Report No. R-81

RESEARCH SUPPORT FOR FORDWAH EASTERN SADIQIA (SOUTH) IRRIGATION AND DRAINAGE PROJECT

SOIL SALINITY-SODICITY AND LAND USE SUITABILITY IN THE FORDWAH EASTERN SADIQIA (SOUTH) IRRIGATED AREA

Muhammad Aslam Abdul Hamid Asghar Hussain Mahmooda Tabassam

MAY 1999 PAKISTAN NATIONAL PROGRAM INTERNATIONAL WATER MANAGEMENT INSTITUTE LAHORE

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	iii
LIST OF FIGURES	
ACKNOWLEDGEMENTS	V
EXECUTIVE SUMMARY	– víř
1. INTRODUCTION	i
1.1. Location and Extent of the Study Area	1
1.2. General Nature of the Area	1
L3 Irrigation	1
1 3.1. Canal Supplies	1
1.3.2. Groundwater	4
1.3.2.1. Depth to Water Table	4
1.3.2.2. Groundwater Development	
1.4. Drainage	
1.5. Objectives	5
2. PREVIOUS STUDIES ON SALÌNITY/SODICITY IN THE FESS PROJECT ARE	. 7
2.1. Studies by WASID, WAPDA (1962-63) Acreage2.2. Studies by Soil Survey of Pakistan (1971)	
2.3. NESPAK Salinity Survey (October 1975 to March 1976)	
2.5. NESPAK Samity Survey (October 1975 to March 1976)	
2.5. WAPDA Updated Salinity Data (1986)	
2.5. WAI DA Opualed Samily Data (1900)	
3. RESEARCH METHODOLOGY.	11
4. RESULTS AND DISCUSSION	13
4.1. Physiography and Soils	
4.1.1. Pleistocene Terrace (24538 ha. 17.6%)	
4.1.1.1. Dune Land (14750 ha, 10.6%)	
4. I. 1.2. Level Plains (9788 ha, 7.0%)	
4.1.2. Sub-recent Plain (il 5000 ha. 82.4%)	
4.1.2.1. Rasulpur Terruce (10932 ha, 7.8%)	
4.1.2.2. Harunabad Terrace (10/279 ha, 72.8%)	
4.1.2.3. Depressional Areas (2789 ha, 2.0)	
4.2. Soil Conditions	
4.3. Soil Salinity/Sodicity	
4.3.1. Kinds and Causes & Salinity/Sodicity in the Project Area	
4.3.2. Classification & Soil Salinity	
4.3.3. Classification of Soil Sodicity	
4.3.4. Water Qualities	
4.4. Present Salinity-Sodicity Status	
4.5. Comparison of Salinity/Sodicity Findings	
4.5.1. Surface Salinity/Sodicity	
4.5.2. Profile Salinity/Sodicity	
4.6. Land Use Suitability Classification	
4.6.1. Suitability <i>Classification</i>	23
· · ·	

5. POTENTIAL REMEDIAL MEASURES	
5.1. On-Farm Water Management (OFWM)	
5.2. Canal Improvement	
5.3. Groundwater Development	
5.4. Farmers' Participation	
5.5. Surface Drainage System	
5.5. Sub-surface Drainage System	
5.7. Reclamation Approach	
5.8. Biological Approach	<u></u> 31.
5.9. Impact of Chishtian Sugar Mill	

ANNEXURES

ANNEXURE 1. BRIEF DESCRIPTION OF SOIL ASSOCIATIONS	37
ANNEXURE II. HORIZON. WISE DESCRIPTION OF SOIL PITS	41
ANNEXURE III.CHEMICAL ANALYSIS OF WATER SAMPLES COLLECTED	
BY IIMI DURING THE 1999 SURVEY	45
ANNEXURE IV. RESULTS OF PHYSICAL AND CHEMICAL ANALYSES OF SOIL	
SAMPLES COLLECTED BY 11MI DURING 1999	47

APPENDICES

APPENDIX A.	PHYSIOGRAPHY & SOILS MAP OF THE FORDWAH EASTERN	
	SADIQIA SOUTH (FESS) IRRIGATION & DRAINAGE PROJECT:	
	PHASE-I (1999)	51
	SOIL SALINITY MAP OF THE FORDWAH EASTERN SADIQIA	
	SOUTH (FESS) IRRIGATION & DRAINAGE PROJECT,	
	PHASE-I (1999)	52
APPENDIX C.	LAND USE SUITABILITY OF THE FORDWAH EASTERN SADIQIA	
	SOUTH (FESS) IRRIGATION & DRAINAGE PROJECT, PHASE-I (1999)	. 53

LIST OF TABLES

Table 1. Details of the Canal System.	3
Table 2. Extent of Surface Salinity Classes by WASID, WAPDA (1962-63)	7
Table 3.NESPAK Salinity Classes	8
Table 4. Salinity Extent by Master Planning Study	8
Table 5. Updated Areas of Surface Salinity Classes (1985-86)	9
Table 6. Total Area of Each Soil with Phases (ha/percentage)	15
Table 7. FESS Soil Mapping Units with their Areas (Hectares) and Percentage.	16
Table 8. Classes of Soil Sodicity	18
Table 9. Classification of Salt-affected Soils	18
Table 10. Irrigation Water Quality Criteria of WAPDA.,	18
Table 11. Salt-affected Area in FESS during 1999	20
Table 12. Summary of Surface Salinity Reported by Survey Agencies in Different Years	20
Table 13. Saline and/or Sodic Profiles reported by Survey Agencies in Different Years	22
Table 14. FESS Area Land Use Suitability Classes/Sub-classes with their	
Areas[(ha)/Percentage]	25

LIST OF FIGURES

Figure 1. Location Map of Fordwah Eastern Sadiqia South (FESS) Irrigation and	
Drainage Project	2
Figure 2. Percentages of Various Phases of Soils of the FESS Project Area (HF=Hafizabad	
Soils; DL=Dune Land; RS=Rasulpur Soils ; HR=Haroonabad Soils;	
UW=Area under Water)	15
Figure 3. Percentages of Total Project Area under Various Salinity Classes	
(UW=Area under water; MSS=Moderately to strongly saline; SMS=Slightly to moderately saline; NS= Normal soils)	19
Figure 4. Surface salinity reported by Survey Agencies in different years	
(WAS= WASID/WAPDA; SSP=Soil Survey of Pakistan; NES ≈ NESPAK;	
MPD= Master Planning Division; PDW = Planning Directorate Water Central;	
IIMI= International Irrigation Management Institute)	21
Figure 5. Percentages of Total Project Area under Various Land Use Suitability Classes	
(SI= Highly suitable; SII = Moderately suitable; SIII = Marginally suitable;	
NII = Permanently not suitable)	25

ACKNOWLEDGEMENTS

The authors would like *to* express special and endless thanks to Prof. Gaylord V. Skogerboe who provided an opportunity to work on salinity/sodicity problems in the FESS area by emphasizing the critical importance and practical utility of the present rescarch study. He provided patient guidance, invaluable advice, comments and technical suggestions for completing the present study and preparing this report.

The authors also extend their sincere thanks to Dr. S.A. Prathapar, Director, IIMI-Pakistan for providing good facilities and the pleasant working environment for completing this study.

We also extend our sincere thanks to Mr. Salman Asif. GIS Specialist, for purchasing satellite images from India required for the present study and also helping in processing these images.

The authors also thankfully appreciate Manzoor Hussain's diligent work in typing and formatting this report. Last, but not least, editing the report for final publication is gratefully acknowledged to Verenia Duke

EXECUTIVE SUMMARY

In the present study, physiography and **soils**, as well **as** waterlogging and salinity/sodicity, conditions in the Fordwah Eastern Sadiqia (South) Project area were investigated through a soils survey using satellite images dated December 1998, along with chemical analyses of soil samples and water samples taken from the study area. All of the available literature about the area generally pertaining to physiography and soils, waterlogging and soil salinity/sodicity were reviewed in order to determine trends of salinity/sodicity build-up by comparing the past and present salinity/sodicity research studies. Because suitability and development of land is vital for irrigated agriculture, the land use suitability classificaiton was also made in the present study. The various potential remedial measure are also proposed for mitigation of soil salinity/sodicity in the irrigated land of the project area.

The study area is comprised of two terraces; namely.' Pleistocene Terrace and Sub-recent Terrace, occupying 17.6 percent (24,538 ha) and 82.4 percent (1 15,000 ha), respectively. of the total project area of 139,538 ha. The former terrace lies at a relatively higher elevation than the latter. The soils of the Pleistocene terrace are deeply developed and are of brighter colors (brown to yellowish-brown), while those of the Sub-recent flood plain are less deeply homogenized and of darker colors (brown to dark-brown). The soils of both terraces are predominantly coarse-loamy to loamy (sandy loams, fine sandy loams and loams) and are moderately calcareous. Secondary lime accumulation in the form of lime kankers (nodules) are also encountered in the sub-strata of some Pleistocene Terrace soils. The pH values of normal soils range from 8.0 to 8.2, while saline-sodic soils are around 8.8. The present configuration is due to wind/water action and gives rise to high sandy ridges/dunes associated with inter-dunal hollows locally called <u>"dhar</u>", and nearly level plains. The other contrasting features of the landscape are the abandoned, extremely saline, but moderately sodic, low-lying areas subject to accumulation of run-off and seepage water from the adjoining high, very permeable sandy areas, generally sown to high-delta crops.

The Pleistocene terrace consists of two physiographic units, namely, the dune land occupying **10.6** percent and level plains occupying about **7** percent of the project area. The Sub-recent terrace comprises three land form: units, which are the Rasulpur Terrace, Haroonabad Terrace and Depressional Areas. The Rasulpur Terrace occupies about **7.8** percent, Haroonabad Terrace occupies 72.8 perceni and Depressional **Areas** occupy about 2 percent of the project area. Haroonabad terrace is the most extensive level landform of the area. In the affected areas, the major part of this landform is involved. The soils of this landform are level, deep, homogenized to 30 to 40 inches, well drained, non-saline, non-sodic, fine sandy loams approaching to loams. In the Haroonabad Terrace the normal hactareage is about **34.3** percent and waterlogged and salinity are 38.5 percent. The area is intensively cultivated, except areas that have been abandoned due to sevete waterlogging or salinity, or are partly under high delta crops (sugarcane and rice with moderate to poor yields).

The present study reveals that salinity existing in the area is associated with **a** high water table and covers **an** area of about **23.7** percent. Also, **its** efficacy **has** begun to manifest itself even in the middle reaches **of** the canals that were previously safe, **as** the farmers are replacing cotton with rice cultivation because the cotton-yields are decreasing gradually due to a high water table **in** the area. Presently, the areas appear normal (water table depth ranging between 150- I80 cm, without salinity), but are liable to be infested with the twin menace of waterlogging and salinity in the future. About **17.8** percent of the FESS area falls in this category. NESPAK in 1975-76 and WAPDA in 1986 figured the **salinity** to be **9.2** percent and 8.7 percent of the FESS area, respectively, and also hinted about **a** somewhat

downward trend/equilibrium state, but the present study revealed that at present. about 23.7 percent of the project area has been salinized.

Chemical analyses of soil samples mostly collected from saline soils showed that though the soils are saline, they contain leachable salts (chlorides, sulphates and bicarbonates of Na, Ca and Mg). These soils also have a sufficient quantity of gypsum for self-reclamation. Chemical analyses of groundwater from various sources and depths manifest clearly that it is marginal and hazard zone for irrigation purposes. but its residual sodium carbonate (RSC) and carbonates are nil and the pH values are below the dangerous value of 8.5. Therefore, the salts concentration created by tubewell irrigation is leachable with a few heavy irrigation turns of canal water. On the other hand, the soils are also permeable. Hence, canal water can be supplemented with groundwater.

According to the land use suitability classification, about **55,518** ha (39,79%) of the project area consists of highly suitable land with very high economic potential under irrigation. This land is **capable of** growing **a** wide variety of crops including fruit orchards, which are ecologically suited **to** the area. The groundwater is hazardous for irrigation in **most** of the area. **However.** canal water could be supplemented by installing skimming wells along **the** irrigation channels where shallow groundwater is not of bad quality.

An area of about 53,783 ha (38.54%) forms moderately suitable land with a high economic potential under irrigation. This land has moderate limitations for agricultural production due to high water table (120-150cm), slight to moderate salinity and moderately coarse textured soils. By improving the regional drainage system, installing skimming wells, using **modem** management practices and selecting low delta crops, **very** high crop yields could be assured.

Comparatively, a small **area** of about **12,698** ha (9.10%) constitutes marginally suitable land with moderate **to** poor economic potential under irrigation. This land is infested with moderate to strong limitations for agricultural production with **a** very high water table (60-120cm) associated with moderate to strong salinity, mostly accompanied with surface sodicity. This land can be rehabilitated agriculturally only by lowering the water table through lining the irrigation channels, installing skimming wells and banning the high delta crops, or by installing subsurface drainage. These lands have sufficient gypsum for self-reclamation. By adopting **these** remedial measures, **good** crop yields could be obtained.

Agriculturally unproductive lands consist of areas under water and stabalized sand dunes, which comprise about 17,539 ha (12.57%). A major portion, about 14,750 ha (10.57%), are sand dunes with 15 to 30 percent vegetative coverage, uneven topography, moderately coarse to coarse textured soils. A few patches of sand dunes are sown to oilseeds and barley as barani cultivation. Otherwise, they provide poor grazing and fuel wood. Depressional ponds could be practised as fish farms.

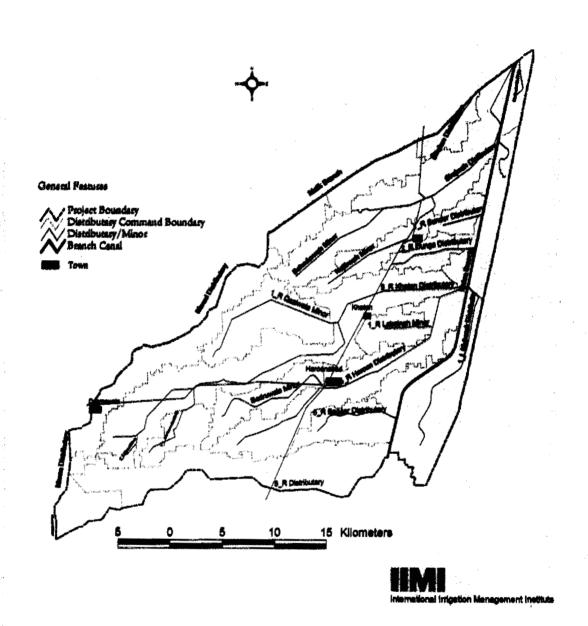
In the entire project area, salinity/sodicity is associated with the high groundwater table. To mitigate salinity/sodicity, lowering the groundwater table to below the capillary rise range should be the first priority. Therefore, the proposed potential remedial measures are mainly concerned with the emphasis on lowering the water table to below *the* capillary rise range, **cr** at a depth where its deteriorating influence could be minimized by continuous cropping. The remedial measures include On-Farm Water Management, Canal Improvement, Groundwater Development, Farmers' Participation, Surface Drainage System, Subsurface Drainage System, Reclamation Approach, and Biological Approach.

1. INTRODUCTION

1.1. Location and Extent of the Study Area

The Fordwah Eastern Sadiqia (South) (FESS) Irrigation and Drainage Project falls in the Bahawalnagar District *of* the Punjab Province and partially covers the Bahawalnagar, Haroonabad and Chishtian Tehsils. Located about 200 km south of Lahore, it lies between longitudes **72-40** and 73-25 East **and** latitudes 29-25 **and** 30-00 North. The project area is triangular in shape and is bounded by the Malik Branch and its Murad Distributary in the north and north-west, Haran Minor in the west, **the** Hakra **6-R** Distributary of the Hakra Branch in the south, and the Indian boundary in the east (Figure I). This area covers about 139538 hectares (ha).

1.2. General Nature of the Area


The project area is nearly leveled, mostly medium to coarse-textured river alluvium plain with many scattered, stabilized, 10-50 ft. higher-than-general ground level sand **dunes** and depressional areas, 10-**20** ft. lower-than-general ground level, where water stagnates throughout the year. The project **area** has been under perennial canal irrigation for more **than** 50 years, **and** only in **the** last **20** years has the effect of salinity been associated with a high-water table (groundwater table rises to the capillary rise range) in the soils, which has begun to affect the ecological agricultural production noticeably. There are now significant areas of abandoned farms due **to** excess salinity caused **by** the high water table. Presently, several agencies are engaged in restoring the previous agricultural productive potentiality mainly by lowering the water table. For example, WAPDA, through Mott **MacDonald**, **is** lining some irrigation canals, distributaries and minors to minimize water seepage, which goes to the groundwater **and** causes a **high** water table. EUROCONSULTANTS are also busy spreading **a** well-knit surface drainage system. and IWASRI is experimenting with a sub-surface drainage system. These efforts may salvage the agricultural lands of the project from the effects of waterlogging and salinity, regenerate the agricultural potential in deteriorated soils **and** save the remaining unaffected land.

1.3. Irrigation

I.3.1. Canal Supplies

The canal system for the project area begins with the diversion from the left bank of the Sulemanki Headworks to the Eastern Sadiqia Canal, which runs for a distance of some 46 miles (74 km) and then forks into the Hakra and the Malik Branch Canals at the beginning of the project area. Distributaries, minors and sub-minors off-take from each of the canals. The details of the canals system are shown in Table I.

The design of the canal system is based on a water allowance **of** 3.6 cusecs per 1000 acres (0.085 cumec per 400 ha), which would permit **a** cropping intensity of about 80 percent (40% each season), The quality of the surface **water** is good (about 300 mmhos/cm). Following the 1960 Indus Water Treaty with India, the area receives its water supply through the Balloki-Sulemanki link, which brings it under the command of Mangla reservoir. Most of the channels are unlined and due to **the** previous nature of the soils, leak large quantities of water. This seepage is one of the major **reasons** for the waterlogging and salinization of soils in the project area.

2

ĝ.

×.

