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Efficient Likelihood Evaluation of State-Space Representations

David N. DeJong, Hariharan Dharmarajan, Roman Liesenfeld, Guilherme Moura, and
Jean-Francois Richard∗

Abstract

We develop a numerical procedure that facilitates efficient likelihood evaluation in appli-
cations involving non-linear and non-Gaussian state-space models. The procedure em-
ploys continuous approximations of filtering densities, and delivers unconditionally op-
timal global approximations of targeted integrands to achieve likelihood approximation.
Optimized approximations of targeted integrands are constructed via efficient importance
sampling. Resulting likelihood approximations are continuous functions of model param-
eters, greatly enhancing parameter estimation. We illustrate our procedure in applications
to dynamic stochastic general equilibrium models.
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Nontechnical Summary

Particle-based filters offer two key advantages: they are easy to implement, and they produce
unbiased likelihood estimates (under fairly weak conditions). Here we present a filtering al-
gorithm that targets unconditional optimality. Implementation of the EIS filter is relatively
involved in comparison with particle-based filters. However, EIS iterations can be programmed
as a self-contained procedure, and through the considerable details we have provided regarding
implementation, including the annotated code that accompanies this paper, we have sought to
reduce barriers to entry regarding its implementation.

The performance of the EIS filter in the applications we have presented motivates our current
research agenda, wherein we are seeking to develop operational EIS samplers that are more
flexible than those drawn from the exponential family of distributions. One such extension,
which we have implemented successfully in a companion paper dedicated explicitly to filter-
ing, entails the construction of highly flexible marginal densities specified along one or two
dimensions (DeJong et al., 2010). A more promising approach entails the development of an
EIS procedure to construct global mixtures of Gaussian samplers; under this approach, EIS op-
timization is pursued via non-linear least squares implemented using analytical derivatives. We
have already successfully tested an initial univariate mixture implementation; high-dimensional
extensions are under development.
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1. Introduction

Likelihood evaluation and filtering in applications involving state-space models requires the
calculation of integrals over unobservable state variables. When models are linear and stochas-
tic processes are Gaussian, required integrals can be calculated analytically via the Kalman
filter. Departures entail integrals that must be approximated numerically. Here we introduce
an efficient procedure for calculating such integrals: the Efficient Importance Sampling (EIS)
filter.

The EIS filter falls under the general classification of a sequential Monte Carlo (SMC) method.
Dating at least to the sequential importance sampling (SIS) algorithm of Handschin and Mayne
(1969) and Handschin (1970), SMC methods have long served as workhorses for achieving
likelihood evaluation and filtering. Moreover, extensive efforts have been made to develop re-
finements of the baseline SIS algorithm with the goal of enhancing accuracy and numerical
efficiency in the face of challenging scenarios that give rise to problems known as degener-
acy and sample impoverishment (for surveys, see Ristic, Arulampalan and Gordon, 2004; and
Cappé, Godsill and Moulines, 2007). In the terminology of Pitt and Shephard (1999), the goal
of these efforts is to achieve adaption.

The application of SMC methods to the evaluation of DSGE models has been demonstrated
by Fernandez-Villaverde and Rubio-Ramirez (2005, 2009). The specific filtering method they
implemented was developed by Gordon, Salmond and Smith (1993). Like the SIS algorithm,
this filter employs discrete fixed-support approximations to unknown densities that appear in
the predictive and updating stages of the filtering process. The discrete points that collectively
provide density approximations are known as particles; the approach is known as the bootstrap
particle filter, and is a leading example of a sampling importance resampling (SIR) algorithm.

While SIS and SIR algorithms are intuitive and straightforward to implement, they suffer from
two important shortcomings. First, because the density approximations they provide are dis-
crete, associated likelihood approximations can feature spurious discontinuities (with respect to
parameters), rendering as problematic the application of likelihood maximization procedures.
Second, the supports upon which approximations are based are not adapted: period-t approxi-
mations are based on supports that incorporate information conveyed by values of the observ-
able variables available in period t− 1, but not period t. As characterized by Pitt and Shephard
(1999), this renders the approximations as “blind”. This problem gives rise to numerical ineffi-
ciencies that can be acute when observable variables are highly informative with regard to state
variables, particularly given the presence of outliers.

Numerous extensions of SIS and SIR algorithms have been proposed in attempts to address
these problems. For examples, see Pitt and Shephard (1999); the collection of papers in Doucet,
de Freitas and Gordon (2001); Pitt (2002); Ristic et al. (2004), and the collection housed
at http://www-sigproc.eng.cam.ac.uk/smc/papers.html. While these efforts
have produced algorithms that have proven to be effective in many applications, the use of
discrete approximations to filtering densities entails a significant limitation: the support of the
period-(t− 1) approximations carried over for the construction of period-t approximations can
no longer be changed in period t. Only the weights attached to the period-(t − 1) discrete el-
ements of the state space (i.e., particles) can be adjusted in period t. To be sure, there exist a
wide range of algorithms designed to optimize (adapt) these weights in light of new information
available at time t. Nevertheless, optimality is restricted as being conditional on the individual



4 David N. DeJong et al.

particles established in period (t− 1) . That is, discrete approximations cannot achieve uncon-
ditional optimality, or in other words, full adaption.

Here we seek to overcome this limitation by constructing sequential importance sampling den-
sities that are tailored to targeted integrands using the Efficient Importance Sampling (EIS)
methodology developed by Richard and Zhang (2007). Implementation entails the abandon-
ment of discrete approximations to filtering densities. Instead, within a prespecified family
of distributions, the goal is to construct an optimal importance sampling density based upon
period-t information, and absent the fixed- and prespecified-support constraints: i.e., the goal is
to achieve full adaption. Optimality is associated with the minimization of the numerical stan-
dard error of the weights associated with the chosen importance sampler, and typically takes
the form of a sequence of least-squares regressions. While the algorithm is not as easy to im-
plement as those based on discrete approximations, and the family of samplers successfully
implemented to date is somewhat limited, the algorithm can produce dramatic efficiency gains
(i.e., reductions of numerical standard errors) in challenging applications.

Here, our focus is on the achievement of near-optimal efficiency for likelihood evaluation. Ex-
ample applications involve the analysis of DSGE models, and are used to illustrate the relative
performance of the particle and EIS filters. In a companion paper (DeJong et al., 2010) we
focus on filtering, and present an application to the bearings-only tracking problem featured
prominently, e.g., in the engineering literature.

As motivation for our focus on the analysis of DSGE models, a brief literature review is help-
ful. The pioneering work of Sargent (1989) demonstrated the mapping of DSGE models into
linear/Gaussian state-space representations amenable to likelihood-based analysis achievable
via the Kalman filter. DeJong, Ingram and Whiteman (2000) developed a Bayesian approach
to analyzing these models. Subsequent work has involved the implementation of DSGE mod-
els towards a broad range of empirical objectives, including forecasting and guidance of the
conduct of aggregate fiscal and monetary policy (following Smets and Wouters, 2003).

Prior to the work of Fernandez-Villaverde and Rubio-Ramirez (2005, 2009), likelihood-based
implementation of DSGE models was conducted using linear/Gaussian representations. But
their findings revealed an important caveat: approximation errors associated with linear rep-
resentations of DSGE models can impart significant errors in corresponding likelihood repre-
sentations. As a remedy, they demonstrated use of the bootstrap particle filter developed by
Gordon, Salmond and Smith (1993) for achieving likelihood evaluation for non-linear model
representations. But as our examples illustrate, the numerical inefficiencies of the particle filter
noted above can be acute in applications involving DSGE models. By eliminating these ineffi-
ciencies, the EIS filter offers a significant advance in the empirical analysis of DSGE models.

2. Likelihood Evaluation in State-Space Representations

Let yt be an n× 1 vector of observable variables, and denote {yj}tj=1 as Yt. Likewise, let st be
a d × 1 vector of unobserved (‘latent’) state variables, and denote {sj}tj=1 as St. State-space
representations consist of a state-transition equation

st = γ(st−1, Yt−1, υt), (2.1)
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where υt is a vector of innovations with respect to (st−1, Yt−1), and a measurement equation

yt = δ (st, Yt−1, ut) , (2.2)

where ut is a vector of innovations with respect to (st, Yt−1). Hereafter, we refer to υt as
structural shocks, and ut as measurement errors.

The likelihood function f(YT ) is obtained by interpreting (2.1) and (2.2) in terms of the tran-
sition and measurement densities f(st|st−1, Yt−1) and f(yt|st, Yt−1), respectively. Since the
representation is recursive, f(YT ) factors sequentially as

f (YT ) =
T∏
t=1

f (yt|Yt−1) , (2.3)

where f (y1|Y0) ≡ f(y1). The time-t likelihood f (yt|Yt−1) is obtained by marginalizing over
st :

f (yt|Yt−1) =

∫
f (yt|st, Yt−1) f (st|Yt−1) dst, (2.4)

where the predictive density f (st|Yt−1) is given by

f (st|Yt−1) =

∫
f (st|st−1, Yt−1) f (st−1|Yt−1) dst−1, (2.5)

and f (st−1|Yt−1) is the time-(t− 1) filtering density. Advancing the time subscript by one
period, from Bayes’ theorem, f (st|Yt) is given by

f (st|Yt) =
f (yt, st|Yt−1)
f (yt|Yt−1)

=
f (yt|st, Yt−1) f (st|Yt−1)

f (yt|Yt−1)
. (2.6)

Likelihood construction is achieved by calculating (2.4) and (2.5) sequentially from periods 1
to T , taking as an input in period t the filtering density constructed in period (t− 1). In period
1 the filtering density is the known marginal density f(s0), which can be degenerate as a special
case.

