrated variables have been transformed to achieve stationarity. The

mapping between this transformed system and a Vector Error Correction Model (VECM)

is derived and used to consider whether there are common dynamics in the DSGE model.

Section 7 is a brief conclusion.

2 Common Factors in Transitory Components

Let yt be an n × 1 vector at time t that can be represented as a vector autoregression of

order p

yt = Π1yt−1 + · · ·+ Πpyt−p + εt, (1)

where εt is a white noise process. Equation (1) can be re-parameterized as the following

VAR of order p− 1

∆yt = Πyt−1 + A1∆yt−1 + · · ·+ Ap−1∆yt−p1 + εt. (2)

where

Π = In −
p∑

i=1

Πi , Aj = −
p∑

i=j+1

Πi .
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If the rank of the matrix Π is r < n then it is usually expressed as Π = αβ ′, where α

and β are both n × r matrices of rank r and the VAR becomes a VECM process. The β ′

matrix contains the cointegrating vectors along its rows, while the columns of α contain

the adjustment coefficients of each variable in yt to a particular cointegrating vector. This

paper will assume that the cointegrating rank, r, is able to be determined by ignoring any

restrictions on the short-run dynamics of the model, and that the super-consistent estimates

of β may for all practical purposes be treated as fixed.

Common transitory components were then defined by Engle and Kozicki (1993) and Vahid

and Engle (1993) as occurring if there existed an n×s matrix τ , called the cofeature matrix,

such that

τ ′∆yt = et , (3)

where et was white noise. In other words, there existed s linear combinations of ∆yt that are

white noise processes. Combining this definition with that of ∆yt in (2) under co-integration,

indicates that the existence of common components means that the cofeature matrix τ must

satisfy two conditions:

τ ′Ai = 0 , i = 1, · · · , p− 1

τ ′αβ ′ = 0 .

Essentially these conditions require that τ lies in the intersection of the null spaces of the

matrices describing the short-run dynamics of the system. Vahid and Engle (1993) point out

that τ is only identified up an invertible transform and therefore suggest that τ ′ be expressed

in reduced row echelon form to ensure that there are enough exclusion-normalization restric-

tions to identify it uniquely. The general structure of τ when τ ′ is expressed in reduced row

echelon will be the n× s matrix

τ =

[
Is

τ ∗(n−s)×s

]
. (4)

The VECM which holds in the presence of co-integration will be

∆yt = Φ′




∆yt−1

...

∆yt−p+1

β ′yt




+ εt , (5)
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where

Φ =




A′

1
...

A′

p−1

α′


 (6)

is a k×n matrix of parameters with k = n(p−1)+r. From this it is clear that an alternative

approach to checking for common transitory components is to focus on the rank of the matrix

of the parameters Φ. In this representation, the condition in equation (3) will be satisfied if

and only if

τ ′Φ′ = 0 .

This condition requires that the k × n matrix of parameters Φ has a nontrivial null-space.

Since k > n the rank of Φ is at most n and, by the rank-nullity theorem,

rank(Φ′) + nullity(Φ′) = n ,

the existence of the n× s cofeature matrix τ requires that Φ must have rank q = n− s. The

existence of common transitory components therefore manifests itself in the reduced rank of

Φ. This representation has the advantage that it points to the need to examine the rank of

the matrix Φ and a substantial literature exists on testing the rank of such a matrix.

Some restrictions may need to be imposed to identify the s common transitory components.

The restricted system comprises pseudo-structural equations for the first s elements of the

vector ∆yt which correspond to the set of identified common components. The last n − s

equations in the system are simply the reduced-form equations for the remaining elements

of ∆yt. The model can be expressed as

B′∆yt =

[
0s×k

A∗

1 · · · A∗

p−1 α∗

]



∆yt−1

...

∆yt−p+1

β ′yt




+B′εt , (7)

where

B =




Is 0s×(n−s)

τ ∗(n−s)×s In−s




and the parameter matrices A∗

i and α∗ are the remaining n − s rows of their unrestricted

counterparts in equation (5).
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3 The Beveridge-Nelson Decomposition

Quite a large literature has emerged that has tested for whether there are common factors in

the transitory components of a variety of contexts including: property markets (Wang, 2003;

Liow, 2007); stock markets, Hecq et al. (2000b); and Asian and Latin American economic

activity (Sato et al., 2007, Hecq, 2004). Generally, this literature has been referred to as

testing for common cycles, with the assumption that the transitory component measures

the cycle. This is incorrect unless one is referring to the growth cycle so the more neutral

description of testing for common transitory components will be used in this paper.

The Beveridge-Nelson definition of the permanent component of yt is yP
t = Ety∞. Since

yP
t = Ety∞ = Et(yt +

∞∑

j=1

∆yt+j)

= yt + Et(
∞∑

j=1

∆yt+j),

the transitory component of yt will be

yT
t = yt − yP

t = −Et(

∞∑

j=1

∆yt+j). (8)

Now it follows from the definition of yP
t that ∆yP

t = ηt, where ηt is the new information in

predicting y∞ and Et−1(ηt) = 0 i.e. ηt is a martingale difference sequence (or white noise

process). Expressing yt in first-difference terms we then have

∆yt = ∆yP
t + ∆yT

t .

Clearly, if there exists a matrix τ such that τ ′∆yT
t = 0 then

τ ′∆yt = τ ′ηt = et

i.e. there is a linear combination of the ∆yt that is white noise, which is exactly the condition

tested by Vahid and Engle (1993).

Rather than check for whether there is a combination of ∆yt that is white noise we could

ask if there exists a τ such that τ ′∆yT
t = 0. From equation (8), this would mean that

τ ′∆yT
t = −τ ′Et

∞∑

j=1

∆yt+j = 0 (9)
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Consider the VECM written in companion form



∆yt

∆yt−1

...

∆yt−p+2

zt




= Φ∗




∆yt−1

∆yt−2

...

∆yt−p+1

zt−1




+




εt

0n×1

...

