
NBER WORKING PAPER SERIES

COMPUTING DSGE MODELS WITH RECURSIVE PREFERENCES

Dario Caldara
Jesús Fernández-Villaverde

Juan F. Rubio-Ramírez
Wen Yao

Working Paper 15026
http://www.nber.org/papers/w15026

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2009

We thank Michel Juillard for his help with computational issues and Larry Christiano, Dirk Krueger,
and participants at the Penn Macro lunch for comments. Beyond the usual disclaimer, we must note
that any views expressed herein are those of the authors and not necessarily those of the Federal Reserve
Bank of Atlanta or the Federal Reserve System. Finally, we also thank the NSF for financial support.
The views expressed herein are those of the author(s) and do not necessarily reflect the views of the
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2009 by Dario Caldara, Jesús Fernández-Villaverde, Juan F. Rubio-Ramírez, and Wen Yao. All
rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit
permission provided that full credit, including © notice, is given to the source.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6403388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Computing DSGE Models with Recursive Preferences
Dario Caldara, Jesús Fernández-Villaverde, Juan F. Rubio-Ramírez, and Wen Yao
NBER Working Paper No. 15026
June 2009
JEL No. C63,C68,E37

ABSTRACT

This paper compares different solution methods for computing the equilibrium of dynamic stochastic
general equilibrium (DSGE) models with recursive preferences such as those in Epstein and Zin (1989
and 1991). Models with these preferences have recently become popular, but we know little about
the best ways to implement them numerically. To fill this gap, we solve the stochastic neoclassical
growth model with recursive preferences using four different approaches: second- and third-order
perturbation, Chebyshev polynomials, and value function iteration. We document the performance
of the methods in terms of computing time, implementation complexity, and accuracy. Our main finding
is that a third-order perturbation is competitive in terms of accuracy with Chebyshev polynomials
and value function iteration, while being an order of magnitude faster to run. Therefore, we conclude
that perturbation methods are an attractive approach for computing this class of problems.
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1. Introduction

This paper compares di¤erent solution methods for computing the equilibrium of dynamic

stochastic general equilibrium (DSGE) models with recursive preferences such as those �rst

proposed by Kreps and Porteus (1978) and later generalized by Epstein and Zin (1989 and

1991) and Weil (1990). This exercise is interesting because recursive preferences have recently

become very popular in �nance and in macroeconomics. Without any attempt at being

exhaustive, and just to show the extent of the literature, a few of those papers include Backus,

Routledge, and Zin (2007), Bansal, Dittman, and Kiku (2009), Bansal, Gallant, and Tauchen

(2008), Bansal and Shaliastovich (2007), Bansal and Yaron (2004), Campanale, Castro, and

Clementi (2007), Campbell (1993 and 1996), Campbell and Viceira (2001), Chen, Favilukis

and Ludvigson (2007), Croce (2006), Dolmas (1998 and 2007), Gomes and Michealides (2005),

Hansen, Heaton, and Li (2008), Kaltenbrunner and Lochstoer (2007), Kruger and Kubler

(2005), Lettau and Uhlig (2002), Piazzesi and Schneider (2006), Restoy and Weil (1998),

Rudebusch and Swamson (2008), Tallarini (2000), and Uhlig (2007). All of these economists

have been attracted by the extra �exibility of separating risk aversion and intertemporal

elasticity of substitution (EIS) and by the intuitive appeal of having preferences for early or

later resolution of uncertainty.

Despite this variety of papers, little is known about the numerical properties of the di¤er-

ent solution methods that solve equilibrium models with recursive preferences. For example,

we do not know how well value function iteration (VFI) performs or how good local approxi-

mations are compared with global ones. Similarly, if we want to estimate the model, we need

to assess what solution method is su¢ ciently reliable yet quick enough to make the exer-

cise feasible. More important, the most common solution algorithm in the DSGE literature,

(log-) linearization, cannot be applied, since it makes us miss the whole point of recursive

preferences: the resulting (log-) linear decision rules are certainty equivalent and do not de-

pend on risk aversion. This paper attempts to �ll this gap in the literature, and therefore, it

complements previous work by Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006), in

which a similar exercise is performed with the neoclassical growth model with CRRA utility

function.

We solve and simulate the model using four main approaches: perturbation (of second-

and third-order), Chebyshev polynomials, and VFI. By doing so, we span most of the relevant

methods in the literature. Our results provide a strong guess of how some other methods not

covered here, such as �nite elements, would work (rather similar to Chebyshev polynomials

but more computationally intensive). We report results for a benchmark calibration of the

model and for alternative calibrations that change the variance of the productivity shock,
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the risk aversion, and the intertemporal elasticity of substitution. In that way, we study

the performance of the methods both for cases close to the CRRA utility function and for

highly non-linear cases far away from the CRRA benchmark. For each method, we compute

decision rules and the value function, the ergodic distribution of the economy, business cycle

statistics, the welfare costs of aggregate �uctuations, and asset prices. Also, we evaluate the

accuracy of the solution by reporting Euler equation errors.

We highlight four main results from our exercise. First, all methods provide a high degree

of accuracy. Thus, researchers who stay within our set of solution algorithms can be con�dent

that their quantitative answers are sound.

Second, perturbation methods deliver a surprisingly high level of accuracy with consid-

erable speed. We show how second- and third-order perturbation performs remarkably well

in terms of accuracy for the benchmark calibration, being fully competitive with VFI or

Chebyshev polynomials. For this calibration, a second-order perturbation that runs in one

second does as well in terms of the average Euler equation error as a VFI that takes two hours

to run. Even in the extreme calibration with high risk aversion and high volatility of pro-

ductivity shocks, a second-order perturbation works at an acceptable level and a third-order

approximation performs nearly as well as VFI. Since, in practice, perturbation methods are

the only computationally feasible method to solve the medium-scale DSGE models used for

policy analysis that have dozens of state variables (Christiano, Eichenbaum, and Evans, 2005,

and Smets and Wouters, 2007), this �nding has an outmost applicability. Moreover, since

implementing a second-order perturbation is feasible with o¤-the-shelf software like Dynare,

which requires minimum programming knowledge by the user, our �ndings may induce many

researchers to explore recursive preferences in further detail. Two �nal advantages of per-

turbation is that, often, the perturbed solution provides insights about the economics of the

problem and that it might be an excellent initial guess for VFI or for Chebyshev polynomials.

Third, Chebyshev polynomials provide a terri�c level of accuracy with reasonable compu-

tational burden. When accuracy is most required and the dimensionality of the state space

is not too high, they are the obvious choice. Unfortunately, Chebyshev polynomials su¤er

from the curse of dimensionality, and for more involved models, we would need to apply some

aggressive interpolation scheme as in Kruger and Kubler (2005).

Fourth, we were disappointed by the poor performance of VFI, which could not achieve

a high accuracy even with a large grid. This suggests that we should relegate VFI to solv-

ing those problems where non-di¤erentiabilities complicate the application of the previous

methods.

The rest of the paper is organized as follows. In section 2, we present the stochastic

neoclassical growth model with recursive preferences. Section 3 describes the di¤erent solu-
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tion methods used to approximate the decision rules of the model. Section 4 discusses the

calibration of the model. Section 5 reports numerical results and section 6 concludes. An

appendix provides some additional details.

2. The Stochastic Neoclassical Growth Model with Recursive Pref-

erences

We use the stochastic neoclassical growth model with recursive preferences as our test case.

We select this model for two reasons. First, it is the workhorse of modern macroeconomics.

Even more complicated New Keynesian models with real and nominal rigidities, such as those

in Woodford (2003) or Christiano, Eichenbaum, and Evans (2005), are built around the core

of the neoclassical growth model. Therefore, any lesson learned in this model is likely to have

a wide applicability in a large class of interesting economies. Second, the model is, except for

the form of the utility function, the same test case as in Aruoba, Fernández-Villaverde, and

Rubio-Ramírez (2006). This provides us with a large set of results to compare to our new

�ndings.

The description of the model is rather straightforward, and we just go through the minimal

details required to �x notation. There is a representative household that has preferences over

streams of consumption, ct, and leisure, 1� lt, that are representable by a recursive function
of the form:

Ut = max
ct;lt

�
(1� �)

�
c�t (1� lt)

1��� 1�
� + �
�
EtU1�
t+1

� 1
�

� �
1�


(1)

The parameters in these preferences include �; the discount factor, �, which controls labor

supply, 
, which controls risk aversion, and:

� =
1� 


1� 1
 

where  is the EIS. The parameter � is an index of the deviation with respect to the benchmark

CRRA utility function (when � = 1, we are back in that CRRA case where the inverse of the

EIS and risk aversion coincide).

