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Abstract 
One-third of the irrigated land in the major irrigation countries is affected by salinity or 
is expected to become so in the near future. A rapid assessment to evaluate the effect of 
changes in irrigation water quality and quantity is applied for the Rudasht irrigation 
project in Iran. This was performed by using a physically based, well-tested simulation 
model for crop growth, water and salt transport at field scale. Results indicate that the 
current practice of 900 mm annual irrigation application rates for cotton, given the 
current salinity level of 4 dS m-1, is close to the optimal one. Graphs are presented to 
evaluate the effect of different combinations of application rates and salinity levels on 
yields, and the water and salt balance. It was concluded that the methodology presented 
here is versatile, rapid, and transferable to other conditions. Moreover, the method 
produces output at a high spatial and temporal resolution over a long time frame.  
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Introduction 
Salinity is one of the major problems in irrigated agriculture all over the world. Many 
areas are facing reduced production as a result of salinity and, even worse, areas have 
been abandoned for any agricultural activity due to severe salinity levels. It is estimated 
that roughly one-third of the irrigated land in the major irrigation countries is already 
badly affected by salinity or is expected to become so in the near future (Kijne et al., 
1998). Some estimates for major irrigation countries are: Pakistan 14 percent, China 15 
percent, India from 27 to 60 percent, Egypt 30 percent, and Iraq 50 percent (Ghassemi 
et al., 1995). Two major salinity problems are likely to occur in irrigated areas if no 
careful irrigation management is applied. First of all, salts will accumulate in the soil as 
irrigation water always contains some salts, while water transpired by plants or 
evaporated by the soil will not remove any salts. In an attempt to reduce this salt 
accumulation, a surplus of irrigation water is supplied to leach these salts from the root 
zone. This leads in many cases to a second problem, water logging due to rising 
groundwater. Often, this groundwater is also very saline and will increase the salinity 
level of the root zone substantially. So, irrigation applications must be large enough to 
minimize salt accumulation in the root zone and low enough to limit the hazard of water 
logging. Obviously, problems related to water logging can also be diminished by an 
adequate drainage system. 

Field trials can be useful to analyze and test different scenarios related to salinity. 
However, several important limitations of these field experiments have become more 
and more apparent. First of all, their validity is limited to the area and the physical 
conditions the experiments have been conducted. Secondly, field trials are often 
conducted over a short period of a couple of years, ignoring a very important topic in 
salinity related problems: the long-term effects. These long-term effects can be a 
gradual, but constant, salt accumulation in the root zone and the groundwater, as well as 
in rising or falling water tables. Finally, the number of scenarios that can be studied by 
field experiments is necessary limited, given practical considerations as labor input, 
available fields, and noticeable expenses. Simulation models can be applied as an 
extension of field tests to overcome these restrictions of field experiments. Nowadays, 
well-tested and validated simulation models are available and are ready to be applied to 
answer questions related to salinity.  

For the Rudasht irrigation project in the Zayandeh Rud basin in Iran a rapid assessment 
procedure was tested based on the SWAP model; a physically based, well-tested 
simulation model for crop growth, water and salt transport at field scale. No 
measurement campaign was conducted but data from an existing data set was used. 
Emphasis will be put on the output from the model in terms of long term effects, spatial 
and temporal resolution, expected crop yields, and water and salt balances.  

In summary the objectives of this paper are to demonstrate the possibility of making 
combined use of data and a simulation model for a rapid assessment of salinity 
problems. This approach was tested by analyzing the water and salt balance and yields 
in relation to the quantity and quality of water applied for irrigation. 
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Materials and methods 
Study area 
The Rudasht irrigation project (52o lon., 32.5o lat) is located east of Esfahan in the 
central part of Iran and has an altitude of approximately 1500 m (Fig. 1). The climate is 
arid with temperatures ranging from 30oC in summer down to 3oC in winter. Average 
annual precipitation is 150 mm. Soils in the area are alluvial deposits and are fine 
textured. The old irrigation system will be expanded, which will result in a total 
command area of approximately 47,000 ha. Main crops are winter wheat and barley, 
sugar beet, cotton and melons.  