0n×1

β ′εt



, (10)

where zt = β ′yt is the error-correction (EC) part of the model and the companion form

matrix Φ∗ is given by

Φ∗ =




A1 A2 · · · Ap−2 Ap−1 α

In 0n×n · · · 0n×n 0n×n 0n×r

0n×n In 0n×n 0n×n 0n×r

...
. . .

...
...

0n×n 0n×n In 0n×n 0n×r

β ′A1 β ′A2 · · · β ′Ap−2 β ′Ap−1 (Ir + β ′α)




. (11)

Letting

Wt =




∆yt

∆yt−1

...

∆yt−p+2

zt



,

(10) can be written as

Wt = Φ∗Wt−1 + ε∗t ,

from which it follows that EtWt+j = Φ∗jWt. Therefore

∆yT
t = Et

∞∑

j=1

∆yt+j = Et

∞∑

j=1

SΦ∗jWt (12)

= SΦ∗(I − Φ∗)−1Wt, (13)

where S is a selection matrix such that ∆yt = SWt and it is assumed that the eigenvalues

of Φ∗ are such that infinite sum
∑

∞

j=0 Φ∗ j converges to (I − Φ∗)−1.

From (??), τ ′∆yT
t = 0 requires that τ ′SΦ∗ = 0 i.e. τ ′Φ = 0. This is exactly the condition

established in the previous section. Hence any singularity in the transitory components yT
t

manifests itself in a rank deficiency of Φ, so this suggests an alternative way of detecting

common factors in the transitory components is to examine the rank of Φ .
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4 Testing for Common Transitory Components

The following tests all investigate the null hypothesis of the presence of s common transitory

components where s = 1, . . . , n − r. In the first set one is essentially testing whether the

short-run dynamics can be removed from the system and asks the question of whether it is

possible to find a combination of the ∆yt that is white noise. In the second set one directly

tests whether Φ has rank n − s. As can be seen from the pseudo-structural form of the

system in expression (7), under the null of s common transitory components, sk restrictions

are placed upon the parameters in Φ but s(n − s) new parameters τ ∗ must be introduced

in order to uniquely identify the cofeature vector τ . Therefore for known r and β, all test

statistics have an asymptotic χ2 distribution with sk − s(n− s) degrees of freedom.

4.1 Tests using the Cofeature Vector

4.1.1 The Vahid-Engle LM Test

Define the T × k (where k = n(p − 1) + r) matrix W2 = [∆y′
−1, . . . ,∆y

′

−p+1, Y
′

−1β] which

contains the stacked observations of all the relevant lagged values of the system. Vahid and

Engle (1993) suggested estimating τ by means of the LIML estimator, where W2 were used

as instruments for ∆yt. The test statistic is then

χLM = TR2, (14)

where the R2 is obtained from the auxiliary regression of the residuals, τ̂ ′∆yt, on the instru-

ments W2, with τ̂ normalized to be in reduced row-echelon form. This test has not been used

extensively in the applied literature, possibly due to the need to estimate τ first, followed

thereafter by an auxiliary regression.

4.1.2 Likelihood Ratio Test

The test used most commonly in applied work is the Likelihood Ratio test of Vahid and Engle

(1993), based on the smallest canonical correlations between ∆yt and the relevant past of

the process. This test is the canonical correlations test of Anderson (1951) specialized to a

VECM.
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Let ∆y′t = [∆y1t · · ·∆ynt] be a 1 × n vector of variables and ε′t = [ε1t · · · εnt] be a 1 × n

vector of disturbances. Now define the matrix W1 as a T × n matrix formed by stacking the

observations on ∆yt.
1 Let 0 ≤ ν̂1 ≤ ν̂2 ≤ · · · ≤ ν̂n ≤ 1 be the ordered eigenvalues of the

n× n symmetric matrix2

Ψ = (W ′

1W1)
−1W ′

1W2(W
′

2W2)
−1W ′

2W1 . (15)

The test statistic is then defined as

ξLR = −T
s∑

i=1

log(1 − ν̂i) . (16)

4.1.3 Wald Test

To date it has not been recognized in the literature that a Wald test of the common feature

restrictions is also available. For this purpose, it is convenient to write the unrestricted

system as

W1 = W2Φ + ε , (17)

and ε is now a T × n matrix of the stacked disturbances ε′t. The maximum likelihood

estimator Φ̂ of Φ is easily obtained and the distribution of Φ̂ is given by

√
T (vec Φ̂ − vec Φ)

d−→ N(0,Σ) (18)

where Σ̂ is a
√
T -consistent estimator of Σ = Ω⊗Q−1 (Hamilton, 1994) with Ω representing

the covariance matrix of the disturbance terms ε and Q−1 representing the covariance matrix

of W2.
3

The common feature restrictions in equation (3) are just a set of linear restrictions once the

cofeature matrix τ used in the construction of the matrix B is prescribed. An estimate τ̂ of

1Note that if the VECM (2) has an intercept term, this will need to be removed from the series when
constructing W1 and W2.

2This form for Ψ was suggested by Anderson and Vahid (1998). Hecq et al. (2006) use the eigenvalues of
(W ′

1W1)
−1/2W ′

1W2(W
′

2W2)
−1W ′

2W1(W
′

1W1)
−1/2 as the canonical correlations for their test. The eigenvalues

of both matrices are the same.
3For a VECM with an intercept term in expression (2), Σ̂ = Ω̂ ⊗ Q̂−1

0 where Ω̂ is an estimator of E[εtε
′

t]

and Q̂ an estimator of E[ XtX
′

t], with Xt = (1, ∆Y ′

t−1, . . . , ∆Y ′

t−p+1, Y
′

t−1β)′. Then Q̂−1

0 is constructed from

Q̂−1 by removing the first row and column of Q̂−1.
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τ is obtained as a by-product of the LR test. As pointed out by Vahid and Engle (1993), the

s cofeature vectors are the eigenvectors corresponding to the s smallest eigenvalues of the

matrix Ψ given in equation (15). Once τ̂ ′ has been expressed in reduced row echelon form,

the matrix B may be constructed.

By comparing the unrestricted and restricted models in equations (5) and (7), it is clear that

the restrictions hold if Φτ is a zero matrix. The reduced-rank restrictions can therefore be

written in the form

R vec Φ = 0sk×1 R = τ ′ ⊗ Ik .