The household�s budget constraint of the household is given by:

ct + it +
bt+1

Rf
t

= wtlt + rtkt + bt

where it is investment, R
f
t is the risk-free gross interest rate, bt is the holding of an uncon-

tingent bond that pays 1 unit of consumption good at time t+ 1, wt is the wage, lt is labor,
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rt is the rental rate of capital, and kt is capital. Asset markets are complete and we could

have also included in the budget constraint the whole set of Arrow securities. Since we have a

representative household, this is not necessary because the net supply of any security must be

equal to zero. The uncontingent bond is su¢ cient to derive the pricing kernel of the economy

mt since, in equilibrium, Etmt+1R
f
t = 1. Households accumulate capital according to the law

of motion kt+1 = (1� �)kt + it where � is the depreciation rate.

The �nal good in the economy is produced by a competitive �rm with a Cobb-Douglas

production function yt = eztk�t l
1��
t where zt is the productivity level that follows an autore-

gressive process

zt+1 = �zt + �"t+1

with � < 1 and "t+1 � N (0; 1) : The parameter � scales the size of the productivity shocks.1

Finally, the economy must satisfy the aggregate resource constraint yt = ct + it.

The de�nition of equilibrium is absolutely standard and we skip it in the interest of space.

Also, both welfare theorems hold, a fact that we will exploit by jumping back and forth

between the solution of the social planner�s problem and the competitive equilibrium. There-

fore, an alternative way to write this economy is to look at the value function representation

of the social planner�s problem:

V (kt; zt) = max
ct;lt

�
(1� �)

�
c�t (1� lt)

1��� 1�
� + �
�
EtV 1�
 (kt+1; zt+1)

� 1
�

� �
1�


s.t. ct + kt+1 = eztk�t l
1��
t + (1� �) kt

zt+1 = �zt + �"t+1, "t+1 � N (0; 1)

This formulation emphasizes that we have two state variables for the economy, capital kt and

productivity zt.

The social planner�s problem formulation allows us to �nd the pricing kernel of the econ-

omy:

mt+1 =
@Vt=@ct+1
@Vt=@ct

Now, note:
@Vt
@ct

= (1� �)V
1� 1�


�
t �

(c�t (1� lt)
1��)

1�

�

ct

1We use a stationary model to enhance the usefulness of our results. If we had a deterministic trend, we
would only need to adjust � in our calibration below (and the results would be nearly identical). If we had a
stochastic trend, we would need to rescale the variables by the productivity level and solve the transformed
problem. However, in this case, it is well known that the economy �uctuates less than when � < 1 , and
therefore, all solution methods would be closer, limiting our ability to appreciate di¤erences in performance.
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and:

@Vt
@ct+1

= �V
1� 1�


�
t (EtV 1�


t+1 )
1
�
�1Et

 
V �

t+1 (1� �)V

1� 1�

�

t+1 �
(1� �) (c�t+1(1� lt+1)

1��)
1�

�

ct+1

!

where in the last step we have used the result regarding @Vt=@ct forwarded by one period.

Then, cancelling redundant terms, we get:

mt+1 =
@Vt=@ct+1
@Vt=@ct

= �

�
c�t+1(1� lt+1)

1��

c�t (1� lt)1��

� 1�

� ct
ct+1

 
V 1�

t+1

EtV 1�

t+1

!1� 1
�

(2)

This equation shows how the pricing kernel is a¤ected by the presence of recursive preferences.

If � = 1, the last term,  
V 1�

t+1

EtV 1�

t+1

!1� 1
�

(3)

is equal to 1 and we get back the pricing kernel of the standard stochastic neoclassical growth

model. If � 6= 1, the pricing kernel is twisted by (3).
We identify the net return on equity (conditional on realization of the productivity shock

zt+1) with the marginal net return on investment. That is, we posit that:

Rk
t+1 = �ezt+1k��1t+1 l

1��
t+1 � �

with expected return Et
�
Rk
t+1

�
:

3. Solution Methods

We are interested in comparing di¤erent solution methods to approximate the dynamics of

the previous model. Since the literature on computational methods is large, it would be

cumbersome to review every proposed method. Instead, we select the solution methods that

we �nd most promising.

The �rst method we pick is perturbation (introduced by Judd and Guu, 1992 and 1997,

and particularly well explained in Schmitt-Grohé and Uribe, 2004). Perturbation algorithms

build a Taylor series expansion of the agents� decision rules around an appropriate point

(usually the steady state of the economy) and a perturbation parameter (in our case, the

volatility of the productivity shocks). In many situations, perturbation methods have proven

to be very fast and, despite their local nature, to be highly accurate in a large range of

values of the state variables (see, for instance, Aruoba, Fernández-Villaverde, and Rubio-
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Ramírez, 2006). This means that, in practice, perturbations are the only method that can

handle models with dozens of state variables in any reasonable amount of time. Moreover,

perturbation often provides insights into the structure of the solution and on the economics

of the model. Finally, linearization and log-linearization, the most common solution methods

for DSGE models, are a particular case of a perturbation of �rst order.

We implement a second- and a third-order perturbation of our model. A �rst-order per-

turbation is useless for our investigation: the resulting decision rules are certainty equivalent

and, therefore, they depend only on the EIS and not at all on risk aversion (that is, the �rst-

order decision rules of the model with recursive preferences coincide with the decision rules

of the model with CRRA preferences with the same EIS for any value of the risk aversion).

In comparison, the second-order decision rules incorporate a constant term that depends on

risk aversion (Binsbergen et al., 2009) and, hence, allows recursive preferences to play a role.

Also, a second-order perturbation can be run with standard software, such as Dynare, which

opens the door for performing perturbations to many applied researchers who fear to tread

through the sandbars of coding analytic derivatives. The third-order approximation provides

additional terms to increase accuracy and, in the case of those functions pricing assets, a

time-varying risk-premium. For our purposes, a third-order will provide enough accuracy

without unnecessary complications.

The second method is a projection algorithm with Chebyshev polynomials (Judd, 1992).

Projection algorithms build approximated decision rules that minimize a residual function

that measures the distance between the left- and right-hand side of the equilibrium conditions

of the model. Projection methods are attractive because they o¤er a global solution over the

whole range of the state space. Their main drawback is that they su¤er from an acute

curse of dimensionality that makes it quite challenging to extend then to models with many

state variables. Among the many di¤erent types of projection methods, Aruoba, Fernández-

Villaverde, and Rubio-Ramírez (2006) show that Chebyshev polynomials are particularly

e¢ cient. Other projection methods, such as �nite elements or parameterized expectations,

tend to perform somewhat worse than Chebyshev polynomials, and therefore, in the interest

of space, we do not consider them.

Finally, we compute the model using VFI. VFI is slow and it su¤ers as well from the curse

of dimensionality, but it is safe, reliable, and we know its convergence properties. Thus, it is

a natural default algorithm for the solution of DSGE models.2

We describe now each of the di¤erent methods in more detail. Then, we calibrate the

model and present numerical results.

2Epstein and Zin (1989) show that a version of the contraction mapping theorem holds in the value function
of the problem with recursive preferences.
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3.1. Perturbation

We start by explaining how to use a perturbation approach to solve DSGE models using the

value function of the household. We are not the �rst, of course, to explore the perturbation

of value function problems. Judd (1998) already presents the idea of perturbing the value

function instead of the equilibrium conditions of a model. Unfortunately, he does not elabo-

rate much on the topic. Schmitt-Grohé and Uribe (2005) employ a perturbation approach to

�nd a second-order approximation to the value function that allows them to rank di¤erent

�scal and monetary policies in terms of welfare. However, we follow Binsbergen et al. (2009)

in their emphasis on the generality of the approach, and we discuss some of its theoretical

and numerical advantages.