3. Particle Filters

3.1 General Principle

Period-t computation inherently requires evaluating the following integral obtained by substi-
tuting (2.5) into the likelihood integral in (2.4)

f (yt|Yt−1) =

∫ ∫
f (yt|st, Yt−1) · f (st|st−1, Yt−1) · f̂(st−1|Yt−1)dst−1dst, (3.7)

where f̂(st−1|Yt−1) denotes an approximation to the period-(t− 1) filtering density. Particle
filters rely upon approximations in the form of a mixture-of-Dirac measures associated with the
period-(t− 1) swarm {sit−1}Ni=1 which is fixed in period-t :

f̂(st−1|Yt−1) =
N∑
i=1

ωit−1 · δsit−1
(st−1) , (3.8)
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where δsit−1
(s) denotes the Dirac measure at point sit−1, and ωit−1 the weight associated with

particle sit−1

(
with

N∑
i=1

ωit−1 = 1

)
. If a resampling step took place in period-(t− 1), e.g., as

in the bootstrap particle filter of Gordon, Salmond and Smith (1993), then ωit−1 = 1
N

. For
the purpose of comparing EIS filtering with existing SMC methods, resampling is unimportant
and is omitted here for ease of presentation. Substituting the Dirac approximation (3.8) into
the likelihood integral (3.7) effectively solves the (inner) integration in st−1, and produces the
simplification

f (yt|Yt−1) =
N∑
i=1

ωit−1

∫
f (yt|st, Yt−1) · f

(
st|sit−1, Yt−1

)
dst. (3.9)

Filtering algorithms differ by the construction of the importance sampler used to evaluate the
integral in (3.9) and to construct the corresponding approximation for the period-t filtering
density. Next, we first discuss unadapted filtering, then characterize conditional adaption, and
finally outline auxiliary particle filters, which aim at approximating conditional adaption.

3.2 Unadapted Filters

The baseline unadapted particle filter relies upon a propagation step whereby for each particle
sit−1 one draws a particle sit from the transition density f

(
st|sit−1, Yt−1

)
. The corresponding

estimates of the likelihood integral and of the period-t filtering density are then given by

f̂ (yt|Yt−1) =
N∑
i=1

ωit−1 · f
(
yt|sit, Yt−1

)
(3.10)

f̂ (st|Yt) =
N∑
i=1

ωitδsit (st) , (3.11)

where the (posterior) weights ωit obtain from the (prior) weights ωit−1 by application of Bayes’
theorem:

ωit = ωit−1 ·
f (yt|sit, Yt−1)
f̂ (yt|Yt−1)

. (3.12)

Unadapted filters are generally easy to implement as they only require that transition densities
be amenable to (sequential) Monte Carlo simulation. Moreover, they provide unbiased esti-
mates of likelihood integrals under weak though technically non-trivial conditions; see, e.g.,
Del Moral (2004) or Chopin (2004). On the other hand, they are prone to degeneracy and
sample impoverishment due to their lack of adaption.

3.3 Conditional Optimality

Note that the measurement density incorporates the critical assumption that yt is independent
of st−1 given (st, Yt−1). It follows that

f (yt|st, Yt−1) · f (st|st−1, Yt−1) = f (st|st−1, Yt) · f (yt|st−1, Yt−1) . (3.13)
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When this factorization is analytically tractable, it is possible to achieve conditionally optimal
adaption. To see how, substitute this factorization into the likelihood integral (3.7) to obtain

f (yt|Yt−1) =

∫ ∫
f (st|st−1, Yt) · f (yt|st−1, Yt−1) · f̂ (st−1|Yt−1) dstdst−1 (3.14)

=

∫
f (yt|st−1, Yt−1) · f̂ (st−1|Yt−1) dst−1

=
N∑
i=1

ωit−1 · f
(
yt|sit−1, Yt−1

)
.

The corresponding propagation stage then proceeds as follows: for each particle sit−1, draw a
particle sit from f

(
st|sit−1, Yt

)
. The corresponding weights are given by

ωit = ωit−1 ·
f
(
yt|sit−1, Yt−1

)
f̂ (yt|Yt−1)

. (3.15)

The key difference with the unadapted particle filter lies in the fact that the draws of st are now
conditional on yt also. Note that since ωit depends not on sit, but only on sit−1, its conditional
variance is zero given {sit−1}Ni=1. This is referenced as the optimal sampler following Zaritskii
et al. (1975) and Akaski and Kumamoto (1977). However, since the factorization in (3.13) is
tractable only in special cases, this sampler represents a theoretical rather than an operational
benchmark. But most importantly, this sampler is only optimal conditionally upon {sit−1}Ni=1:
its unconditional MC variance is not zero. The limitation to conditional optimality is inherently
linked to the use of mixtures of Dirac measures in representing filtering densities. As noted, the
EIS implementation we propose below targets unconditional optimality.

3.4 Auxiliary Particle Filters

Since the conditionally optimal kernel is generally intractable, much effort has been devoted to
its approximation under the restriction that the swarm {sit−1}Ni=1 is kept fixed in period t, so that
only integration in st can be adapted; see, e.g., Doucet (1998) or Vaswani (2008). The key to a
number of such extensions lies in the interpretation of (3.9) as a mixed integral in (st, kt) ,where
kt denotes the index of particles, and follows the multinomial distributionMN

(
N, {ωit−1}Ni=1

)
.

The likelihood integral may then be evaluated via importance sampling (IS), relying upon a
mixed density kernel of the form

γt (s, k) = ωkt−1 · pt (s, k) · f
(
st|skt−1, Yt−1

)
, (3.16)

where pt (s, k) is introduced with the objective of minimizing the MC variance of the likelihood
IS estimate. Numerical tractability requires that pt (s, k) be selected in such a way that the
IS kernel γt (s, k) can be normalized into an operational IS sampling density gt (s, k). As a
prominent example, the Auxiliary Particle (AP) filter of Pitt and Shephard (1999) specifies
pt (s, k) as

pt (s, k) = f
(
yt|µkt , Yt−1

)
, µkt = E(st|skt−1, Yt−1), (3.17)

in which case the IS mixed sampler obtains as

gt (s, k) = πkt · f
(
st|skt−1, Yt−1

)
, (3.18)



8 David N. DeJong et al.

with

πkt = D−1t · ωkt−1 · f(yt|µkt , Yt−1) (3.19)

Dt =
N∑
j=1

ωjt−1 · f(yt|µjt , Yt−1). (3.20)

Let ωt(s, k) denote the ratio between the integrand in (3.9) and the IS density in (3.18):

ωt(s, k) = Dt
f(yt|s, Yt−1)
f(yt|µkt , Yt−1)

. (3.21)

Then the AP filter estimate of the likelihood integral is given by

f̂N (yt|Yt−1) =
1

N

N∑
i=1

ω̃it, ω̃it = ωt
(
sit, k

i
t

)
, (3.22)

and the approximation of the period-t filtering density is

f̂N (st|Yt) =
N∑
i=1

ωitδsit−1
(st) , ωit =

ω̃it
N∑
j=1

ω̃jt

. (3.23)

Under special circumstances further adaption can be achieved. If the transition density
f (st|st−1, Yt−1) belongs to a family of densities closed under multiplication, then selecting
pt (s, k) in (3.16) from that same family can produce an operational and improved sampler. Its
integrating constant obtains by first integrating the product pt (s, k) · f

(
s|skt−1, Yt−1

)
with re-

spect to s, then summing the remainder over k. Examples for the case in which f (st|st−1, Yt−1)
is Gaussian in st are discussed in Pitt and Shephard (1999) and Smith and Santos (2006).
Using for pt (s, k) a first-order Taylor series expansion of ln f (yt|st, Yt−1) in st around µjt
yields Pitt and Shephard’s adapted particle filter; likewise, Smith and Santos demonstrate the
implementation of a second-order expansion.

Last but not least, we note that conditional adaption, even in the optimal case, can occasionally
be outperformed by unadapted filters, as highlighted by Johansen and Doucet (2008) for the
AP filter. Specifically the asymptotic variance decomposition derived by the authors contains
terms propagated forward from all previous periods. It follows that “while the adaption may be
beneficial at the time which it is performed it may have a negative influence on the variance at
a later point”. [p. 1503]

4. EIS Filters

4.1 Unconditional Optimality

The root inefficiency of particle-based filters lies in their reliance upon mixture-of-Dirac ap-
proximations of filtering densities. This effectively replaces the likelihood integral in (3.7) by
that in (3.9), thereby eliminating the possibility of period-t adaption with respect to st−1. In
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order to further illustrate this critical distinction, let us revisit (3.7). Consider the (theoretical)
factorization

f (yt|st, Yt−1) · f (st|st−1, Yt−1) · f̂ (st−1|Yt−1) = f (st, st−1|Yt) · f (yt|Yt−1) . (4.24)

If analytically tractable, f (st, st−1|Yt) would clearly be the unconditionally optimal (fully
adapted) IS sampler for the likelihood integral (3.7), as a single draw from it would produce
an IS estimate of f (yt|Yt−1) with zero MC variance. The period-t filtering density would then
obtain by marginalization with respect to st−1 :

f (st|Yt) =

∫
f (st, st−1|Yt) dst−1. (4.25)

Under full normality and linearity assumptions, such densities are immediately available and
instrumental in the Kalman filter. They are generally intractable for more general dynamic
state-space models, but nevertheless provide a useful point of reference for the EIS filter we
propose below.

Our target is indeed that of constructing EIS samplers in (st−1, st) for the likelihood integral
in (3.7). As discussed further below, this requires that approximations of filtering densities
be continuous. Section 4.2 outlines the general principle behind EIS. Section 4.3 discusses
implementation in the context of state-space representations. Finally, Section 4.4 discusses a
special case that often characterizes state-space representations: degenerate transition densities.