 

Simulation model 
The Soil-Water-Atmosphere-Plant (SWAP) model was applied to simulate all the terms 
of the water and salt balance and to estimate relative yields (actual over potential yield). 
SWAP is an integrated physically based simulation model for water, solute and heat 
transport in the saturated-unsaturated zone in relation to crop growth. For this study the  
water and salt transport and crop growth modules were used. The first version of the 
SWAP model was already written in 1978 (Feddes et al., 1978) and from then on a 
continuous development of the program started. The version used for this study is 
SWAP2.0 and is described by Van Dam et al. (1997). 
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Figure 1. Location of the Roodhast area in the Esfahan region, Iran. 
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The core part of the program is the vertical flow of water in the unsaturated-saturated 
zone, which can be described by the well-known Richards’ equation: 
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where θ denotes the soil water content (cm3 cm-3), t is time (d), h  (cm) the soil matric 
head, z (cm) the vertical coordinate, taken positive upwards, K the hydraulic 
conductivity as a function of water content (cm d-1). S (d-1) represents the water uptake 
by plant roots (Feddes et al., 1978), defined in case of an uniform root distribution as: 
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with Tpot is potential transpiration (cm d-1), zr is rooting depth (cm), and α (-) is a 
reduction factor as function of h and accounts for water deficit and oxygen deficit. 
Except for the very wet conditions, unlimited water uptake by plants was at h > -1000 
cm Between these points and permanent wilting point, h = -5000 cm, a linear reduction 
was assumed. Below h = -5000 cm water uptake was assumed to be zero. Total actual 
transpiration, Tact, was calculated as the depth integral of the water uptake function S. 

Actual soil evaporation can be estimated by the Richards’ equation using the potential 
evaporation as the upper boundary condition. However, this requires information about 
the soil hydraulic properties of the first few centimeters of the soil, which are hardly 
measurable and are highly variable in time as a consequence of rain, crust and crack 
formation, and cultivation (Van Dam et al, 1997). All these processes reduce the real 
actual evaporation in comparison with the values obtained by applying Richards’ 
equation. Therefore the additional soil reduction function option from SWAP was 
implied, whereby the actual evaporation is a function of the potential evaporation, the 
soil moisture content of the top soil, an empirical soil specific parameter, and the time 
since the last significant rainfall. Details of this procedure are given by Boesten en 
Stroosnijder (1986). 

Crop yields can be computed using a simple crop growth algorithm based on Doorenbos 
and Kassam (1979) or by using a detailed crop growth simulation module that partitions 
the carbohydrates produced between the different parts of the plant, as a function of the 
different phenological stages of the plant (Van Diepen et al. 1989). For this specific case 
the first method was used as detailed crop parameters were lacking. Potential 
evapotranspiration is partitioned into potential soil evaporation and crop transpiration 
using the leaf area index. Actual crop transpiration and soil evaporation are obtained as 
a function of the available soil water in the top layer or the root zone for, respectively, 
evaporation and transpiration. Finally irrigation can be prescribed at fixed times, 
scheduled according to different criteria, or by using a combination of both. 

SWAP can deal with solute transport processes in general. For salinity studies it can be 
assumed that salt can be described as a conservative solute, no adsorption or 
decomposition, and diffusion rate is very small, so it can be ignored. This implies that 
salt transport is only governed by the convection-dispersion process. The effect of 
salinity on crop yields is taken into account and is defined by a critical ECe level below 
which no salt stress occurs and the decline of rootwater uptake above this ECe 
maximum level in percentage crop yield reduction per dS m-1. For the cotton crop used 
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here the ECe maximum is defined as 7.7 dS m-1 and the decline as 5% per dS m-1 
(Doorenbos and Kassam, 1979). 

The SWAP model has been applied and tested already for many different conditions and 
locations and has been proven to produce reliable and accurate results. A more detailed 
description of the model and all its components is beyond the scope of this paper, but 
can be found in Van Dam et al. (1997). 