Type (Acres) Watercourses Discharge (Cfs) Eastern Sadiqia (Total) M 297604 258701 668 523016280 Girdariwala DY 4033 3041 9 13 Sirajwah (Total) DY 49176 44121 113 197 Direct Outlets WC 18081 15679 37 58 Najibwah MR 9753 9473 27 39 Bahadarwah MR 935 917 2 36 Malik Branch (Total) BR 48392 41302 89 1538 Direct Outlets WC 15739 12465 22 47 Bhukan DY 5369 3835 10 13 Murad DY 22402 21002 46 595 Haran MR 3940 3103 9 69 Shadab SMR 942 897 2 3.5 Haran MR 1		Channel	GCA	CCA	Number of	Authorized
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Туре	(Acres)	(Acres)	Watercourses	Discharge
GirdariwalaDY4033 3041 913Sirajwah (Total)DY4917644121113197Direct OutletsWC18081156793758NajibwahMR979394732739BahadarwahMR93591723.6Malik Branch (Total)BR4839241302891538Direct OutletsWC15739124652247BlukanDY536938351013MuradDY224022100246595HaranMR39403103969ShadabSMR94289723.5Hakra Branch (Total)BR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR8144640819272-LMR21341795572-LMR21341795572-LMR21341795572-R Laroonabad (Total)DY188611450044						(Cfs)
Sirajwah (Total) DY 4917644121113197Direct OutletsWC18081156793758NajibwahMR979394732739BahadarwahMR203631835047821-R/BahadarwahMR93591723.6Malik Branch (Total)BR4839241302891538Direct OutletsWC15739124652247BhukanDY536938351013MuradDY224022100246595HaranMR39403103969ShadabSMR94289723.5Hakra Branch (Total)BR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307129189Direct outletsWC	Eastern Sadigia (Total)	М	297604	258701	668	523016280
Direct OutletsWC18081156793758NajibwahMR979394732739BahadarwahMR203631835047821-R/BahadarwahMR93591723.6Malik Branch (Total)BR4839241302891538Direct OutletsWC15739124652247BhukanDY536938351013MuradDY224022100246595HaranMR39403103969ShadabSMR94289723.5Hakra Branch (Total)BR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307129189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR12408	Girdariwala	DY	4033	3041	9	13
Najibwah MR 9793 9473 27 39 Bahadarwah MR 20363 18350 47 82 1-R/Bahadarwah MR 935 917 2 3.6 Malik Branch (Total) BR 48392 41302 89 1538 Direct Outlets WC 15739 12465 22 47 Bhukan DY 5369 3835 10 13 Murad DY 22402 21002 46 595 Haran MR 3940 3103 9 69 Shadab SMR 942 897 2 3.5 Hakra Branch (Total) BR 196003 169937 457 2708 Direct outlets WC 22240 19285 45 35 Bhaku Shah DY 1569 1514 3 6 1-R Sunder DY 5123 4990 11 19 2-R Khattan (Total) <	Sirajwah (Total)	DY	49176	44121	113	I97
Bahadarwah MR 203631835047821-R/BahadarwahMR93591723.6Malik Branch (Total)BR4839241302891538Direct OutletsWC15739124652247BhukanDY536938351013MuradDY224022100246595HaranMR39403103969ShadabSMR94289723.5Hakra Branch (Total)BR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY1569151436I-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC5136545334116168I-R QaziwalaMR19552167794666I-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY18861145004467J-R BadruwalaMR696760771622I-R A Labh SinghMR696760771622I-R BadruwalaMR12408106213243I-L MubarakDY18861	Direct Outlets	WC	18081	15679	37	58
1-R/Bahadarwah MR 935 917 2 3.6 Malik Branch (Total) BR 48392 41302 89 1538 Direct Outlets WC 15739 12465 22 47 Bhukan DY 5369 3835 10 13 Murad DY 22402 21002 46 595 Haran MR 3940 3103 9 69 Shadab SMR 942 897 2 3.5 Hakra Branch (Total) BR 196003 169937 457 2708 Direct outlets WC 22240 19285 45 35 Bhaku Shah DY 1509 1514 3 6 1-R Sunder DY 5123 4990 11 19 2-R Dunga DY 6764 5643 14 20 3-R Khattan (Total) DY 81 195 70316 186 307 Direct outlets WC 51365 45334 116 168 1-L Jourkanwala	Najibwah		9793	9473		39
Malik Branch (Total) Direct OutletsBR4839241302891538Direct OutletsWC15739124652247BhukanDY536938351013MuradDY224022100246595HaranMR39403103969ShadabSMR94289723.5Hakra Branch (Total)BR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307129189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total <td< td=""><td>Bahadarwah</td><td></td><td>20363</td><td></td><td>47</td><td>82</td></td<>	Bahadarwah		20363		47	82
Direct OutletsWC15739124652247BhukanDY536938351013MuradDY224022100246595HaranMR39403103969ShadabSMR94289723.5Hakra Branch (Total)BR196003I699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307129189Direct outletsWC3006427609811171-R Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total29760425870166859000	1-R/Bahadarwah	MR	935	917		3.6
Bhukan DY 5369 3835 10 13 Murad DY 22402 21002 46 595 Haran MR 3940 3103 9 69 Shadab SMR 942 897 2 3.5 Hakra Branch (Total) BR 196003 169937 457 2708 Direct outlets WC 22240 19285 45 35 Bhaku Shah DY 1569 1514 3 6 1-R Sunder DY 5123 4990 11 19 2-R Dunga DY 6764 5643 14 20 3-R Khattan (Total) DY 81 195 70316 186 307 Direct outlets WC 51365 45334 116 168 1-L Jourkanwala MR 8144 6408 19 27 2-L MR 2134 1795 5 7 4-R Haroonabad (Total) <td< td=""><td>Malik Branch (Total)</td><td>BR</td><td>48392</td><td>41302</td><td>89</td><td>1538</td></td<>	Malik Branch (Total)	BR	48392	41302	89	1538
MuradDY224022100246595HaranMR39403103969ShadabSMR94289723.5Hakra Branch (Total)BR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR2134179557 4 -R Haroonabad (Total)DY4943944307129189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total \mathbb{Z} 298000259000259000	Direct Outlets	WC	15739	12465	22	47
Haran MR 39403103969ShadabSMR94289723.5Hakra Branch (Total)BR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307129189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total29760425870166859000	Bhukan	DY	5369	3835	10	13
Shadab SMR 942 897 2 3.5 Hakra Branch (Total) BR 196003 169937 457 2708 Direct outlets WC 22240 19285 45 35 Bhaku Shah DY 1569 1514 3 6 1-R Sunder DY 5123 4990 11 19 2-R Dunga DY 6764 5643 14 20 3-R Khattan (Total) DY 81 195 70316 186 307 Direct outlets WC 51365 45334 116 168 1-R Qaziwala MR 19552 16779 46 66 1-L Jourkanwala MR 8144 6408 19 27 2-L MR 2134 1795 5 7 4-R Haroonabad (Total) DY 49439 44307 129 189 Direct outlets WC 30064 27609 81 117 1-R A Labh Singh MR 6967 6077 16 22 1-R	Murad	DY	22402	2 1002	46	595
Hakra Branch (Total) Direct outletsBR1960031699374572708Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307129189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total297604258701668298000259000	Haran	MR	3940	3103	9	69
Direct outletsWC22240192854535Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307129189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total29760425870166859000	Shadab	SMR	942	897	2	3.5
Bhaku ShahDY15691514361-R SunderDY5123499011192-R DungaDY6764564314203-R Khattan (Total)DY81 19570316186307Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307I29189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total29760425870166859000	<u>Hakra Branch (Total)</u>	BR	196003	I69937	457	2708
1-R Sunder DY 5123 4990 11 19 2-R Dunga DY 6764 5643 14 20 3-R Khattan (Total) DY 81 195 70316 186 307 Direct outlets WC 51365 45334 116 168 1-R Qaziwala MR 19552 16779 46 66 1-L Jourkanwala MR 8144 6408 19 27 2-L MR 2134 1795 5 7 4-R Haroonabad (Total) DY 49439 44307 129 189 Direct outlets WC 30064 27609 81 117 1-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 59000	Direct outlets	wc	22240	19285	45	35
2-R Dunga DY 6764 5643 14 20 3-R Khattan (Total) DY 81 195 70316 186 307 Direct outlets WC 51365 45334 116 168 1-R Qaziwala MR 19552 16779 46 66 1-L Jourkanwala MR 8144 6408 19 27 2-L MR 2134 1795 5 7 4-R Haroonabad (Total) DY 49439 44307 129 189 Direct outlets WC 30064 27609 81 117 1-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 298000	Bhaku Shah		1569	1514	3	
3-R Khattan (Total) DY 81 195 70316 186 307 Direct outlets WC 51365 45334 116 168 1-R Qaziwala MR 19552 16779 46 66 1-L Jourkanwala MR 8144 6408 19 27 2-L MR 2134 1795 5 7 4-R Haroonabad (Total) DY 49439 44307 129 189 Direct outlets WC 30064 27609 81 117 1-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 298000 259000	1-R Sunder	DY	5123	4990	11	
Direct outletsWC51365453341161681-R QaziwalaMR195521677946661-L JourkanwalaMR8144640819272-LMR21341795574-R Haroonabad (Total)DY4943944307I29189Direct outletsWC3006427609811171-RA Labh SinghMR6967607716221-R BadruwalaMR124081062132431-L MubarakDY188611450044675-R BaghsarDY1081293822536Total297604258701668298000259000	2-R Dunga	DY	6764	5643	14	20
I-R Qaziwala MR 19552 16779 46 66 I-L Jourkanwala MR 8144 6408 19 27 2-L MR 2134 1795 5 7 4-R Haroonabad (Total) DY 49439 44307 I29 189 Direct outlets WC 30064 27609 81 117 I-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 59000	3-R Khattan (Total)	DY	81 195	70316	186	307
I-L Jourkanwala MR 8144 6408 19 27 2-L MR 2134 1795 5 7 4-R Haroonabad (Total) DY 49439 44307 I29 189 Direct outlets WC 30064 27609 81 117 I-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 I-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 59000	Direct outlets	WC	51365	45334	116	168
2-L MR 2134 1795 5 7 4-R Haroonabad (Total) DY 49439 44307 I29 189 Direct outlets WC 30064 27609 81 117 1-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 59000	I-R Qaziwala	MR	19552	16779	46	
4-R Haroonabad (Total) DY 49439 44307 I29 189 Direct outlets WC 30064 27609 81 117 1-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 59000	I-L Jourkanwala	MR	8144	6408	19	27
Direct outletsWC300642760981117I-RA Labh SinghMR696760771622I-R BadruwalaMR12408106213243I-L MubarakDY188611450044675-R BaghsarDY1081293822536Total297604258701668298000259000	2-L	MR	2134	1795	5	7
I-RA Labh Singh MR 6967 6077 16 22 1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 59000	<u>4-R Haroonabad (Total)</u>	DY	49439	44307	I29	
1-R Badruwala MR 12408 10621 32 43 1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 59000	Direct outlets	wc	30064	27609	81	
1-L Mubarak DY 18861 14500 44 67 5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 668 Say 298000 259000 259000	I-RA Labh Singh	MR	6967	6077	16	22
5-R Baghsar DY 10812 9382 25 36 Total 297604 258701 668 36 Say 298000 259000 259000 36	1-R Badruwala	MR	12408	10621	32	43
Total 297604 258701 668 Say 298000 259000	1-L Mubarak	DY	18861	14500		
Say 298000 259000	5-R Baghsar	DY	10812			36
<i>y</i>	Total		297604		668	
Total (ha) 121000 105000	Say			259000		
	Total (ha)		121000	105000		

Table 1. Details of the Canal System.

M = Main Canal; BR = Branch Canal; DY = Distributary; MR = Minor; SMR = Sub-minor; WC=Watercourse

Turnouts (<u>moghas</u>) into watercourses from all levels of the canals are operated and maintained by the farmers receiving water. On a fixed turn basis, each fanner is permitted to take the entire flow of the watercourse for a length of time that is proportional to the area of land he owns. The rotation of service is repeated each seven to ten days. The farmer then distributes the water over his fields to the extent he chooses for cropping with the limited water supply. Most frequently, he uses basin flooding to spread the water in the fields. The canal system is operated at near the full capacity for some eleven months in the year.

1.3.2. Groundwater

1.3.2.1. Depth to Water Table

Regular monitoring of the water table is not being carried **out** in the project area. **WAPDA** had prepared a depth **to** water table map in June 1987. According to the information provided in the World **Bark staff** Appraisal **Report** for the project, about 50 percent of the project area is presently considered waterlogged with a permanent water table within **5** ft. (1.5 m) of the surface. The estimate is **that more** than **45** percent of the supply from the canal head up **to** farms percolates to **the** groundwater. Waterlogging first appeared on lands in the upper reaches of the Hakra Branch and is gradually moving **down** stream channel affecting an additional 15,000 acres (6,000 ha) each year. Currently, 11 **percent of** the area has a groundwater table of less than **2.5** ft **(0.76 m)**, 17 percent of 2.5-4 A **(0.76-1.22m)** and 21 percent of **4-5** ft **(1.22-1.52m)**.

In the project area, the average EC of the deep groundwater is about 19000 micromhos/cm. The shallow water quality is also of a highly hazardous nature and the average electrical conductivity of the project area is 12900 micromhos/cm. However, water quality at a very shallow depth, tapped by hand pumps and along canals, is comparatively much better. Some water samples from hand pumps and tubewells located along canals were collected by NESPAK during December 1991. Results of these sampling indicate that water from these tubewells along the canals could be used for irrigation purposes.

2.3.2.2. Groundwater Development

Because of poor aquifer conditions and marginal to hazardous quality groundwater (generally above **1500** micromhos/cm), only limited groundwater development has taken place. Recently, some small private tubewells (one cusec or less) have been installed to provide supplemental irrigation water during periods of peak crop water requirements. These tubewells are mostly located close to irrigation channels because the groundwater quality around these channels is relatively better. due to excessive seepage.

14. Drainage

There is no natural drainage system; roads and the irrigation system have blocked most of the overland run-off. The project area was included as SCARP VIII in the regional development program for the Northern Indus Plains prepared by Tipton and Kalmbach, Inc. (consultants to WAPDA) in 1967. NESPAK redefined it in 1978, to cover a total of 1.67 million acres (676353ha) on the left side of the **Sutley** River in the Fordwah and Sadigia Canal commands. Out *a* this total, a pilot project of **77800** acres (31509 ha), known as the Minchinabad Pilot Project, was implemented in the 1970s. In 1987, WAPDA further redefined the project area, excluding areas underlain by fresh groundwater and the area covered by the Command Water Management Project (CWMP) This project, named the Fordwah Eastern Sadigia Remaining Phase-I (SCARP-VIII), covered about 618,500 acres (250,500 ha). The most recent version of this project consists of two parts, the Northern and the Southern zones. An independent network of surface drains has been planned for each tone. The surface drains in the northern zone are to discharge into the Sutlej River below the Islam Headwork. The surface drains in the southern zone are to discharge into a series of evaporation ponds situated at the end of the natural slope in the southwest of the project area in the Cholistan Desert. The same evaporation ponds would be used to dispose of drainage effluent from the Hakra 6-R Distributary subproject of CWMP. All the planned surface drains in the southern zone fall in the area of the proposed Fordwah Eastern Sadiqia (South) Project, Phase-1; therefore, these drains have now been included in the FESS Project with the mutual agreement of donors, WAPDA and GoP.

1.5. Objectives

The main objectives of the present study are:

- To study the physiography and soils of the study area:
- To investigate waterlogging and salinity/sodicity conditions in the project area:
- To map the location and extent of the waterlogged and salt-affected area;
- To determine trends of deterioration or amelioration by comparing past and present research studies;
- To determine the land use suitability classification; and
- To propose/recommend various remedial measures (feasible/practicable and economical) for managing waterlogging and salinity/sodicity in order to sustain agricultural productivity of the project irrigated area.

2. PREVIOUS STUDIES ON SALINITY/SODICITY IN THE FESS PROJECT AREA

Water And Power Development Authority (WAPDA); Soil Survey of Pakistan (SSP) and National Engineering Services Pakistan (Pvt.) Limited (NESPAK) conducted soil surveys of the project area and remained engaged in the land resources inventory in the past years. The results of investigations carried out by these agencies are briefly described **below**.

2.1. Studies by WASID, WAPDA (1962-63)

The Water and Soil Investigation Division (WASID) of **WAPDA** studied the soils of the project area in 1962-63 (WASID, 1963). The survey **was** carried out at **a** semi-detailed level, with **4** to **6** observations per **sq**. mile using airphoto enlargements (1:15840) of 1:40000 contact prints taken in 1952-54. Three soil series, namely, Farida, Buchiana and Chuharkana, were recognized and mapped mainly on the basis of textural appraisal of the upper 72 inches (180cm) of depth (sub-soil), except the texture of the plough layer. These series correspond to moderately coarse (Farida series), medium (Buchiana series) and moderately fine (Chuharkana series) textures. The results of this study are presented in Table **2**. This means that in 1962-63, only **1.8** percent of the project area **was** infested with surface salinity.

Tuble at Extent of Ourface						
Salinity Class		Acreage	Percentage			
Non-saline (SI)		2 5 63 70	98.2			
Slightly-saline (S2)		4165	1.6			
Moderately-Saline (S3)		245	01			
Strongly-saline (S4)		220	0.1			
	Total	261000	100.00			

Table 2. Extent of Surface Salinity Classes by WASID, WAPDA (1962-63).

The profile-salinity investigations indicate that 15.6 percent of the project area has been inflicted with different classes of salinity-sodicily in 1962-63. The percentage was calculated from the number of profiles investigated at the rate of one profile approximated at each grid of the G.T.SHEET.

2.2, Studies by Soil Survey of Pakistan (1971)

The Soil Survey of Pakistan carried out the soil survey of the Project area as a part of a reconnaissance soil survey of the Bahawalnagar area, with an average density of 2 auger holes per sq. mile (Ansari and Hamid, 1971). Airphotos taken at a scale of 1:40000 in **1952-54** were used **as** base maps and soils were examined up **to** I50 cm (5 ft) depth. The basic of soil identification used was the soil series. which were differentiated on the basis of significant differences in the sub-soil color. texture, structure, porosity, drainage, salinity/sodicity and thickness of the soil profiles. Soil series (two or more) occurring in the same physiographic unit and occupying certain predictable facets. in the landscape were grouped into soil associations, which constituted the mapping units shown on the published map of 1:50000 scale. A study **of** the map shows that six associations exist in the Project area. The associations. with brief descriptions are provided in Annexure **1**.

These characteristics pertain to subsoil. All the soils are brown/dark **brown** to yellowish brown in colour. calcareous, massive to weakly structured. non-saline/non-sodic, except when otherwise stated. Textures are **as** per field appraisal; the pH was tested in the field using Thymol Blue indicator.

From the descriptions of the associations, it is revealed that only the Murad association is saline-sodic, but all other associations have saline-sodic soil as their components. By adding these saline-sodic acreage of the six soil associations, it is manifested that salinity exists in 5.9 percent (15,415 acres) of the total area. The texture-wise percentage and extent are details 4.3 percent (11,220 acres) as fine, 0.9 percent (2340 acres) medium, 0.0% (1440 acres) coarse and 0.1% (415 acres) moderately fine textured, The pH of saline-sodic soils ranges from 8.6 to 8.8. The intensity of the surface, as well as profile salinity. however, has not been mentioned by the survey agency.

2.3 .NESPAK Salinity Survey (October 1975 to March 1976)

NESPAK used the same airphotos of WASID at the 1:15840 scale and conducted a soil survey during October 1975 to March 1976 at a semi-detailed level, with 4 to 6 observations per sq. mile (NESPAK, 1978). The surface salinity visualized by NESPAK is presented in Table 3.

Salinity Classes	Acreage	Percentage	
Non-saline (S1)	2,362,466	90.6	
Slightly-saline (S2)	16,545	6.3	
Moderately-saline (S3)	6,140	2.4	
Strongly-saline (S4)	1,215	0.5	
Area under water	515	0.2	and a second second Second second
Total	2,60,881	100.00	

Table 3. NESPAK Salinity Classes.