Using an estimate τ̂ for τ obtained from the eigendecomposition of Ψ in expression (15), the

Wald test statistic of these reduced-rank restrictions is

ξW =
[
R vec Φ̂

]
′
[
RVar(vec Φ̂ )R′

]
−1[

R vec Φ̂
]

(19)

=
[
R vec Φ̂

]
′
[ 1

T
R Σ̂R′

]
−1[

R vec Φ̂
]
. (20)

In the Appendix it is shown that

ξW = T

s∑

i=1

λ̂i = T

s∑

i=1

ν̂i

1 − ν̂i
,

a result which demonstrates that the Wald test is asymptotically equivalent to the the LR

test.

4.2 Matrix Reduced Rank Tests

There is now a substantial literature on testing the rank of a rectangular matrix of param-

eters. Examples are the Singular Value Decomposition (SVD) test of Kleibergen and Paap

(2006), the Minimum Discrepancy test of Cragg and Donald (1993, 1997) and the Charac-

teristic Root test of Robin and Smith (2000). The main requirement for implementing these

tests is that a consistent estimate of the matrix, in this case Φ, and its covariance matrix, Σ,

are available.4 In this situation the distribution results presented in equation (18) are relied

on.

4Cragg and Donald (1996) propose a procedure for testing the rank of Φ based on a transformation of
Φ using Gaussian elimination. This test was found to perform very poorly in the context of VAR/VECM
models and the reasons for this remain to be investigated.
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4.2.1 Singular Value Decomposition (SVD) Test

Kleibergen and Paap (2006) followed Ratsimalahelo (2002) in proposing a test for the rank

of Φ based on its SVD. Whilst the test of Ratsimalahelo (2002) is based on the SVD of Φ̂,

Kleibergen and Paap (2006) advocated using a scaled version Θ̂ = MΦ̂N, where M and

N are k × k and n × n non-singular matrices chosen such that the estimated asymptotic

variance of vec Θ̂ approximates the identity matrix. They suggested that this transformation

yields superior power and numerical accuracy. Preliminary evidence suggested that this was

indeed the case, so the Kleibergen and Paap (2006) variant of the test will be employed in

this paper.

Let the SVD of the matrix Θ̂ be Θ̂ = UΛV ′ where Λ is a diagonal matrix containing the

singular values of Θ̂ in descending order along its leading diagonal and zeros elsewhere. The

matrices U , S and V are then all partitioned conformably so that

U = [U1 U2] Λ = diag{Λ1,Λ2} V = [V1 V2]

where U2 has s columns, Λ2 is s × s containing the s smallest singular values of Φ, and V ′

2

has s rows. If rank Φ = n−s, then Λ2 should be a zero matrix. The test statistic for whether

the the singular values of Λ2 are statistically different from zero is

ξSV D = T (vec Λ2)
′

[
(V ′

2 ⊗ U ′

2) Est. Asy. Var(vec Θ̂) (V2 ⊗ U2)
]
−1

vec Λ2 . (21)

When estimating the parameters of a VECM, the Kronecker structure of Σ means that

appropriate scaling matrices M and N are readily available. Choosing M = Q1/2 and

N = Ω−1/2 yields the desired result that the estimated asymptotic variance of vec Θ̂ is the

identity matrix.

4.2.2 Minimum Discrepancy Test

Cragg and Donald (1993, 1997) proposed a minimum discrepancy test based on the distance

between the estimated value of the parameter matrix Φ̂, which is almost surely full rank,

and the matrix of rank n− s that is “nearest” to Φ̂.

Define C = {Υ ∈ (Rk)n : rank Υ = n − s}. If rank Φ = n − s then under the null

hypothesis of s common transitory components there should exist a matrix in Υ0 ∈ C that is

11



approximately equal to Φ̂ to within sampling error. Using this rationale, Cragg and Donald

(1993, 1997) defined a test statistic that is the minimum possible discrepancy between Φ̂

and its reduced-rank counterpart, namely

ξMD = T min
Υ∈C

vec(Φ̂ − Υ)′Σ̂−1vec(Φ̂ − Υ) . (22)

4.2.3 Characteristic Root Test

Robin and Smith (2000) proposed a procedure to indirectly test the rank of Φ by examining

AΦ′BΦ, where A and B are respectively n × n and k × k non-singular matrices, ensuring

that rank Φ = rankAΦ′BΦ. If rank Φ = n − s, then the s smallest eigenvalues of ÂΦ̂′B̂Φ̂

should be zero to within sampling error.

In general, the choice of A and B is arbitrary. However, when the asymptotic covariance

matrix of vec Φ̂ takes the form Σ = Ω̂⊗ Q̂−1, as is the case when estimating the parameters

of a VECM, then choosing Â = Ω̂−1 and B̂ = Q̂ greatly simplifies the expression and

distribution of the test statistic.

Let 0 ≤ λ̂1 ≤ λ̂2 ≤ . . . ≤ λ̂n denote the ordered eigenvalues of ÂΦ̂′B̂Φ̂. Let h(λ) be any

function with continuous first derivatives satisfying h(λ) ≥ 0 for 0 ≤ λ < ∞, h(0) = 0 and

h′(0) = 1. In the particular case where Σ is a Kronecker product and A and B are chosen

appropriately, the test statistic is

ξCR = T
s∑

i=1

h(λ̂i) .

Choosing h(ν) = ν results in what Robin and Smith (2000) referred to as the Wald variant

of the characteristic root test statistic

ξCR = T

s∑

i=1

λ̂i . (23)

If h(λ) = log(1 + λ), the canonical correlations statistic of Anderson (1951) is recovered, as

the eigenvalues of ÂΦ̂′B̂Φ̂, λ̂, and the eigenvalues of the matrix Ψ in expression (15), ν̂, are

related by ν̂ = λ̂/(1 + λ̂) (see the Appendix for further details).
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4.3 Equivalence of Tests

In the particular case hen the asymptotic covariance matrix of vec Φ is of the form Σ =

Ω ⊗ Q−1, the tests in the preceding subsection, namely the Singular Value Decomposition

test of Kleibergen and Paap (2006), the Minimum Discrepancy test of Cragg and Donald

(1993, 1997) and the Wald variant of the Characteristic Root test of Robin and Smith (2000)

are all equal to the Wald test ξW in (20).