 

Input data 
Soils 
In order simulate the flow of water the soil hydraulic functions, water retention and 
hydraulic conductivity curves, are required. These soil hydraulic functions are often not 
available and, moreover, require specific equipment to determine these properties. 
Pedo-transfer functions can be used to derive these difficult-to-measure soil hydraulic 
functions from easily obtainable data such as texture and soil bulk density (e.g. Tietje 
and Tapkenhinrichs 1993). Recently, Wösten et al. (1998) developed a set of pedo-
transfer functions using a soil database including data of 4030 horizons. These pedo-
transfer functions were used to obtain the soil hydraulic properties required as described 
according the Mualem-Van Genuchten equations (Van Genuchten, 1980). Variation in 
soil properties was limited in the area and therefore only one soil type was considered. 
Table 1 shows the measured soil properties and the derived soil hydraulic 
characteristics. 

The soil hydraulic characteristics for the top three layers are depicted in Figure 2. The 
water holding capacity of the top soil is substantially higher than the ones from the 
deeper soil layers. Assuming values for field capacity as pF 2.0 and for wilting point as 
pF 4.0, the water holding capacity is 0.21, 0.21 and 0.13 cm3

 cm-3 for respectively 0-30, 
30-55 and 55-75 cm depths. Also hydraulic conductivity is higher for the top layers than 
for the deeper layers. 
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Figure 2. Soil hydraulic functions for the top soil layers. 
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Table 1. Soil properties and derived soil hydraulic functions, as described 
according to the Van Genuchten parameter set. 

depth clay sand silt OM θres θsat α n Ksat L 
cm % % % % m3 m-3 m3 m-3 cm-1 - cm d-1 - 

0-30 35 21 44 0.5 0.000 0.492 0.0264 1.178 42.0 -2.196 
30-55 64 10 26 0.4 0.000 0.516 0.0122 1.147 30.2 0.046 
55-75 68 4 28 0.3 0.000 0.501 0.0078 1.083 2.3 0.251 

75-115 48 2 50 0.2 0.000 0.431 0.0138 1.082 4.3 -2.743 
> 115 32 8 60 0.2 0.000 0.424 0.0167 1.131 9.8 -1.982 

OM is soil organic matter, θres is residual soil moisture content, θsat is saturated soil 
moisture content, Ksat is saturated hydraulic conductivity, α, n, and L are fitting 
parameters. 

 

Climate data 
Monthly meteorological data was available for a station in the vicinity of the Rudasht 
area over a period of 11 years. SWAP requires daily input data so it was assumed that 
the daily data was similar as the monthly average ones. In addition, for rainfall the 
monthly maximum and the day this maximum occurred, was available, and was used in 
SWAP. This ensured us that the most variable meteorological factor was correctly taken 
into account in the simulations. 

As we are interested in the long term effects of different scenarios we used one 
reference year and applied this over a period of 10 years in order to get the equilibrium 
stage. The selection of one reference year was done by considering the total annual 
precipitation as well as the distribution of this precipitation during the year. Table 2 
shows the characteristics of the entire data set from which was decided to select 1991 as 
the reference year. 

Table 2. Climate data from Esfahan station in the vicinity of the Rudasht 
irrigation scheme. 

year precipitation (mm) temperature (oC) 
 mean summer winter mean summer winter 

1986 165 12 153 15.9 34.7 8.1 
1987 61 30 31 17.2 35.2 10.0 
1988 71 1 70 17.4 35.5 9.5 
1989 139 7 132 16.5 36.5 8.1 
1990 78 6 72 17.4 36.4 9.1 
1991 122 10 113 16.9 35.7 9.2 
1992 123 36 86 15.5 34.6 7.5 
1993 199 10 188 16.3 35.8 8.6 
1994 125 23 102 17.0 36.0 9.2 
1995 123 38 85 15.8 35.9 8.1 
1996 148 21 127 15.6 35.5 7.7 

average 123 18 105 16.5 35.6 8.6 
 

Crops 
Main crops in the area are winter wheat and barley, sugarbeet, and cotton. For this study 
we selected to analyze the effect of different irrigation management scenarios on cotton. 
Cotton is seeded at the beginning of April and yield is harvested at the beginning of 
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October. Potential yields for cotton in this area is around 5000 kg ha-1, but actual yields 
are frequently reported to be only halve of this due to salinity problems. 