NESPAK used the same air photos of WASID and studied 117 soil profiles in order to investigate profile salinity. Of these, 71 (60.7%) profiles were normal throughout the tested depth of 72 inches. The remaining 46 profiles (39.3%) were affected by saline and/or sodic conditions in some depths. This shows that both, surface as well as profile salinity has increased firm 1.8 percent to 9.2 percent and from 15.6 percent to 39.3 percent, respectively, during the period of about 13 years (from 1962-63 to 1975-76).

2.4. Salinity Survey by Master Planning Division of WAPDA (1977-78)

Again, in 1977-78, the Master Planning and Review Division of WAPDA carried out a salinity-sodicity both surface and profile salinity survey of the project area and revealed the findings shown in Table 4. The survey was conducted at a semi-detailed level using the air photos at 1:30000 scale taken in 1976 (Review and Master Planning Division, 1979). Previously, all the salinity studies carried out by different agencies like SSP, WASID-WAPDA, NESPAK used the air photos taken in 1952-54.

Table 4.	Salinity	Extent	by	Master	Planning	Study.
----------	----------	--------	----	--------	----------	--------

	<u> </u>	
Salinity Class	Acreage	Percentage
Normal (SI)	2,41,860	92.7
Slightly Saline (S2)	12,150	4.7
Moderately Saline (S3)	2,830	1.1
Strongly Saline (S4)	3,710	1.4 DN DN DN
Area under water (U/W)	450	0.1
Total	2,61,000	100.0

8

Quite clear from the above table is that the total surface salinity is about 7.2 percent. Of this, 4.7, 1.1 and 1.4 percent was slightly, moderately and strongly saline, respectively.

2.5. WAPDA Updated Salinity Data (1986)

In 1986 the Planning Directorate (Water). Central, of **WAPDA** updated the soil classification and surface salinity studies carried out by **WASID** in 1962-63, and the Master Planning Division in 1977-78. The updated survey was conducted at a semi-detailed level using 1:30000 air photos taken in 1976. The findings of *this* study regarding surface salinity are provided in Table 5 (Planning Directorate Water Central, 1988). Again, surface salinity has increased from 7.2 percent in 1977-78 to 8.7 percent in 1985-86.

Salinity Class	Acreage	Percentage	
Non-saline (SI)	2,35,880	90.4	
Slightly-saline (S2)	13,490	5.2	
Moderately-saline (S3)	2,655	1.0	
Strongly-saline (S4)	6,565	2.5	
Area under Water (U/W)	2,410	0.9	
Total	2,61 ,000	100.0	

Table 5. Updated Areas of Surface Salinity Classes (1985-86).

In summary, in 1962-63, only 1.8 percent of area were saline at the surface, which increased to 5.9 percent in 1971. According to the NESPAK survey in the winter months of 1975-1976, surface salinity was 9.2 percent. However, the Master Planning Division Survey of 1977-78 reduced the saline area to 7.2 percent, which increased to 8.7 percent by the Planning Directorate (Water), Central, WAPDA Survey in 1986. This indicates an increase of 1.5 percent within a period of about 10 years. There is reduction of about 2 percent (9.2 vs. 7.2%) between the NESPAK survey conducted in the winter months of 1975-76 and that of the Master Planning survey in 1977-78. This reduction is ascribed mainly to the exceptionally wet monsoon season of 1976, when there was 18" rainfall at Bahawalnagar, 21"in Gulab Ali, 18"at Faqirwali, 28"at Dahranwala and 13"at Chishtian. After such heavy rains, there must be some washing away of surface salts. as well as, especially, their partial leaching deep in the soil profile in low water table areas. this results in more sodification of the soils. Hence, the statistics *ct* both, surface and profile salinity of 1977-78 are less than those of 1975-7G. However. the figure of the 1986 WAPDA survey is less by 0.5 percent (8.7 vs. 9.2%) than those of the NESPAK survey in 1975-76, which is also of little significance and is indicative of an equilibrium in the extent of surface salinity.

3. RESEAKCH METHODOLOGY

In order to determine recent soil conditions (waterlogging and salinity/sodicity) of the study area, the soil investigation survey was carried out during the months of February to April 1999 using satellite images at a scale of:440000 taken in December 1998 as a base map. Before going to the area in order to conduct the soil-salinity survey, the digitized soils association polygons (each association contains mote than two soil series) of the FESS area, mapped by SSP, were over laid on these images. Then, these images were taken to the field and were used as base maps to conduct soil and soil-salinity surveys in detail. By this procedure the soils association polygons were reshaped into soils consociation polygons, which were further mapped, where necessary, at a phase level because each soil/phase has a certain topographic position in the landscape, which are shown by tonal differences of the satellite images and can be delineated with the help of some additional ground truthing.

In the office, the satellite images of the area were thoroughly studied and their photo-patterns, tonal differences. land uses and parceling patterns, etc. indicating landforms and different drainage designs were delineated. These marked differences were studied in detail in the field noting down the external (environmental) and internal (soil profile) salient characteristics that influence the ecological agricultural production potential of soils, directly or indirectly. Externally, these characteristics include land form, salinity. crop condition, management practices including mechanical cultivation and cropping intensities. Internally, these consist of texture. structure, color including mottles. sodicity (pH value with Thymol Blue indicator). consistence calcarcousness, depth to groundwater, lime concretion zone (sometimes present) arid impervious layer, texurally-comprised fine-silty/clayey. These were noted in the field for all the augerholes and soil pits. But, some most representative augerholes and all the soil pits were sampled and the chemical determinations, such as ECe, cations (Ca, Mg, Na, K), anions (SO4, CO3, HCO3, CI), pH, SAR, soil gypsum requirement per acre and lime percentage were made at the chemistry laboratory.

For this purpose, 106 augerholes to the depth ranging from 5 to 7 feet and 3 soil pits of 6x4x6 ft dimensions. or to the depth of sloughy soil material, or to the depth of groundwater table, were dug in the representative sites for a horizon-wise detailed study of each soil profile. Ten (10) representative sites of augerholes were sampled from the depths of 0-6, 6-18, 18-36, 36-72 inches or to the reach of sloughy soil material or to the depth of groundwater table. But, all the soil pits were described in detail and sampled according to the horizon-wise depth (Annexure II). The total (41) of soil samples were collected and handed over to the laboratory staff, mostly for the determination of chemical properties. Twelve (12) water samples of (5 tubewells, 3 augerholes, 1 hand pump, 2 soil pits, 1 sub-surface drainage trial site I near to the Malik Branch Canal) were also collected and their detailed chemical analyses were conducted at the Soil and Water Testing Laboratory.

The soil association-imposed satellite image, after defincating various soils and phases boundaries were handed over to the GIS Section for digitizing the newly-drawn soil/phase boundaries. The soil legend was prepared and given to the same section for drafting. The Soil Salinity and Land Use Suitability niaps were derived out of the Soil Map using a similar scale of 1:200000. The basic information about landforms and soils was taken from the Reconnaissance Soil Survey Report of the Bahawalnagar area (Ansari and Hamid, 1971). Approximately, all the available literature about the area generally pertaining to soil. soil salinity/sodicity and groundwater table, with its quality, were reviewed. These agencies were the Soil Survey of Pakistan, WASID-WAPDA, NESPAK, which actually remained busy preparing a soil inventory of the area at different times.

4. RESULTS AND DISCUSSION

4.1. Physiography and Soils

Based on genetic age and geomorphologic characteristics of the soils, the survey area comprises two distinct terraces: (1) Pleistocene Terrace and (2) Sub-recent Terrace. The parent material of both terraces is river alluvium, deposited in different periods. Pleistocene terrace (an oldest terrace) and Sub-recent flood plain occupy 17.6 percent (24538 ha) and 82.4 percent (115000 ha), respectively. The former terrace lies at a relatively higher elevation than the latter. The soils of the Pleistocene terrace ate deeply developed and are of brighter colors (brown to yellowish-brown), while those of the Sub-recent flood plain are less deeply homogenized and of darker colors (brown to dark-brown). The soils of both terraces are predominantly coarse-loamy to loamy (sandy loarns, fine sandy loams and loams) and are moderately calcareous. Secondary lime accumulation in the form of lime kankers (nodules) are also encountered in sub-strata of some Pleistocene terrace soils. The pH values of normal soils range from **8.0** to 8.2. while those of saline-sodic are around 8.8, The present configuration is due to wind/water action that has partly modified it and gives rise to high sandy ridges/dunes associated with inter-dunal hollows locally called "dhar", and nearly level plains. The other contrasting features of the landscape are the abandoned, extremely saline, but moderately sodic, low-lying areas subject to accumulation of **run-off** and seepage water from the adjoining high, very permeable sandy areas, generally sown to high-delta crops. The physiography and soil, with their phases found in **the** project area, are presented in the Physiography and Soils Map (Appendix A) and also being discussed below.

4.1.1. Pleistocene Terrace (24538 ha, 17.6%)

This is an oldest plain and is located mostly along the eastern side **of** the Project area toward the Indian border. Occupying higher elevation than the Sub-recent plain, these two plains are separated by an escarpment. which was characteristically cut at the edges and is easily distinguishable on both ground and the air photos taken in **1952-54**. But, **at** present. most of such cuts have been leveled and **sown** to crops, and vivid tonal differences on the satellite **images** taken in December **1998** are not distinguishable. This terrace consists of two physiographic/land form units, namely. "Dune land" and "Level plain".

4.1.1.1. Dune Land (14750 ha, 10.6%)

Dune land contains wind-resorted stabilized sand dunes at 10 to 50 ft higher than the general ground level and are scattered in the entire FESS area, but its main and continuous occurrence is along the Indian border and in the south-western corner *of* the area. The sand dunes have a sparsely vegetative cover of about 20 to 30 percent of the surface area. Texturally, they are sandy loams approaching loamy sands, deeply homogenized and a sufficient acreage of these sand dunes are sown to oil-seeds (Taramira and Sarsoon), and barley as baraní cultivation. Along the Indian boarder, lift-irrigation covers almost the whole area comprising such land. The over-grazed and devegetated portions of these sand dunes become prone to wind erosion, therefore, such actions must be avoided to save the adjacent **good** lands.

4.1.1.2. Levd Plains (9788 ha, 7.0%)

Envisaged, **are** both, wind-resorted and water-laid sandy materials that, with age, developed into level to nearly level, deep, well-drained, non-saline, non-sodic, deeply homogenized with lime concretions at a 4-ft depth of loamy (loams) soils (Hafizabad soil series and its saline and

waterlogged phases). Of this, about **5.6** percent are normal Hafizabad soil, and the remaining **1.4** percent belongs to its saline/waterlogged phases. Approximately, the whole area under this soil type is under intensive irrigated cultivation, except areas, that have been abandoned due *to* strong salinity associated with the high water table.

4.1.2. Sub-recent Plain (1 15000 ha, 82.4%)

This terrace occupies a comparatively low topographic position that resulted in **the major** deteriorated hectarage of this plain. Comprising mainly three **physiographic/landform** units, generally due **to** their topographic difference, are Rasulpur terrace, Harunabad terrace and third represents depressional areas where water stagnates.

4.1.2.1. Rasulpur Terrace (10932 ha, 78%)

Comparatively, it is higher **m** this landscape and proportionately less affected by **the** high water table and salinity. The soils of this landform are nearly level, deep, homogenized up **to** 30 **to** 36 inches, somewhat excessively drained, partly non-saline, non-sodic sandy loams/light sandy loams (Rasulpur Soil Series with its saline and waterlogged phases). Approximately, **6.1** percent are **normal** Rasulpur **sods**, while the remaining **1.7** percent are its saline and waterlogged phases. Approximately, the whole area under this soil type is under irrigaied cultivation.

4.1.2.2.. Harunabad Terrace(101279ha, 72.8%)

This is the most extensive level landform of the area. In the affected areas, the major part of this landform is involved. The soils of this landform are level, deep, homogenized to 30 to 40 inches, well drained, non-saline, non-sodic, fine sandy loams approaching to loams (Harunabad soil series with its saline and waterlogged phases). The normal hactareage is about 34.1 percent and those affected are 38.5 percent The atea is intensively cultivated, except areas, that have been abandoned due to severe waterlogging or salinity, or are partly under high delta crops (sugarcane and rice with moderate to poor yields).

4.1.2.3. Depressional Areas (2789 ha, 2.0)

These areas are quite different from inter dunal **valleys** locally known as "dhars" that mostly exist in the Pleistocene Terrace and are generally level to the general ground level. Being situated at higher terrace, **water does** not stand on their surfaces throughout the year. But, the areas under mention are the special feature of the Sub-recent flood plain and are quite below the general ground level where water stagnates throughout the year. In central parts, which remain under water during the whole year, remained unexplored texturally, but the margins where the water depth fluctuates between 0 to 2 ft. were investigated In texture, they range from fine sandy **loams to** Ioams, strongly saline, moderately sodic (pH ranges from 8.5-8.8) and mostly gypsiferous. Such areas have been placed under the U/W (area under water) category. They are devoid of any vegetation, and the wind-blown salts of these areas may be affecting the surrounding areas adversely. Figure 2 presents **percentages** of various phases of soils of the project area. Table 6 presents the total area of each soil with its phases, and Table 7 provides FESS soil mapping units with their areas and percentages.

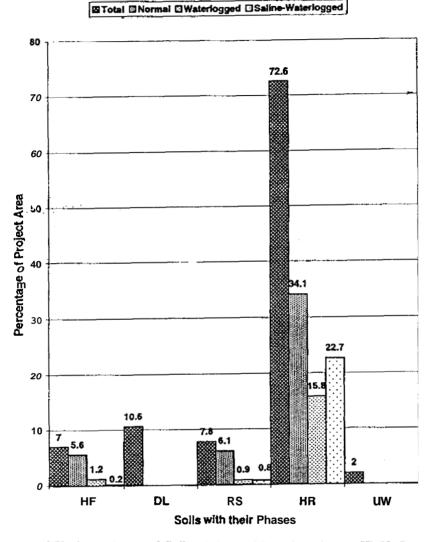


Figure 2. Percentages of Various Phases of Soils of the FESS Project Area (HF=Hafizabad Soils; DL=Dune Land: RS=Rasulpur Soils; HR=Haroonabad Soils; UW=Area under Water).

S. No.	Soil	Ha/Percentage (total)	Normal/ Percentage	Waterlogged Percentage	S-W-Loggedl Percentage
1.	Hafizabad	9788/7.0	7888/5.6	1647/1.2	25310.2
2.	Dune Land	14750/10.6			
3.	Rasulpur	10932/7.8	8517/6.1	1212/0.9	1203/0,8
4.	Harunabad	101279/72.6	47630/34,1	21970/15.8	31679/22.7
5.	Area under water	278912.0			

Table 6. Total Area of Each Soil with Phases (ha/percentage).

S = Saline; W = Water

Table 7.	FESS Soil Mapping Units with their Areas (Hectares) and Percentage.	

s.	Map Unit	Map unit description	Area	Percentage
NO.				_
1.	Hf	Hafizabad well-drained	7888	5.65
2.	Hf/wII	Hafizabad moderately well-drained (watertable at 120-150 cm)cm)	1647	1/18
3.	Hf/wlls	Hafizabad moderately well-drained, slightly to moderately saline	68	0,05
4.	Hf/wIII	Hafaizabad imperfectly drained (w-table at GO- 120 cm), moderately to strongly saline	185	0.13
5.	DL	Undulating stablized sand dunes	14750	10.57
6.	RS	Rasulpur somewhat excessively-drained	8517	6.10
7.	Rs/wII	Rasulpur moderately well-drained	1212	0.87
8.	Rs/wlls	Rasulpur moderately well-drained, slightly to moderately saline	1203	0.86
9.	Hr	Harunabad well-drained	47630	34.14
10.	Hr/wH	Hamnabad moderately well- drained	21970	15.74
11.	Hr/wlls	Harunabad moderately well-drained, slightly to moderately saline	19166	13.74
12.	Hr/wIII	Harunabad imperfectly-drained water table at (60- I20 cm), moderately to strongly saline	12513	8.97
13.	U/W	Area under water	2789	2.0
		Total	139538	100.00

4.2. Soil Conditions

In the present study, **a** range of soil conditions for the **study** area has been devised, which is briefly described **below**.

- Condition WI. In this condition, the groundwater table is below 5 feet from the surface and without salinity/sodicity (S1 level of salinity).
- Condition WII. Here the groundwater table 1s within 4 to 5 feet depth with S1 level *cf* salinity.
- Condition WIIs. In this case, the groundwater table is within 4 to 5 feet, but with slight to moderate salinity (level of salinity ranges from S2 to S3).
- Condition WIII. The groundwater table of this condition lies between 2 to 4 feet, with a moderate to strong salinity (level of salinity ranges from \$3 to \$4).
- Condition WIV = U/W (under water). This is the most deteriorated condition where water stagnates within 0 to 2 feet depth throughout the year with severe salinity (level of salinity is S4 for the whole year).

4.3. Soil Salinity/Sodicity

43.1. Kinds and Causes of Salinity/Sodicity in the Project Area

- Genetic salinitylsodicity is caused due to weathering of the parent soil material;
- Primary salinitylsodicity occurs generally on the margins of depressions and low-lying areas where rain and flood water accumulates;
- Secondary salinitylsodicity is caused due to **a** rise in the groundwater table by seepage from the irrigation system and over-irrigation. Also, excessive water applications for reclamation and replacing the cultivation of low delta to high delta crops displace **the** salts and bring them into the root zone or onto the soil surface through capillary rise;
- Insufficient leaching of salts **due** to the **shortage** of irrigation water (insufficient **to** leach the **salts** from **the root** zone) also **causes** soil salinity; **and**
- Present salinity/sodicity is caused due to watering the crops with poor quality groundwater.
- During the 1999 IIMl soil survey, a most important pedological feature of occurrence of compact and calcareous silty/clayey non-continuous layers at varying depths in the sub-soil, which restrict the downward flow of water and act as a barrier to drainage was observed. This phenomenon helps in raising the groundwater to the capillary rise range and aggravates the salinity/sodicity problem. It encounters in the entire Sub-recent Flood Plain that forms about 90% of the Project area, exclusion consists of sandy alluvial deposits of Pleistocene pariod including Dune Land (sand dunes scattered in the whole Project area) and a small continuous part of Cholistan Desert, occupying the south-western corner of the Project area.

In the project area, secondary salinitylsodicity dominates.