First note that choosing Â = Ω̂−1 and B̂ = Q̂ means that the Wald variant of the Charac-

teristic Root test is simply T times the sum of the smallest s eigenvalues of Θ̂′Θ̂. Kleibergen

and Paap (2006) advocate scaling Φ̂ to Θ̂ such that the estimated asymptotic covariance

matrix of vec Θ̂ is the identity matrix. This can be done when estimating the parameters of

a VECM by choosing M = Q̂1/2 and N = Ω̂−1/2. The denominator of the SVD test statistic

in expression (21) therefore reduces to an identity matrix. As a result, ξSV D is T times the

sum of the squared s smallest singular values of Θ̂.

Result 1: When Σ = Ω ⊗ Q−1 and the scaling matrices are chosen appropriately, the

Singular Value Decomposition test statistic in expression (21) is equal to the Characteristic

Root test statistic in expression (23).

Proof: See Proposition 1 in Kleibergen and Paap (2006).

When Φ represents the parameters of a VECM, the fact that Σ is a Kronecker product also

means that the Minimum Discrepancy test statistic is available analytically, so the objective

function vec(Φ̂−Υ)′Σ̂−1vec(Φ̂−Υ) does not have to be minimized numerically over the set of

all reduced-rank matrices. When Σ̂ = Ω̂ ⊗ Q̂−1, the objective function may be re-expressed

as
vec(Φ̂ − Υ)′Σ̂−1vec(Φ̂ − Υ) = tr

[
Ω̂−1(Φ̂ − Υ)′Q̂(Φ̂ − Υ)

]

= tr
[
(Θ̂ − Υ̃)′(Θ̂ − Υ̃)

]

where Υ̃ = Q̂1/2ΥΩ̂−1/2. It follows that the minimum value of the objective function over

the set of all Υ of rank n− s is just the sum of the s smallest eigenvalues of Θ̂.

Result 2: When Σ = Ω ⊗ Q−1, the Minimum Discrepancy test statistic in expression (22)
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is equal to the Characteristic Root test statistic in expression (23).

Proof: See Theorem 3 in Cragg and Donald (1993).

Therefore, in the case of testing the rank of the short-run dynamics parameter matrix of a

VECM, the Singular Value Decomposition test , the Minimum Discrepancy test, and the

Characteristic Root tests discussed in the preceding subsection are all equivalent. It remains

to show that the Wald test ξW in (20) is also equal to these tests.

Result 3: When Σ = Ω ⊗ Q−1, the Wald test statistic in expression (19) is equal to the

Characteristic Root test statistic in expression (23).

Proof: See Appendix.

5 Test Performance with Experimental and Actual data

In this section simulation evidence on the finite sample behavior of the ξLR and ξW tests

for reduced rank is provided and used to re-examine an existing empirical study. Existing

Monte Carlo evidence (see for example, Hecq et al., 2006) reports the size and power of the

ξLR test in small samples but tends to focus on the possible effects of incorrectly specifying

the number of cointegrating vectors and/or the lag order of the VECM. As well as adding

in an extra test ξW the experimental design, the simulation in this paper is based not on

synthetic data but is instead calibrated with data on the common components in the real

output of six Latin American countries. This data is described in Hecq et al. (2006).5

5.1 Experimental Data: Latin American GDP

This section contains an experiment based on a stylized VECM(1) calibrated to the data

on the logarithm of real GDP of six Latin American economies, namely Brazil, Venezuela,

Mexico, Peru, Columbia and Chile, used by Hecq (2004). The cointegration rank is set

at r = 3 and three common transitory components, s = 3, are imposed. An unrestricted

5A further simulation exercise based on the real per capita income of four industrial regions in the US as
reported by Vahid and Engle (1993) was performed. As the conclusions were the same as for Latin American
GDP, only the one experiment is reported
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VECM(1) was estimated and the estimated cofeature vectors were used to ensure that the

rank of Φ = [α A1] was 3. The VECM system is summarized by the following numerical

values6

α =




−0.26 −0.28 −0.77
−0.07 −0.20 −0.19
−0.06 −0.06 −0.31

0.14 0.03 −0.11
−0.08 0.06 −0.73
−0.20 −0.22 0.03



,

β ′ =




1.00 0.00 0.00 −1.81 0.88 0.13
0.00 1.00 0.00 −1.54 0.98 0.06
0.00 0.00 1.00 −1.61 1.12 −0.25




A1 =




−0.17 0.01 0.44 −0.21 0.02 0.17
−0.03 −0.26 0.35 −0.04 0.01 0.15
−0.02 0.03 0.12 −0.05 0.02 0.01

0.19 −0.20 0.10 0.15 0.08 −0.09
0.00 0.38 −0.04 −0.07 0.07 −0.15

−0.23 −0.07 0.21 −0.18 −0.08 0.25




The disturbances εt have mean zero and covariance matrix

Ω = 10−4




6.86 1.99 1.74 1.25 3.72 0.26
1.99 19.15 3.54 2.73 5.47 −0.10
1.74 3.54 2.95 0.04 1.35 1.10
1.25 2.73 0.04 5.75 3.75 1.46
3.72 5.47 1.35 3.75 17.18 2.28
0.26 −0.10 1.10 1.46 2.28 2.18



.