4.2 EIS Integration

Let ϕt(λt), with λt = (st−1, st) , denote the integrand in (3.7), where the subscript-t in ϕt
replaces Yt. Implementation of EIS begins with the pre-selection of a parametric class K =
{k (λt; at) ; at ∈ A} of analytically integrable auxiliary density kernels. The corresponding den-
sity functions (IS samplers) and IS ratios are given respectively by

g(λt|at) =
k(λt; at)

χ(at)
, χ(at) =

∫
k(λt; at)dλt, (4.26)

ωt(λt; at) =
ϕt(λt)

gt (λt|at)
. (4.27)

The objective of EIS is to select a parameter value ât ∈ A that minimizes the MC variance
of the IS ratio over the full range of integration. Following Richard and Zhang (2007), a near
optimal value ât obtains as the solution to

(ât, ĉt) = arg min
(at,ct)

∫
[lnϕt(λt)− ct − ln k(λt; at)]

2 g(λt|at)dλt, (4.28)

where ct denotes an intercept meant to calibrate the ratio ln (ϕt/k). Equation (4.28) repre-
sents a standard least squares problem, except that the auxiliary sampling density itself depends
upon at. This is resolved by reinterpreting (4.28) as the search for a fixed-point solution. An
operational MC version, implemented (typically) using R << N draws, is as follows:
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Step l + 1: Given âlt, draw intermediate values {λit,l}Ri=1 from the step-l EIS sampler g(λt|âlt),
and solve

(âl+1
t , ĉl+1

t ) = arg min
(at,ct)

R∑
i=1

[
lnϕt(λ

i
t,l)− ct − ln k(λit,l; at)

]2
. (4.29)

Before we discuss the pre-selection of K, three points bear mentioning. First, the optimization
problems in (4.28) and (4.29) are designed to provide global approximations of ϕt(λt) over the
full range of integration (in contrast with the selection of IS samplers from local approxima-
tions). See Section 3.4 in Richard and Zhang (2007) for further discussion of this critical issue
in relation with the MC variance of IS estimates, and more generally, with their convergence.
Second, the selection of the initial value â0t can be important for achieving rapid fixed-point
convergence (say less than 5 iterations). Section 5 below presents an effective algorithm for
specifying â0t in applications involving DSGE models. Third, to achieve rapid convergence,
and foremost, to ensure continuity of the corresponding likelihood estimates, {λit,l} must be
obtained by transformation of a set of Common Random Numbers (CRNs) {uit} drawn from a
canonical distribution associated with K (i.e., one that does not depend on at; e.g., standardized
Normal draws when g is Gaussian).

Continuing with convergence, this can be assessed by monitoring âlt across successive itera-
tions l, and a stopping rule can be established using a relative-change threshold. Although
there is no guarantee nor formal proof that the sequence

{
âlt
}

converges for every possible pair
(ϕ (·) , k (·)), we have found repeatedly that it never fails to occur short of a complete mismatch
between the target ϕ and the kernel k (e.g., ϕ is bimodal and k is unimodal), in which case
failure to converge serves as a signal that the class K needs to be adjusted. Moreover, conver-
gence is not critical: what matters is that the resulting sampler delivers accurate and numerically
efficient approximations of the targeted integrand. Regarding accuracy, or more precisely, con-
vergence of the MC estimate generated by the optimized importance sampler to the targeted
integral, this is ensured under the mild regularity conditions for importance samplers outlined,
e.g., by Geweke (1989). Regarding efficiency, this can be assessed using diagnostic measures
such as the R2 statistic associated with (4.29), and summary statistics regarding the dispersion
of the importance sampling weights ω (λi, â(θ)) (see Richard and Zhang, 2007, for further de-
tails, and the empirical applications presented in Section 5 for extensive examples of efficiency
diagnostics).

Finally, as mentioned above, the preselection of K is bound to be problem-specific. (However,
note that once EIS has been programmed for a particular class K, then changes in model spec-
ification only require adjusting the dependent variable lnϕt.) If K belongs to the exponential
family of distributions, then there exists a natural parameterization in the sense of Lehmann
(1986, Section 2.7) for which the auxiliary regressions in (4.29) are linear in at. Details regard-
ing the implementation of Gaussian EIS samplers are provided in Appendix B.

4.3 The EIS Filter

4.3.1 Joint EIS
The simplest (one-step) implementation of the EIS filter entails the application of EIS directly to
the likelihood integral in (3.7) using a Gaussian EIS sampler in λt = (st−1, st). The dependent
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variable in the auxiliary linear EIS regressors in (4.29) is then given by

ϕt (st−1, st) = f (yt|st, Yt−1) · f (st|st−1, Yt−1) · f̂(st−1|Yt−1). (4.30)

In turn, the likelihood EIS estimate is given by

f̂ (yt|Yt−1) =
1

S

S∑
i=1

ωt
(
sit−1, s

i
t; ât
)
, (4.31)

where ωt (·) denotes the EIS ratio (4.27) and {sit−1, sit}Si=1 denotes i.i.d. draws from the EIS
sampler g (st−1, st|ât). A period-t filtering density approximation is then given by the marginal
of g in st.:

f̂ (st|Yt) =

∫
g (st−1, st; ât) dst−1. (4.32)

As noted, particularly in the presence of outliers and/or tight measurements, the selection of a
good initial sampler gt (st, st−1|â0t ) can significantly accelerate convergence. For the applica-
tions discussed in Section 5, we rely upon local Taylor Series expansions to construct initial
Gaussian samplers. This is similar to the procedure proposed by Durbin and Koopman (1997)
whereby (local) Gaussian approximations are used as importance samplers to evaluate the like-
lihood function of non-Gaussian state space models. However, our approach differs critically
from theirs, in that such local approximations are used only to construct starting values for fully
iterated global EIS approximation of the likelihood integrand (i.e. a fully adapted IS sampler
within the pre-selected class K). As illustrated in Section 5, convergence to fully adapted EIS
samplers produces substantial efficiency gains relative to initial local approximations.

Given a distributional family chosen for gt () ; a systematic means of constructing gt (st−1, st|â0t ) ;

and with f̂ (s0|Y0) initialized using f (s0) ; a summary of the period-t algorithm of the EIS filter
is as follows.

Propagation: Inheriting f̂ (st−1|Yt−1) from period (t− 1), obtain the integrand ϕt (st−1, st)
appearing in the likelihood integral (3.7), where ϕt (st−1, st) is defined in (4.30).

EIS Optimization: Construct an initialized sampler gt (st−1, st|â0t ) , and obtain the optimized
parameterization ât as the solution to (4.29). This yields gt (st−1, st|ât) .

Likelihood integral: Obtain draws
{
sit−1, s

i
t

}N
i=1

from gt (st−1, st|ât) , and approximate
f̂ (yt|Yt−1) as in (4.31).

Filtering: Approximate f̂ (st|Yt) as in (4.32).

Continuation: Pass f̂ (st|Yt) to the period-(t+ 1) propagation step and proceed through period
T .



12 David N. DeJong et al.

4.3.2 Nested EIS
A more flexible EIS implementation relies upon the factorization used in constructing particle-
based filters, wherein the likelihood integral (3.7) is rewritten as a nested integral

f (yt|Yt−1) =

∫
f (yt|st, Yt−1) · f̂(st|Yt−1)dst (4.33)

f̂ (st|Yt−1) =

∫
f (st|st−1, Yt−1) · f̂(st−1|Yt−1)dst−1, (4.34)

and EIS is then applied separately to these two lower-dimensional integrals. However, the EIS
exploitation of this factorization differs fundamentally from that of the particle filter. Specifi-
cally, preserving full adaption requires that (4.34) be evaluated under an “inner” (E)IS sampler
individually adapted to each value of st requested for “outer” EIS evaluation of (4.33). Such
nesting provides greater flexibility in that it eliminates all analytical restrictions across the two
nested EIS samplers, but adds significant computational burden since inner EIS must be re-
peated for each individual value of st requested by outer EIS. While intrinsically computation-
ally more demanding, nested EIS can often be simplified. For example, if f (st|st−1, Yt−1) is
partially Gaussian, as in the case for the applications discussed in Section 5, and f̂(st−1|Yt−1) is
itself Gaussian, then the dimensionality of inner EIS can be reduced by partial analytical inte-
gration. Moreover, while the applications presented below were pursued via joint EIS, we also
experimented at an earlier stage with an (initial) inner IS sampler produced by local Gaussian
approximation of f (st|st−1, Yt−1), which proved to be numerically reliable for achieving outer
EIS evaluation. Finally, note that under nested EIS it is the outer EIS sampler gt (st|ât) that
provides a direct approximation of the filtering density f(st|Yt).

4.4 Degenerate Transitions

State transitions often include identities that effectively reduce the dimension of integration in
(st, st−1). Let st partition into st = (pt, qt) in such a way that the transition consists of a set of
identities

qt ≡ φ (pt, st−1) , (4.35)

in combination with a proper transition density f (pt|st−1, Yt−1). Such identities effectively
reduce the dimensionality of the likelihood integral (3.7), which is rewritten as

f (yt|Yt−1) =

∫ ∫
f (yt|st, Yt−1) |qt=φ(pt,st−1) ·f (pt|st−1, Yt−1) · f̂(st−1|Yt−1)dptdst−1. (4.36)

Application of EIS (whether joint or nested) to (4.36) produces an EIS sampler gt (pt, st−1|ât),
which typically requires non-linear transformations and auxiliary EIS in order to produce a
marginal approximation for the filtering density f (st|Yt) .

Fortunately, a more direct approach avoids these problems. This consists of applying a trans-
formation of variables from (pt, st−1) into (st, pt−1) to the integral in (4.36). Assuming that φ ()
is one-to-one (on the relevant range), we denote its inverse and Jacobian by

qt−1 = ψ (st, pt−1) , (4.37)

J (st, pt−1) = || ∂
∂q
′
t

ψ(st, pt−1)||, (4.38)
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where ||• || denotes the absolute value of a determinant. The likelihood integral in (4.36) is then
rewritten as

f (yt|Yt−1) =

∫ ∫
f (yt|st, Yt−1)·J (st, pt−1)

[
f (pt|st−1, Yt−1) · f̂(st−1|Yt−1)

]
|qt−1=ψ(st,pt−1)dstdpt−1.

(4.39)
Application of the EIS filter to (4.39) rather than (3.7) then proceeds precisely as described

above, producing an EIS sampler gt (st, pt−1|ât) for which an approximation of the filtering
density f(st|Yt) obtains directly by marginalization with respect to pt−1.