The perturbation method is linked with Benigno and Woodford (2006) and Hansen and

Sargent (1995). Benigno and Woodford present a new linear-quadratic approximation to

solve optimal policy problems that avoids some problems of the traditional linear-quadratic

approximation when the constraints of the problem are non-linear.3 In particular, Benigno

and Woodford �nd the correct local welfare ranking of di¤erent policies. The method in this

paper, as in theirs, can deal with non-linear constraints and obtains the correct local approxi-

mation to welfare and policies. One advantage of the method presented here is that it is easily

generalizable to higher-order approximations without adding further complications. Hansen

and Sargent (1995) modify the linear-quadratic regulator problem to include an adjustment

for risk. In that way, they can handle some versions of recursive utilities, such as the ones

that motivate our investigation. Hansen and Sargent�s method, however, requires imposing

a tight functional form for future utility and to surrender the assumption that risk-adjusted

utility is separable across states of the world. The perturbation we have presented does not

su¤er from those limitations.

To illustrate the procedure, we limit our exposition to deriving the second-order approx-

imation to the value function and the decision rules of the agents. Higher-order terms are

derived in similar ways, but the algebra becomes too cumbersome to be developed explicitly

in this paper (in our application, the symbolic algebra is undertaken by a computer em-

ploying Mathematica, which automatically generates Fortran 95 code that we can evaluate

numerically). Hopefully, our steps will be enough to allow the reader to understand the main

thrust of the procedure and to let the reader obtain higher-order approximations by herself.

The �rst step is to rewrite the productivity process in terms of a perturbation parameter

�,

zt+1 = �zt + ��"t+1:

3See also Levine, Pearlman, and Pierse (2007) for a similar treatment of the problem.
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When � = 1, which is just a normalization of the perturbation parameter implied by the

standard deviation of the shock �, we are dealing with the stochastic version of the model.

When � = 0, we are dealing with the deterministic case with steady state kss and zss = 0.

Then, we can write the social planner�s value function, V (kt; zt;�), and the decision rules for

consumption, c (kt; zt;�), investment, i (kt; zt;�), capital, k (kt; zt;�), and labor, l (kt; zt;�),

as a function of the two states, kt and zt, and the perturbation parameter �.

The second step is to note that, under di¤erentiability conditions, the second-order Taylor

approximation of the value function around the deterministic steady state (kss; 0; 0) is:

V (kt; zt;�) ' Vss + V1;ss (kt � kss) + V2;sszt + V3;ss�

+
1

2
V11;ss (kt � kss)

2 +
1

2
V12;ss (kt � kss) zt +

1

2
V13;ss (kt � kss)�

+
1

2
V21;sszt (kt � kss) +

1

2
V22;ssz

2
t +

1

2
V23;sszt�

+
1

2
V31;ss� (kt � kss) +

1

2
V32;ss�zt +

1

2
V33;ss�

2

where Vss = V (kss; 0; 0), Vi;ss = Vi (kss; 0; 0) for i = f1; 2; 3g, and Vij;ss = Vij (kss; 0; 0) for

i; j = f1; 2; 3g. We can extend this notation to higher-order derivatives of the value function.
This expansion could also be performed around a di¤erent point of the state space, such as

the mode of the ergodic distribution of the state variables. In section 5, we discuss this point

further.

By certainty equivalence, we will have that V3;ss = V13;ss = V23;ss = 0. Below, we will

argue that this is indeed the case (in fact, all the terms in odd powers of � have coe¢ cient

values equal to zero). Moreover, taking advantage of the equality of cross-derivatives, and

setting � = 1; the approximation we look for has the simpler form:

V (kt; zt; 1) ' Vss + V1;ss (kt � kss) + V2;sszt

+
1

2
V11;ss (kt � kss)

2 +
1

2
V22;ssz

2
t + V12;ss (kt � kss) zt +

1

2
V33;ss

Binsbergen et al. (2009) demonstrate that 
 does not a¤ect the values of any of the coef-

�cients except V33;ss and also that V33;ss 6= 0. Hence, we have a di¤erent approximation from
the one resulting from the standard linear-quadratic approximation to the utility functions,

where all the constants disappear. However, this result is intuitive, since the value function

of a risk-adverse agent is in general a¤ected by uncertainty and we want to have an approx-

imation with terms that capture this e¤ect and allow for the appropriate welfare ranking of

decision rules.
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Indeed, V33;ss has a straightforward interpretation. At the deterministic steady state, we

have:

V (kss; 0; 1) ' Vss +
1

2
V33;ss

Hence
1

2
V33;ss

is a measure of the welfare cost of the business cycle, that is, of how much utility changes

when the variance of the productivity shocks is �2 instead of zero.4 This term is an accurate

evaluation of the third-order of the welfare cost of business cycle �uctuations because all of

the third-order terms in the approximation of the value function either have zero coe¢ cient

values (for example, V333;ss = 0) or drop when evaluated at the deterministic steady state.

This cost of the business cycle can easily be transformed into consumption equivalent

units. We can compute the decrease in consumption � that will make the household indi¤erent

between consuming (1� �) css units per period with certainty or ct units with uncertainty.

To do so, note that the steady-state value function is just Vss = c�ss (1� lss)
1�� ; which implies

that:

c�ss (1� lss)
1�� +

1

2
V33;ss = ((1� �) css)

� (1� lss)
1��

or:

Vss +
1

2
V33;ss = (1� �)� Vss

Then:

� = 1�
�
1 +

1

2

V33;ss
Vss

� 1
�

Also, notice that we are perturbing the value function in levels of the variables. However,

there is nothing special about levels and we could have done the same in logs (a common

practice when linearizing DSGE models) or in any other function of the states. These changes

of variables may improve the performance of perturbation (Fernández-Villaverde and Rubio-

Ramírez, 2006). By doing the perturbation in levels, we are picking the most conservative

case for perturbation. Since one of the conclusions that we will reach from our numerical

results is that perturbation works surprisingly well in terms of accuracy, that conclusion will

only be reinforced by an appropriate change of variables.5

4This quantity is not necessarily negative. In fact, in some of our computations below, it will be positive.
5This comment begets the question, nevertheless, of why we did not perform a perturbation in logs,

since many economists will �nd it more natural than in levels. Our experience with the CRRA utility case
(Aruoba, Fernández-Villaverde, and Rubio-Ramírez, 2006) and some computations with recursive preferences
not included in the paper suggest that a perturbation in logs does worse than a perturbation in levels. Thus,
we continue in the paper with a perturbation in levels.
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The decision rules can be expanded in exactly the same way. For example, the second-

order approximation of the decision rule for consumption is:

c (kt; zt;�) ' css + c1;ss (kt � kss) + c2;sszt + c3;ss�

+
1

2
c11;ss (kt � kss)

2 +
1

2
c12;ss (kt � kss) zt +

1

2
c13;ss (kt � kss)�

+
1

2
c21;sszt (kt � kss) +

1

2
c22;ssz

2
t +

1

2
c23;sszt�

+
1

2
c31;ss� (kt � kss) +

1

2
c32;ss�zt +

1

2
c33;ss�

2

where css = c (kss; 0; 0), ci;ss = ci (kss; 0; 0) for i = f1; 2; 3g, cij;ss = cij (kss; 0; 0) for i; j =

f1; 2; 3g. In a similar way to the approximation of the value function, Binsbergen et al.
(2009) show that 
 does not a¤ect the values of any of the coe¢ cients except c33;ss. This

term is a constant that captures precautionary behavior caused by the presence of uncertainty.

This observation tells us two important facts. First, a linear approximation to the decision

rule does not depend on 
 (it is certainty equivalent), and therefore, if we are interested

in recursive preferences, we need to go at least to a second-order approximation. Second,

the di¤erence between the second-order approximation to the decision rules of a model with

CRRA preferences and a model with recursive preferences is a constant.6 This constant

generates a second, indirect e¤ect, because it changes the ergodic distribution of the state

variables and, hence, the points where we evaluate the decision rules along the equilibrium

path. These arguments demonstrate how perturbation methods can provide analytic insights

beyond computational advantages and help in understanding the numerical results in Tallarini

(2000). In the third-order approximation, all of the terms that depend on functions of �2

depend on 
.

Similarly, we can derive the decision rules for labor, investment, and capital. In addition

we have functions that give us the evolution of other variables of interest, such as the pricing

kernel or the risk-free gross interest rate Rf
t . All of these functions have the same structure

and properties regarding 
 as the decision rule for consumption. In the case of functions

pricing assets, the second-order approximation generates a constant risk premium, while the

third-order approximation creates a time-varying risk premium.