 

Bottom boundary condition 
Groundwater levels are reported to be around 200 cm below surface, but may increase 
substantially during the irrigation season. A bottom flux groundwater relationship was 
used here, as this is appropriate to evaluate changes in water table depths. No detailed 
data was available for this, so a general exponential relationship was used: 

 hb
bot aeq =  (3) 

where a and b are empirical coefficients, here defined as –0.3 cm d-1 and –0.01 cm-1, 
respectively. These values result in a water table behavior comparable to the reported 
qualitative field observations: a water table depth of around 200 cm and some water 
logging after substantial irrigation applications. 

 

Irrigation 
Irrigation applications according to normal farmer practices are very high in an attempt 
to compensate for the poor water quality. For cotton a total application will reach 
between 800 and 1000 mm, given in quantities of about 100 mm. As no detailed 
information was available on the exact date of irrigation applications, it was assumed 
that farmers irrigated the crop at the most appropriate time. This was performed by 
using a timing criterion in the SWAP model, based on the ratio of actual over potential 
crop transpiration (Tcrit). By changing this criterion in the range from 0.3 to 0.95, 
different amount of irrigation will be simulated. Each application was assumed to be 
constant at 100 mm which was in accordance with local farm practice. 

Water quality was very poor with reported salinity levels between 2 and 6 dS m-1. As no 
trend was apparent in these levels during the year, we assumed here a constant level of 4 
dS m-1. 

 

Scenarios 
In order to explore the effect of different water management decisions, scenarios were 
defined. The first scenario is the baseline scenario, which describes the current situation, 
and will function as a reference for the other scenarios. The other scenarios are based on 
changes in water quantity and quality and their effect on the water and salt balance and 
crop yields. 

 

Baseline  
The baseline is used as a reference and can be considered as the ‘business as usual’  
case. The cotton crop was considered, as this is an important industrial crop in the area, 
also in the perspective of the renewal and expansion of the system. Irrigation inputs 
were used as applied by the average farmer and includes a total of 900 mm as defined 
before. The salinity of the irrigation water was considered to be constant during the year 
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of 4 dS m-1. No drainage was considered and the groundwater depth was simulated 
using the flux-groundwater relationship as described before.  

In order to focus on long term effects and analyze an equilibrium state, a period of 10 
years was considered for which all the input data was kept constant. Also weather data 
was kept similar for these 10 years, in order to avoid disturbance from extreme weather 
conditions. Obviously, extreme weather conditions exist in reality and can be studied in 
detail using a historic range of climate data to explore the probability of occurrence of 
certain conditions. This is beyond the scope of this paper, as we want to explore long 
term effects only, but can be found elsewhere (e.g. Droogers et al., 1999). 

 

Water quantity 
The baseline irrigation applications were defined by 9 times an application of 100 mm. 
As a result of changes in upstream management, inter-basin flows, or irrigation 
development, more or less water could become available for the scheme, or, moreover, 
a change in the cropped area in the scheme itself can change the water availability for 
irrigation at field level. In order to distribute the water of the different scenarios as 
optimally as possible an irrigation scheduling criterion from SWAP was used based on 
the ratio actual over potential crop transpiration. Different ratios, ranging from 0.3 to 
0.95, were used, resulting in total irrigation application between 300 and 1500 mm. 
Results of these simulations were compared with the baseline scenario of a total of 900 
mm water applied. 

 

Water quality 
As a consequence of changes in upstream water utilization and management, salinity 
levels in the river can change. To explore the effect of these changes, simulations were 
performed with decreased salinity levels (1 and 2 dS m-1), which occurs as a result of 
the development of inter-basin flows. The development of more irrigation upstream of 
the Rudasht area, could lead to a further deterioration of water quality and therefore a 
scenario was analyzed using an increased salinity level of 6 dS m-1. All the other input 
parameters were assumed to be unchanged. 

Table 3. Annual water for the baseline scenario at equilibrium stage, 900 mm 
irrigation with a salinity level of 4 dS m-1.  

 Potential Inflow Outflow 
 mm mm mm 
Transpiration 922  640 
Evaporation 1145  246 
Precipitation  118  
Irrigation  900  
Bottom flux   130 
Surface runoff   0 
Mass balance error   2 
Total 2067 1018 1018 
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Results 
Baseline 
All the terms of the water balance, as simulated by SWAP for the baseline scenario in 
equilibrium stage, are shown in Table 3. This equilibrium stage was reached by 
applying the model for a period of 10 years while keeping all the input data constant. It 
appears that this equilibrium stage was reached already after 5 years for the water 
balance and the topsoil salinity levels. However, groundwater salinity levels were just 
reaching an almost equilibrium stage after these 10 years, at a level of about 27 dS m-1. 
From table 3 is appears that the irrigation application was almost equal to the potential 
transpiration. However, part of this irrigated water could not be used directly by the 
crop, as a consequence of percolation to the groundwater and losses by soil evaporation. 