The co-feature vectors for the experiment are

τ =




1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

−1.16 −1.17 −0.42
−0.96 −0.14 −0.39
−1.71 −1.10 −0.45



,

where the last element of the second cofeature vector was changed from the estimated value

of −4.10 to −1.10 so that the reduced-rank version of A1 produced a stable VECM for all

simulated data sets. Four sample sizes were considered - namely T = 50, 100, 200 and

6There is also a set of intercepts
[

0.00 −.01 .02 .01 −.00 .04
]
′

.
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Table 1: Simulation Exercise – Size

ξLR ξW

p = 2 0.1764 0.3036
T = 50 p = 3 0.3445 0.6543

p = 4 0.6036 0.9266

p = 2 0.1115 0.1609
T = 100 p = 3 0.1577 0.2931

p = 4 0.2371 0.4863

p = 2 0.0794 0.0986
T = 200 p = 3 0.0985 0.1441

p = 4 0.1197 0.2140

p = 2 0.0551 0.0587
T = 1,000 p = 3 0.0591 0.0657

p = 4 0.0600 0.0714

Size of the tests for s = 3 common factors for the simulation exercise using asymp-
totic 5% critical values. Data is simulated using the VECM(1) calibrated on the
Latin American dataset used by Hecq (2004).

1,000. Computations were carried out using Matlab. 10,000 replications were used in the

experiments, and the first 5,000 observations in each replication were discarded to remove

dependence on initial observations. The sizes of the tests are presented in Table 1 while the

empirical and asymptotic 5% critical values of these tests for the null hypothesis of s = 3

are presented in Table 2.

Two broad conclusions emerge from this analysis. First, both tests perform best in terms of

size when the correct number of parameters is fitted, with the performance deteriorating as

the number of redundant parameters is increased, that is, the order of the estimated VAR

is higher than the true order. Second, the empirical 5% critical values for the tests of the

null hypothesis that s = 3 (Table 2), suggests that it would be very misleading to use the

asymptotic critical values in situations where the sample size is smaller than 200. These

kinds of sample sizes are exactly those often encountered in macroeconometric applications

and the test results should therefore be treated with extreme caution if they are based on

asymptotic distributions.

Table 3 provides results on the (size-adjusted) power of the tests. To do this it is necessary
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Table 2: Empirical and asymptotic critical values

ξLR ξW Asy. CV

p = 2 35.4279 42.7729 28.8693
T = 50 p = 3 66.1634 89.0690 50.9985

p = 4 101.2946 156.3381 72.1532

p = 2 32.8225 35.7242 28.8693
T = 100 p = 3 58.5733 66.5806 50.9985

p = 4 85.5934 102.0727 72.1532

p = 2 30.8788 32.1340 28.8693
T = 200 p = 3 54.9161 58.2540 50.9985

p = 4 78.4305 84.7532 72.1532

p = 2 29.2114 29.4278 28.8693
T = 1,000 p = 3 52.0685 52.6179 50.9985

p = 4 73.2090 74.2449 72.1532

Empirical 5% critical values for the null hypothesis of s = 3 are displayed for the
tests for different sample size and VAR order. The asymptotic critical values are
drawn from a χ2 distribution with 18 (p = 2), 36 (p = 3), and 54 (p = 4) degrees of
freedom.

to have a variant of the model with s = 2 common transitory components. Again the

singular value decomposition of Φ was computed as Φ = USV ′. The singular values in S

were 1.3021, 0.8131, 0.5008, 0.000, 0.000 and 0.0000. For the first set of results (presented in

Table 3) a rank 4 version of Φ was constructed by replacing the first zero singular value of Φ,

contained in S, by 0.5008, giving S0. The α and A1 matrices were then found by partitioning

Φ0 = US0V
′, after which the same tests for s = 3 common transitory components were

performed.

It is apparent from the results of Table 3 that while the size properties of the LR test appear

superior to that of the Wald test, the power of the latter is superior to the former. Thus if

one can accurately determine the critical values for the Wald test, there would be gains to

using it.
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Table 3: Simulation Exercise – Power

ξLR ξW

p = 2 0.8096 0.8353
T = 50 p = 3 0.5844 0.6410

p = 4 0.4234 0.4745

p = 2 0.9990 0.9993
T = 100 p = 3 0.9888 0.9918

p = 4 0.9538 0.9702

p = 2 1.0000 1.0000
T = 200 p = 3 1.0000 1.0000

p = 4 1.0000 1.0000

p = 2 1.0000 1.0000
T = 1,000 p = 3 1.0000 1.0000

p = 4 1.0000 1.0000

Size-adjusted power of the tests for s = 3 common factors for the simulation exercise
using empirical 5% critical values. Data is simulated using a variant of the VECM(1)
calibrated on the Latin American dataset used by Hecq (2004) with s = 2 common
transitory components. The fourth-largest singular value of Φ is set at 0.5008.

5.2 An Empirical Study: Application to Latin American GDP

This section investigates the presence of short-run and long-run interactions between the

output of six Latin American economies, namely Brazil, Venezuela, Mexico, Peru, Columbia

and Chile. To facilitate comparison with the work of Hecq (2004), Argentina is excluded

from the analysis. The annual output data are extracted from the Total Economy Database

and span the 59-year period 1950–2008. The analysis was conducted on the logarithm of the

real GDP series for the six countries. The logarithms of real GDP for the six Latin American

countries and also the growth rates of real GDP are plotted in Figure 1. The plot indicates

that the variables in log-levels are trending while the growth rates appear to be stationary.

In implementing tests for the cointegration rank, a VAR with maximum order of four was

fitted. As this is annual data it is unlikely that the dynamics of the system would require a

longer lag length. Moreover, with n = 6 variables, the number of coefficients to be estimated

soon becomes prohibitive if a longer lag structure is used. This model also included a

restricted deterministic trend in the long-run specification.
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Figure 1: Logarithm of Latin American GDP and Growth Rates. Top row of the figure
shows the results for Brazil (solid line), Chile (dashed line) and Columbia (dotted line). The
second row of the figure shows the results for Mexico (solid line), Peru (dashed line) and
Venezuela (dotted line).