5. Application to DSGE Models

As noted, the work of Fernandez-Villaverde and Rubio-Ramirez (2005, 2009) revealed that
approximation errors associated with linear representations of DSGE models can impart sig-
nificant errors in corresponding likelihood representations. As a remedy, they demonstrated
the use of the bootstrap particle (BP) filter developed by Gordon et al. (1993) for achieving
likelihood evaluation for non-linear model representations. Here we demonstrate the imple-
mentation of the EIS filter using two workhorse models. The first is the standard two-state real
business cycle (RBC) model; the second is a small-open-economy (SOE) model patterned after
those considered, e.g., by Mendoza (1991) and Schmitt-Grohe and Uribe (2003), but extended
to include six state variables.

We analyze two data sets for both models: an artificial data set generated from a known model
parameterization; and a corresponding real data set. Thus in total we consider four applications,
each of which poses a significant challenge to the successful implementation of a numerical
filtering algorithm. Both models share a common statistical structure. The EIS implementation
for that common structure is presented in Section 5.1. The specific models are then presented
in Section 5.2, and results are presented in Section 5.3.

In demonstrating the performance of the EIS filter, we provide context by comparing this per-
formance with that of the BP filter. We also attempted to evaluate the performance of the AP
filter of Pitt and Shephard (1999), but in all cases found that it could not be implemented suc-
cessfully in the extensive battery of Monte Carlo experiments presented below. With reference
to (3.21), its occasional failure traces to the denominator f

(
yt|µkt , Yt−1

)
, which occasionally

takes on near-zero values. However, we do note that in conducting pilot experiments wherein
the AP filter was implemented successfully, the gains in numerical efficiency it generated rel-
ative to the BP filter were dominated by those generated by the EIS filter (details are available
upon request).

5.1 A Generic DSGE Model

The following functional notation for multivariate Gaussian densities proves useful for the fol-
lowing discussion:

fnN(x|µ,Ω) = (2π)−
n
2 |Ω|−

1
2 exp−1

2
(x− µ)′Ω−1(x− µ). (5.40)

Let n, d, dp, dq denote the respective dimensions of yt, st, pt, and qt. The class of DSGE models
we consider here is characterized by the following state-space densities. The measurement
density is given by

f (yt|st, Yt−1) = fnN (yt|µ (st) , Vy) , (5.41)
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where µ (st) denotes a non-linear vector function of st. The transition density consists of a non-
degenerate density for pt and a non-linear degenerate transition for qt. The latter only depends
on st−1 for both models considered here:

f (pt|st−1, Yt−1) = f
dp
N (pt|R · st−1,Σ) , (5.42)

qt = φ (pt−1, qt−1) . (5.43)

As in Section 4.4, φ is assumed to be invertible (on the relevant range), and its inverse and
Jacobian are denoted by

qt−1 = ψ (qt, pt−1) , J (qt, pt−1) = || ∂
∂qt

ψ (qt, pt−1) ||. (5.44)

All computations in period t are based on an EIS Gaussian approximation for the period-(t−1)
filtering density, denoted by

f̂ (st−1|Yt−1) = fdN (st−1|µt−1,Ωt−1) . (5.45)

The application of joint EIS to this model under a classK consisting of unconstrained Gaussian
kernels for (st, st−1) is conceptually straightforward. The critical step for fast and numerically
reliable EIS convergence consists of the derivation of a good initial value for the auxiliary EIS
parameter â0t . Next, we outline the successive steps required for the computation of â0t . Details
are presented in Appendix A.

Following (4.39) the period-t EIS target is given by

ϕt (st, pt−1) = fnN (yt|µ (st) , Vy)·J (qt, pt−1)·
[
f
dp
N (pt|Rst−1,Σ) · fdN (st−1|µt−1,Ωt−1)

]
|qt−1=ψ(qt,pt−1).

(5.46)
The initial EIS sampler g (st, pt−1|â0t ) employs the local linear approximations

µ̂ (st) = rt + Ptst, (5.47)

ψ̂ (qt, pt−1) = Atqt +Btpt−1 + ct, (5.48)

which obtain by first-order Taylor Series around the base points

st−1 = µt−1, pt = Rµt−1 and qt = φ (st−1) . (5.49)

For each of the four applications under consideration, these starting values produce fast and
numerically reliable EIS convergence for all periods. The initial EIS kernel is defined as

k
(
st, pt−1; â

0
t

)
= fnN (yt|rt + Ptst, Vy)·

[
f
dp
N (pt|Rst−1,Σ) · fdN (st−1|µt−1,Ωt−1)

]
|qt−1=Atqt+Btpt−1+ct .

(5.50)
Being defined as a product of three linear Gaussian densities, k (st, pt−1; â

0
t ) is itself a Gaussian

kernel in (st, pt−1). Its integrating constant χ (â0t ) and first- and second-order moments obtain
through a sequence of operations consisting of the following five steps:

Step 1. Combine the two Gaussian densities between brackets to produce a joint Gaussian
density for (pt, st−1).
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Step 2. Transform the combined density into a Gaussian density for (st, pt−1) by application of
the linear transformation (5.48).

Step 3. Factorize the latter density into a marginal Gaussian density for st and a conditional
Gaussian density for pt−1|st, for which we use the short-hand notation f ∗1 (st) and f ∗2 (pt−1|st),
respectively.

Step 4. Combine f ∗1 (st) and the (linearized) measurement density fnN (yt|rt + Ptst, Vy) into a
joint Gaussian density for (yt, st) .

Step 5. Factorize the latter into a marginal Gaussian density for yt and a conditional Gaussian
density for st|yt, for which we use the short-hand notation f ∗3 (yt) and f ∗4 (st|yt), respectively.

Given these steps, the integrating constant of the initial EIS kernel in (5.50) is given by

χ
(
â0t
)

= f ∗3 (yt) . (5.51)

The corresponding initial sampler is given by

g
(
st, pt−1|â0t

)
= f ∗2 (pt−1|st) · f ∗4 (st|yt) . (5.52)

An initial IS estimate of the likelihood, constructed along the lines of Durbin and Koopman
(1997), is then given by

f̂ 0
t (yt|Yt−1) = f ∗3 (yt) ·

1

N

N∑
i=1

ω̃0
t

(
pit, s

i
t−1; â

0
t

)
, (5.53)

where
{
pit, s

i
t−1
}N
i=1

denotes N i.i.d. (CRN) draws from g (st, pt−1|â0t ) and ω̃0
t (·) denotes the

corresponding IS ratios (with f ∗3 (yt) factored out from ω̃0
t (·) for ease of interpretation); detailed

expressions are given in Appendix A.

Using the initialized sampler g (st, pt−1|â0t ) as an input, we compute a fully iterated global EIS
Gaussian kernel via the linear least-squares problem defined in (4.29). Under a natural param-
eterization in the sense of Lehmann (1986, Section 2.7), the regressors consist of

(
sit, p

i
t−1,

)
together with squares and (lower-triangular) cross-product for a total of

nk = (d+ dp) +
1

2
(d+ dp) (d+ dp + 1) (5.54)

regressors, plus an intercept. Details are provided in Appendix B. The convergence criterion we
use is given by

|| â
l+1
t − âlt
âlt

||2 < ε, (5.55)

with ε on the order of 10−4. As a general rule of thumb we have found that starting from the
initial sampler (5.52) and using a number of draws R of the order of 3 to 5 times nk secures
fast convergence to a (near) optimal value ât (typically 3 to 4 iterations for the applications
described below).
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5.2 Example Models

As noted, we demonstrate the implementation of the EIS filter using two specific DSGE models
The first is the simple real business cycle model used by Fernandez-Villaverde and Rubio-
Ramirez (2005) to demonstrate the implementation of the particle filter. The model consists
of a representative household that seeks to maximize the expected discounted stream of utility
derived from consumption c and leisure l:

max
ct,lt

U = E0

∞∑
t=0

βt
(
cϕt l

1−ϕ
t

)
1− φ

1−φ

, (5.56)

where (β, φ, ϕ) represent the household’s subjective discount factor, the degree of relative risk
aversion, and the relative importance assigned to ct and lt in determining period-t utility.

The household divides its available time per period (normalized to unity) between labor nt and
leisure. Labor combines with physical capital kt and a stochastic productivity term zt to pro-
duce a single good xt, which may be consumed or invested (we use x in place of the usual
representation for output – y – to avoid confusion with our use of y as representing the ob-
servable variables of a generic state-space model). Investment it combines with undepreciated
capital to yield kt+1, thus the opportunity cost of period-t consumption is period-(t+ 1) capital.
Collectively, the constraints faced by the household are given by

xt = ztk
α
t n

1−α
t , (5.57)

1 = nt + lt, (5.58)
xt = ct + it, (5.59)

kt+1 = it + (1− δ)kt, (5.60)
zt = z∗e

ωt , ωt = ρωt−1 + εt, εt ∼ iidN(0, σ2
ε), (5.61)

where (α, δ, ρ) represent capital’s share of output, the depreciation rate of capital, and the per-
sistence of innovations to total factor productivity (TFP).

Optimal household behavior is represented as policy functions for (xt, it, nt) in terms of the
state (zt, kt). The corresponding policy functions for (ct, lt) follow from identities (5.58) and
(5.59). Policy functions are expressed as Chebyshev polynomials in the state variables (zt, kt) ,
constructed using the projection method described in DeJong and Dave (2007, Ch. 10.5.2).
Given the form of (5.61), it proves convenient to represent the state variables (zt, kt) as logged
deviations from their steady state (z∗, k∗). Measurements for (xt, it, nt) are assumed to differ
from their policy function values by i.i.d. Gaussian measurement errors. It follows that this
two-state RBC model is of the form given by (5.41) to (5.43) with n = 3, dp = dq = 1, and
(with all variables presented as logged deviations from steady state):

• s′t = (pt, qt) = (zt, kt) ,

• y′t = (xt, it, nt) ,

• µ (st) denoting the policy functions for yt,

• Vy denoting the diagonal covariance matrix of the measurement error,
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• R = (ρ, 0), Σ = σ2
ε ,

• φ (st−1) denoting the degenerate transition obtained from identity (5.60) via substitution
of the corresponding policy function, and application of the logged deviation transfor-
mation to (st, st−1) . (Details regarding the construction and inversion of φ (st−1) are
presented in Appendix C.1.)