Once we have reached this point, there are two paths we can follow to solve for the coef-

�cients of the perturbation. The �rst procedure is to write down the equilibrium conditions

of the model plus the de�nition of the value function. Then, we take successive derivatives

6When all of the parameters of the two versions of the model are the same, except risk aversion, which in
the CRRA case is restricted to be equal to the inverse of the EIS while in the recursive preference case it is
not.
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in this augmented set of equilibrium conditions and solve for the unknown coe¢ cients. This

approach, which we call equilibrium conditions perturbation (ECP), allows us to get, after n

iterations, the n-th-order approximation to the value function and to the decision rules.

A second procedure is to take derivatives of the value function with respect to states and

controls and use those derivatives to �nd the unknown coe¢ cient. This approach, which

we call value function perturbation (VFP), delivers after (n+ 1) steps, the (n+ 1)-th order

approximation to the value function and the n�th order approximation to the decision rules.7

Loosely speaking, ECP undertakes the �rst step of VFP by hand by forcing the researcher

to derive the equilibrium conditions.

The ECP approach is simpler but it relies on our ability to �nd equilibrium conditions

that do not depend on derivatives of the value function. Otherwise, we need to modify the

equilibrium conditions to include the de�nitions of the derivatives of the value function. Even

if this is possible to do (and not particularly di¢ cult), it amounts to solving a problem that

is equivalent to VFP. This observation is important because it is easy to postulate models

that have equilibrium conditions where we cannot get rid of all the derivatives of the value

function (for example, in problems of optimal policy design). ECP is also faster from a

computational perspective. However, VFP is only trivially more involved because �nding the

(n+ 1)-th-order approximation to the value function on top of the n-th order approximation

requires nearly no additional e¤ort.

The algorithm presented here is based on the system of equilibrium equations derived

using the ECP. In the appendix, we show how to derive a system of equations using the VFP.

We take the �rst-order conditions of the social planner. First, with respect to consumption

today:
@Vt
@ct

� �t = 0

where �t is the Lagrangian multiplier associated with the resource constraint. Second, with

respect to capital:

��t + Et�t+1
�
�ezt+1k��1t+1 l

1��
t+1 + 1� �

�
= 0

Third, with respect to labor:

1� �

�

ct
(1� lt)

= (1� �)eztk�t l
��
t

7The classical strategy of �nding a quadratic approximation of the utility function to derive a linear
decision rule is a second-order example of VFP (Anderson et al., 1996). A standard linearization of the
equilibrium conditions of a DSGE model when we add the value function to those equilibrium conditions is
a simple case of ECP. This is, for instance, the route followed by Schmitt-Grohé and Uribe (2005).
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Then, we can write the Euler equation:

Etmt+1

�
�eztk��1t+1 l

1��
t+1 + 1� �

�
= 1

where mt+1 was derived above in equation (2). Note that, as we explained above, the deriv-

atives of the value function in (2) are eliminated.

Once we substitute for the pricing kernel, the augmented equilibrium conditions are:

Vt �
�
(1� �)

�
c�t (1� lt)

1��� 1�
� + �
�
EtV 1�
 (kt+1; zt+1)

� 1
�

� �
1�


= 0

Et

24� �ct+1
ct

� 1�

�
�1
 

V 1�

t+1

EtV 1�

t+1

!1� 1
� �
�ezt+1k��1t+1 l

1��
t+1 + 1� �

�35� 1 = 0
1� �

�

ct
(1� lt)

= (1� �)eztk�t l
��
t = 0

Et�
�
ct+1
ct

� 1�

�
�1
 

V 1�

t+1

EtV 1�

t+1

!1� 1
�

Rf
t � 1 = 0

ct + it � eztk�t l
1��
t = 0

kt+1 � it � (1� �) kt

plus the law of motion for productivity zt+1 = �zt + ��"t+1 and where we have dropped

the max operator in front of the value function because we are already evaluating it at the

optimum. In more compact notation,

F (kt; zt; �) = 0

where F is a 6-dimensional function (and where all the endogenous variables in the previous

equation are not represented explicitly because they are functions themselves of kt, zt, and

�) and 0 is the vectorial zero.

In steady state, mss = � and the set of equilibrium conditions simpli�es to:

Vss = c�ss (1� lss)
1���

�k��1ss l1��ss + 1� �
�
= 1=�

1� �

�

css
(1� lss)

= (1� �)k�ssl
��
ss
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Rf
ss = 1=�

css + iss = k�ssl
1��
ss

iss = �kss

a system of 6 equations on 6 unknowns, Vss, css, kss, iss, lss, and Rf
ss that can be easily solved

(see the appendix for the derivations). This steady state is identical to the steady state of

the real business cycle model with a standard CRRA utility function.

To �nd the �rst-order approximation to the value function and the decision rules, we take

�rst derivatives of the function F with respect to the states (kt; zt) and to the perturbation

parameter � and evaluate them at the deterministic steady state (kss; 0; 0) that we just found:

Fi (kss; 0; 0) = 0 for i = f1; 2; 3g

This step gives us 18 di¤erent �rst derivatives (6 equilibrium conditions times the 3 variables

of F ). Since each dimension of F is equal to zero for all possible values of kt, zt, and �, their

derivatives must also be equal to zero. Therefore, once we substitute in the values of the

steady state, we have a quadratic system of 18 equations on 18 unknowns: V1;ss, V2;ss, V3;ss,

c1;ss, c2;ss, c3;ss, i1;ss, i2;ss, i3;ss, k1;ss, k2;ss, k3;ss, l1;ss, l2;ss, l3;ss, R
f
1;ss, R

f
2;ss, and R

f
3;ss: One of

the solutions is an unstable root of the system that violates the transversality condition of

the problem and we eliminate it. Thus, we keep the solution that implies stability. In the

solution, it is easy to see that V3;ss = c3;ss = k3;ss = i3;ss = l3;ss = Rf
3;ss = 0, that is, we have

certainty equivalence. This result is not a surprise and it could have been guessed from a

reading of Schmitt-Grohé and Uribe (2004).

To �nd the second-order approximation, we take derivatives on the �rst derivatives of the

function F , again with respect to the states (kt; zt), and the perturbation parameter �:

Fij (kss; 0; 0) = 0 for i; j = f1; 2; 3g

This step gives us a new system of equations. Then, we plug in the terms that we already

know from the steady state and from the �rst-order approximation and we get that the only

unknowns left are the second-order terms of the value function and other functions of interest.

Quite conveniently, this system of equations is linear and it can be solved quickly. Repeating

these steps (taking higher-order derivatives, plugging in the terms already known, and solving

for the remaining unknowns), we can get any arbitrary order approximation. For simplicity

and since we were already obtaining a high accuracy, we decided to stop at a third-order

approximation.
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3.2. Projection

Projection methods take basis functions to build an approximated value function and decision

rules that minimize a residual function de�ned by the augmented equilibrium conditions of the

model. There are two popular methods for choosing basis functions: �nite elements and the

spectral method. We will present only the spectral method below. There are several reasons

for this: �rst, in the neoclassical growth model the decision rules and value function are

always smooth and spectral methods provide an excellent approximation (Aruoba, Fernández-

Villaverde, and Rubio-Ramírez, 2006). Second, spectral methods allow us to use a large

number of basis functions, with the consequent promise of high accuracy. Third, spectral

methods are easier to implement. Their main drawback is that since they approximate the

solution globally, if the decision rules display a rapidly changing local behavior or kinks, it

may be extremely di¢ cult for this scheme to capture those local properties.

Our target is to solve the decision rule for labor and the value function flt; Vtg from the

two conditions:

H(lt; Vt) =

264 uc;t � �
�
EtV 1�


t+1

� 1
�
�1 Et

�
V

(1�
)(��1)
�

t+1 uc;t+1

�
�ezt+1k��1t+1 l

1��
t+1 + 1� �

��
Vt �

h
(1� �)(c�t (1� l�t ))

1�

� � �Et(V 1�


t+1 )
1
�

i �
1�


375 = 0
where, to save on notation, we de�ne Vt = V (kt; zt) and:

uc;t =
1� 


�
�

�
c�t (1� lt)

1��� 1�
�
ct

Then, from the static condition

ct =
�

1� �
(1� �)eztk�t l

��
t (1� lt)

and the resource constraint, we can �nd ct and kt+1.