4.3.2. Classification of Soil Salinity

Four classes of salinity, namely, S1, S2, S3 and S4 were recognized on the basis of visual **appraisal** in **the field and** subsequently, confirmed by the chemical anatyses **a** the representative soil **samples** in **the Chemistry** Laboratory. These classes are defined as under:

- SI: Non-saline: In this case, ECe is less than 4 dS/m at 25 °C. In the field, salts are not visible on the surface and no adverse effects are seen on the plant growth;
- **S2:** Slightly-saline: The ECe varies from **4** to 8 dS/m at **25** °C. In the field, less than **20** percent of the surface area has salinity patches **where** plant growth **is** also adversely affected;
- **S3:** Moderately-saline: The ECe varies from 8 to 16 dS/m at 25 °C. In the field, 20 to 75 percent of the surface area is infested with salinity and its adverse effect on *the* plant growth in that area is quite visible; and

S4: Strongly-saline: The ECe is more than 16 dS/m at 25 "C. In the field, more than 75 percent of the surface area has been inflicted by such salinity. and plant growth is seen only in patches. The fanners usually leave such lands/fields (un-ploughed) because these areas do not return even the seed of the sown crop.

4.3.3. Classification of Soil Sodicity

Soils become sodic **when** the exchange surfaces of clays become dominated **by** sodium instead of calcium ions. And mostly, it is classified in terms of the Sodium Adsorption Ratio (SAR) of the soil saturation extract in the laboratory. In the field, it is checked with the pH value; if the pH value reaches **8.5** or above, the soil is sodic (in FESS area the Thymol Blue indicator was used to determine the soil pH value). Four classes, recognized by the USDA , of soil sodicity in terms of SAR are given in Table 8.

SAR
Less than 15
15 to 25
25 to 45
More than 45
•

Table 8. Classes of Soil Sodicity.

Classifications for salt-affected soils considering both. ECe and SAR. is provided in Table 9.

Normal	ECe is less than 4dS/m and SAR is also less than 15
Saline	ECe is more than 4dS/m and SAR is less than 15
Saline-sodic	ECe is more than 4dS/m and SAR is also more than 15
Sodic	ECe is less than 4dS/m but SAR is more than 15

Saline and saline-sodic soils are generally found in the project area.

4.3.4. Water Qualities

Water quality classifications based on measurements of electrical conductivity (EC). sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) is provided below in Table 10.

Classification	EC(dS/m)	SAR	RSC (meq/l)	
Useable	<1.5	<10	<2.5	
Marginal	1.5 to 3.0	10 to 18	2.5 to 5.0	
Hazardous	>3.0	>18	>5.0	

Twelve water samples (of 5 wells, 3 augerholes, I handpumps. 2 soil pits. I sub-surface drainage trial site-I near that Malik Branch Canal) were analyzed and their results are provided in Annexure 111. According to WAPDA water quality criteria, the groundwater samples analysis reveals that the overall water quality for irrigation purposes is useable to marginal and somewhat hazardous (25% useable; 58.3% marginal and 16.7% hazardous). But, cations and anions in dominant sequence arc Na. Ca+Mg and Cl, HCO, and SO,, respectively. The laboratory results also indicate that *RSC* and CO, are nil/traces, and the pH value ranges between 7.6 to 8.3, well below the hazardous pH value

18

of 8.5. This manifests clearly that salts in the water are dominantly Cl, SO₄ and HCO₃ of Na, Ca and Mg in the sequence of dominance. These are all leachable and their accumulation in the soil profile by tubewell irrigation can be rectified by two heavy irrigation turns of about 4 inches each year.

4.4. Present Salinity-Sodicity Status

In order to conduct the present salinity survey, the most recent satellite images taken in December **1998** were used as a base map. The 6-R Distributary of the Hakra Branch was taken as the south-westem boundary of the project area to where joins the Haran Minor (command-wise), thereby increasing the study area from **261000** acres **(105668** ha) to **344658 acres (139538** ha). Forty-one **(41)** soil samples consisting of thirty (30) from ten (10) augerholes and eleven (11) from three (3) soil pits, were collected. Their laboratory analysis (Annexure IV) reveals that all the salt-

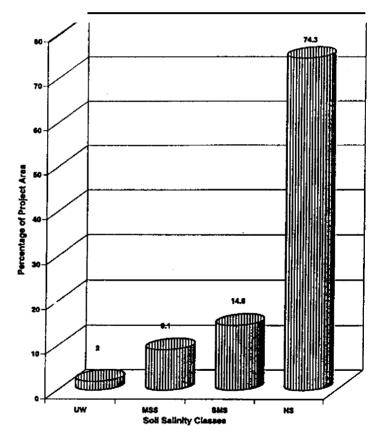


Figure 3. Percentages of Total Project Area under Various Salinity Classes (UW=Area under water; MSS=Moderately to strongly saline; SMS=Slightly to moderately saline; **NS=** Normal soils).

associated with the high water table) that decreases with increasing depth from the surface, about onethird (mostly surfaces) is moderately sodic with pH values ranging from 8.5-8.8 that very seldom rises above these values. The area and percentage of the total project area under various soil salinity categories are presented in Table II.

Salinity Class	Hectares	Percentage	
Non-saline(SI)	103614	74.3	
Salightly to moderately saline (S2/S3)	20437	14.6	
Moderately to strongly saline (S3/S4)	12698	9. I	
U/W (area under water)	2789	2.	
Total	139538	100.0	

Table 11. Salt-affected Area in FESS during 1999.

This means that presently, about 23.7 percent of the project area is infested with salinity and sodicity though sodicity is rare (mild to moderate), and generally on the surface. Figure 3 shows the percentages of the total project area under various classes of salinity found in the study area. The soil salinity map given in Appendix B shows various soil types found in the project area under different soil salinity classes.

4.5. Comparison of Salinity/Sodicity Findings

4.5.1. Surface Salinity/Sodicity

As found earlier, extensive information is available about the status of surface and profile salinity studied by WAPDA, SSP and NESPAK. The areal extent of the surface salinity mapped by the above agencies is chronologically presented in Table 12. Evident, is that in 1962-63, only 1.8 percent of area was saline at the surface, which increased to 5.9 percent in 1971. According to the NESPAK survey in the winter months of 1975-1976, surface salinity was 9.2 percent. However, the Master Planning Division Survey of 1977-78 reduced the saline area to 7.2 percent, which increased to 8.7 percent by the Planning Directorate (Water), Central. WAPDA Survey in 1986. This indicates an increase of 1.5

percent within a period of about 10 years. The IIMI salinity survey conducted on satellite images of December **1998** (most recent photos) indicates the increase of salinity from **8.7** percent in **1986** to **23.7** percent in **1999**. an increase of **15** percent. About **17.8** percent of the non-saline area is potentially risky for saliniwtion as the water table in this area has risen to about **120-180** cm. The farmers of such areas are replacing rice with cotton because the cotton yield is decreasing gradually. mainly due to the high water table. This whole cultivation phenomenon manifests that the process of saninization has not attained an equilibrium, and that rapid and efficient remedial measures are required mainly to lower the water table, or at least to check the rising trend. The summary of surface salinity reported by different agencies is presented in Table **12.** Figure **4** presents the comparison of **salinity** findings by various agencies.

SIA	Y <i>I</i> S	T/F/M		Salinity Ci	asses/Extent	(Acres)	
			Normal (S1)	SI/Sal (<u>S</u> 2)	Mod/Sal (S3)	St/Sal (S4)	T/Sal
W/WAPDA	1962-63	1952-54 ap l: 40000	256370 (98.2)	4165 (1.6)	245 (0.1)	220 (0.1)	4630 (1.8)
SSP	1971	1952-54	245385	(1.0)	(0.1)	(0.1)	(1.8) 15415
NESPAK	Oct. 751	ap l: 40000 1952-54	(94.1) 236585	16545	6140	1215	(5.9) 23900
	Mar 76	ap I: 40000	(90.6)	(6.3)	(2.4)	(0.5)	(9.2)
M/P/D WAPDA	1977/78	1976. ao 1: 30000	241860 192 7}	12150 (4.7)	2830 11.1)	3710 (1.4)	18690 17.2)

Table 12. Summary of Surface Salinity Reported by Survey Agencies in Different Years.

S/A	Y/S	T/F/M	2	Salinity Cl	asses/Extent	(Acres)	
			Normal	SI/Sal	Mod/Sal	St/Sal	T/Sal
			(S1)	(S2)	(S3)	(S4)	
P/D/W/C	1986	1976,	235880	13490	2665	6565	22710
WAPDA		ap 1:30000	(90.4)	(5.2)	(1.0)	(2.5)	(8.7)
IIMI-PAK	1999	Sat/image	25592	S2/S3	\$3/\$4	. ,	· · ·
		Dec. 1998	(74.3)	50479	31364		81 843
			-	(14.6)	(9.1)		(23.7)

S/A = Survey Agency; Y/S = Year of Survey; T/F/M = Type of Field Maps used; ap=Airphotos W/WAPDA = WASID/WAPDA; SSP = Soil Survey of Pakistan; M/P/D = Master Planning Division; P/D/W/C = Planning Directorate (Water) Central; Sl/Sal = Slightly Saline; Mod/Sal = Moderately Saline; St/Sal = Strongly Saline; T/Sal = Total Salinized; Sat = Satellite

Numbers in parentheses are percentages with respect to the gross area of 2,61,000 acres, except for IIMI, for which the gross area is 344658 acres. Areas mapped under water (515 acres by NESPAK, 4450 acres by the Master Planning and 2410 acres by the Planning Directorate (Water) Central have not been included in *the* above statistics). The Soil Survey of Pakistan (SSP) did not map the saline areas in terms of SI, S2, S3 and S4 categories.

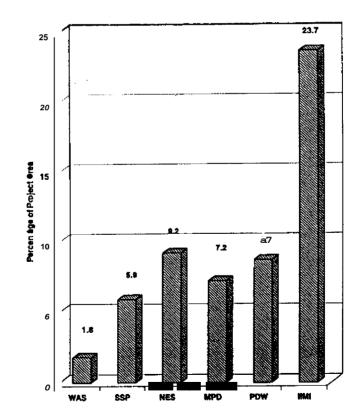


Figure Surface salinity reported by Survey Agencies in different years (WAS=WASID/WAPDA; SSP=Soil Survey of Pakistan; NES = NESPAK; MPD= Master Planning Division; PDW = Planning Directorate Water Central; IIMI= International Irrigation Management Institute).

22

There is reduction of about 2 percent (9.2 vs. 7.2%) between the NESPAK survey conducted in the winter months of 1975-76 and that of the Master Planning survey in 1977-78. This reduction is ascribed mainly to the exceptionally wet monsoon season of 1976, when there was 18" rainfall at Bahawalnagar, 21"in Gulab Ali, 18"at Faqirwali, 28"at Dahranwala and 13"at Chishtian, After such heavy rains, there must be some washing away of surface salts, as well as, especially, their partial leaching deep in the soil profile in low water table areas, this results in **more** sodification of the soils. Hence, the statistics of bath, surface and profile salinity of 1977-78 are less than those of 1975-76. However, the figure of the **1986 WAPDA** survey is less by 0.5 percent (8.7 vs. 9.2%) than **those of** the NESPAK survey in **1975-76**, which is also of little significance and is indicative of **an** equilibrium in the extent of surface salinity. However, within the last 37 years (1962-63 to 1999), the extent of surface salinity has registered an increase of about 22 percent (1.8 to 23.7%). The increase is relatively more pronounced in S2 and S4 categories as a result of an increasing high water table and the abandonment of already deteriorated land. Therefore, it is concluded that whether there is equilibrium or progression of the soil salinization with time, the existing situation of soil deterioration especially, the rising water table is looming large and hence, there is a dire need of suitable remedial measures for the rehabilitation of the deteriorated lands of the project area.

4.5.2. Profile Salinity/Sodicity

The number of saline and/or sodic profiles is presented in a chronological sequence in Table 13. In 1962-63, there were only 16 percent saline and/or sodic profiles, which increased to 39 percent in 1975-76. This figure reduced to 28 percent in 1977-78. The reasons for this reduction have already been discussed. WAPDA explored each grid, while NESPAK did the same job but at distances of 2 miles apart. The samples were collected in sections of 0-6, 6-18, 18-36and 36-72 inches depths for the appraisal of the saline and/or sadic status of the profiles.

S/A	Y/S -	No. of Profiles Investigated	Percentage of Deteriorate Profiles and/or Sodic	
W/WAPDA SSP*	1962-63 1971	225	16	
NESPAK	October 75-March 76	117	39	
M/P/D WAPDA P/D/W/C WAPDA*	1 977/78 1986	462	28	

Table 13. Saline and/or Sodic Profiles reported hy Survey Agencies in Different Years.

*Did not conduct separate profile-salinity study

S/A = Survey Agency; Y/S = Year of Survey; W/WAPDA = WASID/WAPDA; SSP = Soil Survey of Pakistan: M/P/D = Master Planning Division; P/D/W/C = Planning Directorate (Water) Central

4.6. Land Use Suitability Classification

Suitability **and** development of land is **vital** for irrigated agriculture. The interpretation *af* the physico-chemical characteristics and qualities of the soils in terms of land use suitability classification is **an** integral component of the appraisal to **assess** their ecological production potential under the ultimate development conditions. The land use suitability classification made in the present is mainly based on the system described by Gil (**1979**).

4.6.1. Suitability Classification

4.6.1.1. Orders

There are two main orders of suitability classification, which are described below.

- Found suitable for a specific use, expressed by the major symbol S; and
- Found nut suitable for a specific use, expressed by the major symbol N.

4.6.1.2. Classes

Classes in these two orders express the grade of suitability and non-suitability as follows:

- Class SI means highly suitable without significant limitations for a given use;
- Class SII means moderately suitable with moderate limitations for a given use;
- Class SIII means marginally suitable with severe limitations for a given use;
- Class NI means currently not suitable with limitations to a given **use**, which may, however, he overcome by adopting practices to convert such land to an "S" suitability class; and
- Class NII means permanently not suitable with severe limitations that make it impossible to change the conditions to an "S" class for a given use.

For land use suitability classification, the main external/areal characteristics like surface salinity, cropping intensity, crop conditions and land use, and internally (soil profile features) like texture, structure. consistence (dry, moist, wet), color including mottles, sodicity by noting the pH value (with Thymol Blue Indicator) and the depth to groundwater table were recorded. The land use suitability classification of the FESS Project area is greatly influenced by a high groundwater table, especially when it reaches within the capillary-rise range, and is the main cause of various types of root zone/surface salinity (root zone salinity, depth-wise ranges from 0-150 cm). The other major factor of the project area, that affects the suitability for various agricultural crops is its moderately coarse/coarse-textured soils, which have low water and nutrient holding capacities. Also, these lands are low in inherited fertility. These coarse textured soils are also moderately to moderately rapid permeable. which result in a huge loss of costly irrigation water through seepage from the whole irrigation system. By interpreting these properties, the FESS Project area has been classified into four (4) classes, which have further been divided into eight (8) sub-classes because of their different kinds of hazards, their effectiveness, and corrective measures to be taken for their removal (Appendix C). These classes are described in detail below.

- SI. This class fornis highly suitable medium textured land (Fine sandy loams/light loams and loams/lieavy loams) with no limitations to grow a wide variety of crops, including vegetables and fruit orchards, that are ecologically suited to the area. This class responds very well to modern management and produces high to very high yields under balanced inputs. Such soils must be kept under intensive cultivation, especially for cash crops of the area. Extending over about 55518 ha (39.8%), mostly occupies the south-western part of the project area along the left bank of the Murad Distributary of the Malik Branch Canal. A small area of its hectarage also lies along the Indian border.
- SIIc. This sub-class constitutes moderately suitable land due to its moderately coarse texture (Sandy loams). These soils have low water and nutrient holding capacities and moderately to moderately rapid permeable. Such soils can produce high yields, including vegetables and deep-rooted crops like cotton, by adopting the following suggestions. Covering about

8517 ha (6.10%) of the project area, scattered patches are present throughout **the** area, mostly adjacent **to** low sand dunes.

- Precise levelling and small fields;
- Split doses of chemical fertilizers;
- Light, but frequent irrigations;
- Addition of organic matter in any form; and
- Avoid high-delta crops.
- SIIWII. This group of soils comprises a medium-textured class and forms moderately suitable land due to a high water table (120-150cm). This hazard limits the choice of crops, especially deep-rooted crops and fruit orchards. Such soils need an efficient regional drainage system (surface or sub-surface or vertical). In these soils the cultivation of high-delta crops like rice and sugarcane shoud be avoided. This group of soils covers about 23617 ha (16.93%) and encompasses mostly the area situated between the Hakra Branch and the Bahawalnagar-Fort Abbas railway track. Some scattered patches along the western side of the railway track also exist.
- SIIcWII. This sub-class consists of moderately suitable coarse-textured lands. The main limitations comprise a coarse texture (Sandy loams) and a high water table (120-150cm) that limit the choice of crops. The first hazard demands similar suggestions as already mentioned for the subclass SIIc. For the latter, the regional drainage system must be improved. The areal coverage of this sub-class is about 1212 ha (0.87%).
- SIIWIIs. This group cf soils is medium-textured. slightly to moderately saline (S2/S3) and a water table within 120-150 cm, classifying it as moderately suitable lands. The main limitation that causes salinity and reduces the selection of crops and their yields is its high water table condition. The deep-rooted crops/fruit orchards are sensitive to salinity crops, like pulses, which will not produce desired results. By lowering the water fable through an efficient regional improved drainage system and applying a few extra heavy irrigations, this land could be reverted to SI land. The areal extent group of soils is about 19234 ha (13.78%).
- SIICWIIs. This moderately suitable sub-class has many limitations like its coarse **texture**, high water table and slight to moderate salinity that restricts the selection **of** crops. **The** root-hazard is the high water table that needs **to** be lowered urgently. The salinity problem can be overcome by applying a few extra canal water irrigations after lowering the water table. In order to obtain a **good** return, the measures mentioned in the sub-class SIIc must be adopted. This sub-class encompasses **a** small extent of about **1203** ha (0.86%).
- SIIIWTII. This forms a marginally suitable medium-textured sub-class due to the severe limitations of salinity (moderate to strong; S3/S4) associated with the very high water table (60-120cm). These limitations have restricted the choice of crops to rice and sugarcane (high delta crops), with little wheat cultivation. A considerable area of this sub-class formerly under cash crop has been abandoned in the recent past. Lowering the water table is a very urgent priority because the other reclamation procedures are dependent upon it. In certain cases, a small quantity of gypsum may be required during reclamation. The hectarage of this sub-class is about 12698ha (9.10%).
- **NIIW.** This land is permanently not suitable due to a very severe limitation of water that stagnates permanently. and consists of about **2789** ha (2.0%).

NIIC. These are stabilized sand dunes that have severe limitations of topography, without access to irrigation system, and also contain coarse-textured mil material. These severe hazards have made it permanently *not* suitable land, which covers about 14750 ha (10.57). Figure 5 shows the area under each land use suitability class as a percentage of the total project area. The area under each class end its sub-classes, with the percentage of the total project area of 139538 ha, is presented in Table 14.

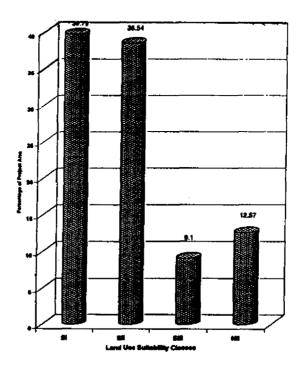


Figure 5. Percentages of Total Project Area under Various Land Use Suitability Classes (SI= Highly suitable; SII = Moderately suitable; SIII = Marginally suitable; NII = Permanently not suitable).