The second example model is that of a small-open-economy (SOE), patterned after those con-
sidered, e.g., by Mendoza (1991) and Schmitt-Grohe and Uribe (2003). The model consists of
a representative household that seeks to maximize

U = E0

∞∑
t=0

θt
[ct − ϕtω−1nωt ]

1−γ − 1

1− γ
, ω > 0, γ > 0, (5.62)

where ϕt is a preference shock that affects the disutility generated by labor effort (introduced,
e.g., following Smets and Wouters, 2002). Following Uzawa (1968), the discount factor θt is
endogenous and obeys

θt+1 = β (c̃t, ñt) θt, θ0 = 1, (5.63)

β (c̃t, ñt) =
[
1 + c̃t − ω−1ñtω

]−ψ
, ψ > 0,

where (c̃t, ñt) denote average per capita consumption and hours worked. The household takes
these as given; they equal (ct, nt) in equilibrium. The household’s constraints are collectively

xt = Atk
α
t n

1−a
t (5.64)

dt+1 = (1 + rt) dt − xt + ct + it +
φ

2
(kt+1 − kt)2 (5.65)

kt+1 = v−1t it + (1− δ) kt (5.66)
lnAt+1 = ρA lnAt + εAt+1, εAt ∼ iidN(0, σ2

εA
) (5.67)

ln rt+1 = (1− ρr) ln r∗ + ρr ln rt + εrt+1, εrt ∼ iidN(0, σ2
εr) (5.68)

ln vt+1 = ρv ln vt + εvt+1, εvt ∼ iidN(0, σ2
εv) (5.69)

lnϕt+1 = ρϕ lnϕt + εϕt+1, εϕt ∼ iidN(0, σ2
εϕ), (5.70)

where relative to the RBC model, the new variables are dt, the stock of foreign debt, rt, the
exogenous interest rate at which domestic residents can borrow in international markets, vt, an
investment-specific productivity shock, and the preference shock ϕt.

The state variables of the model are (dt, kt, At, rt, vt, ϕt) ; the controls are (xt, ct,it, nt) . In
this application we achieve model approximation following Schmitt-Grohe and Uribe (2004).
Specifically, we represent the full set of model variables as quadratic functions of the states,
again expressed as logged deviations from steady states. Measurements for the logged controls
are centered on their respective logged policy functions. The resulting model is of the form
given by (5.41) to (5.43) with n = 4, dp = 4, dq = 2, and (with all variables once again
presented as logged deviations from steady state):

• p′t = (At, rt, vt, ϕt),

• q′t = (dt, kt),
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• y′t = (xt, ct, it, nt),

• µ(st) denoting the logged policy functions for yt,

• R = (Rp, 0) , with Rp denoting the 4 × 4 diagonal matrix with diagonal elements
(ρA, ρr, ργ, ρp),

• Σ being a 4×4 diagonal covariance matrix, with diagonal elements
(
σ2
εA
, σ2

εr , σ
2
εv , σ

2
εϕ

)
,

• φ(st−1) denoting the bivariate degenerate transition equations obtained directly from the
Schmitt-Grohe/Uribe solution algorithm. (Details regarding the (recursive) inversion of
φ(st−1) are presented in Appendix C.2.)

The application of EIS to this six-state model accounting for the degenerate transition requires
10-dimensional EIS in (st, pt−1) as described in Section 4.4.

5.3 Results

Here we present a series of five Monte Carlo (MC) experiments; each experiment involves four
data sets, two for each model. For a given model, one data set consists of artificial data generated
from a known parameterization of the model; the second consists of actual data that align with
theoretical counterparts. For the RBC model, the artificial data set consists of 100 realizations
of {xt, it, nt}, and was constructed by Fernandez-Villaverde and Rubio-Ramirez (2005). The
actual data set consists of 184 quarterly observations on {xt, it, nt}, where it is defined as the
sum of the consumption of durable goods and real gross fixed investment, xt is the sum of it
and the consumption of non-durable goods, and nt is total non-farm employment. The data are
quarterly, seasonally adjusted, and span 1964:I-2009:IV; output and investment are measured in
real per capita terms, and all series are HP filtered. This data set represents an updated version
of the actual data set evaluated by Fernandez-Villaverde and Rubio-Ramirez (2005).

For the SOE model, the artificial data set consists of 100 realizations of {xt, ct, it, nt}. The
actual data set consists of Canadian data on {xt, ct, it, nt}, spanning 1976:I-2008:IV (132 ob-
servations), and is an updated version of the data set evaluated by Mendoza (1991). Here,
xt is defined as GDP, ct as personal expenditures on consumer goods and services, and it
as business gross fixed capital formation, and nt is an index of man hours worked by paid
workers. Once again, the data are quarterly, seasonally adjusted, and detrended using the
HP filter. The source of the RBC data is the Federal Reserve Bank of St. Louis; and the
source of the SOE data set is Statistics Canada. The data are available for downloading at
http://www.pitt.edu/~dejong/wp.htm.

The MC experiments we conducted involve repeated approximations of the likelihood func-
tions corresponding to each data set. Parameterizations of the likelihood functions are pre-
sented in Table 1. The parameters of the RBC model, artificial data set are those chosen by
Fernandez-Villaverde and Rubio-Ramirez (2005); for the actual data set, the parameters are
posterior modes associated with the non-informative priors chosen by Fernandez-Villaverde
and Rubio-Ramirez.

Regarding the SOE model, aside from the parameters characterizing sources of uncertainty in
the model, the artificial data set was generated using the parameter values calibrated by Schmitt-
Grohe and Uribe (2003) to match the summary statistics on Canadian data reported by Mendoza
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(1991). The additional parameters characterizing new sources of stochastic uncertainty included
were chosen as those that minimized the sum of squared differences between Mendoza’s sum-
mary statistics (excluding trade balance) and the statistics implied by the model. The statistics
are the standard deviations of {xt, ct, it, nt}, first-order serial correlations, and contemporane-
ous correlations with output. Finally, the standard deviations of all measurement errors were set
at 0.5%.

For the actual data set of the SOE model, parameters were set at posterior modes estimated
using the prior specification indicated in Table 1. The prior consists of independent normal
distributions specified for each parameter. Aside from parameters that characterize stochastic
uncertainty, prior means were set at the values specified by Schmitt-Grohe and Uribe (2003),
and prior standard deviations were set to reflect non-trivial uncertainty over these specifications.
(Note that the specifications of δ and r∗ chosen by Schmitt-Grohe and Uribe are appropriate for
annual data, and thus were translated under our prior into specifications appropriate for the
quarterly observations we employ.) The priors over AR parameters were centered at 0.8 (s.d.
0.2); and with two exceptions along ill-behaved dimensions (σr and σi), the priors over σ′s
were centered at 0.5% (s.d. 0.5%). The likelihood function implies strong negative correlation
between σr and ρr, thus σr was set so that the posterior mode of ρr lay near its prior mean.
Also, the posterior mode of σi was difficult to pin down, so its prior mean was centered at 0.5%
like its counterparts, while its standard deviation was set to pin down the posterior mode at this
value.

Table 5.1: Parameter Values

RBC Model
α β φ ϕ δ ρ σε σy σi σn

Art. Data 0.4 0.99 2 0.357 0.01961 0.95 0.007 1.58e-04 8.66e-4 0.0011
Prior Max. 0 0.75 0 0 0 0 0 0 0 0
Prior Min. 1 1 100 1 0.05 1 0.1 0.1 0.1 0.1
Post. Mode 0.3561 0.9938 3.3631 0.2006 0.0109 0.9842 0.0053 0.0060 0.0007 0.0017
Post. S.D. 1.4e-04 1.9e-05 1.9e-02 4.4e-03 2.5e-05 3.7e-03 4.3e-04 3.8e-04 4.0e-04 9.0e-05

SOE Model
γ ω ψ α φ r∗ δ ρA σA

Art. Data 2 1.455 0.11135 0.32 0.028 0.04 0.1 0.53 0.0089
Prior Mean 2 1.455 0.11 0.32 0.028 0.007 0.025 0.8 0.005
Prior S.D. 1 0.2 0.001 0.05 0.01 0.025 0.025 0.2 0.005
Post. Mode 2.49 1.33 0.11 0.23 0.039 0.02 0.02 0.82 0.0019
Post. S.D. 0.0086 0.0213 0.0059 0.0047 0.0133 0.0010 0.0031 0.0177 0.0003

ρr σr ρv σv ρϕ σϕ σy σc σi σn
Art. Data 0.37 0.001 0.89 0.001 0.3 0.0152 0.005 0.005 0.005 0.005
Prior Mean 0.8 0.0022 0.8 0.005 0.8 0.005 0.005 0.005 0.005 0.005
Prior S.D. 0.2 0.0005 0.2 0.005 0.2 0.005 0.005 0.005 0.0005 0.005
Post. Mode 0.79 0.0022 0.87 0.001 0.86 0.0031 0.0038 0.0065 0.0046 0.0058
Post. S.D. 0.1099 0.0129 0.01329 0.0002 0.0145 0.0004 0.0006 0.0006 0.0010 0.0005

Each data set poses a distinct challenge to efficient likelihood evaluation. In the RBC artificial
data set, the standard deviations of the measurement errors (σx,σi,σn) are small relative to σε,
which as we have noted can lead to sample impoverishment. In the RBC actual data set, output
and investment feature two sudden drops of more than 1.5 standard deviations between the third
and fourth quarters of 1974, and the first and second quarters of 1980. Such abrupt changes pose
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a challenge for filters that implement discrete and fixed-support importance samplers, as it is
difficult for such samplers to generate proposals of states that appear as outliers.