Table 4: Tests for cointegrating rank

Test p = 2 p = 3 p = 4

Model 1

Trace r = 1 r = 4 r = 5

Max. Eigenvalue r = 0 r = 3 r = 2

Model 2

Trace r = 1 r = 5 r = 6

Max. Eigenvalue r = 1 r = 1 r = 3

Summary of tests for the cointegrating rank (r) for Latin American GDP
data for 1950 to 2008 based in two alternative models and various choices
for the lag order of the test VAR. Model 1 has a constant in both the coin-
tegration equation and the VAR. Model has a constant and trend in the
cointegration equation and a constant in the VAR.
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Experimentation with models containing two, three and four lags in the test VAR, combined

with an assumption about the presence or absence of a deterministic trend in the cointe-

gration space, revealed a fairly robust pattern. Discounting the results for the lag order of

p = 2, which may be too short, the trace test statistic probably overestimated the number

of cointegration vectors, while the maximal eigenvalue test suggested a cointegration rank

of r = 2 or r = 3. It is very unlikely that all the GDP series for the seven Latin American

countries are trend stationary so the possibility of r = 6 being chosen based on Table 4 is

discounted. The conclusion drawn from the balance of the evidence is that the choice of

r = 3 is probably the best choice. Selecting r = 3 rather than r = 2 is also motivated

in part by the (limited) simulation evidence available which suggests that underestimating

the cointegration rank can lead to misleading inference in terms of the common transitory

components.

Hecq (2004) argues that there are three permanent and three transitory shocks within the

six Latin American economies, in other words there are as many long-run co-movements

as short-run common transitory components. The likelihood ratio and Wald tests are now

applied to the Latin American data, based on the assumption of r = 3. Given that r+s ≤ n

it follows that the maximum number of common transitory component to be tested for is

s = 3. The results of these tests are summarized in Table 5. Once again, tests are presented

for different lag orders in the VAR (p = 2, 3, 4) and for two different models, namely a model

with a constant in both the cointegrating equation (and the VAR) and a model with both a

constant and a trend in the cointegrating equation along with a constant in the VAR. The

latter is the model employed by Hecq (2004) and appears to be favoured marginally by the

log-likelihood values returned in the estimation.

In line with the findings of Hecq (2004), there is evidence to support the hypothesis of three

common transitory components, that is s = 3. The LR and Wald statistics for the VARs

of orders p = 2 and p = 3 all seem to point to the conclusion that there are s = 3 common

factors in the data. In the simulation exercise reported in Table 2, both these tests were

shown to have particularly large critical values in small samples when applied to a fourth-

order VAR, namely 101.29 for the LR test and 156.34 for the Wald test. In the case p = 4,

while reference of the tests to the asymptotic critical values would suggest that the null of
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Table 5: Latin American GDP

H0 5% Critical Value ξLR ξW

Model 1: Constant in Cointegrating Equation,
Constant in Test VAR

p = 2
s = 1 9.4877 1.5126 1.5329

s = 2 18.3070 12.3002 13.4088

s = 3 28.8693 25.3843 28.1164

p = 3
s = 1 18.3070 2.4143 2.4671

s = 2 33.9244 14.2891 15.6948

s = 3 50.9985 31.9363 36.4393

p = 4
s = 1 26.2962 9.9603 10.9192

s = 2 48.6024 35.5980 43.5798

s = 3 72.1532 81.8863 116.1848

Model 2: Constant and Trend in Cointegrating Equation,
Constant in Test VAR

p = 2
s = 1 9.4877 1.3552 1.3715

s = 2 18.3070 8.2545 8.7056

s = 3 28.8693 19.2158 20.7918

p = 3
s = 1 18.3070 1.6921 1.7180

s = 2 33.9244 11.1126 11.9772

s = 3 50.9985 28.8376 32.8282

p = 4
s = 1 26.2962 9.3572 10.2003

s = 2 48.6024 40.2824 51.7067

s = 3 72.1532 82.9843 116.2563

Tests for common transitory components in Latin American GDP data for
1950 to 2008 based on the assumption of r = 3 cointegrating vectors.
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s = 3 is rejected in favour of s = 2, this is not so if one uses the empirical critical values for

T = 50. This is an interesting result, as it adds to the cautionary tale outlined previously

that the use of an asymptotic critical values in small-sample macroeconomic examples can

lead to incorrect inference.

6 Common Transitory Components in DSGE Models

Much quantitative work in macroeconomics is now conducted in terms of the estimation of

DSGE models rather than via statistical models such as a VECM. An interesting question

therefore is whether common transitory components are present if such a model is used to

represent a macroeconomy. To answer that question it is necessary to map a DSGE model

into a VECM so as to apply the tests developed earlier. To date a mapping of this sort does

not appear in literature.

The focus here will be upon DSGE models that have a single permanent component driving

them. Generally this will be the logarithm of the level of technology at = lnAt. There are

models now that have two or more permanent components but these are mainly to capture

changes in relative prices. The methodology that is presented here does have a simple

extension to those cases, as should be evident.

DSGE models have a structure that involves a set of equations summarizing inter-temporal

decisions - the Euler equations - and some other equations, such as the national income

identity, that could be either static or dynamic. An example of the first would be the

consumption Euler equation

Ct = βEtCt+1Rt+1 ,

where Ct is the level of consumption and Rt is a real interest rate. When variables are

stationary the equation can be re-expressed in terms of ratios of the variables to their steady

state positions C∗ and R∗, that is

Ct

C∗
= βR∗Et

Ct+1

C∗

Rt+1

R∗
,

but, when variables are non-stationary, some other divisor has to be used. Traditionally in

DSGE models this has been the level of technology, so that the consumption Euler equation
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becomes
Ct

At
= δR∗Et

Ct+1

At+1

At+1

At

Rt+1

R∗
.

After log-linearization, the equation is

ct − at = Et[ct+1 − at+1 + ∆at+1] + Etrt+1 − r∗,

where the lower case letters represent the logs of the upper case ones. Generally technology

growth is assumed to be an exogenous AR(1) process

∆at = ρa∆at−1 + εat,

so that Et∆at+1 = ρa∆at, making the linearized consumption Euler equation:

ct − at = Et[ct+1 − at+1] + ρa∆at + Etrt+1 − r∗ .