Spectral methods solve this problem by specifying the decision rule for labor and the value

function flt; Vtg as linear combinations of weighted basis functions:

l(kt; zj; �) = �i�
l
ij i(kt)

V (kt; zj; �) = �i�
V
ij i(kt)

where f i(k)gi=1;:::;nk are the nk basis functions that we will use for our approximation along
the capital dimension and � = f�lij; �Vijgi=1;:::;nk;j=1;:::;N are unknown coe¢ cients to be deter-
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mined. In this expression, we have discretized the stochastic process zt for productivity using

Tauchen�s (1986) method with N points Gz = fz1; z2; :::; zNg and a transition matrix �N

with generic element �Ni;j = Prob (zt+1 = zjjzt = zi). Values for the decision rule outside the

grid Gz can be approximated by interpolation. Since we set N = 41; the approximation is

quite accurate along the productivity axis.

A common choice for the basis functions are Chebyshev polynomials because of their

�exibility and convenience. Since their domain is [-1,1], we need to bound capital to the set

[k; k], where k (k) is chosen su¢ ciently low (high) so that it will bind with an extremely low

probability, and de�ne a linear map from those bounds into [-1,1]. Then, we set  i(kt) =e i(�k(kt)) where e i(�) are Chebyshev polynomials and �k(kt) is our linear mapping from [k; k]
to [-1,1].

By plugging l(kt; zj; �) and V (kt; zj; �) into H(lt; Vt), we �nd the residual function:

R(kt; zj; �) = H(l(kt; zj; �); V (kt; zj; �))

We determine the coe¢ cients � to get the residual function as close to 0 as possible. However,

to do so, we need to choose a weight of the residual function over the space (kt; zj). Numerical

analysts have determined that a collocation point criterion delivers the best trade-o¤between

speed and accuracy (Fornberg, 1998).8 Collocation simply makes the residual function exactly

equal to zero in fkignki=1 roots of the nk-th order Chebyshev polynomial and in the Tauchen
points fzigZi=1. Therefore, we just need to solve the following system of nk�N �2 equations:

R(ki; zj; �) = 0 for any i; j collocation points

on nk � N � 2 unknowns �. We solve this system with a Newton method and an iteration

based on the increment of the number of basis functions. First, we solve a system with only

three collocation points for capital and 41 points for technology. Then, we use that solution

as a guess for a system with one more collocation point for capital (with the new coe¢ cients

being guessed to be equal to zero). We �nd a new solution and continue the procedure until

we use up to 28 polynomials in the capital dimension (therefore, in the last step we solve

for 2; 296 = 28� 41� 2 coe¢ cients). The iteration is needed because otherwise the residual
function is too cumbersome to allow for direct solution of the 2; 296 �nal coe¢ cients.

8Also, the Chebyshev interpolation theorem tells us that if an approximating function is exact at the roots
of the nk�th order Chebyshev polynomial, then, as nk ! 1, the approximation error becomes arbitrarily
small.
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3.3. Value Function Iteration

Our �nal solution method is VFI. Since the dynamic algorithm is well known, our presentation

is most brief. Consider the following Bellman operator:

TV (kt; zt) = max
ct>0;0<lt<1;kt+1>0

�
(1� �)

�
c�t (1� lt)

1��� 1�
� + �
�
EtV 1�
 (kt+1; zt+1)

� 1
�

� �
1�


s.t. ct + kt+1 = eztk�t l
1��
t + (1� �)kt

zt+1 = �zt + �"t+1

To solve for this Bellman operator, we de�ne a grid on capital, Gk = fk1; k2; :::; kMg and a
grid on the productivity level. The grid on capital is just a uniform distribution of points

over the capital dimension. As we did for projection, we set a grid Gz = fz1; z2; :::; zNg for
productivity and a transition matrix �N using Tauchen�s (1986) procedure. The algorithm

to iterate on the value function for this grid is:

1. Set n = 0 and V 0(kt; zt) = c�ss (1� lss)
1�� for all kt 2 Gk and all zt 2 Gz.

2. For every fkt; ztg; use Newton method to �nd c�t , l�t , k�t+1 that solve:

ct =
�

1� �
(1� �)eztk�t l

��
t (1� lt)

(1� �) �

�
c�t (1� lt)

1��� 1�
�
ct

= �
�
Et
�
V n
t+1

�1�
� 1
�
�1
Et
h�
V n
t+1

��

V n
1;t+1

i
ct + kt+1 = eztk�t l

1��
t + (1� �)kt

3. Construct V n+1 from the Bellman equation:

V n+1 = ((1� �)(c��t (1� l�t )
1��)

1�

� + �(Et(V (k�t+1; zt+1)1�
))

1
� )

�
1�


4. If jV
n+1�V nj
jV nj � 1:0e�7, then n = n+ 1 and go to 2. Otherwise, stop.

To accelerate convergence and give VFI a fair chance, we implement a multigrid scheme

as described by Chow and Tsitsiklis (1991). We start by iterating on a small grid. Then,

after convergence, we add more points to the grid and recompute the Bellman operator using

the previously found value function as an initial guess (with linear interpolation to �ll the

unknown values in the new grid points). Since the previous value function is an excellent

grid, we quickly converge in the new grid. Repeating these steps several times, we move from
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an initial 8,200-point grid into a �nal one with 123,000 points (3,000 points for capital and

41 for the productivity level).

4. Calibration

We now select a benchmark calibration for our numerical computations. We follow the

literature as closely as possible. We set the discount factor � = 0:991 to generate an annual

interest rate of around 3.6 percent. We set the parameter that governs labor supply, �= 0:357,

to get the representative household to work one-third of its time. The elasticity of output

to capital, � = 0:4; matches the labor share of national income. A value of the depreciation

rate � = 0:0196 matches the ratio of investment-output. Finally, � = 0:95 and �= 0:007 are

standard values for the stochastic properties of the Solow residual of the U.S. economy.

Table 1: Calibrated Parameters

Parameter � � � � � �

Value 0.991 0.357 0.4 0.0196 0.95 0.007

Since we do not have a tight prior on the values for 
 and  and we want to explore

the dynamics of the model for a reasonable range of values, we select four values for the

parameter that controls risk aversion, 
, 2, 5, 10, and 40, and two values for EIS  , 0.5, and

1.5, which bracket most of the values used in the literature (although many authors prefer

smaller values for  , we found that the simulation results for smaller  �s do not change much

from the case when  = 0:5). We then compute the model for all eight combinations of values

of 
 and  , that is f2; 0:5g, f5; 0:5g, f10; 0:5g, and so on. When  = 0:5 and 
 = 2, we are
back in the standard CRRA case. However, in the interest of space, we will report only a

limited subset of results, although we have selected those that we �nd the most interesting

ones.

We pick as the benchmark case the calibration f
;  ; �g = f5; 0:5; 0:007g. These values
re�ect an EIS centered around the median of the estimates in the literature, a reasonably high

level of risk aversion, and the observed volatility of productivity shocks. To check robustness,

we increase, in the extreme case, the risk aversion and standard deviation of the productivity

shock to f
;  ; �g = f40; 0:5; 0:035g. This case combines levels of risk aversion that are in
the upper bound of all estimates in the literature with huge productivity shocks. Therefore,

it pushes all solution methods to their limits, in particular, making life hard for perturbation

since the interaction of large precautionary behavior induced by 
 and large shocks will move

the economy far away from the deterministic steady state. We leave the discussion of the

e¤ects of  = 1:5 for the robustness analysis at the end of the next section.
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Figure 1: Decision Rules and Value Function, benchmark case

5. Numerical Results

In this section we report our numerical �ndings. First, we present and discuss the computed

decision rules. Second, we show the results of simulating the model. Third, we report

the Euler equation errors as proposed by Judd (1992) and Judd and Guu (1997). Fourth,

we discuss the e¤ects of changing the EIS and the perturbation point. Finally, we discuss

implementation and computing time.

5.1. Decision Rules

One of our �rst results is the decision rules and the value function of the agent. Figure

1 plots the decision rules for consumption, labor supply, capital, and the value function in

the benchmark case when z = 0 over a capital interval centered on the steady-state level of

capital of 9.54 with a width of �25%; [7.16,11.93]. We selected an interval for capital big
enough to encompass all the simulations in our sample. Similar �gures could be plotted for

other values of z. We omit them because of space considerations.

19



Since all methods provide nearly indistinguishable answers, we observe only one line in

all �gures. It is possible to appreciate very tiny di¤erences in labor supply between second-

order perturbation and the other methods only when capital is far from its steady-state

level. Monotonicity of the decision rules is preserved by all methods. We must be cautious,

however, mapping di¤erences in choices into di¤erences in utility. The Euler error function

below provides a better view of the welfare consequences of di¤erent approximations.