Figure 3 shows the daily trend in the water balance. Irrigation inputs were 900 mm, 
according to normal field practices. As the exact dates of the irrigation applications 
were unknown, we allowed the model to distribute this 900 mm as optimally as 
possible.  

This was accomplished by setting the Tcrit (the ratio of actual over potential crop 
transpiration) to the value that simulated this 900 mm. After some trials a value of 0.63 
appeared to be appropriate. Clearly the rise in groundwater due to irrigation with the 
associated negative aspects of water logging can be seen. Interesting is that during the 
peak growing season, June-August, water is not the limiting factor as can be seen from 
the high water table, but the crop is being stressed due to salinity and some aeration 
problems related to the high water table. 

Table 4. Effect of the changes in irrigation water quantity on yields and salt and 
water balance.  
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------------------------------  mm y-1 ------------------------------ % dS m-1 cm 
118 300 -6 0 922 212 1145 196 29 34.5 -515 
118 400 -27 0 922 266 1145 206 33 33.4 -364 
118 500 -58 0 922 341 1145 216 38 29.7 -301 
118 600 -77 0 922 418 1145 224 44 26.8 -275 
118 700 -93 0 922 496 1145 233 51 24.4 -261 
118 800 -109 0 922 568 1145 241 58 22.1 -244 
118 900 -130 0 922 640 1145 246 66 19.7 -244 
118 1000 -159 14 922 688 1145 253 71 17.3 -227 
118 1100 -191 92 922 680 1145 258 70 16.4 -232 
118 1200 -222 172 922 656 1145 264 66 15.9 -221 
118 1300 -252 285 922 604 1145 272 61 16.1 -221 
118 1400 -284 371 922 583 1145 279 59 15.7 -214 
118 1500 -306 479 922 543 1145 288 56 16.0 -215 

1Salinity is the average salinity of the topsoil (0-100 cm) during the growing season. 
2Groundwater depth reflects the situation at the end of the growing season. 
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Figure 3. Annual water balance for the baseline scenario.  
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Figure 4. Water and salinity profiles for the baseline scenario at equilibrium stage 
for one year for the top soil as simulated using SWAP. 
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The SWAP model offers the opportunity to evaluate processes in unlimited spatial and 
temporal resolution. As an example, Figure 4 shows the soil moisture status and the 
solute concentrations for one year for the top soil. Water contents higher than pF 1.0, h 
= -10 cm, are considered to be negative for the plant as water uptake is restricted due to 
aeration problems. From pF 3.0 crops stress started and no water uptake by roots take 
place if the soil is dryer than pF 4.0. From Figure 4 it is clear that the irrigation input is 
just low enough to prevent the soil of severe drying out and not too high to cause water 
logging problems. The salinity levels (Fig. 4 bottom) are constant for the lower soil 
profile, but major variations can be observed in top soil salinity levels. Interesting is that 
a substantial salt accumulation has been developed in the lower soil layers, with values 
around 25 dS m-1, while irrigation water had a salinity level of 4 dS m-1. Note that 
salinity levels presented here reflect the actual levels for the current soil water, while 
field measurement are normally based on a soil sample brought to saturation. 
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Figure 5. The effect of changes in water quantities applied by irrigation on the soil 
water balance, crop yields and soil salinity levels. 
 

Changes in water quantity 
The effect of a change in irrigation supplies in terms of total amount applied water, was 
analyzed using the result of the SWAP model (Table 4). In Figure 5 the relationship 
between water applied and the annual terms of the water balance, expected crop yields 
and soil salinity are displayed. Runoff is zero as long as annual irrigation applications 
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are lower than 900 mm. Higher irrigation applications will increase this runoff 
noticeably. An almost linear relationship exists between the amount of water applied by 
irrigation and the amount of percolation, with a slope of 25%. Soil evaporation is also 
linear related to the irrigation supply. Crop transpiration and relative yields reach their 
top at an irrigation input of about 1000 mm. A higher supply will reduce the soil salinity 
levels slightly, but will cause water logging with all the negative aspects associated with 
this.  