Other equations can be treated in the same way. If therefore the variables ψt are defined as

ct − at, rt − r∗ and so on, it is possible to represent a DSGE model in terms of the following

set of structural equations

B0ψt = B1ψt−1 + C1Etψt+1 +G1et +G2∆at ,

where the model (non-technology) shocks, et, are assumed to follow a first order VAR process:

et = Φeet−1 + εet . (24)

Now, the division of I(1) variables by At is often referred to as “stationizing” the variables,

and it is clear that variables appearing in ψt, such as ct − at, will be co-integrating errors.

Let zt = [yt, at]
′ be the n I(1) variables of the DSGE model, so that ψt = β ′zt are EC

terms when the columns of β are the r cointegrating vectors. Because of the “stationizing”

transformation in DSGE models there are generally r = n − 1 cointegrating vectors of the

form

β ′ =




1 0 . . −1
0 1 . . −1
0 0 . . .

1 −1


 .

For convenience, it is assumed initially that all the yt are I(1) leaving the issue of adapting

the methodology to allow some of the yt to be I(0) to a later stage.
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The “stationized” DSGE model is solved to give

ψt = D1ψt−1 +Da∆at +Deet. (25)

Using the processes assumed for the shocks in equation (25) the system becomes

ψt = D1ψt−1 +Daρa∆at−1 +Daεat +DeΦeet−1 +Deεet. (26)

Often the output from packages such as DYNARE appear in this way under the nomenclature

of “policy and transition functions”, enabling one to use that output to recover the implied

parameters of (25), since ρa and Φa are given.

At this point it is necessary to impose the restriction that there are enough shocks in the

system, so it is assumed that De has full column rank, and then the Moore-Penrose gener-

alized inverse of De, given by D+
e =(D′

eDe)
−1D′

e, exists. Given this assumption the shocks

can be recovered from (25) as

et = D+
e (ψt −D1ψt−1 −Da∆at). (27)

Replacing et−1 in (26) with its value from (27) gives

ψt = H1ψt−1 +H2ψt−2 +H3∆at−1 +Deεet +Daεat ,

where

H1 = D1 +DeΦeD
+
e ,

H2 = −DeΦeD
+
e D1,

H3 = Daρa −DeΦeD
+
e Da .

In turn this equation can be written as

ψt = (H1 +H2)ψt−1 −H2∆ψt−1 +H3∆at−1 +Deεet +Daεat

= (H1 +H2)ψt−1 − (H2β
′ −H3Sa)∆zt−1 +Deεet +Daεat, (28)

where Sa selects at from zt i.e. at = Sazt.

A VECM in zt may be written as

∆zt = αβ ′zt−1 + A1∆zt−1 + vt

=⇒ ψt = (I + β ′α)ψt−1 + β ′A1∆zt−1 + β ′vt . (29)
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Comparing (29) and (28) we see that

β ′α = (H1 +H2) − I (30)

β ′A1 = −(H2β
′ −H3Sa) . (31)

To recover α and A1 from these relations we need to recognize that ∆at is a strongly ex-

ogenous process. This means that the elements in α corresponding to ∆at are zero. Since

there are r of these, this leaves (n − 1) × r unknowns in α. In the standard DSGE set-up

r = n− 1 so the r2 = (n − 1)2 unknowns can be determined from the r2 equations in (30).

Strong exogeneity of ∆at also means that A1 has zero elements in it and one of the elements

is the known ρa. This leaves (n − 1) × n unknowns to be determined by the r × n linear

equations in (31). Again, in the standard case r = n− 1, and so there are enough equations

to determine A1.

Now, in the event that there are both I(0) and I(1) variables in yt these results need to

be generalized. This is relatively easily accomplished by treating the m I(0) variables in yt

as if they were I(1) but with m extra co-integrating vectors that have unity in the column

corresponding to the I(0) variable and zeroes elsewhere. Thus, if the second variable in yt

is I(0), we would add on a co-integrating vector of the form ( 0 1 0 · · · 0 0 ).

To illustrate the working of this procedure, it is applied to a variant of the small open-

economy model set out in Lubik and Schorfheide (2007) as implemented by Hodge et al.

(2008):

ξ̃t = Etξ̃t+1 − χ(Rt −Etπt+1) + χρa∆at + αχEt∆q̃t+1 + (
χ

τ
− 1)Et∆ỹ

∗

t+1 (32)

π̃t = βEt(π̃t+1) + αβEt∆q̃t+1 − α∆q̃t +
κ

χ
(ξ̃t − (1 − χ

τ
)ỹ∗t ) (33)

Et∆ẽt+1 = π̃t − (1 − α)∆q̃t − π̃∗

t (34)

R̃t = ρRR̃t−1 + (1 − ρR)(ψ1π̃t + ψ2ξ̃t) + εR,t (35)

∆q̃t = ρ∆q∆q̃t−1 + ε∆q,t (36)

ỹ∗t = ρy∗ ỹ∗t−1 + εy∗

,t
(37)

π̃∗

t = ρπ∗ π̃∗

t−1 + επ∗

,t
(38)

∆at = ρa∆at−1 + εa,t (39)
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where ξ̃t = ξt − at and other variables are taken to be log deviations from constant steady

state values.7 Here ξt is the log of output and will be I(1), et is the log of the exchange rate,

Rt is the (nominal) rate of interest, πt is the rate of inflation, qt is the (observed) log of the

terms of trade, y∗t is the log of foreign output, π∗

t is the log of foreign inflation, and at is

the log of the level of technology. The parameter χ is given by τ + α(2 − α)(1 − τ), where

α is the share of imported goods in consumption, and τ = 1/σ comes from a CARA utility

function of the form (Ct/At)
1−σ/(1 − σ) −Nt.

In terms of equation (25), ψt = {ξ̃t, π̃t,∆ẽt, R̃t,∆q̃t} and the non-technology shocks are

et = {εR,t ε∆q,t ỹ
∗

t ,π̃
∗

t }. Values of the parameters taken from Hodge et al. (2008) are

τ = .5, α = .2, ρa = .29, κ = .42, ρR = .81, ψ1 = 1.62,

ψ2 = .4, ρ∆q = .57, ρπ∗ = .53, ρy∗ = .92.