Table 14. FESS Area Land Use Suitability Classes/Sub-classes with their	
Areas[(ha)/Percentage].	

Sub-Classes	Suitability Classes			
	SI	SII	SIII	NII
SIIc		8517 /6.10		
SIIWII		23617/16.93		
SIIcWII		1212/0.87		
SIIWIIs		19234113.78	- 1	
SIIcWIIs		1203/0.86		
SIIIWIII			12698/9.10	
NIIW				278912.0
NEIC				14750/10.57
Total area (ha)	55518	53783	12698	17539
percentage	39.79	38.54	9.10	12.57
Total Project Area	139538			

5. POTENTIAL REMEDIAL MEASURES

All soils and irrigation waters, including very **good** irrigation canal water (with a salinity concentration of 150-250 mg/l) contain a mixture of soluble salts, all of which are not essential **for** plant growth. The salt concentration in the soil solution is usually higher than that of applied water (Total **salts** = soil **salts** + water salts). The continuous transpiration from the plants and the soil surface evaporation of water (only in arid and semi-arid climate) loads the remaining soil solution/soil water with various kinds of salts; if this concentration reaches a harmful level for crop production by increasing the osmotic potential of the soil, the soil will be named as saline soil. This concentration mostly occupies the surface layer of the soil and has a direct effect on the seed germination and plant **roots** development.

In order to keep the soil solution below a harmful concentration of salts, it is necessary to remove a portion of it from the crop root zone by leaching. Salts will be leached down whenever **the** water application exceeds evapotranspiration. This means, that more salts are **being** added to **the** soil **through** irrigation water. Actually, the salts concentration in the soil solution **is** being mitigated and not totally freed from salts; and therefore, **a** continuous process of leaching is required in order **to** keep soil **salts** below **a** harmful level.

But, the leaching process becomes less effective when the groundwater that contains a comparatively higher concentration of soluble salts reaches within the capillary rise range (depth to capillary rise is different for different textural classes). The groundwater rises mainly due to the seepage from the irrigation system, over-irrigation, excess water applications for reclamation and shining the cultivation **from** low to high delta crops. Such areas must have a groundwater table below the capillary rise range **by an** improved drainage system (horizontal or vertical) prior to leaching.

When the soil complex contains more Na than Ca and Mg, the soil is termed **as** sodic soil. Such soils require chemical amendments like gypsum or sulphuric acid (H_2SO_4), along with leaching, for their reclamation.

In all these reclamation processes, a less concentrated soluble salt solution is used to dilute and leach highly concentrated, or approximately of the same concentration, solution. This means that the omission of one is dominance **of** the other. Therefore, salinization and **its** reclamation are never-ending processes (especially in the irrigated areas of the arid and semi-arid climate) and need continuous efforts.

In the entire project area, salinity/sodicity is associated with the high groundwater table. To mitigate surface or root zone salinity/sodicity by leaching, lowering the groundwater table to below the capillary rise range should be the first priority. Therefore, the following measures are mainly concerned with the emphasis on lowering the water table to below the capillary rise range, or at **a** depth where its deteriorating influence can be minimized by continuous cropping, with the exclusion of **some very** sensitive crops to salinity/sodicity or deep rooted crops.

5.1. On-Farm Water Management (OFWM)

This programme can have very positive results in reclaiming the **saline-sodic-waterlogged** soils, provided it **is** operated **properly** under the guidance **of** relevant **experts**, because it focuses mainly on the conservation of water arid there are possibilities of reducing the need for sub-surface drainage, or even eliminating that need altogether. Both, the OFWM and sub-surface drainage system have **a** similar objective of limiting'the wastage of irrigation water, or the water allocation must be according to the needs of presently growing crops, thereby restricting the addition to the groundwater or

eliminating the groundwater rise. The water saved by OFWM can enhance the cropping area, cropping intensities and their yields, while the effluent of the used subsurface system, that is generally saline and definitely has more soluble salts than the previously used irrigation water, will spread salinity on the soil surface, whether drained into disposal tanks or mixed with canal or river waters. The following efforts of OFWM need immediate and special attention:

- Watercourse lining ;
- Precise land levelling;
- Small fields or small parceling pattern, especially in coarse-textured (sandy loam/fine sandy loam) soils;

The farmers must be persuaded to:

- Light. but frequent irrigation events, mainly in coarse-textured soils;
- Application of chemical fertilizers in split doses formed mainly in coarse-textured soils; and
- Addition of organic matters in any form.

As most of the project area texturally consists of sandy and loamy (sandy loams, fine sandy loams, loams and rarely silty/fine silty) and have quite permeable sub-soil, hence, the above suggestions will prove economically beneficial. The project area is located in an and to semi-arid climatic zone where evapotrnspiration always exceeds the applied irrigation water results in the accumulation of salts within the root zone and on the soil surface. To get rid of it, two heavy irrigation tours of about 4 inches each, when the crop water requirements are minimal, will prove very beneficial.

5.2. Canal Improvement

Lining of canals, distributaries and minors would result in reduced drainage requirements of waterlogged lands in the project area and also water savings through seepage losses control. It would also improve delivery efficiency and equity of water distribution in the project area. Lining of Malik Branch and Hakra Branch would have tremendous impact in terms of lowering water table in the command areas and also water savings through seepage losses control which are about 9.10 and 17.89 cfs/msf, respectively. Those portions of the irrigation channels, which pass either through very sandy soils or flow much higher than the surrounding areas must be lined, only to avoid heavy expenditures to line the whole length. Water User Associations with some authority and responsibility must be formed for the longevity of this lined canal system; and

5.3. Groundwater Development

According to WAPDA water quality criteria, the groundwater samples analysis reveals that the overall water quality for irrigation purposes is useable to marginal and somewhat hazardous (25% useable; 58.3% marginal and 16.7% hazardous). But, cations and anions in dominant sequence are Na, Ca+Mg and Cl, HCO₃ and SO₄, respectively. The laboratory results also indicate that RSC and CO₃ are nil/traces and the pH value ranges between 7.6 to 8.3, well below the hazardous pH value of 8.5. This manifests clearly that salts in the water are dominantly Cl, SO₄ and HCO₃ of Na, Ca and Mg in the sequence of dominance. These are all leachable and their accumulation in the soil profile by tubewell irrigation can be rectified by two heavy irrigation turns of about 4 inches each year. And, on the other

hand, the **majority** of soils *are* rapid to moderately rapid permeable sandy **to loany** soils, **Therefore**, the following suggestions **are** advised primarily to combat the waterlogging condition that is the **root cause** of most of salinity presently prevaifing in the project area.

- Sinking **skimming** wells at 30 to 90 feet depths along the carals by the private sector, with some subsidy from Government;
- The water from buried interceptor **drains** already complete may be returned to irrigation channels; further, this costly procedure may be reconsidered;
- As the distance increases from the recharge source (in the Project area, canals **are** the recharge source), the groundwater may surpass a reusable stage that **can be** minimized by placing gypsum stone **lungs** in watercourses, or mixing with canal water;
- These skimming wells may only be pumped in case of emergencies; and
- Deeper aquifer generally contains bad quality water and may not be pumped **or** tested from the water testing laboratory for suitability to irrigation purposes.

5.4. Farmers' Participation

The involvement of farmers is necessary due to the following reasons:

- Firstly, the **constraints** farmers face need to be understood, since government irrigation and drainage interventions attempt to develop a physical environment that is **more** conducive for farmers **to** cultivate drops without adverse environmental effects. Only **then** can appropriate interventions, which effectively help farmers to cope with the adverse effects of irrigation, be formulated;
- Secondly, the life-long experiences that farmers have had in coping with salinity-sodicity-waterlogging can be beneficial for devising interventions; and
- Finally, there is a large range in farmers' socio-economic backgrounds. These backgrounds will determine, to a large extent, whether farmers can or want to take advantage of the opportunities that are offered to them.

5.5. Surface Drainage System

The well-knit surface drainage system is being spread to drain the topographically uneven area with low-lying depressions and high sand dunes. The depressional areas with permanently stagnated water have been connected by these drain channels; presently, these areas are usually inundated instead of drying. And, also seeing the conditions of the old drains, which are choked, full of water-weeds/reeds and have become very shallow depth-wise, it is doubted that its maintenance may not meet the same fate. Characteristics (physical and chemical) of the soils at the depth of drain greatly influence the drainability-efficiency and sustainability of the drain, hence, the durability of this system is questionable or require special types of engineering devices that must be feasible and economical. Due to the following reasons special maintenance arrangements are needed.

- Approximately, the substratum approximately of the entire project area is sandy/fine sandy and very unstable in the presence of water, especially when drained/water in the drains flows at a tower level when compared to the water to be drained from the adjacent irrigated areas, which contain sandy sub-stratum or run-off from the adjacent catchment areas. Depth-wise maintenance of this system seems a cumbersome job. The sloughy soil mass will cave in and its depth will be reduced to near the surface after a short period. Thus, its working capacity will be minimized because it will not be able to lower the water table below 5 to 10 feet of the adjacent areas, and will be unable to carry the sub-surface drainage effluent, water from the depressional areas and torrent water;
- This system may not be able to drain depressional areas due to its depth-wise maintenance problem, where water accumulates through different resources and the deteriorated surrounding areas;
- The brackish effluent in surface drains passing through the shallow sweet groundwater zone will induct its brackishness, making it unfit for irrigation purposes; and
- Special inlets will be required for secondary drains. and also for draining the surface run-off.

5.6. SubsurfaceDrainageSystem

This is a very costly system and should be considered as a last resort. After lining the irrigation channels and sinking skimming wells, monitor drainage for 1-2 years and then install this system in Condition WIII (water table at 2-4 feet with moderate "S3" and strongly "S4" salinity) only; if still present anywhere, at 5-8 A depth and maintain it at WII (water table at 4 to 5ft without any salinity) condition. Otherwise, the ideal depth varies from crop to crop and soil to soil the (the shallower the depth, the lower the cost). In addition, the effluent at this depth is partially reusable, while a deeper depth is generally not fit for reuse and its disposal also requires a well-knit, efficient surface drainage system with depthwise maintenance already mentioned as "questionable". Dropping the shallow, reusable effluent of condition WIII may increase the canal supply that can be used at the tails of the irrigation channels where the nearby Cholistan area remains barren.

5.7. Reclamation Approach

Pre-requisites for the reclamation of salt-affected soils are presented below.

- Land leveling and proper *bunding* of fields (OFWMDepartment *cando it*);
- The provision of an adequate quantity of good quality water and drainage system;
- Infiltration rates depend upon texture, porosity and the sodic condition of the soil. The soils of the Project area ate coarse-textured, porous and rarely sodic, which is mostly confined to the surface. The average basic intake of the compact layers is 0.2 cm/hr, while that of the surface soils is 0.63 cm/hr (NESPAK and HARZA, 1990);
- The nature of salts is an important factor that influences the pace of the reclamation of salt-affected soils. An analysis of the soil samples taken from the salt-affected soils of the project area reveals that Na and Cl ions dominate in the saturated extracts of the soils. The other soluble cations like Mg and Ca, and anions such as SO, and HCO₃, are next in sequence of dominance. As all the above salts are easily soluble, their leaching will not be problematic;

- The gypsum requirement, if needed can be determined quantity-wise from laboratory. But, the detailed examination of saline/sodic soil-profiles of the project area revealed the existence of greyish-brown gypsum specks; its presence was also confirmed by testing the soil pH using the "Thymol Blue" indicator in the field. To begin with, the pH value of the affected soil was high (9.0 or more), but after the lapse of a few seconds, when the gypsum reacted, it dropped to below 8.0. The presence of gypsum in the saline-sodie soils was further confirmed by tests carried out in the laboratory with acetone; sometimes, so much of gypsum is present in the soil that a higher gypsum requirement was reported as nil. Hence, these soils are called self-reclamable. They do not require the addition of amendments;
- Phosphatic fertilizers **may** be preferred the use of chemical fertilizers to augment the nutrient deficiency caused during the leaching operation; and
- Green manuring for further amelioration of the leached soils

The basis of the reclamation approach is the use of small-scale interventions to improve soil conditions. The soils, which are saline porous, can **bc** reclaimed by **applying** a few heavy irrigations **of** good quality **water** and adding **organic** wastes. **Tlic** soils, which are saline-sodic and have **low** water infiltration rates require additional chemical amendments like gypsum, sulphuric acid **or** kallar **grass** fur their amelioration. But, if the water table is within 1.5 m (5 ft), i.e., within the capillary rise range, the sustainability of the reclaimed-phase of soil becomes vulnerable. For durable reclanation, an improvement in the regional drainage systein is very essential. The best, quickest and most durable results can be obtained **using** combinations of methods. In the project area, priority **must** be given to **lower** the groundwater table to below the capillary rise range (improvement in regional drainage system). Reclamation claims individual efforts, while the drainage system requires integrated endeavors hy both, the Government and the farmers. for its longevity.

5.8. Biological Approach

This is based on the principle that if the common plants do not grow well in the prevailing environmental conditions, it would be desirable to find plants that can grow under adverse soil and irrigation water conditions. Severely salt-affected soils are mainly devoid of any type of vegetation cover, therefore, salts from the bare surface carried by wind or water can cause great damage to the adjoining good lands. All these moderate to severely salt-affected soils have a high water table ranging from a 0-5 foot depth (within the capillary rise range). Such soil can be sown to kallar grass. Eucalyptus, Janter, Frash and Mesquite. After some reclamation, rice, oilseeds and barley should be grown and land should not be left fallow.

5.9. Impact of Chishtian Sugar Mill

The Chishtian Sugar Mill is also aggravating the problems of waterlogging and salinity in the **area**. including the project area, due **to** the **following reasons**:

• About 90-95 percent of the sugarcane supply area comprise (remaining 5 to 10% constitute the flood-plain of **the Sufley** River) a moderate to moderately rapid permeable sandy area (sandy loams approaching to loamy sands; fine sandy loams; **and light loams**). with sandy **sand-dunes**. Simple-minded farmers of the **area wcrc** lured to grow more profitable, high delta sugarcane crops indiscriminately. Thus, an enormous **amount of** seepage water from the irrigation system and from high delta crops **grown** in rapidly permeable soil results in **a water** table rise, thereby greatly damaging greatly the agricultural production through waterlogging and salinity;

32

- Farmers were not demonstrated that to grow such a crop on rapidly permeable land requires small fields to minimize the addition to the groundwater through scepage that causes waterlogging associated with salinity; or to confine its production to the Sub-recent flood plain of the Sutlej River where comparatively less permeable, coarse silty, fine silty and clayeye soils are present. Additionalty. the plentiful good quality groundwater, if exploited, can meet the full requirements of high delta crops like sugarcane and rice. Also, its close proximity to the Sutlej River, which acts as a drain, will never cause waterlogging;
- By dismantling the sugar mill, the land users will automatically turn on low delta cotton -wheat retation crops that will be sustainable, even with presently-adopted measures for the mitigation of the twin menace of waterlogging and salinity;
- Otherwise, a huge amount from the Government must be carmarked yearly to maintain this big surface and subsurface drainage system; and
- Water saved by this measure (closing the Sugar Mill) could be utilized at the tails of distributaries, where the shortage of irrigation water is a common phenomenon, and also where more good agricultural potential of the Cholistan area adjacent to irrigation channels, can be brought under cultivation.

6. CONCLUSIONS

The main conclusions that could be derived from the research findings of **the** present salinity/**sodicity** study are provided below.

- All types of salinity/sodicity are associated with a high water table. Lowering the water table is the main job to be done to rehabilitate the agricultural potential of the area. Economically, it can be achieved by lining the irrigation channels phase-wise, and with skimming wells. Canal lining will minimize seepage, but deep percolation from the cropland with enhanced canal supply after lining will continue, and recharge to aquifer may not turn sour;
- NESPAK in 1975-76 and WAPDA in 1986 figured the salinity to be 9.2 percent and 8.7 percent of the FESS area, respectively, and also hinted about its equilibrium state, but the IIMI root-zone salinity survey revealed that at present, about 23.7 percent of the project area including miscellaneous areas and 27.2 percent excluding them, has been salinized; additionally, 17.8 percent of the Project area is potentially risky for salinity as the water table in this area has risen to 150 to 180 cm;
- Most of the cultivated area (mcreethan 90%) texturally comprises coarse loam and sandy (loam, fine sandy loams, sandy loam and loamy fine sands), which have rapid to moderately rapid perneability, In order to use them to their production potential level without deteriorating them, the lands requite special management practices regarding irrigation, parcelling pattern, manuring (chemical. farmyard, green, etc.) and the selection of crops;
- Chemical analyses of groundwater from various sources and **depths** manifest clearly that it is marginal and hazard zone for irrigation purposes. but its **RSC** and CO₃ are nil and pH value is below the dangerous value of **8.5**. Therefore, the salts concentration created by tubewell irrigation is washable and can easily be leached with a few heavy irrigation **turns** with canal water. On the other hand, the soils **are** also permeable, Hence, canal water can be supplemented with groundwater;
- Chemical analyses of soil samples mostly collected from saline soils showed that though **the** soils are saline. they contain leachable salts (chlorides, sulphates and bicarbonates of Na, Ca and **Mg**). These soils also have a sufficient quantity of gypsum for self-reclamation;
- Surface drainage may not perform well due to the fine sandy soil mass in the substratum in most of the project area, which is usually unstable in the presence of water;
- Farmers must be included, consulted and educated for all the remedial measures to be undertaken in their lands for good agricultural production;
- High-delta crops must **be** banned **as** has been **done** in the Khairpur Distict of **the Sindh** Province; and
- The Chishtian Sugar Mill must be dismantled in order to save the area from waterlogging and saliznity,

REFERENCES

- Ansari, A.H. and Hamid, A. 1971. Reconnaissance Soil Survey of Bahawalnagar. Directorate of Soil Survey, West Pakistan, Soil Survey Project of Pakistan.
- Gil, N. **1979.** Watershed Development with Special Reference to Soil and Water Conservation. FAO Soils Bulletin **44,Food** and Agriculture Organization of the United Nations, **Rome.**
- NESPAK. 1978. Salinity Control and Reclamation Project Fordwah Eastern Sadiqia Canal System, Feasibility Report. Volume I.
- NESPAK and HARZA. 1990. Fordwah Eastern **Sadiqia** (South) Subsurface Drainage Project. Feasibility Report. Volume I, Appendices.
- Planning Directorate Water Central (WAPDA). 1988. PC-I Proforma, Fordwah Eastern Sadiqia Phase-11 (Southern Unit, SCARP VIII).

Review and Master Planning Division (WAPDA). 1979. Revised Action Programme Report.

WASID (WAPDA). 1963. Soil Survey and Land Classification Report of Bahawalnagar Canal Circle Area, 1962-63.