In the SOE data sets, one challenge is the relatively high dimensionality of the state space (six
versus two in the RBC model). A second is the additional non-linearities featured in the model
(relative to the RBC model): e.g., the capital-adjustment cost term φ

2
(kt+1 − kt)2 appearing in

(5.65). As opposed to the applications involving the RBC model, variances of measurement
errors are closely comparable across data sets in this case. Instead, differences in data sets stem
primarily from differences in the volatility and persistence of the model’s structural shocks. In
particular, with the model parameterization associated with the artificial data set calibrated to
annual data, and the parameterization associated with the real data set estimated using quarterly
observations, structural shocks are far less persistent, and generally more volatile, in the former
case. The upshot is that in working with the actual data, the state variables are relatively easy
to track, and in general the construction of likelihood approximations is less problematic.

The first experiment we conducted is designed to assess potential biases in likelihood approx-
imations associated with the EIS filter. (As noted, following Del Moral, 2004, and Chopin,
2004, we know that likelihood estimates associated with the BP filter are unbiased.) Setting
N = 1, 000, 000, we generated 100 log-likelihood approximations using 100 sets of CRNs gen-
erated under the BP filter. (With this very large specification of N, we hoped to capture as
accurately as possible ‘true’ likelihood values.) Then setting N = R = 100 for the RBC model
and N = R = 200 for the SOE model, we generated another 100 approximations using the
EIS filter. Finally, we calculated the difference in approximations for each of the 10,000 possi-
ble combinations of values, and searched for instances in which differences were significantly
different from zero. We did so on a date-by-date basis for all four data sets. Differences are
illustrated in Figure 1, in the form of boxplots.

The red lines in the boxplots depict the median of the distribution of differences we obtained;
the edges of the blue boxes depict the first (Q1) and third quartiles (Q3); and the black whiskers
extend to the 5th and 95th percentiles. In all time periods and data sets, zero is contained in
the interval of the empirical differences going from the 5th to the 95th percentiles, and in most
cases zero is also contained in the blue box defined by Q1 and Q3. Thus we conclude that the
EIS filter generates unbiased likelihood approximations in these applications. In the case of the
RBC model, actual data set, note the large spike in the width of the distribution of differences
associated with the second quarter of 1980, which coincides with the abrupt changes in output
and investment noted above. This time period carries further implications discussed below.

The second experiment we conducted is designed to assess the relative numerical efficiency
of the EIS and BP filters. Once again, we generated 100 approximations of the log-likelihood
function using 100 sets of CRNs for both filters. Following Fernandez-Villaverde and Rubio-
Ramirez (2005), the BP filter was implemented using N = 60, 000 for the RBC model, requir-
ing 17.28 seconds of CPU time per log-likelihood evaluation on a 2.9 GHz desktop computer
using MATLAB for the artificial data set, and 25.72 seconds for the real data set. Given the
relatively large dimensionality of st for the SOE model, we set N = 150, 000 in this case,
requiring 61.83 and 80.90 seconds per log-likelihood evaluation for the artificial and real data
sets, respectively. In turn, the EIS filter was implemented using N = R = 100 for the RBC
model, and 200 for the SOE model, with the convergence criterion given by (5.55), and the
maximum number of iterations set to 10. For the RBC model, this required 0.55 seconds per
log-likelihood evaluation for the artificial data set and 0.6477 for the real data set; for the SOE
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model, this required 1.34 and 2.18 seconds per evaluation.1 Results are presented in Table 2 and
Figure 2.

Table 5.2: Monte Carlo Means and Standard Deviations

RBC Model
BP Filter EIS Filter Initial Sampler

Mean NSE Mean NSE Mean NSE
Art. Data 1289.4520 19.0234 1300.0524 5.1e-04 1283.8614 0.3486
Act. Data 2305.2687 0.9139 2305.6589 0.0151 2305.2988 4.0279

SOE Model
BP Filter EIS Filter Initial Sampler

Mean NSE Mean NSE Mean NSE
Art. Data 1289.1690 5.1659 1294.0069 0.0232 1253.0159 4.6041
Act. Data 1717.9816 0.7607 1718.3298 0.0166 1696.6785 3.7189

Notes: Monte Carlo means and standard deviations are based on 100 different sets of CRNs. The EIS filter and
Initial Sampler are implemented using N=100 and N=200 for the RBC and SOE models respectively. The BP filter
is implemented using N=60,000 and N=150,000 for the RBC and SOE models. NSE denotes numerical standard
errors.

Table 2 presents means and standard deviations of log-likelihood approximations obtained
across the 100 sets of CRNs for each data set. The standard deviations indicate numerical
accuracy, and are often referenced as numerical standard errors, or NSEs. For the EIS filter, we
report results obtained using both initial and optimized samplers, where recall that initialized
samplers are constructed as local linear Gaussian approximations of targeted densities, similar
to the importance sampling procedure of Durbin and Koopman (1997), which is based on the
Kalman smoother. Note that NSEs associated with the BP filter exceed those associated with
the EIS filter by a factor ranging from 45.6 (SOE model, actual data) to 37,300 (RBC model,
artificial data). As NSEs decay at the square-root of the rate of increase in N, the comparison
associated with the SOE model, actual data set, implies a required value of N = 3.1e + 8
in order for the BP filter to match the accuracy of the EIS filter with N = R = 200, and
N = 8.4e+ 14 for the RBC model, artificial data set. NSEs associated with the initial samplers
are also inferior to those associated with the EIS filter. Specifically, for the RBC model the NSE
associated with the initial sampler is 0.3486 rather than 0.00051 for the artificial data set, and
4.02 rather than 0.0151 for the actual data set. For the SOE model, the comparisons are 4.60
versus 0.0232 for the artificial data set, and 3.719 versus 0.0166 for the actual data set. Thus we
observe substantial payoffs to the implementation of the optimization step of the EIS filtering
algorithm.

Continuing with Table 2, note that the mean log-likelihoods associated with both artificial data
sets differ relatively substantially across the BP and EIS filters. This discrepancy does not
reflect bias in either filter. Rather, it reflects a tendency of the BP filter to provide very low log-
likelihood estimates in certain cases, a problem that can be remedied by increasing N (as the

1 Although we avoided the use of loops in programming the BP filter, the relative differences in computational
times reported above are likely to be compressed using Fortran or C.



22 David N. DeJong et al.

Table 5.3: Repeated Samples

RBC Model
SSE NSE

Mean Std. Dev.
Artificial Data 19.8978 4.9e-4 1.2e-4
Actual Data 1.1483 0.0113 6.9e-4

SOE Model
SSE NSE

Mean Std. Dev.
Artificial Data 17.6041 0.0417 0.0365
Actual Data 15.6710 0.0134 0.0028

Notes: SSE stands for statistical standard errors, which were computed as standard deviations of log-likelihood
values across 100 alternative data sets. NSE denotes numerical standard errors.

boxplots in Figure 1 indicate). This tendency is illustrated in Figure 2, which plots each of the
100 log-likelihood approximations obtained for each filter and each data set. While the approx-
imations obtained using the BP filter often lie near those generated using the EIS filter, there
are many instances in which approximations fall far below. That is, the distribution of approxi-
mations obtained using the BP filter are skewed heavily leftward (though, as noted, unbiased).
Finally, mean log-likelihoods obtained using the initial samplers also differ substantially from
those obtained using the EIS filter, in part reflecting the caveats associated with the use of lin-
earized approximations of DSGE models noted by Fernandez-Villaverde and Rubio-Ramirez
(2005, 2009).

The third experiment is designed to assess whether the foregoing results are somehow particular
to the specific data sets upon which they are based, and to provide context for the NSEs reported
in Table 2. Here, we repeated each of the four experiments summarized in Table 2 100 times
using 100 artificial data sets generated from each model, parameterized as in Table 1. Hereafter
we refer to a specific parameterized model as a data generation process (DGP). So for each
DGP, we generated an artificial data set, and produced an NSE measure by obtaining 100 log-
likelihood approximations using 100 sets of CRNs, and repeating for a total of 100 artificial
data sets. We did this only for the EIS filter. Results are summarized in Table 3.

We report three sets of numbers for each DGP. The second and third columns of numbers are
the mean and statistical standard deviation of NSEs obtained across realizations of artificial data
sets. For three of the four DGPs, the NSEs reported in Table 2 lie within two standard deviations
of the mean NSEs reported in Table 3. The exception is the DGP associated with RBC model,
actual data set, for which the NSE reported in Table 2 is 5.5 standard deviations above the mean
reported in Table 3. This discrepancy appears to reflect the challenge to numerical accuracy
posed by the outlier associated with the second quarter of 1980. Despite this discrepancy, the
general message of Table 2 does not appear overly sensitive to specific features of the data sets
upon which they are based.
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The first column of numbers reported in Table 3 shows the standard deviations of log-likelihood
estimates obtained using a single set of CRNs applied to the 100 realizations of artificial data
generated using each DGP. These numbers are ‘statistical moments’ that indicate plausible
ranges of log-likelihood values one would expect to obtain when confronted with realizations
of alternative data sets generated from a given DGP: we refer to them as statistical standard
errors (SSEs). Note that SSEs exceed their numerical counterparts (the mean NSEs) by two to
five orders of magnitude. This helps provide additional context for the NSEs: it indicates that
statistical uncertainty swamps numerical inaccuracy. This is important, because among other
things it implies that numerical inaccuracy does not stand as a barrier in obtaining information
regarding statistical uncertainty, a result further underscored in the next experiment. In contrast,
note that SSEs are roughly on par with the NSEs associated with the BP filter (as reported in
Table 2) for three of the four DGPs we considered (the SOE model, actual data providing the
exception).