With the parameter values given above the solution of this model is

ξ̃t = −.99R̃t−1 + .05∆at−1 + .08∆qt−1 − .20ỹ∗t−1 + .14ε∆q,t − 1.2εR,t

−.22εy∗

,t
+ .17εa,t

π̃t = −.1.04R̃t−1 + .03∆at−1 + .01∆qt−1 − .24ỹ∗t−1 − .17ε∆q,t − 1.28εR,t

−.26εy∗

,t
+ .09εa,t

Rt = .42R̃t−1 + .01∆at−1 + .00∆qt−1 + .06ỹ∗t−1 + .01ε∆q,t + .51εR,t

+.06εy∗

,t
+ .04εa,t

∆et = −.53π̃∗

t−1 − .1.04R̃t−1 + .03∆at−1 − .47∆qt−1 + .24ỹ∗t−1 − .82ε∆q,t

−επ∗

.,t
− 1.28εR,t + .26εy∗

,t
+ .09εa,t

∆q̃t = ρ∆q∆q̃t−1 + ε∆q,t

This expression has the form of equation (26), thus enabling the matrices Da, De and D1

to be recovered. Hence the VECM representation of the DSGE model can be constructed.

In other words, the parameter matrices α and A1 implied by the DSGE model can be

found, thereby allowing the rank tests for common transitory components given earlier to

7The terms χρazt and αχEt∆q̃t+1 are not the same as in Lubik and Schorfheide (2007) but the corrected
version in Hodge et al. (2008).

26



be applied. In this particular case, the matrix has rank six, as needed if there are to be no

common transitory dynamics among the five observable variables {ξt, πt,∆et, Rt,∆qt} plus

the technology variable at. If, however, technology growth is restricted to have no serial

correlation, ρa = 0, and the matrix becomes of rank five.

7 Conclusion

This paper has argued that tests for common transitory factors in a model that has a VECM

representation involves testing if the rank of the matrix containing the short-run dynamics

coefficients is deficient. It was also demonstrated that, in this particular context, tests for

reduced rank of the coefficient matrix are identical to a Wald variant of the commonly

used likelihood ratio approach to testing for common transitory components. It was also

shown that the Wald test appears to have more power than the popular LR test that is the

workhorse of the current literature. Finally, it was demonstrated how a DSGE model with

permanent shocks can be converted into a VECM so that the rank tests may be applied.
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Appendix: Proof of Result 3

First note that as the eigenvalues of

Ψ = (W ′

1W1)
−1W ′

1W2(W
′

2W2)
−1W ′

2W1 = (Φ̂′Q̂Φ̂ + Ω̂)−1Φ̂′(Q̂)Φ̂

from expression (15) are a.s. distinct and positive. Therefore δ̂, representing the eigenvectors

corresponding to the s smallest eigenvalues of Ψ, a.s. has full column rank s. Therefore, any

quadratic form δ̂′Aδ̂ is a.s. positive-definite and symmetric provided A is positive-definite

and symmetric.

The Wald test statistic may be re-expressed as

ξW = T vec(Φ̂δ̂)′
[
(δ̂′ ⊗ Ik)Σ̂(δ̂ ⊗ Ik)

]
−1

vec(Φ̂δ̂)

= T tr
[
(δ̂′Ω̂δ̂)−1δ̂′Φ̂′Q̂Φ̂δ̂

]

using the fact that Σ̂ = Ω̂ ⊗ (Q̂)−1.

To show that the Wald test statistic is identical to the SVD, CR and MD test statistics, it re-

mains to establish that the eigenvalues of the bracketed matrix are the s smallest eigenvalues

of Ω̂−1Φ̂′Q̂Φ̂, as Ω̂−1Φ̂′Q̂Φ̂ and Θ̂′Θ̂ have the same eigenvalues.

Let B = Φ̂′Q̂Φ̂ and A = Ω̂−1. The eigendecomposition of Ω̂−1Φ̂′Q̂Φ̂ can be expressed as

Ξ′ABΞ = Λ .

Noting that Ψ = (B + A−1)−1B, it follows that

Ξ′(B + A−1)−1BΞ = Ξ′(A−1ΞΛΞ′ + A−1)−1A−1ΞΛ

= Ξ′[A−1Ξ(Λ + I)Ξ′]−1A−1ΞΛ

= (Λ + I)−1Λ .

Therefore, the canonical correlations ν̂ and eigenvalues of Θ̂′Θ̂ are related by ν̂ = λ̂/(1 + λ̂).

It follows that each of the eigenvectors corresponding to the s smallest eigenvalues of Ψ,

forming the columns of δ̂, are just scalar multiples of the eigenvectors corresponding to the

s smallest eigenvalues of F̂ F̂ Φ̂′Q̂Φ̂, forming the columns of τ̂ . To account for arbitrary

normalizations of δ̂, such as choosing to represent δ̂′ in reduced row echelon form, it suffices

to set δ̂ = Mτ̂ for some non-singular M .
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This means that the Wald statistic may be re-expressed as

ξW = T tr
[
(ξ̂′M ′Ω̂Mξ̂)−1ξ̂′M ′Φ̂′Q̂Φ̂Mξ̂

]

= T tr
[
(ξ̂′Ω̂ξ̂)−1ξ̂′Φ̂′Q̂Φ̂ξ̂

]

by the self-similarity of the ratio of these two quadratic forms with respect to M .

From the eigendecomposition of Ω̂−1Φ̂′Q̂Φ̂ it can also be shown that

Ξ′Ω̂Ξ = Ξ′Φ̂′Q̂Φ̂ΞΛ−1 .

This means that (τ̂ ′Ω̂τ̂)−1 = (τ̂ ′Φ̂′Q̂Φ̂τ̂ )−1Λs where Λs = diag{λ̂1, . . . , λ̂s}.

Therefore
ξW = T tr

[
(τ̂ ′Φ̂′Q̂Φ̂τ̂)−1Λs(τ̂

′Φ̂′Q̂Φ̂ξ̂)
]

= T tr
[
Λs(ξ̂

′Φ̂′Q̂Φ̂τ̂ )(τ̂ ′Φ̂′Q̂Φ̂τ̂)−1
]

= T
∑s

i=1 λ̂i

as required.
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