ASSOCIATIONS.	
OF SOIL	
DESCRIPTION OF SOIL	
IEF	
KURE I. BR	
ANNEX	

Mapping	Soil Association	Component Soil	Physiographic Position	Identification Characteristics
Unit No.	and Extent	Series/Extent	•	
Ş	Harunabad	Harunabad	Nearly level Sub-recent flood	Loams and fine sandy loams marginal to loam
	1.96.550 acres	65 percent 1.27.755	plain	underlain by silty clay at about one-metre depths,
	75.3 percent	acres		average pH 8.4
		Rasulpur	Gentty sloping levees. Sub-	Fine sandy loams approaching loamy fine sands,
		15 percent 29480	recent flood plain	average pH 8.3
		acres		
		Dahranwata	Nearly level, old terrace	Clay loams underlain by silty clays at about 60-cm
		10 percent 19655	Pleistocene remnants	depths, average pH 8.3
		acres		
		Hafizabad	Nearly level, old terrace	Deep loams. average pH 8.3
		5 percent	remnants	
		9830 acres		
		Inclusions	Nearly level, old terrace	Saline-sodic silty clays, average pH 8.8
		5 percent	remnants	
		9830 acres		
7.	Rasulpur 14350	Rasulpur	Gently undulating levees. Sub-	Deep sandy laoms, average pH 8.3
	acres 5.5 percent	70 percent 10040	recent flood plain	
		acres		
		Jhang	Gently undulating, stabilized	Brown to pale brown loamy sands and fine sands,
		IS percent	levees	average pH 8.4
		2 150 acres		
		Harunabad	Nearly level, Sub-recent flood	Loams and fine sandy loams marginal to loam,
		5 percent	plain	underlain by silty clay at about one-metre depths,
		720 acres		average pH 8.4
		Mariala	Gently undulating channel	Saline-sodic sandy loams underlain by silty clay at
		5 percent	levee remnants. Sub-recent	about one-metre depths, average pH 8.6
		720 acres	flood plain	
		Inclusion	Gently undulating. Sub-recent	Saline-sodic, sandy loams, average pH 8.6
		5 percent	flood plain	

23. Dune land-Khatan Dune land Undulating and rolling Fine sands of shifting nature acress 75 percent acress Acress Acress Acress acress 17.0 percent acress Acress Acress Acress acress 17.0 percent acress Acress Acress Acress Acress Acress 17.0 percent 15 percent 23.0 acres Nearly level, Pleistocene Deep Korn, average pH 8.3 Acress 5 percent 22.00 acres Nearly level, Old terrace Deep Korn, average pH 8.3 Acress 5 percent 22.00 acres Nearly level, Old terrace Deep Korn, average pH 8.3 Acress 5 percent 22.00 acres Nearly level, Nub-recent flood Log area do tay loarm, average pH 8.3 Acress 5 percent 22.00 acres Nearly level, Nub-recent flood Loar and fine sandy Io am to Io arm, average pH 8.3 Acress 5 percent 22.5 barcent Acres Pleistocene Deep Korn, average pH 8.3 Acres 0.0 percent 10 percent Acres Pleistocene Deep Korn, average pH 8.3 Acres 0.0 perce	Mapping Unit No.	Soil Association and Extent	Component Soil Series/Extent	Physiographic Position	Identification Characteristics	· · ·
an Dune land Undulating and rolling nt acres T5 percent 33310 nt acres Gently undulating, stabilized 15 percent 33310 Nearly level, Pleistocene terrace Hafizabad Munes of Pleistocene terrace 5 percent 2220 acres Nearly level, Pleistocene 15 percent 2220 acres Nearly level, Pleistocene 16 percent 2220 acres Nearly level, Pleistocene 17 Hafizabad Nearly level, Sub-recent flood 18 Harunabad Nearly level, Sub-recent flood 25 percent 275 acres Plain 10 percent 110 acres Pleistocene terrace remnants 10 percent 110 acres Pleistocene terrace remnants 10 percent 110 acres Rearly level, Pleistocene 10 percent 110 a			, ,			- 1
KhattanGently undulating, stabilized15 percent 6660 acresdunes of Pleistocene terraceHafizabadNearly level, Pleistocene terrace5 percent 2220 acresNearly level, old terrace5 percent 2220 acresNearly level, old terrace5 percent 2220 acresNearly level, Pleistocene5 percent 2220 acresNearly level, Pleistocene5 percent 2220 acresNearly level, Pleistocene5 percent 2220 acresNearly level, Pleistocene6 percent 220 acresNearly level, Sub-recent flood7 harunabadNearly level, Sub-recent flood8 percent 10 acresPleistocene terrace remnants9 percent 110 acresNearly level eroded Pleistocene10 percent 110 acresNearly level raised parts of5 percent 55 acresNearly level raised parts of9 percent 110 acresterrace remnants10 percent 110 acresterrace10 percent 11		Dune land-Khatan complex 44410 acres 17.0 percent	Dune land 75 percent 33310 acres	Undulating and rolling Pleistocene Terrace	Fine sands of shifting nature	
HafizabadNearly level, Pleistocene5 percent 2220 acresNearly level, old terrace5 percent 2220 acresNearly level, old terrace6 percent 2220 acresNearly level, Pleistocene40 percent 440 acresremnants40 percent 225 acresNearly level, Sub-recent flood9 percent 275 acresPlain10 percent 110 acresPleistocene terrace10 percent 110 acresNearly level. eroded10 percent 110 acresPleistocene terrace remnants10 percent 110 acresNearly level. Pleistocene terrace10 percent 110 acresRearly level. Pleistocene terrace10 percent 110 acresNearly level. Pleistocene terrace10 percent 110 acresRearly level. Pleistocene10 percent 110 acresRearly level. Pleistocene11 percent 110 acresRearly level. Pleistocene12 percent 330 acresPleistocene terrace remnants13 percent 330 acresPleistocene terrace remnants15 percent 330 acresPleistocene terrace remnants15 percent 330 acresPleistocene terrace remnants15 percent 330 acresPleistocene terrace remnants <tr< td=""><td></td><td>-</td><td>Khattan 15 percent 6660 acres</td><td>Gently undulating, stabilized dunes of Pleistocene terrace</td><td>Fine sandy loam, average pH 8.2</td><td>1</td></tr<>		-	Khattan 15 percent 6660 acres	Gently undulating, stabilized dunes of Pleistocene terrace	Fine sandy loam, average pH 8.2	1
5 percent 2220 acresterraceInclusionsNearly level, old terrace5 percent 2220 acresNearly level, old terrace5 percent 2220 acresNearly level, Pleistocene40 percent 440 acresNearly level, Sub-recent flood25 percent 275 acresplain0 percent 110 acresPleistocene terrace remnants10 percent 110 acresNearly level, sub-recent flood10 percent 110 acresNearly level eroded10 percent 110 acresPleistocene terrace remnants10 percent 110 acresterrace remnants10 percent 110 acresterrace10 percent 1220 acresterrace10 percent 110 acresterrace10 percent 1220 acresterrace<			Hafizabad	Nearly level, Pleistocene	Deep loam, average pH 8.3	-
InclusionsNearly level, old terrace5 percent 2220 acresremnants40 percent 2220 acresNearly level, Pleistocene40 percent 240 acresNearly level, Sub-recent flood25 percent 275 acresplain10 percent 110 acresPleistocene terrace remnants10 percent 110 acresNearly level eroded10 percent 110 acresPleistocene terrace remnants10 percent 110 acresNearly level raised parts of5 percent 55 acresNearly level raised parts of10 percent 110 acresterrace remnants10 percent 110 acresterrace10 percent 1220 acresterrace11 percent 330 acresPleistocene terrace remnants </td <td></td> <td></td> <td>5 percent 2220 acres</td> <td>terrace</td> <td>-</td> <td></td>			5 percent 2220 acres	terrace	-	
5 percent 2220 acresremnantsHafizabadNearly level, PleistoceneHarunabadNearly level, Sub-recent floodHarunabadNearly level, Sub-recent flood25 percent 275 acresplainDercent 10 acresNearly level. erodedI0 percent 110 acresPleistocene terrace remnantsI0 percent 110 acresNearly level eroded PleistoceneI0 percent 110 acresNearly level raised parts ofI0 percent 110 acresRetrace remnantsI0 percent 110 acresNearly level raised parts ofI0 percent 110 acresRetrace remnantsI0 percent 110 acresRetrace remnantsI1 percent 330 acresRetrace remnantsI1 percent 1220 acresPleistocene terrace remnantsI1 percent 330 acresRetrace remnantsI1 percent 330 acresPleistocene terrace remnan			Inclusions	Nearly level, old terrace	Saline-sodic loams and clay loams, average pH 8.6	-
HafizabadNearly level, Pleistocene40 percent 440 acresterrace40 percent 440 acresterrace10 percent 275 acresNearly level, Sub-recent flood25 percent 275 acresPleistocene terrace remnants10 percent 110 acresPleistocene terrace remnants10 percent 110 acresNearly level rended10 percent 110 acresNearly level rended10 percent 110 acresterrace remnants10 percent 110 acresterrace10 percent 1220 acresterrace11 percent 330 acresterrace12 percent 330 acresPleistocene terrace remnants15 percent 330 acresPleistocene terrace remnants1			5 percent 2220 acres	remnants		
40 percent 440 acresterraceHarunabadNearly level, Sub-recent flood25 percent 275 acresPlain25 percent 275 acresPlain26 percent 10 acresNearly level. eroded10 percent 110 acresPleistocene terrace remnants10 percent 110 acresNearly level rended Pleistocene10 percent 110 acresNearly level rended Pleistocene10 percent 110 acresNearly level rended Pleistocene10 percent 110 acresremnants10 percent 110 acresremnants11 percent 110 acresterrace12 percent 1220 acresterrace15 percent 1220 acresterrace15 percent 130 acresPleistocene terrace remnants15 percent 330 acresPleistocene terrace remnants15 percent 1220 acresPleistocene terrace remnants15 percent 130 acresPleistocene terrace remnants16Pleistocene terrace remnants <td< td=""><td></td><td>Hafizabad-</td><td>Hafizabad</td><td>Nearly level, Pleistocene</td><td>Deep loams, average pH 8.3</td><td></td></td<>		Hafizabad-	Hafizabad	Nearly level, Pleistocene	Deep loams, average pH 8.3	
HarunabadNearly level, Sub-recent flood25 percent 275 acresplain25 percent 275 acresplain25 percent 10 percent 110 acresNearly level. eroded10 percent 110 acresNearly level eroded Pleistocene10 percent 110 acresNearly level eroded Pleistocene10 percent 110 acresNearly level eroded Pleistocene10 percent 110 acresNearly level raised parts of5 percent 55 acreseroded Pleistocene terrace10 percent 110 acresremnants10 percent 110 acresremnants10 percent 110 acresterrace10 percent 110 acresterrace10 percent 1220 acresterrace11 percent 330 acresterrace remnants15 percent 330 acresPleistocene terrace remnants15 percent 50 acresPleistocene terrace remnants16 percent 50 acresPleistocene terrace remnants17 percent 50 acres<		Harunabad 1100 acres 0.5 percent	40 percent 440 acres	terrace		
25 percent 275 acres plain Murad Nearly level. eroded I0 percent 110 acres Nearly level eroded Pleistocene Lakhewala Nearly level eroded Pleistocene I0 percent 110 acres Nearly level eroded Pleistocene I0 percent 110 acres Nearly level eroded Pleistocene I0 percent 110 acres terrace remnants I0 percent 55 acres remnants I0 percent 55 acres remnants Inclusions Nearly level, Pleistocene terrace Inclusions Nearly level, Pleistocene Inclusions Nearly level, Pleistocene I0 percent 110 acres terrace Inclusions Nearly level, eroded Pleistocene I0 percent 110 acres terrace Inclusions Nearly level, eroded Pleistocene I0 percent 1220 acres terrace Infoluence terrace I10 percent 1220 acres terrace Infoluence terrace I15 percent 330 acres Pleistocene terrace remnants I15 percent 330 acres Pleistocene terrace remnants I15 percent 330 acres Pleistocene terrace remnants I15 percent 330 acre		-	Harunabad	Nearly level, Sub-recent flood	Loam and fine sandy loam to loam underlain by	-
MuradMearly level. eroded10 percent 1 10 acresPleistocene terrace remnantsLakhewalaNearly level eroded Pleistocene10 percent 1 10 acresNearly level raised parts of6 GajianaNearly level raised parts of6 GajianaNearly level raised parts of7 percent 55 acreseroded Pleistocene terrace10 percent 110 acresNearly level, Pleistocene10 percent 110 acresremnants10 percent 110 acresterrace10 percent 1220 acresterrace15 percent 1220 acresNearly level, eroded15 percent 330 acresPleistocene terrace remnants15 percent 200 acresPleistocene terrace remnants			25 percent 275 acres	plain	silty clay at about one-meter depths, average pH 8.4	
10 percent 1 10 acresPleistocene terrace remnantsLakhewalaNearly level eroded Pleistocene10 percent 1 10 acresterrace remnantsGajianaNearly level raised parts of5 percent 55 acresterrace remnantsInclusionsNearly level, Pleistocene terraceInclusionsNearly level, PleistoceneInclusionsNearly level, PleistoceneLakhewalaNearly level, Pleistocene10 percent 110 acresterraceLakhewalaNearly level, eroded PleistoceneAmradNearly level, eroded Pleistocene15 percent 1220 acresterrace remnantsHarunabadNearly level Sub-recent flood			Murad	Nearly level. eroded	Saline-sodic silty clays with lithologic	_
LakhewalaNearly level eroded Pleistocene10 percent 1 10 acresterrace remnantsGajianaNearly level raised parts of5 percent 55 acresremnants10 percent 10 acresremnants10 percent 110 acresremnants10 percent 110 acresNearly level, Pleistocene10 percent 110 acresterrace10 percent 1220 acresterrace10 percent 1220 acresterrace15 percent 1220 acresterrace remnants15 percent 330 acresPleistocene terrace remnants15 percent 130 acresPleistocene terrace remnants			10 percent 110 acres	Pleistocene terrace remnants	discontinuity below a one-metre depth. average pH 8.8.	
10 percent 1 10 acresterrace remnantsGajianaGajiana5 percent 55 acresnearly level raised parts of5 percent 55 acreseroded Pleistocene terraceInclusionsNearly level, Pleistocene10 percent 110 acresterraceLakhewalaNearly level eroded Pleistocene55 percent 1220 acresterrace remnantsMuradNearly level, eroded15 percent 330 acresPleistocene terrace remnantsHarunabadNearly level, eroded			Lakhewala	Nearly level eroded Pleistocene	Pale brown, mottled silty clays up to 50 cm depth,	
GajianaNearly level raised parts of 5 percent 55 acres5 percent 55 acreseroded Pleistocene terrace remnantsInclusionsNearly level, Pleistocene10 percent 110 acresterrace terraceLakhewalaNearly level, eroded Pleistocene terrace55 percent 1220 acresterrace remnantsMuradNearly level, eroded Pleistocene terrace remnants15 percent 330 acresPleistocene terrace remnantsHarunabadNearly level Sub-recent flood			10 percent 110 acres	terrace remnants	stratified below, average pH 8.4	
5 percent 55 acreseroded Pleistocene terrace1 Inclusionsremnants10 percent 110 acresnearly level, Pleistocene10 percent 110 acresterrace10 percent 120 acresterrace55 percent 1220 acresterrace remnantsMuradNearly level, eroded15 percent 330 acresPleistocene terrace remnants15 percent 330 acresPleistocene terrace remnantsHarunabadNearly level Sub-recent flood			Gajiana	Nearly level raised parts of	Saline-sodic silty clay loams, average pH 8.8	
InclusionsremnantsInclusionsNearly level, Pleistocene10 percent 110 acresterraceLakhewalaNearly level eroded Pleistocene55 percent 1220 acresterrace remnantsMuradNearly level, eroded15 percent 330 acresPleistocene terrace remnantsHarunabadNearly level Sub-recent flood			5 percent 55 acres	eroded Pleistocene terrace		
InclusionsNearly level, Pleistocene10 percent 110 acresterraceLakhewalaNearly level eroded Pleistocene55 percent 1220 acresterrace remnantsMuradNearly level, eroded15 percent 330 acresPleistocene terrace remnantsHarunabadNearly level Sub-recent flood				remnants		
10 percent 110 acres terrace Lakhewala Nearly level eroded Pleistocene 55 percent 1220 acres terrace remnants Murad Nearly level, eroded 15 percent 330 acres Pleistocene terrace remnants Harunabad Nearly level Sub-recent flood			Inclusions	Nearly level, Pleistocene	Loamy soils, average pH 8.2	
LakhewalaNearly level eroded Pleistocene55 percent 1220 acresterrace remnantsMuradNearly level, eroded15 percent 330 acresPleistocene terrace remnantsHarunabadNearly level Sub-recent flood			10 percent 110 acres	terrace		_
55 percent1220 acresterrace remnantsMuradNearly level, eroded15 percent330 acresHarunabadNearly level		Lakhewala 2210	Lakhewala	Nearly level eroded Pleistocene	Pale brown, mattled silty clays up to 50 cm depth,	
Nearly level, eroded 330 acres Pleistocene terrace remnants Nearly level Sub-recent flood		acres 0.8 percent	55 percent 1220 acres	terrace remnants	stratified below, average pH 8.4.	
330 acres Pleistocene terrace remnants Nearly level Sub-recent flood			Murad	Nearly level, eroded	Saline-sodic silly clays with lithlogic discontinuity	
Nearly level Sub-recent flood		_	15 percent 330 acres	Pleistocene terrace remnants	below a one-metre depth, average pH 8.8	- 1
			Harunabad	Nearly level Sub-recent flood	Loams and fine sandy loam marginal to loam	_

Identification Characteristics	underlaid by silty clay at about one metre depth, average pH 8.4	Clay loams underlain by silty clay at about 60 cm	depth, average pH 8.3	Deep laoms, average pH 8.2		Saline-sodic silty clays with lithologic	discontinuity below one metre depth, average pH 8 R	Clay loarns underlain by silty clay at about 60 cm	depth. average pH 8.3	Saline-sodic silty clay loams, average pH 8.8		Pale brown, mottled silty clay up to 50 cm,	stratified below, average pH 8.4	Loams and fine sandy loams marginal loams	underlain by silty clay at about a one-niche depth,	average pH 8.4	Deep loams, average pH 8.2		Saline-sodic loamy soils, average pH 8.8		
Physiographic Position	plain	Nearly level, old terrace	remnants	Nearly level. Pleistocene	terrace	Nearly level, eroded	Pleistocene terrace remnants	Nearly level old terrace	remnants	Nearly level, raised parts of	eroded old terrace remnants	Nearly level eroded old terrace	remnants	Nearly level. Sub-recent flood	plain		Nearly level. old terrace	remnants	Nearly level, old terrace	remnants	
Component Soil Series/Extent	15 percent 330 acres	Dahranwala	10 percent 220 acres	Hafizabad	5 percent 110 acres	Murad	40 percent 90 acres	Dahranwala	15 percent 360 acres	Gajiana	15 percent 360 acres	Lakhewala	10 percent 235 acres	Haroonabad	10 percent	235 acres	Hafizabad	5 percent 120 acres	Inclusions	5 percent	120 acres
Soil Association and Extent						Murad 2380 acres	0.9 percent														
Mapping Unit No.						26									1						

ANNEXURE II. HORIZON-WISE DESCRIPTION OF SOIL PITS

SOIL PIT 1

Location:	Chak No. 100/6-R; Sq. No./Ac No.=9/25
Dated:	April 2,1999
Parent Material:	River alluvium of Sub-recent period
Physiography	Sub-recent level plain
Topography:	Level to nearly level; sloping to south-west
Source of moisture:	Perennial canal supply
Drainage:	Imperfectly drained
Watertable depth:	90 cm
Salinity/Sodicity:	Moderately to strongly
Land use:	Sugar-cane. rice, wheat are major crops grown

The area falls in the wheat-cotton rotation ecological zone, but moderate "S3" to severe "S4" salinity associated with the high water table (2-4 A) have changed the crop rotation totally.