The fourth experiment illustrates the continuity (with respect to parameters) of log-likelihood
approximations generated by the EIS filter. Here we generated log-likelihood surfaces produced
by allowing each model parameter to vary individually above and below its actual value, hold-
ing all additional parameters fixed at their true values. This was done using both filters, each
implemented using CRNs. Figure 3 illustrates log-likelihood surfaces for the full set of parame-
ters associated with the SOE model, constructed using 500 grid points. Once again, the BP filter
was implemented using N = 150, 000, and the EIS filter using N = R = 200. Applications
to the additional models yield similar results. For both filters, surface heights are indicated by
dots. We do not connect the dots using line segments because doing so obfuscates surfaces
associated with the EIS filter. But clearly, connecting the dots with line segments yields highly
jagged surfaces for the BP filter.

The discontinuity of the surface approximations generated by the BP filter clearly poses chal-
lenges to the use of both classical and Bayesian techniques for obtaining parameter estimates.
In addition, this discontinuity renders as problematic the use of derivative-based methods for
computing covariance matrices associated with a given set of parameter estimates.

For example, letting µ denote the collection of parameters associated with a given model tar-
geted for estimation, and Σµ its associated posterior covariance matrix, one means of estimating
Σµ is via the Laplace approximation

Σ̂−1µ = Σ−1p −
∂2 lnL (µ̂)

∂µ∂µ′
, (5.71)

where Σp denotes the prior covariance matrix, L (µ̂) represents the associated likelihood func-
tion, and µ̂ denotes the posterior mode of µ. In the models considered here, approximations of
Σ̂µ fail to be positive-definite when constructed using the BP filter, but are produced with no
problems using the EIS filter: indeed, the posterior standard deviations reported in Table 1 were
obtained via the application of the EIS filter to (5.71).

The final experiment we conducted offers further insights into challenges posed by outliers, as
well as additional reassurance regarding potential bias associated with the EIS filter. Working
with the RBC model, artificial data set, we generated 12 variations of this data set by inserting
an outlier in the second observation of one of the observables, keeping the remaining variables
fixed at their original values. We considered four different values for this outlier for each vari-
able: two deviated by ±4 sample standard deviations from the sample mean, and two deviated
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Table 5.4: Outliers Experiment

BP Filter EIS Filter Quadrature
t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

Mean NSE Mean NSE Mean NSE Mean NSE
-8 10.7477 0.2922 13.1189 0.1550 10.8265 0.0007 13.1237 0.0477 10.8266 13.1208
-4 10.7477 0.2922 13.1777 0.1246 10.8265 0.0007 13.1981 0.0478 10.8266 13.1956

x 0 10.7477 0.2922 13.1166 0.1327 10.8265 0.0007 13.1153 0.0478 10.8266 13.1125
4 10.7477 0.2922 12.8416 0.1681 10.8265 0.0007 12.8753 0.0478 10.8266 12.8726
8 10.7477 0.2922 12.4285 0.2377 10.8265 0.0007 12.4782 0.0478 10.8266 12.4753

Mean NSE Mean NSE Mean NSE Mean NSE
-8 10.7477 0.2922 -7.2901 2.2706 10.8265 0.0007 -4.8069 0.0487 10.8266 -4.8434
-4 10.7477 0.2922 8.2613 0.6063 10.8265 0.0007 8.3088 0.0478 10.8266 8.3022

i 0 10.7477 0.2922 13.1166 0.1327 10.8265 0.0007 13.1153 0.0478 10.8266 13.1125
4 10.7477 0.2922 9.5606 0.4855 10.8265 0.0007 9.5875 0.0472 10.8266 9.5887
8 10.7477 0.2922 -4.1055 1.8742 10.8265 0.0007 -2.2999 0.0474 10.8266 -2.3127

Mean NSE Mean NSE Mean NSE Mean NSE
-8 10.7477 0.2922 -19.2097 0.2208 10.8265 0.0007 -19.1907 0.0478 10.8266 -19.1937
-4 10.7477 0.2922 4.8902 0.1706 10.8265 0.0007 4.8973 0.0478 10.8266 4.8944

n 0 10.7477 0.2922 13.1166 0.1327 10.8265 0.0007 13.1153 0.0478 10.8266 13.1125
4 10.7477 0.2922 5.4680 0.1261 10.8265 0.0007 5.4635 0.0478 10.8266 5.4608
8 10.7477 0.2922 -18.0546 0.1518 10.8265 0.0007 -18.0582 0.0477 10.8266 -18.0608

Notes: Monte Carlo means and NSEs are based on 100 different sets of CRNs. The EIS filter is implemented using
S=R=100 and the BP filer using N=60,000.

by ±8 sample standard deviations from the sample mean. For each of the 12 new data sets (as
well as for the original data set), we calculated log-likelihood values for periods 1 and 2 using
the BP filter implemented with N = 60, 000, the EIS filter implemented with N = R = 100,
and the Gauss-Chebyshev quadrature method implemented with 250 nodes along all three di-
mensions of integration, for a total of 2503 = 15, 625, 000 nodes. By evaluating the first two
periods only, implementation of the quadrature method is feasible (since the dimensionality of
the targeted integral is low), and provides a near-exact value of targeted log-likelihoods. Using
each filter, we once again obtain 100 likelihood evaluations using 100 sets of CRNs; means and
NSEs computed across sets of CRNs are reported in Table 4.

As Table 4 indicates, for the cases involving output and hours, both filters deal with outliers
reasonable well: both typically provide accurate approximations of the targeted log-likelihood,
and NSEs are fairly uniform across alternative data sets. This is not true for investment, which
recall has a relatively tightly distributed measurement equation. In this case, while the per-
formance of the EIS filter remains constant across data sets, that of the BP filter deteriorates
dramatically: mean approximations diverge from targeted values, and NSEs jump by factors in
the neighborhood of 4 and 15 for the ±4 and ±8 cases, respectively.

6. Conclusion

In conducting likelihood analyses of state-space representations, particle-based filters offer two
key advantages: they are easy to implement, and they produce unbiased likelihood estimates
(under fairly weak conditions). However, they can be prone to numerical inefficiency, par-
ticularly in applications involving narrowly distributed measurement equations, and given the
presence of outliers. Moreover, refinements designed to deliver improvements in numerical ef-
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ficiency are constrained at best to generate conditionally adapted importance samplers, where
conditionality in period t is with respect to the discrete density used to represent the period-
(t− 1) filtering density. In addition, refinements themselves can be prone to efficiency prob-
lems, as conditional adaptation in early periods can have a negative impact on numerical effi-
ciency in subsequent periods.

Here we have presented a filtering algorithm that targets unconditional optimality. The algo-
rithm features two critical elements. First, in generating period-t approximations, it implements
continuous rather than discrete approximations of filtering densities, thus enabling the pursuit
of unconditional adaption with respect to (st, st−1). Second, adaption is achieved via implemen-
tation of the EIS algorithm, which produces global rather than local approximations of targeted
integrands. As we have demonstrated, the efficiency of the resulting filter owes considerably to
this component of the algorithm.

Implementation of the EIS filter is relatively involved in comparison with particle-based filters.
However, EIS iterations can be programmed as a self-contained procedure, and through the
considerable details we have provided regarding implementation, including the annotated code
that accompanies this paper, we have sought to reduce barriers to entry regarding its implemen-
tation. Moreover, given the importance of the preservation of non-linearities in the context of
working with DSGE models, as Fernandez-Villaverde and Rubio-Ramirez (2005, 2009) have
demonstrated, coupled with the outstanding performance of the EIS filter we have documented,
the gains from its adaption are considerable.

The performance of the EIS filter in the applications we have presented motivates our current
research agenda, wherein we are seeking to develop operational EIS samplers that are more
flexible than those drawn from the exponential family of distributions. One such extension,
which we have implemented successfully in a companion paper dedicated explicitly to filter-
ing, entails the construction of highly flexible marginal densities specified along one or two
dimensions (DeJong et al., 2010). A more promising approach entails the development of an
EIS procedure to construct global mixtures of Gaussian samplers; under this approach, EIS op-
timization is pursued via non-linear least squares implemented using analytical derivatives. We
have already successfully tested an initial univariate mixture implementation; high-dimensional
extensions are under development. The goal is to facilitate EIS implementations using highly
flexible samplers that will prove efficient in applications involving even the most challenging of
targeted integrands.
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Appendix A

Here we describe the derivation of the initial sampler (5.52).

• Step 1: The product of the two Gaussian densities between brackets in (5.50) is given by

f ∗(pt, st−1) = f
d+dp
N

((
pt
st−1

)
| Cµt−1, V

)
(6.72)

with C =

(
R
Id

)
, V =

(
Σ +RΩt−1R

′ RΩt−1
Ωt−1R

′ Ωt−1

)
=

(
Σ 0
0 0

)
+ CΩt−1C

′.

• Step 2: The linear approximation of ψ in (5.48) implies the following linear transforma-
tion of (st, pt−1) into (pt, st−1):(

pt
st−1

)
= δt + ∆−1t

(
st
pt−1

)
(6.73)

with

δt =

 0
0
ct

 , ∆−1t =

 Idp 0 0
0 0 Idp
0 At Bt

 , (6.74)

||∆t|| = ||At||, ∆t =

 Idp 0 0
0 −A−1t Bt A−1t
0 Idp 0

 . (6.75)

The quadratic form in the density (6.72) is rewritten as[(
pt
st−1

)
− Cµt−1

]′
V −1

[(
pt
st

)
− Cµt−1

]
=

[(
st
pt−1

)
−∆t (Cµt−1 − δt)

]′
(6.76)

×(∆tV∆
′
t)
−1
[(

st
pt−1

)
−∆t (Cµt−1 − δt)

]
.