We see bigger di¤erences in the decision rules and value functions as we increase the risk

aversion and variance of the shock. Figure 2 plots the decision rules and value functions for

the extreme calibration. In this �gure, we change the interval reported because, owing to the

high variance of the calibration, the equilibrium paths �uctuate through much wider ranges

of capital.

We highlight several results. First, all the methods deliver similar results in the range

of [7.16,11.93], our original interval for the benchmark calibration. Second, as we go far

away from the steady state, VFI and the Chebyshev polynomial still overlap with each other

but second- and third-order approximations start to deviate. Third, the decision rule for

consumption and the value function approximated by the third-order perturbation changes

from concavity into convexity for values of capital bigger than 15. This phenomenon is in line

with the evidence documented in Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006)

and it is due to the poor performance of local approximation when we move too far away

from the expansion point and the polynomials begin to behave wildly. In any case, this issue

is irrelevant because, as we will show below, the problematic region is visited with nearly zero

probability

5.2. Simulations

Applied economists often characterize the behavior of the model through statistics from

simulated paths of the economy. We simulate the model, starting from the deterministic

steady state, for 10,000 periods, using the decision rules for each of the eight combinations

of risk aversion and EIS discussed above. To make the comparison meaningful, the shocks

are common across all paths. We discard the �rst 1,000 periods as a burn-in. The burn-in

is important because it eliminates the transition from the deterministic steady state of the

model to the middle regions of the ergodic distribution of capital. This is usually achieved

in many fewer periods than the ones in our burn-in, but we want to be conservative in our

results. The remaining observations constitute a sample from the ergodic distribution of the

economy.

For the benchmark calibration, the simulations from all of the solution methods generate
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Figure 2: Decision Rules and Value Function, extreme case
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Figure 3: Densities, benchmark case

almost identical equilibrium paths (and therefore we do not report them). We focus instead

on the densities of the endogenous variables as shown in �gure 3. Given the relatively low

level of risk aversion and variance of the productivity shocks, all densities are roughly centered

around the deterministic steady state value of the variable. For example, the mean of the

distribution of capital is only 0.3 percent higher than the deterministic value. Note that

capital is nearly always between 8.5 and 10.5. This range will be important below to judge

the accuracy of our approximations.

Table 2 reports business cycle statistics and, because DSGE models with recursive prefer-

ences are often used for asset pricing, the average and variance of the (quarterly) risk-free rate

and return on capital. Again, we see that nearly all values are the same, a simple consequence

of the similarity of the decision rules.
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Table 2: Business Cycle Statistics - Benchmark Calibration

c y i Rf (%) Rk(%)

Mean

Second-Order Perturbation 0.7259 0.9134 0.1875 0.9069 0.9060

Third-Order Perturbation 0.7259 0.9134 0.1875 0.9057 0.9060

Chebyshev Polynomial 0.7259 0.9134 0.1875 0.9058 0.9060

Value Function Iteration 0.7259 0.9134 0.1875 0.9058 0.9061

Variance (%)

Second-Order Perturbation 0.0326 0.1036 0.0284 0.0001 0.0001

Third-Order Perturbation 0.0327 0.1036 0.0285 0.0001 0.0001

Chebyshev Polynomial 0.0327 0.1039 0.0286 0.0001 0.0001

Value Function Iteration 0.0327 0.1039 0.0286 0.0001 0.0001

The welfare cost of the business cycle is reported in Table 3 in consumption equivalent

terms. The computed costs are actually negative. This is due to the fact that when we have

leisure in the utility function, the indirect utility function may be convex in input prices

(agents change their behavior over time by a large amount to take advantage of changing

productivity). Cho and Cooley (2000) present a similar example and o¤er further discussion.

Welfare costs are comparable across methods. Remember that the welfare cost of the business

cycle for the second- and third-order perturbations is the same because the third-order terms

all drop or are zero when evaluated at the steady state.

Table 3: Welfare Costs of Business Cycle - Benchmark Calibration

2nd-Order Pert. 3rd-Order Pert. Chebyshev Value Function

-2.0864(e-5) -2.0864(e-5) -2.4406e(-5) -2.8803e(-6)

When we move to the extreme calibration, we see more di¤erences. Figure 4 plots the

histograms of the simulated series for each solution method. Looking at quantities, the

histograms of consumption, output, and labor are the same across all of the methods. The

histogram of capital produced using second-order perturbation is more centered around the

mean of the distribution. The ergodic distribution of capital puts nearly all the mass between

values of 6 and 15. This considerable move to the right in comparison with �gure 3 is due

to the e¤ect of precautionary behavior in the presence of large productivity shocks and high

risk aversion. Capital also goes down more than in the benchmark calibration because of

large, persistent productivity shocks, but not nearly as much as it increases when shocks are

positive. With respect to prices, as expected, the distribution implied by the second-order

approximation is more concentrated than the other three.
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Figure 4: Densities, extreme calibration
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Table 4 reports business cycle statistics. Di¤erences across methods are minor. Looking

at prices, the mean of the risk-free rate from the second-order perturbation is larger compared

to the means produced by the other methods.9 Importantly, the second-order perturbation

produces a negative excess return, which is positive (although small) for all other methods.

This suggests that a second-order perturbation may not be good enough if we care about the

asset pricing properties of our model and that we face high variance of the shocks and/or high

risk aversion. A third-order perturbation, in comparison, eliminates most of the di¤erences

and delivers nearly the same asset pricing implications as Chebyshev polynomials or VFI.

Table 4 Business Cycle Statistics - Extreme Calibration

Mean

c y i Rf (%) Rk(%)

Second-Order Perturbation 0.7497 0.9616 0.2099 0.7610 0.7484

Third-Order Perturbation 0.7510 0.9615 0.2109 0.7281 0.7519

Chebyshev Polynomial 0.7506 0.9612 0.2106 0.7404 0.7556

Value Function Iteration 0.7506 0.9612 0.2106 0.7404 0.7556

Variance (%)

Second-Order Perturbation 0.7985 2.8463 0.7803 0.0009 0.0012

Third-Order Perturbation 0.8387 2.8462 0.8447 0.0012 0.0013

Chebyshev Polynomial 0.8354 2.8643 0.8520 0.0011 0.0013

Value Function Iteration 0.8354 2.8643 0.8520 0.0011 0.0013

Finally, Table 5 presents the welfare cost of the business cycle. Now, in comparison with

the benchmark calibration, the welfare cost of the business cycle is positive and signi�cant,

slightly higher than 3 percent. This is not a surprise, since we have both a large risk aversion

and productivity shocks with a standard deviation �ve times as big as the observed one. All

methods deliver numbers that are close.

Table 5: Welfare Costs of Business Cycle - Extreme Calibration

2nd-Order Pert. 3rd-Order Pert. Chebyshev Value Function

3.1127e(-2) 3.1127e(-2) 3.3034e(-2) 3.3032e(-2)

5.3. Euler Equation Errors

While the plots of the decision rules and the computation of densities and business cycle sta-

tistics that we presented in the previous subsection are highly informative, it is also important

9The mean of the returns is now much smaller than in the benchmark calibration because precautionary
savings raise average capital.
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to evaluate the accuracy of each of the procedures. Euler equation errors, introduced by Judd

(1992), have become a common tool for determining the quality of the solution method. The

idea is to observe that, in our model, the intertemporal condition:

uc;t = �(EtV 1�

t+1 )

1
�
�1Et

�
V

(
�1)(1��)
�

t+1 uc;t+1R (kt; zt; zt+1)

�
(4)

where R (kt; zt; zt+1) = 1 + �ezt+1k��1t+1 l
1��
t+1 � � is the gross return of capital given states kt; zt

and realization zt+1 should hold exactly for any given kt, and zt. However, since the solution

methods we use are only approximations, there will be an error in (4) when we plug in

the computed decision rules. This Euler equation error function EEi (kt; zt) is de�ned, in

consumption terms:
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This function determines the (unit free) error in the Euler equation as a fraction of the

consumption given the current states kt, and zt and solution method i. Following Judd and

Guu (1997), we can interpret this error as the optimization error incurred by the use of the

approximated decision rule and we report the absolute errors in base 10 logarithms to ease

interpretation. Thus, a value of -3 means a $1 mistake for each $1000 spent, a value of -4 a

$1 mistake for each $10,000 spent, and so on.

Figure 5 displays a transversal cut of the errors for the benchmark calibration when z = 0.