Soil Profile Description

	•
Ap 0-12 cm	Brown to dark-brown (10YR4/3) moist; sandy loam; massive; slightly sticky,
	slightly plastic/gritty when wet, friable when moist, slightly hard when dry; few
	fine interstitial and tubular pores; moderately calcareous; common fine and very
	fine roots; clear smooth boundary; pH 8.5 (salt crust pH 9.0).
AB12-18 cm	"Plough Pan" Dark brown (10YR3/3) moist common fine faint, but distinct in root
	channels, grey mottles; sandy loam; massive to very weak coarse sub-angular
	blocky structure; slightly sticky, slightly plastic when wet, friable when moist,
	slightly hard when dry; few fine tubular pores; moderately calcareous; common
	fine and very fine roots; (some decayed roots with greying surrounding are
	present), clear smooth boundary; pH 8.4.
Bwl	Dark-yellowish-brown (10YR4/4) moist; fine sandy loam; weak coarse and
18-40 cm	medium sub-angular blocky structure; slightly sticky, slightly plastic when wet,
	very friable when moist, slightly hard when dry; common fine and very fine
	tubular pores; moderately calcareous; few fine and very fine roots; gradual smooth
	boundary; pH 8.4
Bw2	Dark yellowish-brown (I0YR4/4) moist, common fine faint grey mottles; loam;
40-90cm	weak coarse and medium sub-angular blocky structure; slightly sticky, slightly
	plastic when wet, friable when moist, hard when dry ; common fine and very fine
	tubular pores; moderately calcareous; few fine and very fine roots; pH 8.2.

SOIL FIT 2

Location:	Chak Kot Bahawal Bux (Bukkan) Sq. No./AC No. = x/8
Dated:	April 3,1999
Parent Material:	River alluvium of Pleistocene period
Physiography:	Pleis-tocene level plains
Topography:	Level to nearly level; sloping toward southeast
Source of Moisture:	Perennial canal supply
Drainage:	Moderately well drained
Watertable depth:	120 cm
Salinity/Sodicity	Nil
Land use:	Sugarcane, wheat with little cotton, and few mango gardens are grown,
	but plants are not healthy and show the adverse effects of the high water table, i.e., with dried tips.

Soil Profile Description

	Sour roune - our -	
	Ap 0 - 15 cm	Brown to dark-brown (10YR4/3) moist. greyish brown (10YR5/2) dry; loam;
]	massive, slightly sticky. slightly plastic when wet, friable when moist, slightly
2		hard dry; few fine interstitial pores; moderately calcareous; many fine, very
	}	fine and when few medium mots; clear smooth boundary; pH 8.4.
	Bwl 15-50 cm	Dark greyish-brown (10YR4/4) moist; loam (heavy): weak coarse sub-
		angular blocky structure; sticky. slightly plastic when wet, slightly fim moist,
		hard when dry; common fine and very fine tubular pores; moderately
		calcareous; common fine, very fine and few medium mots; worm activities;
		gradual smooth boundary; pH 8.3.
i	Bw2 50-80 cm	Brown to dark-brown (10YR4/3) moist; clay loam; weak coarse and medium
		sub-angular blocky structure; sticky, slightly plastic when wet, slightly firm
		moist, hard when dry; common fine and many very fine tubular pores;
		moderately calcareous; common fine, very fine and few medium roots, clear
	D 30	smooth boundary; pH 8.2.
	Bw3Ca	Brown to dark-brown (10YR4/3) moist, few gleyed spots; clay loam/silty
	80-120 cm 80-120 cm	clay loam; weak medium, sub-angular blocky structure; sticky, plastic when
	1	wet, firm when moat, very hard when dry; few fire and very fine tubular
		pores; strongly calcareous; common fine and few medium lime nodules; few
		fine and very fine roots; pH 8.3.
19 A. A. A.	The water table was	120 cm at the time of the soil profile description, but no visible surface salinit
	une mussent	

was present.

	SOIL PIT 3
Location:	Chak 38/3-R, Sq. No./AC No. = 30/2
Dated	April 4, 1999
Parent materia	River alluvium of Sub-recent period
Physiography	Sub-recent Level plain
Source of moisture	Perennial canal supply
Topography	Level to nearly level, sloping to south-east
Drainage	Well drained
Watertable depth	<150 cm
Salinity/Sodicity	Nil
Land use	Wheat, cotton, some sugarcane, mango garden; all the crops ecologically suited to the area can be grown profitably

Soil Profile Description

Con I Tome Description	
Ap 0-15 cm	Drown to dark-brown (10YR4/3) moist, brown (10YR5/3) dry; <u>sandy</u> loam/massive; slightly sticky, slightly plastic/gritty when wet, very friable when moist, slightly hard when dry; few tine interstitial pores; moderately calcareous; many fine and very fine roots; clear smooth boundary: pH 8.4.
AB 15-28 cm	Brown to dark-brown (10YR4/3) moist, <u>sandy loam</u> ; massive to very weak coarse sub-angular blocky structure; stightly sticky, slightly plastic when wet, friable when moist, slightly hard when dry; few fine tubular pores; moderately calcareous; few fine and very fine roots; clear smooth boundary; pH 8.4.
Bw1 28-80 cm	Dark yellowish-brown (10YR4/4) moist; fine <u>sandy loam</u> ; weak coarse sub-angular blocky structure; slightly sticky, slightly plastic when wet, friable when moist, slightly hard when dry; common fine and <i>very</i> fine tubular pores; moderately calcareous; common fine and many very fine roots; worm activities, lime mycelia; gradual smooth boundary; pH 8.2.
Bw2 80-118 cm	Brown to dark-brown (10YR4/3) moist; <u>loam</u> ; weak coarse sub-angular blocky structure; slightly sticky, slightly plastic when wet, friable when moist, slightly hard when dry; common fine and very fine tubular pores; moderately calcareous; few fine and very fine roots; worm activities; clear smooth boundary; pH 8.2.
Cca 118-150 cm	Pale brown (10YR6/3) moist; <u>loam</u> ; massive; slightly sticky, slightly plastic when wet, slightly firm when moist, hard when dry; few fine and very fine tubular pores; strongly calcareous; few fine lime nodules; few very fine roots; pH 8.2.

RSC(meq/I)		Nil	Nil	Nil	0.47	lin	Nil	IZ	Nil	Nil
SAR	(meq/I) ^{1 2}	6.6	4.5	13.9	1.7	20.9	7.8	10.2	4.90	16.90
EC	(m/Sb)	1.29	1.46	4.26	0.44	8.23	2.60 .	3.80	3.94	4.72
Hd		8.3	8.3	8.2	8.3 8.3	7.9	7.7 ,	8.1	7.6	7.8
SO,		0.36	0.42	1.63	0.07	2.55	0.81	06.0	2.13	1.89
HCO,		3.50	6.40	5.88	3.92	9.62	10.46	7.60	96.9	9.40
co,		Nil	Nil	Traces	Traces	Traces	Traces	Traces	Traces	Traces
a	(inea/i)	5.00	2.50	13.20	0.70	40.60	5.50	18.70	2.00	13.30
Na		9.78	9.56	39.13	2.17	83.69	20.86	31.52	21.95	49.62
Ca+Mg		4.38	8.70	15.94	3.45	32.08	14.20	18.95	41 20	17.20
Depth(ft)		190	90	90	70-90	27	3-4			
S. No.			2	с г	4	5	6	7	8	6

ANNEXURE III. CHEMICAL ANALYSIS OF WATER SAMPLES COLLECTED BY IIMI DURING THE 1999 SURVEY.

	IIMII T	HMI DUKING 19:)).							
S. No.	Detail Hole No.	Depth (Cm)	EC (dS.m)	Hq	[G.R. (T/acre) CaCO, (%)	CaCO, (%)			Texture	
							Sand (%)	Silt (%)	Clay (%)	Textural Class
1	6	00-15	19.2	8.2	EN 1	7.3	181	16	3	Loamy Sand
2		15-45	11.4	8.3		9.3	74	11	15	Sandy Loam
3		45-90	11.1	8.3		14.3	67	10	23	Sandy Clay Loam
4	8	00-15	4.9	8.8	2.8	4.1	87	3	6	Loamy Sand
			3.0	8.4		2.3	92		7	Sand
6		45-90	6.0	8.4		5.5	87	4	6	Loamy Sand
7	13	00-15	15.3	8.9	2.3	3.4	93	7	ŝ	Sand
8		15-45						-		
9		45-90				 				
10	17		40.1	8.6	Nil Nil	2.5	86	4	10	Loamy Sand
11		15-45	11.0	8.3		7.5	84	2	+-	Loamy Sand
12		43-90	10.3	8.6	-	3.4	88	4	8	Loamy Sand
13		90-180	21.4	8.3		14.1	32	++	24	Loam
14	24	00-15	64.7	8.4	Nil	2.7	84	8	80	Loamy Sand
15			9.8	8.6		3.5	16	ব	5 J	Sand
16		45-90	5.4	8.4		7,9	85	9	6	Loamy Sand
17	39	<u>00-15</u>	59.5	8.7	Nil	5.3	85	10	5	Loamy Sand
18		15-45	8.6	8.7		7.8	87	6	7	Loamy Sand
19		45-90	4.9	8.3		11.1	16	2	7	Sand
20	43		10.4	8.6	Nil	4.3	85	4	11	Loamy Sand
21		15-45	1.7	8.4		6.7	89	4	7	Sand
22		45-90	1.1	S.3		9.7	87	9	7	Loamy Sand
23	9†	Surface	245.9	8.3		1.2	57	6	37	Sandy Clay
<u>2</u> 4	55	00-15	40.6	9.0	6.5	3.7	85	4	11	Loamy Sand
25			3.3	10.3		2.1	91	2	7	Sand
26		45-90	2.3	9.0		4.7	89	2	9	Sand
27	60		9.2	8.3	Nil	8.5	79	8	13	Sandy Loam
28		15-45	4.0	8.6		9.1	81	8	11	Loamy Sand

48			- [Triant				Texture	
S No.	Detail Hole No. Depth (Cm) EC (dS/m)	Depth (Cm)		PH	G.K. (1/acte) Caro		Sand (%)	Silt (%)	Clay (%)	Textural Class
								-	6	I namy Sand
				6		50	87	4	7	
90		45-90	4.1	٥.٥			03	()	19	Sandy Loam
		00-180	3.8	8.2		15.4	5		1	Sandy Loam
2		201-22		ſ	Nii	26	5	10	1/	Sauluy Louis
11		00-15	5.1	1.7	IINI		5	16	21	Sandy Clay Loam
		15-40	1.2	8.1		2.2	3		10	Sandy Clay Loam
75				6 9		1 2 0	[6]	13		
22		40-90	12.1	2.6			5	16	21	Sandy Clay Loam
		21 00	20	8.1	IN	2.9	8			Condit I cam
46	7	c1-00	2.4			1 4	63	81	IA	Daliuy Luani
24		15-50	4.5	8.0		+ +	22	00	15	Sandy Loam
		co on	54	8.0		3.5	8	2		Condu Loam
36		20-00	P.0			10.4	59	34	-	Sanuy Luan
17		80-110	6.7	8.0		1.01	10	01	6	Loamy Sand
		0-28	2.0	8,1	IN	2.0	40	21		I namy Sand
00		00 00	<pre></pre>	8.0		4.8	82	71		+
39		78-80	t . t	2.2			87	112	9	Loamy Sand
		80-118	1.7					1	16	Sandy Loam
9		118-150	68	8.1		14.0	0 7		2-	
41		110-120								

ത	
4	

SAR		27	19	22	15	12	7	85	19	14	191	42	29	29	130	19	19	163	12	8	24	6	4	314	332	20	121	34	20	
SO4		68.7	58.7	41.2	25.6	12.5	5.6	43.7	7.5	15.0	70.6	34.4	24.9	27.5	138.0	30.6	24.4	146.0	15.0	20.6	49.3	8.7	2.5	196.0	155.0	21.9	7.5	58.7	23.7	
lcı		225	105	95	80	25	25	85	40	25	325	350	50	200	550	60	45	215	50	65	15	06	15	450	50	25	20	75	25	
НСО		53	27	22	29	22	15	26	30	25	15	89	37	30	46	27	18	26	20	47	39	30	30	52	23	26	27	26	24	-
{co ₃	(meq/l)	Nil	lin	Nil	Nil	Nil	lin	Nil	I'N	liN	Nil	Nil	Nil	Nil Nil	<u>Nil</u>	IIN	lin	Traces	74	IIN	Nil	IIN	Nil	•						
K Exch.			11.6				2.8															3.1								-
Na		861	109	96	61	37	20	239	52	41	739	122	122	187	783	16	61	1217	61	33	98	24	15	4348	1196	70	33	139	57	
CA+Mg		105	19	37	35	18	16	16	15	18	30	17	35	82	73	45	21	112	56	31	34	37	23	383	26	25	19	34	17	
Depth (Cm)	*	00-15	15-45	45-90	00-15	15-45	45-90	00-15	15-45	45-90	00-15	15-45	45-90	90-180	00-15	15-45	45-90	00-15	15-45	45-90	00-15	15-45	45-90	Surface	00-15	15-45	45-90	00-15	15-45	
S.No. Detail Hole Depth (Cm)	No.	9			8			13			17				24			39			43			46	55			60		
S.No.			2	~			9		000	6	10		12	13	1	12	16	17	18	19			22			25	26	27	28	

SAR		10	8.4	11.3	29.3	7.0	4.9	5.8	7.7	10.9	10.8	6.1	13.5
SO4		21.2	5.0	4.1	25.9	4.5	20.7	17.9	23.8	8.6	10.7	4.7	15.2
CI		25	20	20	09	20	30	25	25	20	10	55	60
HCO,		18	39	41	29	30	29	36 .	36	34	29	29	32
co,	(meq/l)	Nil	Nil	Nil	Nil	Nil	Nil	Mil .	Nil	Nit	Nil	Nil	Nil
K Exch.		5.1	5.2	4.5	15.0	3.2	3.8	4.2	6.4	3. I	3.0	2.6	3.3
Na		39	26.1	26.1	156.5	26.1	28.2	37.0	52.2	30.4	41.3	31.3	67.4
CA+Mg		29	19.1	10.7	57.3	27.9	66.3	80.8	92.7	15.7	29.6	53.2	49.6
Depth (Cm)		90-180	00-15	15-40	40-90	00-15	15-50	50-80	80-110	0-28	28-80	80-118	118-150
S. No. Detail Hole	NO.		-			7				3			
S. No.		30	31	32	33 1	34	35	36	37	38	39	40	41

I [MI-PAKISTAN PUBLICATIONS RESEARCH REPORTS

Report No	Title	Author	Year
R-1	Crop-Based Irrigation Operations Study In the Norlh West Frontier Province of Pakistan Volume I: Synthesis of Findings and Recommendations	Carlos Ga rces-R D.J. Bandaragoda Pierre Strosser	June 1994
	Volume II: Research Approach and Interpretation	Carlos Garces-R Ms. Zaigham Habib Pierre Strosser Tissa Bandaragoda Rana M. Alaq Saeed ur Rehman Abdul Hakim Khan	June 1994
	Volume III: Data Collection Procedures and Data Sets	Rana M. Afaq Pierre Strosser Saeed ur Rehman Abdul Hakim Khan Carlos Garces-R	June 1 994
R-2	Salinity and Sodicity Research in Pakistan - Proceedings of a one- day Workshop	J.W. Kijne Marcel Kuper Muhammad Aslam	Mar 1995
R-3	Farmers' Perceptions on Salinity and Socicity: A case study into farmers' knowledge of salinity and socicity, and their strategies and practices to deal with salinity and socicity in their farming systems	Neeltje Kielen	May 1996
R-4	Modelling the Effects of Intigation Management on Soil Salinity and Crop Transpiration at he Field Level (M.Sc Thesis - published as Research Report)	S.M.P. Smets	June 1996
R-5	Water Distribution at the Se cond ary Level in the Chishtian Sub-	M. Amin K. Tareen Khalid Mahmood Anwar Iqbal Mushtaq Khan Marcel Kuper	July 1996
7-6	Farmers Ability to Cope with Salinity and Sodicity: Farmers' perceptions, strategies and practices for dealing with salinity and sodicity in their farming systems	Neeltje Kielen	Aug 1996
3-7	Salinity and Sodicity Effects on Soils and Crops in the Chishtian Sub-Division: Documentation of a Restitution Process	Neeltje Kielen Muhammad Aslam Rafique Khan Marcel Kuper	Sept 1996
7-8	Tertiary Sub-System Management: (Workshop proceedings)	Khalid Riaz Robina Wahai	Sept 1996
7-9	MobilizingSocial OrganizationVolunteers: An Initial Methodological Step Towards Establishing Effective Water Users Organization	Mehmoodul Hassan Zafar Iqbal Mirza D.J. Bandaragoda	Oct 1996
₹-10	Canal Water Distribution at the Secondary Level in the Punjab, Pakistan (M.Sc Thesis published as Research Report)	Steven Visser	Oct 1996
? -11	Development of Sediment Transport Technology in Pakistan: An Annotated Bibliography	M. Hasnain Khan	Oct 1996
3-12	Modeling of Sediment Transport in Irrigation Canals of Pakistan: Examples of Application (M.Sc Thesis publishedas Research Report)	Gilles Belaud	Oct 1996
3-13	Methodologies lor Design, Operation and Maintenance of Imgation Canals subject to Sediment Problems: Application to Pakistan (M.Sc Thesis published as Research Report)	Alexandre Vabre	Oct 1996