In general it appears that the current practice of applying 900 mm of irrigation is close 
to the optimal amount. However, with increasing competition of water less water might 
become available for irrigation in the near future. Results displayed in Table 4, can be 
used to estimate the expected crop yields given a certain amount of water available for 
irrigation. With the current water management crop yields are about 65% of potential, 
while this can drop to 50 and 40 % for respectively 700 and 500 mm of irrigation. 
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Figure 6. Combined effect of irrigation water quality and quantity on crop yield, 
top-soil salinity, surface runoff, and percolation. 

 



-15- 

Changes in water quality 
Table 5 shows the effects of changes in water quality in terms of expected crop yields 
and salt accumulation. Obviously, lower salinity levels result in higher yields and 
transpiration rates, and lower runoff and soil salinity levels. The increase in percolation 
can be explained by the fact that water uptake by plant roots is hampered by the high 
salinity levels, resulting in more water available for percolation. Moreover, due to this 
lower transpiration the water table will rise and runoff will occur.  

Table 5. Effect of the changes in irrigation water quality on yields and salt and 
water balance. The ECsoil reflects the salinity of the top soil (0-100 cm). 

dS m-1 PCP Irr Fbot Runoff Tpot Tact Epot Eact Yield Salinity 

1 118 900 -27 0 922 742 1145 247 77 15.6 
2 118 900 -62 0 922 709 1145 248 73 17.6 
4 118 900 -130 0 922 640 1145 246 66 19.7 
6 118 900 -197 72 922 496 1145 245 51 22.7 

 

Combined effect of water quantity and water quality 
The combined effect of changes in water quantity available for irrigation as well as the 
salinity levels of this water were analyzed using the SWAP model. Figure 6 shows for 
irrigation depths ranging from 500 to 1300 mm y-1 and for salinity levels from 1 to 6 dS 
m-1 the resulting expected relative yields. As can be observed from the figure, the 
highest yield can be expected for an irrigation depth of 1100 mm with a salinity level of 
1 dS m-1. For other combinations of water quantity and quality values, expected yields 
can be obtained using this figure too. Furthermore, all other terms of the water and salt 
balance can be analyzed for the different possible water quantity and quality 
combinations. 

In Figure 6 the top soil salinity, surface runoff, and percolation are given as examples. 
Salinity levels are lowest with irrigation applications of about 1100 mm and increase 
with higher application rates as a consequence of water logging. As explained before, 
salinity levels presented here, reflect the top 100 cm average values in the actual soil 
water, and thus not the levels for a saturated soil.  

Below an annual application rate of about 1000 mm surface runoff is negligible, while 
at higher rates and high salinity levels root water uptake is hampered, water table rises, 
inducing significant runoff. Finally, expected percolation to the groundwater as function 
of the annual water application and salinity levels can be observed at the right-bottom in 
Figure 6. Percolation rates are between almost zero and 280 mm y-1. 

 

Generalization 
The SWAP model offers a range of output that can be used to understand processes and 
to analyze the impact of different scenarios on field water management aspects. In cases 
where only the relationship between irrigation inputs and yield is required, more 
generalized and simplified models can be used. Instead of using a classical irrigation 
research approach involving experimental field trials with different irrigation 
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applications, we used the SWAP model here as a “virtual field”. The main advantage 
over field trials is the unlimited amount of “experiments” that can be performed using 
the model. For this study 52 different “experiments” have been conducted: the 
combination of 13 application depths and 4 salinity levels. 

A range of regression equations has been tested to relate irrigation applications and 
salinity levels to relative yields, as simulated by the SWAP model. Table 6 shows the 
regression equation used, and the resulting Sum Of Squares (SSQ) and the correlation 
coefficient r2. Tests with higher degree regression equations did not improve the 
predictions, but the additional term Salinity times Irrigation, improved the fit 
substantially. Figure 7 shows the scatter diagram for this regression equation (last 
equation in Table 6). The obtained functions should be used with care as they are 
derived from one soil type, one climatological condition, and one crop (cotton). 
Extension to other crops and soil types are under study. 