Other transversal cuts at di¤erent technology levels reveal similar patterns. The �rst lesson

from �gure 5 is that all methods deliver high accuracy. We know from �gure 3 that capital

is nearly always between 8.5 and 10.5. In that range, the (log10) Euler equation errors

are at most -5, and most of the time they are even smaller. For instance, the second- and

third-order perturbations have an Euler equation error of around -7 in the neighborhood

of the deterministic steady state, VFI of around -6, and Chebyshev an impressive -12/-13.

The second lesson from �gure 5 is that, as expected, global methods (Chebyshev and VFI)

perform very well in the whole range of capital values, while perturbations deteriorate as we

move away from the deterministic steady state. For second-order perturbation, the Euler

error in the steady state is almost four orders of magnitudes smaller than on the boundaries.

Third-order perturbation is around half an order of magnitude more accurate than second-

order perturbation over the whole range of values (except in a very small region close to the

deterministic steady state).
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Figure 5: Euler Equation Error, benchmark calibration

Table 6 Euler errors - Benchmark Calibration

Max Euler Error Integral of the Euler Errors

Second-Order Perturbation -3.1421 -6.4360

Third-Order Perturbation -3.2448 -6.9576

Chebyshev Polynomial -11.2146 -12.4711

Value Function Iteration -5.6908 -6.4246

There are two complementary ways to summarize the information from Euler equation

error functions. First, we report the maximum error in our interval (capital between 75

percent and 125 percent of the steady state and the 41 points of the productivity level) in the

second column of table 6. The maximum Euler error is useful because it bounds the mistake

owing to the approximation. Both perturbations have a maximum Euler error of around

-3.2, VFI of -5.7, and Chebyshev, an impressive -11.2. We read this table as suggesting that

all methods perform more than acceptably. The second procedure for summarizing Euler

equation errors is to integrate the function with respect to the ergodic distribution of capital
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and productivity to �nd the average error.10 We can think of this exercise as a generalization

of the Den Haan�Marcet test (Den Haan and Marcet, 1994). This integral is a welfare

measure of the loss induced by the use of the approximating method. We report our results

in the third column of table 6. Now, both perturbations and VFI have roughly the same

performance (indeed, the third-order perturbation does better than VFI), while Chebyshev

polynomials do fantastically well (the average loss of welfare is $1 for each $5 trillion, more

than a third of U.S. output). But even an approximation with an average error of -6.96, such

as the one implied by third-order perturbation must su¢ ce for most relevant applications.

We repeat our exercise for the extreme calibration. Figure 6 displays the results for the

extreme case. Again, we have changed the capital interval to make it representative of the

behavior of the model in the ergodic distribution. Now, perturbations deteriorate more as we

get further away from the deterministic steady state. However, in the relevant range of values

of capital of [6, 17], we still have Euler equation errors smaller than -3. The performance

of VFI and Chebyshev polynomials is roughly the same as in our benchmark calibration,

although, since we extend the range of capital, the performance deteriorates around two

orders of magnitude.

Table 7 reports maximum Euler equation errors and their integrals. The maximum Euler

equation error is large for perturbation methods while it is remarkably small using Chebyshev

polynomials. However, given the very large range of capital used in the computation, this

maximum Euler error provides a too negative view of accuracy. We �nd the integral of the

Euler equation error to be much more informative. With a second-order perturbation, we

have -3.85, which is on the high side, but with a third-order perturbation we have -5, which is

acceptable in most computations. Note that this integral is computed when we have extremely

high risk aversion and large productivity shocks. Even in this challenging environment, a

third-order perturbation delivers a high degree of accuracy. VFI and Chebyshev do not

display a big loss of precision compared to the benchmark case, and in the case of Chebyshev

polynomials, the performance is still outstanding.

10There is the technical consideration of which ergodic distribution to use for this task, since this is an
object that can only be found by simulation. We use the ergodic simulation generated by VFI, which slightly
favors this method over the other ones. However, we checked that the results are totally robust to using the
ergodic distributions coming from the other methods.
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Figure 6: Euler Equation Errors, extreme calibration
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Table 7 Euler errors - Extreme Calibration

Max Euler Error Integral of the Euler Errors

Second-Order Perturbation -1.6905 -3.8544

Third-Order Perturbation -1.8598 -5.0616

Chebyshev Polynomial -8.9540 -10.1028

Value Function Iteration -4.7429 -6.5300

5.4. Robustness: Changing the EIS and Changing the Perturbation Point

In the results we reported above, we kept the EIS equal to 0.5, a conventional value in

the literature, while we modi�ed the risk aversion and the volatility of productivity shocks.

However, since some recent papers prefer higher values of the EIS (see, for instance, Bansal

and Yaron, 2004), we also computed our model with  = 1:5. Basically our results were

unchanged. To save on space, we concentrate only on the Euler equation errors (decision

rules and simulation paths are available upon request). In table 8, we report the maxima of

the Euler equation errors and their integrals with respect to the ergodic distribution. The

relative size and values of the entries of this table are quite similar to the entries in table 6

(except, partially, VFI that performs a bit better).

Table 8 Euler errors - Benchmark Calibration with  = 1:5

Max Euler Error Integral of the Euler Errors

Second-Order Perturbation -3.1536 -6.4058

Third-Order Perturbation -3.2362 -6.8470

Chebyshev Polynomial -11.9230 -12.4091

Value Function Iteration -6.4694 -7.8523

Table 9 repeats the same exercise for the extreme calibration with high risk aversion and

high volatility of productivity shocks. Again, the entries on the table are very close to the

ones in table 7 (and now, VFI does not perform better than when  = 0:5).

Table 9 Euler errors - Extreme Calibration with  = 1:5

Max Euler Error Integral of the Euler Errors

Second-Order Perturbation -1.9532 -3.6788

Third-Order Perturbation -2.1848 -4.9156

Chebyshev Polynomial -8.4452 -9.6057

Value Function Iteration -4.8484 -6.4759
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As a �nal robustness test, we computed the perturbations not around the deterministic

steady state but around a point close to the mode of the ergodic distribution of capital.

This strategy could deliver better accuracy because we approximate the value function and

decision rules in a region where the model spends more time. Disappointingly, we found only

trivial improvements in terms of accuracy (for instance, the Euler equation errors improved

by less than 1 percent). Moreover, expanding at a point di¤erent from the deterministic

steady state has the disadvantage that the theorems that ensure the convergence of the

Taylor approximation might fail (see theorem 6 in Jin and Judd, 2002).

5.5. Implementation and Computing Time

We brie�y discuss implementation and computing time. For the benchmark calibration,

second-order perturbation and third- order perturbation algorithms take only 0.1 second

and 0.3 second, respectively, in a 2.2GHz Intel PC running Windows Vista (the reference

computer for all times below), and it is simple to implement (732 lines of code in Fortran

95 for second order and 1492 lines of code for third order).11 Although the number of lines

doubles in the third order, the complexity in terms of coding does not increase much: the

extra lines are mainly from declaring external functions and reading and assigning values to

the perturbation coe¢ cients. Fortran 95 borrows the analytical derivatives of the equilibrium

conditions from a code written in Mathematica 6. This code has between 150 to 210 lines,

although Mathematica is much less verbose. An interesting observation is that we only need

to take the analytic derivatives once, since they are expressed in terms of parameters and

not in terms of parameter values. This allows Fortran to evaluate the analytic derivatives

extremely fast for new combinations of parameter values. This advantage of perturbation is

particularly relevant when we need to solve the model repeatedly for many di¤erent parameter

values, for example, when we are estimating the model. For completeness, the second-order

perturbation was also run in Dynare (although we had to use version 4.0, which computes

analytic derivatives, instead of previous versions, which use numerical derivatives that are

not accurate enough for perturbation). This run was a double-check of the code and a test of

the feasibility of using o¤-the-shelf software to solve DSGE models with recursive preferences.

The projection algorithm takes less than 30 seconds, but it requires a good initial guess

for the solution of the system of equations. Finding the initial guess for some combination of

parameter values proved to be challenging. The code is 695 lines of Fortran 95. Finally, the

VFI code is 673 lines of Fortran 95, but it takes about 2 hours to run.