Report No.		Title	Author	Year
	Resource Manac	rventions in Social Organization for Water gement: Experience of a Command Water oject in the Punjab, Pakistan	Waheed siz Zaman D.J.Bandaragoda	Oct 1996
15		Appraisal of Agricultural Knowledge Systems ding Inter-Agency Collaboration	Derk Kuiper Mushlaq A. Khan Jos van Oostrum M. Ralique Khan Nathalie Roovers Mehmood ul Hasaan	Nov 1996
16	Hydraulic Charac Division	teristics of Chishtian Sub-division, Fordwah Canal	Anwar lobal	Nov 1996
a r		teristics of Irrigation Channels in the Malik Sub- Division, Fordwah Eastern Sadiqia Irrigation and	Khalid Mahmood	Nov 1998
)8		National Conference on Managing Irrigation for r Sustainable Agriculture in Pakistan Inauguration and Deliberations	M. Badruddin Gaylord V. Skogerboe M.S. Shalique (Editors for all volumes)	Nov 1996
18.1 182	Volume-II:	Papers on the Theme: Managing Canal Operations		
18.9	Volume-III:	Papers on the Theme: Water Management Below the Mogha		
	Volume-IV:	Papers on the Theme: Environmental Management of Irrigated Lands		
18.5	Volume-V:	Papers on the Theme: Institutional Development		
10		vey of Eight Sample Watercourse Command	Soil Survey of Pakistan IIMI-Pakistan	Nov 1996
20	and Proposed R	imulation of the Designed Pehur High-Level Canal emodeling of Machai and Miara Branch Canals, tier Province, Pakistan	Zaigham Habib Koblidat Pongput Gaylord V. Skogerboe	Dec 1996
21 21,1	Salinity Manage Punjab, Pakista Volume One:	ment Alternatives for the Rechna Doab, n Principal Findings and Implications for Sustainable Inicated Agriculture	Gauhar Rehman Waqar A. Jehangir Abdui Rehman Muhammad Aslam Gaylord V. Skogenboe	May 1997
R12	Volume Two:	History of Imigated Agriculture: A Select Appraisal	Gauhar Réhman Hassan Zia Muhawwar Asghar Hussain	Jan 1997
213	Volume Three:	Development of Procedural and Analytical Linits	Gauhar Rehman Muhammad Aslam Waqar A. Jehangir Abdul Rehman Asghar Hussain Nazim Ali Hassen Zia Munawwar	Jan 1997
21:4	Volume Four:	Field Data Collection and Processing	Gauhar Rehmin Muhammad Aslam Waqar A. Jehengir Mobin Ud Din Ahmed Hasean Zia Muhawwar Asghar Huseain Nazim Ali Faizan Ali Samia Ali	Jan 1997
21,5	Volume Five:	Predicting Future Tubewell Salinity Discharges	Muhammad Aslam	Jan 1997

Report No.		Tille	Author	Year
R-21.6	Volume Six:	Resource Use and Productivity Potential in the Irrigated Agriculture	Waqar A. Jehangir Nazim Ali	Feb 1997
R-21.7	Volume Seven:	Initiative lor Upscaling: Inigation Subdivision as <i>the</i> Building Block	Gauhar Rehman Asghar Hussain Hassan Zia Munawwar	Apr 1997
R-21.8	Volume Eight:	Options for Sustainability: Sector-Level Allocations and Investments	Abdul Rehman Gauhar Rehman Hassan Zia Munawar	Apr 1997
R-22	Pakistan: Charact processes and the	inisation and Sodification on Inigated Areas in erisation of h e geochemical and physical e impact of irrigation water on <i>these</i> processes by p-geochemical model (M.Sc Thesis published as	Nicolas Condom	Mar I 997
R-23	Level: A Study of	rios for Improved Operations at the Main Canal Fordwah Branch, Chishtian Sub-Division Using A v simulation Model(M.Sc Thesis published as	Xavier Litrico	Mar 1 997
R-24		Methods and Practices: Field Evaluation of the as lor Selected Basin Irrigation Systems during ason	Ineke Margot Kalwij	Mat 1997
R-25		Users lor Distributary Management: Preliminary ot Study in the Hakra 4-R Distributary of the anal System of Pakistan's Punjab Province	D.J. Bandaragoda Mehmood Ui Hassan Zalar Iqbal Mirza M. Asghar Cheema Waheed uz Zaman	Apr 1997
R-26	Moving Towards F	Participatory Irrigation Management	D.J. Bandaragoda Yameen Memon	May 1997
R-27	Fluctuations in Ca	nal Water Supplies: A Case Study	Shahid Sarwar H.M. Nalees M.S. Shaficue	June 1997
R-28		erislics of Pilot Distributaries in the Mirpurkhas, abshah Districts, Sindh, Pakistan	Bakhshal Lashari Gaylord V. Skogerboe Rubina Skidiqui	June 1997
R-29	Integration of Agri Pakistan	cultural Commodity Markets in the South Punjab.	Zubair Tahir	July 1997
R-30	Impact of Irrigation in Southeastern Pr	a, Salinity and Cultural Praclices <i>on</i> Wheat Yields unjab. Pakistan	Florence Pintus	Aug 1997
R-31	Relating Farmers' Punjab. Pakistan	Practices lo Cotton Yields in Southeastern	P.D.B.J. Meerbach	Aug 1997
R-32		Dutlet Calibration Methods: A contribution to the Action to t Water Management below the Outlet. Itary	A rjen During	Aug 1997
R-33	Farmers' use of Ba Systems and the p Bed-and-Furrow In	asin, Furrow and Bed-and-Furrow Irrigation lossibilities for traditional farmers to adopt the rigation Method.	Nanda M. Berkhout Farhat Yasmeen Rakhshanda Maqsood ineke M. Kalwij	Sep 1997
'(-34		y Analysis of Operation and Maintenance Obsts ederations on three distributaries in Province of	Amin Sohani	Sep 1997
7-35		d Irrigation Performance and Alternative ons lor Basin Surface Irrigation Systems through deling.	Ineke Margot Kalwij	Oci 1997
7-36	Socio-Economic Ba Sindh Province, Pa	aseline Survey lot Three Pilot Distributaries in akistan.	Yameen Memon Mehmood UI Hassan Don Jayatissa Bandaragoda	Nov 1997

Report No.	Title	Author	Year
R-40.3	Volume Three: Bareji Distributary, Mirpurkhas District	Asghar Ali Memon Waryam Balouch Ghulam Mustafa Talpur Muhammad Nadeem Badrul Hassan Memon Bakhshal Lashari M. Akhtar Bhatti Gaylord V. Skogerboe	Dec 1997
R-41 R-41.1	Preliminary Business Plans Volume One: Dhoro Naro Minor, Nawabshah District	Pervaiz Ahmad Pirzada Mohsin Khatri Syed Daniyal Haider	Dec 1997
R-41.2	Volume Two: Bareji Distributary, Mirpurkhas District	Muhammad Nadeem Mohsin Khatri Syed Daniyal Haider	Dec 1997
R-41.3	Volume Three: Heran Distributary, Sanghar District	Niaz Hussain Sial Mohsin Khatri Syed Daniyal Haider	Dec 1997
R-42	Prospects for Farmer-Managed Irrigated Agnculture in the Sindh Province of Pakistan. Final Report.	D.J. Bandaragoda Gaylord V. Skogerboe Yameen Memon	Dec 1997
R-43	Study Tour of Pakistani Pilot Project Farmer-Leaders to Nepal	Mehmood Ul Hassan Yameen Memon	Jan 1998
R-44	Self-Help Maintenance Activities by the Water Users Federation of Hakra 4-R Distributary	Waheed uz Zaman	Feb 1998
R-45	Semi-Detailed Soil Survey of Chishtian Irrigation Sub-Division	Soil Survey of Pakistan IIMI-Pakistan	Mar 1998
R-46	Tenancy and Water Management in South-Eastern Punjab, Pakistan	Annemiek Terpstra	Mar 1998
R-47	The Collaboration between the International Irrigation Management Institute and Cemagrel in Pakistan: Proceeding of a one-day workshop	tIMt Cemagref	Apr 1998
R-48	Methodologies for Developing Downstream Gauge Ratings for Operating Canal Discharge Regulating Structures	Paul Willem Vehmeyer Raza ur Rehman Abbasi Mushtaq A. Khan Abdul Hakeem Khan Gaylord V. Skogerboe	Apr 1998
R-49	Community Irrigation Systems in the Province of Balochistan	Olal Verheijen	Apr 1998
R-50	Modelling Soil Salinity and Sodicity Processes in an Unsaturated Zone using LEACHM: A Case Study from the Chishtian Irrigation Sub-Division	M. Aslam J.C. van Dam	Apr 1998
R-51	Water Measurement Training for Subsystem Management of Hakra 4-R Distributary by the Water Users Federation	Waheed-uz-Zaman Anwar Iqbal Abdul Hamid Gaylord V, Skogerboe	May 1998
R-52	Comparison of Different Tools to Assess the Water Distribution in Secondary Canals with Ungated Outlets	Mobin ud Din Ahmad E.G. van Waijjen Marcel Kuper Steven Visser	May 1998
R-53	Sediment Behavior of Sangro Distributary, Mirpurkhas Sub-division, Sindh	Gilles Belaud Abdul Hakeem Khan Ghulam Nabi	May 1998
R-54	Evaluation of the Integrated Approach Developed in the Context of the IIMI-CEMAGREF Collaboration in Pakistan	Patrice Garin Marcel Kuper Frederic Labbe Pierre Strosser	May 1998

	· · · · · · · · · · · · · · · · · · ·		
Report No.	Title	Author	Yea
R37	Socio-Economic Basline Survey for a Pilot Project on Water Users Organizations in the Hakra 4-R Distributary Command Area, Punjab.	Muhammad Asghar Cheema Zalar Iqbal Mirza Mehmood Ul Hassan Don Jayatissa Bandaragoda	Dec 1997
R-38	Baseline Survey for Farmers Organizations of Shahpur and Mirwal Small Dams, Punjab, Pakistan.	Muhammad Asghar Cheema Don Jayatissa Bandaragoda	Dec 199
R-39	Monitoring and Evaluation of Irrigation and Drainage Facilities for Pilot Distributaries in Sindh Province, Pakistan	1 1 1 1 H	_
R-39.1	Volume One: Objectives, Stakeholders, Approaches and Methodology	M.S. Shafique B.K. Lashari M. Akhtar Bhatti Gaylord V. Skogerboe	Dec 199
R-39.2	Volume Two: Bareji Distributary, Mirpurkhas District	B.K. Lashari Waryam Balouch Ghulam Mustata Talpur Muhammad Nadeem Asghar Ali Memon Badrul Hassan Memon M. Akhtar Bhatti M.S. Shafique Gaylord V. Skogerboe	De 199
R-39.3	Volume Three: Dhoro Naro Minor, Nawabshah District	B.K. Lashari Abdul Rehman Soomro Nizamuddin Bharchoond Muneer Ahmed Mangrio Parvez Ahmed Pirzado Fateh Mohammad Mari M. Akhtar Bhatti M.S. Shalique Gaytord V. Skogerboe	De 199
F-39.4	Volume Four: Heran Distributary, Sanghar District	B.K. Lashari M. Naveed Khayal Niaz Hussain Sial Abdul Majeed Ansari Abdul Jalil Ursani Ghulam Shabir Soomoro M. Ghous Laghari M. Akhtar Bhatti M.S. Shafique Gaylord V. Skogerboe	De 19
R-40	Maintenane Plans for Irrigation Facilities of Pilot Distributaties in Sindh Province, Pakistan.		
R-40.1	Volume One: Dhoro Naro Minor, Nawabshah District	Abdul Rehman Soomro Munir Ahmed Mangrio Nizamuddin Bharchoond Fateh Muhammad Mari Parvez Ahmed Pirzado Bakhshal Lashari M. Akhtar Bhatti Gaylord V. Skogerboe	D 19
R-40.2	Volume Two: Heran Distributary, Sanghar District	Abdul Majeed Ansari Niaz Hussain Sial Abdul Jalil Ursani Ghulam Shabir M. Ghous Laghari M. Naveed Khayal Bakhshal Lashari M. Akhtar Bhatti Gaylord V. Skogerboe	

l

Report No.	Title	Author	Yea
R-55	Development of a Modified Low-Cost Pilot Tube for Measuring Pump Discharges	M.S. Shafique Nisar Hussain Bukhari M. Mohsin Haleez	Juni 1996
R-56	Institutional and Physical Determinants of Water Management Performance at the Tertiary Level: The Dynamics of Watercourse Maintenance in the Pakistan Punjab.	Cris H. de Klein Robina Wahaj	June 1990
R-57	Formalization of Water Users Associations by Farmer Leaders of Hakra 4-R Distributary.	Waheed uz Zaman Nasir Sultan Bilal Asghar Muhammad Amjad Kamran	July 199
R-58	Water Balance in Dhoro Naro Minor Command Area Sindh, Pakistan	Bea Keller Gabor Jaimes	July 199
R-59	Performance Assessment of the Water Distribution System in the Chishtian Sub-division at the Main and Secondary Canal Level	Zaigham Habib Marcel Kuper	July 199
R-6 0	Transition from local level Management to State Regulation: Formalization of Water Allocation Rules in Pakistan	Mehmood ul Hassan Abdul Hamid D.J. Bandaragoda	Aux 199
Ř-61	Multiple Uses of Irrigtion Water in the Hakra 6-R Distributary Command Area, Punjab, Pakistan	Waqar A. Jehangir Muhammad Mudasser Mahmood ul Hassan Zulfiqar Ah	Au(199
R-62	Field Discharge Calibration of Head Regulators. Mirpurkhas Sub- Division, Jamrao Canal, Nara Circle, Sindh Province, Pakistan	Abdul Hakeem Khan Gaylord V. Skogerboe Rubina Siddiqi Bakhshal Lashari Zahid Hussain Jalbani Muhammad Ali Khuwaja Muhammad Hashim Memon Waqar Hussain Khokhar	Au 199
R-63	Training Farmers to Organize Farmers: Lessons Learned in Social Organization for Irrigated Agriculture at the Hakra 4-R Distributary	Mehmood ul Hassan Zalar Iqbal Mirza D.J. Bandaragoda	Se 195
R-64	Physical Characteristics and Operational Performance of Mirpur Khas Sub-Division, Jamrao Canal Division, Nara Circle, Sindh Province, Pakistan	Abdul Hakeem Khan Rubina Siddiqui Zahid Hussain Jalbani Muhammad Ali Khowaja Waqar Hussain Khokhar Muhammad Hashim Memon Bakhshal Lashari Gaylord V, Skogerboe	Se 197
R-65 R-65.1	GIS Metadata for an Irrigation System Volume I: Chishtian Sub-Division	Mobin-ud-Din Ahmad Yann Chemin Salmain Asif Samia Ali	0 19
7-65.2	Volume II: Selected Watercourses within Chishtian Sub- Division	Samia Ali Yann Chemin Salman Asil Mobin-ud-Din Ahmad	019
R-66	Application of Crop-Based Irrigation Operations to Chashma Right Bank Canal	Juan Carlos Alurraide Carlos A. Gandarillas Gaylord V. Skogerboe	0 19
R-67	A Gender Analysis of Casual Hired Labor in Irrigated Agriculture in the Pakistan Punjab	Cris H. De Klein	N 19
R-68	Pre-Takeover Comparative Performance of Water Users Organizations of Hakra 4-R Distributary, Punjab, Pakistan	Wahee-uz-Zaman Abdul Hamid	N 15
R-69	Preliminary Business Plan for the Water Users Federation of the Hakra 4-R Distributary	Mehmood Ul Hassan Mohsin Khalri	N 19

		1	T
Report No.	Title	Author	Year
 R-70	Waterlogging and Salinity Management in the Sindh Province		
R-70.1	Volume I: Irrigated Landscape: Resource Availability across the Hydrological Divides:	Gauhar Rehman Asghar Hussain Abdul Hamid Amjad Siddique Almas Mehmooda Tabassum Muhammad Anas Nomani Kamaran Yousaf	Dec 1998
R-70.1a	Supplement I.A: Improved Water Management Practices for the Rice-Wheat Cropping Systems in Sindh Province, Pakistan	Muhammad Aslam	Dec 1998
R-70.1b	Supplement I.B: Farmers' Perspectives on Warah Branch Canal Operations	Muhammad Akhtar Bnatti Abdul Rehman Soomro Pervez ahmed Pirzado Munir Ahmed Mungrio Gauhar Rehman	Dec 1998
R-70.1c	Supplement I.C: Drainage in the LBOD Project: Operational Concerns and Quality of Pumped Effluent	Shafqat ijaz	Dec 1998
R-70.1d	Supplement I.D: Drainage in the LBOD Project: Impact Assesment	Rubina Butt Nausheen Munir Muhammad Iftikhar Bhatti Amjad Siddique Almas Gauhar Rehman Asghar Hussain M. Tariq Soomro Mehmooda Tabassum Kamaran Yousaf	Dec 1998
R-70.2	Volume II: The Farming System: Potential for Investment and Returns in Sindh, Pakistan	Waqar A. Jehangir Nazim Ali	Dec 1998
R-70.3	Volume III: Strategy for Resource Allocations and Management Across the Hydrological Divides	Abdul Rehman Gauhar Rehman	Dec 1998
R-71	Coordinated Services for trrigated Agriculture in Pakistan: Proceedings of the National Workshop October 29-30, 1998	Mehmood Ul Hassan Prachanda Pradhan	Dec 1998
R-72	Scheduling Model for Crop-Based Imigation Operations	Kobkiat Pongput Juan Carlos Alurraide Gaylord V. Skogerboe	Dec 1998
R-73 MREP R-233	Waterlogging, Salinity and Crop Yield Relationships (Joint Report with Mona Reclamation Experimental Project)	M. Akram Kahlown Muhammad Iqbal Gaylord V. Skogerboe Saeed ur Rehman	Dec 1998
R-74	Development and Use of Rectangular Channels with a Single Current Meter Measurement for Recording Farm Water Deliveries	Nisar Hussain Bukhari Muhammad Mohsin Hafeez M.S.Shafique Gaylord V. Skogerboe	Dec 1998
R-75	Water Level Fluctuations and Discharge Variability in Mirpurkhas Sub-Division, Jamrao Canal, Nara Circle, Sindh Province, Pakistan	Abdul Hakeem Khan Bakhshal Lashari Muhammad Ali Khawaja Asghar Ali Memon Gaylord V. Skogerboe	Dec 1998
R-76	Impacts of Farmers Participation for Water Resources Management in the Punjab Province, Pakistan	Waheed-uz-Zaman	Dec 1998
R-77 Final Report	Towards Environmentally Sustainable Agriculture in the Indus Basin Irrigation System	Gaylord V. Skogerboe Don Jayatissa Bandaragoda	Dec 1998
R-78	Maintenance and Operational Activities in the Command Areas of Shahpur and Minwal Small Dams	Muhammad Akhtar Bhatti Muhammad Asghar Cheema Gaylord V. Skogerboe	Feb 1999

Report No.	Title	Author	Year
R-79 Final Report	Hydraulic Simulation to Evaluate and Predict Design and Operational Behavior of Chashma Right Bank Canai	Zaigham Habib Kamal Shah Alexandre Vabre Kalim Ullah Mobin ud Din Ahmed	March 1999
R-80 Final Report	Social Organization for Improved System Management and Sustainable Imigated Agriculture in Small Dams	Ralf Starkloff Don Jayatissa Bandaragoda Muhammad Asghar Cheema Muhammad Akhlar Bhatti	Apr 1999
R-81	Root Zone Salinity and Sodicity Management in the Fordwah Eastern Sadiqia (South) Irrigated Area	Muhammad Aslam Abdul Hamid Asghar Hussain Mehmooda Tabassam	May 1999

;