Table 6. Regression analysis to relate simulated yield to irrigation application 
depths and salinity levels. Y is relative yield (%), S is salinity level of irrigation 
water (dS m-1) and I is annual irrigation depth (mm). 

Equation SSQ r2 

Y = a + bS + cI 4278 0.72 
a = 44.415; b = -5.255; c = 0.035 
Y = a + bS + cI + dI2 2604 0.83 
a = 7.993; b = -5.087; c = 0.132; d = -5.6E-05 
Y = a + bS + cI + dS2 4267 0.73 
a = 46.002; b = -6.632; c = 0.035; d = 0.196 
Y = a + bS + cI + dS2 + eI2 2588 0.83 
a = 5.622; b = -3.718; c = 0.134; d = -0.192; e =-5.7E-05 
Y = a + bS + cI + dS2 + eI2 + fSI 813 0.95 
a = -32.006; b = 6.891; c = 0.183; d = -0.443; e =-6.5E-05; f = -0.0106 

 

 

0 20 40 60 80 100
S imulated Relative Yield (% )

0

20

40

60

80

100

R
eg

re
ss

io
n 

R
el

at
iv

e 
Yi

el
d

 (
%

)

 

Figure 7. Performance of the last regression equation in Table 6. 
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Conclusions and recommendations 
For the Rudasht area studied here it can be concluded that given the current practice of 
about 900 mm of irrigation with an average water salinity level of 4 dS m-1, crop yields 
for cotton are expected to be around 66% of the yield potential of 5000 kg ha-1. Given 
the current water quality level, changes in the amount of irrigation applied will not 
change substantially crop yields and the current practice of 900 mm is recommended for 
cotton. 

If water quality improves due to changes in water management upstream of Rudasht to 
2 dS m-1 or even 1 dS m-1, yields can increase to 73% and 77%, respectively, of the 
potential value, with the same annual irrigation application of 900 mm. A further 
increase is possible if along with an improvement in water quality, more water becomes 
available for irrigation. Expected yields can increase to 87% and 95% for respectively 2 
and 1 dS m-1, if an annual application rate of 1100 mm is practiced. A further 
salinization of irrigation water to 6 dS m-1, will decrease the crop yield for cotton to 
51% of potential obtainable.  

The results presented here can be used also to assess the effect of sub-optimal irrigation 
applications on yields and the water and salt balance. Figure 6 top-left can be used as a 
guideline to estimate expected yields given the salinity level of irrigation water and the 
annual applied irrigation amount. 

Results from this study reflect the situation for the representative soil type considered 
here and for average farmer practice and weather conditions. Variation in these 
parameters is likely to change the results and conclusions. However, the input data used 
here reflects the average conditions and results can be used as general guidelines. 
Furthermore, limitations as a result of water stress, water logging, and salinity were 
taken into account, but other possible limitations, such as weeds, diseases, and improper 
management, were neglected here. 

The main advantage of the approach applied here is that it is a nonspecific one and can 
be easily adapted to other conditions in terms of soil, weather, and crop. The study 
presented was setup to demonstrate the use of existing models, data, and techniques for 
a rapid assessment. Input data for the current study was readily available and required 
data was obtained by converting the existing data to the required ones in stead of 
starting extensive measurement efforts. The use of an existing well-tested simulation 
model and well-established data conversion methods was assumed to generate reliable 
results. The nature of the model, physically based, enabled this approach as no 
calibration is required by field tests and the input data needed is physically sound. 

The model was applied here in an input driven mode, i.e. ignoring the impact of 
irrigation management on downstream users. As the irrigation scheme studied here was 
located at the lower part of the river with no downstream users, this downstream effect 
could be ignored. In cases where downstream users are present and reuse of water is 
relevant, the evaluation can be extended using output produced by the model, such as 
surface runoff and percolation in terms of quantity as well as quality. 

Besides the benefits of this non-specific approach, the methodology applied here gives a 
wealth of information in comparison to field trials, in terms of spatial and temporal 
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resolution as well as in terms of difficult to measure processes such as crop 
transpiration, soil evaporation, and percolation.  
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