It follows that the initial kernel as defined in (5.50) is given by

k
(
st, pt−1; â

0
t

)
= ||At||−1 · fnN (yt|rt + Ptst, Vy) · fd+dpN

((
st
pt−1

)
| m̃t, Σ̃t

)
(6.77)

with

m̃t = ∆t (Cµt−1 − δt) , Σ̃t = ∆tV∆
′

t. (6.78)

• Step 3: m̃t and Σ̃t are partitioned conformably with (st, pt−1) into

m̃t =

(
m̃t

1

m̃t
2

)
, Σ̃t =

(
Σ̃t

11 Σ̃t
12

Σ̃t
21 Σ̃t

22

)
. (6.79)
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It immediately follows that

f ∗1 (st) = fdN

(
st|m̃t

1, Σ̃
t
11

)
(6.80)

f ∗2 (pt−1|st) = f
dp
N

(
pt−1|m̃t

2−1 + ∆̃t
21st, Σ̃

t
22−1

)
(6.81)

with

m̃t
2−1 = m̃t

2 − ∆̃t
21m̃

t
1, ∆̃t

21 = Σ̃t
21

(
Σ̃t

11

)−1
, Σ̃t

22−1 = Σ̃t
22 − ∆̃t

21Σ̃
t
12. (6.82)

• Step 4: The product of the measurement density by f ∗1 (st) produces the following joint
density for (yt, st) :

f(yt, st|Yt−1) = fn+dN

((
yt
st

)
|
(
rt + Ptm̃

t
1

m̃t
1

)
,

(
Vy + PtΣ̃

t
11P

′
t PtΣ̃

t
11

Σ̃t
11P

′
t Σ̃t

11

))
.

(6.83)
Note that (

Vy + PtΣ̃
t
11P

′
t PtΣ̃

t
11

Σ̃t
11P

′
t Σ̃t

11

)−1
=

(
Q −QPt
−P ′tQ Ht + P ′tQPt

)
(6.84)

with

Q = V −1y , Ht =
(

Σ̃t
11

)−1
. (6.85)

• Step 5: The joint density in (6.83) factorizes into

f ∗3 (yt) = fnN(yt|rt + Ptm̃
t
1, Vy + PtΣ̃

t
11P

′
t) (6.86)

f ∗4 (st|yt) = fdN(st|µ0
t ,Ω

0
t ) (6.87)

with

µ0
t = m̃t

1 + (Ht + P ′tQPt)
−1
P ′tQ

(
yt − rt − Ptm̃t

1

)
(6.88)

Ω0
t = (Ht + P ′tQPt)

−1 (6.89)

and the initial IS sampler is given by

g
(
st, pt−1|â0t

)
= f ∗2 (pt−1|st) · f ∗4 (st|yt) . (6.90)

Note that the integrating constant of the kernel k (st, pt−1; â
0
t ) is given by χ (â0t ) = ||At||.

All together the IS ratio associated with the initial sampler is given by

ω0
t

(
st, pt−1; â

0
t

)
=

ϕt (st, pt−1)

f ∗2 (pt−1|st) · f ∗4 (st)
= f ∗3 (yt) · ω̃0

t

(
st, pt−1; â

0
t

)
(6.91)
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with

ω̃0
t

(
st, pt−1; â

0
t

)
= R1 (qt, pt−1) ·R2 (qt, pt−1) ·R3 (st)

R1 (qt, pt−1) =
J (qt, pt−1)

||At||

R2 (qt, pt−1) =

f
d+dp
N

((
pt
st−1

)
| Cµt−1, V

)
|qt−1=ψ(qt,pt−1)

f
d+dp
N

((
pt
st−1

)
| Cµt−1, V

)
|qt−1=ψ̂(qt,pt−1)

R3 (st) =
fnN (yt|µ (st) , Vy)

fnN (yt|µ̂ (st) , Vy)
,

where µ̂ (st) and ψ̂ (qt, pt−1) denote the linear Taylor Series approximations defined in
(5.47) and (5.48), respectively. This factorization allows one to analyze which of the two
linear approximations is most critical.

Appendix B

Here we characterize the construction of EIS samplers belonging to the exponential family of
distributions, highlighting the Gaussian samplers used in the applications presented in Section
5.

The exponential family of distributions is defined as haven kernels of the form

ln k (λ; a) = b (λ) + a′T (λ) , (6.92)

where T (λ) denotes a fixed-dimensional vector of sufficient statistics and the correspond-
ing natural parameterizations (for details, see, e.g., Lehmann, 1986, Section 2.7). For λ ∼
Nk (m,H−1) , we have (up to an additive constant)

−2 ln k (λ; a) ∝ (λ−m)′H (λ−m) , (6.93)

where a denotes a one-to-one transformation of (m,H) characterized as follows.

Note that

λ′Hλ =
k∑
i=1

hiiλ
2
i +

k∑
i=2

i−1∑
j=1

(2hij)λjλi (6.94)

= a′2vech (λλ′) ,

where vech (λλ′) denotes the lower-triangular column expansion of λλ′, and a2 is the vector

a′2 = (h11; 2h21, h22; 2h31, 2h32, h33; ...) . (6.95)

Since we are working with kernels we can ignore the additive constant m′Hm in (6.93) (which
will be accounted for by the intercept of the EIS regression), and thus

−2 ln k (λ; a) ∝ a′T (λ), (6.96)
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with a′ = (a′1, a
′
2) , and

a1 = −2Hm, T ′(λ) = (λ, vech(λλ′)) . (6.97)

Under this parameterization, the EIS regression problem in (4.29) is linear in at :

(âl+1
t , ĉl+1

t ) = arg min
(at,ct)

R∑
i=1

[
yit,l − ct − a′tT

(
λit,l
)
)
]2
, (6.98)

with yit,l = −2 lnϕt
(
λit,l
)
. Given the fixed-point solution ât, the optimized information matrix

Ĥt is constructed as in (6.95), and the corresponding optimized mean vector is obtained using

m̂t = −1

2
Ĥ−1â1,t. (6.99)

We conclude by noting that for pathological problems, ât may not transform into positive-
definite Ĥt’s (although this never occurs in the example applications presented in Section 5).
In such cases, the construction of ât may be pursued via shrinkage estimation or constrained
optimization, rather than unconstrained OLS; see Richard and Zhang (2007) for an example.

Appendix C

Here we characterize the inversion of (5.43), repeated here for convenience:

qt = φ (pt−1, qt−1) .

Recall that the goal of inversion is to obtain

qt−1 = ψ (qt, pt−1) , J (qt, pt−1) = || ∂
∂qt

ψ (qt, pt−1) ||.

C.1 RBC Model

Under the RBC model, qt specializes to qt = ln kt/k∗, and in light of (5.60), the specific form
of (5.43) is

eln kt/k∗ = i (ln kt/k∗ ln zt/z∗) + (1− δ) eln kt−1/k∗ , (6.100)

where the policy function i (ln kt/k∗ ln zt/z∗) is a Chebyshev polynomial. We achieve inversion
in ln kt−1/k∗ via a projection method wherein we postulate a third-order polynomial of the form

ln kt−1/k∗ = ψ (ln kt/k∗, ln zt−1/z∗) , (6.101)

and specify the parameters of this polynomial such that

eln kt/k∗ − i (ln kt/k∗ ln zt/z∗) + (1− δ) eψ(ln kt/k∗,ln zt−1/z∗) = 0
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holds. Given the optimized specification

ln kt−1/k∗ = ψ∗ (ln kt/k∗, ln zt−1/z∗) ,

the Jacobian

J (kt, zt−1) = || ∂
∂kt

ψ (kt, zt−1) ||

obtains analytically.

C.2 SOE Model

Under the SOE model, qt specializes to q′t = (dt, kt) , where here for ease of notation dt and
kt are represented as logged deviations from steady state values. Since the model is solved
using the second-order approximation technique of Schmitt-Grohe and Uribe (2004), (5.43) is
quadratic in its arguments. Moreover, it turns out that for all parameterizations of the model we
considered, the coefficient associated with dt−1 that appears in the identity for kt is of the order
10−8, and thus is safely set to zero. The upshot is that the quadratic system to be inverted in this
case is triangular in qt−1.

Let
(
s1t−1

)′
=
(
kt−1, p

′
t−1
)

; then the identity for kt is given by

kt = Ck + Lks
1
t−1 +

1

2
s1′t−1Qks

1
t−1. (6.102)

Partitioning Lk and Qk conformably with
(
kt−1, p

′
t−1
)

as

Qk =

[
Q11
k Q12

k

Q21
k Q22

k

]
, Lk =

[
L1
k

L2
k

]
, (6.103)

we note that Q11
k > 0 for all parameterizations under consideration. Thus the inversion of

(6.102) is given by the solution

k∗t−1 =
−bk +

√
b2k − 4akck

2ak
, (6.104)

with

ak =
1

2
Q11
k , (6.105)

bk = L1
k +Q12

k pt−1, (6.106)

ck = Ck + L2
kpt−1 +

1

2
p′t−1Q

22
k pt−1 − kt. (6.107)

Next, replacing kt−1 by k∗t−1 in the identity for dt, we obtain

dt = Cd + Ldst−1 +
1

2
st−1′Qdst−1. (6.108)
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Inversion in dt−1 yields the solution

d∗t−1 =
−bd +

√
b2d − 4adcd

2ad
, (6.109)

with

Qd =

[
Q11
d Q12

d

Q21
d Q22

d

]
, Ld =

[
L1
d

L2
d

]
, (6.110)

and

ad =
1

2
Q11
d , (> 0) , (6.111)

bd = L2
d +Q12

d s
1
t−1, (6.112)

cd = Cd + L2
ds

1
t−1 +

1

2
s1′t−1Q

22
k s

1
t−1 − dt. (6.113)

Note that the solutions
(
k∗t−1, d

∗
t−1
)

in (6.104) and (6.109) are in terms of the largest roots of
their corresponding quadratic forms, since kt is monotone and increasing in kt−1, and dt is
monotone and increasing in dt−1.

Finally, the Jacobian of this triangular inversion is given by

J (qt, pt−1) =
(
b2k − 4akck

)− 1
2 ·
(
b2d − 4adcd

)− 1
2 . (6.114)
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Appendix D

Figure 1: Box Plots

Figure 1. Box Plots
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Figure 2: Log-Likelihood Approximations

Figure 2. Log-Likelihood Approximations
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Figure 3: Log-Likelihood Surface Plots, SOE Model, Actual Data Set

Figure 3. Log-likelihood Surface Plots, SOE Model, Actual Data Set
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