11We use lines of code as a proxy for the complexity of implementing the code. We do not count comment
lines.
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6. Conclusions

In this paper, we have compared di¤erent solution methods for DSGE models with recursive

preferences. We evaluated the di¤erent algorithms based on accuracy, speed, and program-

ming burden. We learned that all of the most promising methods (perturbation, projection,

and VFI) do a fair job in terms of accuracy. We were surprised by how well simple second-

order and third-order perturbations perform. For an extreme calibration, a second-order per-

turbation su¤ered somewhat in terms of accuracy, in particular regarding asset prices, but a

third order perturbation still held its place. We were impressed by how accurate Chebyshev

polynomials can be, even in highly challenging calibrations. However, their computational

cost was higher and we are concerned about the curse of dimensionality. In any case, it seems

clear to us that, when accuracy is the key consideration, Chebyshev polynomials are the way

to go. Finally, we were disappointed by VFI since even with 123,000 points in the grid, it

still could not beat perturbation and it performed much worse than Chebyshev polynomi-

als. This suggests that unless there are compelling reasons such as non-di¤erentiabilities or

non-convexities in the model, we better avoid VFI.

A theme we have not developed in this paper is the possibility of interplay among dif-

ferent solution methods. For instance, we can compute extremely easily a second-order ap-

proximation to the value function and use it as an initial guess for VFI. This second-order

approximation is such a good guess that VFI will converge in few iterations. We veri�ed

this idea in non-reported experiments, where VFI took one-tenth of the time to converge

once we used the second-order approximation to the value function as the initial guess. This

approach may even work when the true value function is not di¤erentiable at some points

or has jumps, since the only goal of perturbation is to provide a good starting point, not a

theoretically sound approximation. This algorithm may be particularly useful in problems

with many state variables. More research in this type of hybrid method is a natural extension

of our work.

We close the paper by pointing out that recursive preferences are only one example of

a large class of non-standard preferences that have received much attention by theorists

and applied researchers over the last years (see the review of Backus, Routledge, and Zin,

2004). Having fast and reliable solution methods for this class of new preferences will help

researchers to sort out which of these preferences deserve further attention and to derive

empirical implications. Thus, this paper is a �rst step in the task of learning how to compute

DSGE models with non-standard preferences.
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7. Appendix

In this appendix, we present the steady state of the model and the alternative perturbation

approach, the value function perturbation (VFP).

7.1. Steady State of the Model

To solve the system:

Vss = c�ss (1� lss)
1���

�k��1ss l1��ss + 1� �
�
= 1=�

1� �

�

css
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= (1� �)k�ssl
��
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mssR
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Now, from the leisure-consumption condition:
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=
�

1� �
(1� �) 
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Then:
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kss =
�



� � �
 + �

from which we can �nd Vss and iss.
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7.2. Value Function Perturbation (VFP)

We mentioned in the main text that instead of perturbing the equilibrium conditions of

the model, we could directly perturb the value function in what we called value function

perturbation (VFP). To undertake the VFP, we write the value function as:

V (kt; zt;�) = max
ct;lt

24 (1� �)
�
c�t (1� lt)

1��� 1�
�
+�
�
EtV 1�


�
eztk�t l

1��
t + (1� �) kt � ct; �zt�1 + ��"t;�

�� 1
�

35
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To �nd a second-order approximation to the value function, we take derivatives of the

value function with respect to controls (ct; lt), states (kt; zt), and the perturbation parameter

�.

�Derivative with respect to ct:
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where we have used the notation Vt = V (kt; zt;�) (and the analogous notation for partial

derivatives).
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�Derivative with respect to zt:
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In the last three equations, we apply the envelope theorem to eliminate the derivatives of the

value function with respect to ct, and hence the derivatives of consumption with respect to
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k, z, and �.

We collect all the equations:
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or, in the more compact notation of the main text

eF (kt; zt; �) = 0
where the hat over F emphasizes that now we are dealing with a slightly di¤erent set of

equations than the F in the main text.

The steady state of this system is the same as the one in the previous subsection of this

appendix, except that now we have to compute three more objects from the equations:
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that are the terms we need to build the �rst-order approximation of the value function:

V (kt; zt;�) ' Vss + V1;ss (kt � kss) + V2;sszt + V3;ss�

Now, as we did with ECP, we take derivatives of the function eF with respect to kt; zt; and
� eFi (kss; 0; 0) = 0 for i = f1; 2; 3g
and we solve for the unknown coe¢ cients. This solution will give us a second-order approx-

imation of the value function but only a �rst-order approximation of the decision rules. By

repeating these steps n times, we can obtain the n+1-order approximation of the value func-

tion and the n-order approximation of the decision rules. It is straightforward to check that

the coe¢ cients obtained by ECP and VFP are the same. Thus, the choice for one approach

or the other should be dictated by expediency.

36



References

[1] Anderson, E.W., L.P. Hansen, E.R. McGrattan, and T.J. Sargent (1996). �On the Me-
chanics of Forming and Estimating Dynamic Linear Economies,�in H.M. Amman et al.
(eds.) Handbook of Computational Economics, Elsevier.

[2] Aruoba, S.B., J. Fernández-Villaverde, and J. Rubio-Ramírez (2006). �Comparing So-
lution Methods for Dynamic Equilibrium Economies.�Journal of Economic Dynamics
and Control 30, 2477-2508.

[3] Backus, D.K., B.R. Routledge, and S.E. Zin (2004). �Exotic Preferences for Macroecono-
mists.�NBER Macroeconomics Annual 2004, 319-390.

[4] Backus, D.K., B.R. Routledge, and S.E. Zin (2007). �Asset Pricing in Business Cycle
Analysis.�Mimeo, New York University.

[5] Bansal, R. and I. Shaliastovich (2007). �Risk and Return in Bond, Currency and Equity
Markets.�Mimeo, Duke University.

[6] Bansal, R. and A. Yaron (2004). �Risks for the Long Run: A Potential Resolution of
Asset Pricing Puzzles.�Journal of Finance 59, 1481-1509.

[7] Bansal, R., R. Dittman, and D. Kiku (2009). �Cointegration and Consumption Risks in
Asset Returns.�Review of Financial Studies 22, 1343-1375

[8] Bansal, R., R. Gallant, and G. Tauchen (2008). �Rational Pessimism, Rational Exuber-
ance, and Asset Pricing Models.�Review of Economic Studies 74, 1005-1033.

[9] Benigno, P. and M. Woodford (2006). �Linear-Quadratic Approximation of Optimal
Policy Problems.�Mimeo, Columbia University.

[10] Binsbergen, J.H. van, J. Fernández-Villaverde, R.S.J. Koijen, and J. Rubio-Ramírez
(2009). �Likelihood Estimation of DSGE Models with Epstein-Zin Preferences.�Mimeo,
University of Pennsylvania.

[11] Campanale, C., R. Castro, and G. Clementi (2007). �Asset Pricing in a Production
Economy with Chew-Dekel Preferences.�Working Papers 07-13, New York University,
Leonard N. Stern School of Business, Department of Economics.

[12] Campbell, J.Y. (1993). �Intertemporal Asset Pricing without Consumption Data.�
American Economic Review 83, 487-512.

[13] Campbell, J.Y. (1996). �Understanding Risk and Return.�Journal of Political Economy
104, 298-345.

[14] Campbell, J.Y. and L. Viceira (2001). �Who Should Buy Long-Term Bonds?�American
Economic Review 91, 99-127.

[15] Chen, X., J. Favilukis, and S. Ludvigson (2007). �An Estimation of Economic Models
with Recursive Preferences.�Mimeo, New York University.

37



[16] Cho, J-O. and T.C. Cooley (2000). �Business Cycle Uncertainty and Economic Welfare.�
Mimeo, New York University.

[17] Chow, C.S., and J.N. Tsitsiklis (1991). �An Optimal One-Way Multigrid Algorithm for
Discrete-Time Stochastic Control.� IEEE Transaction on Automatic Control 36, 898-
914.

[18] Christiano, L., M. Eichenbaum, and C.L. Evans (2005). �Nominal Rigidities and the
Dynamic E¤ects of a Shock to Monetary Policy.� Journal of Political Economy 113,
1-45.

[19] Croce, M. (2006). �Welfare Costs and Long-Run Consumption Risk in a Production
Economy.�Mimeo, University of North Carolina.

[20] Den Haan, W. J., and A. Marcet (1994). �Accuracy in Simulations.�Review of Economic
Studies 61, 3-17.

[21] Dolmas, J. (1998). �Balanced-growth-consistent Recursive Utility.�Journal of Economic
Dynamics and Control 204, 657-680.

[22] Dolmas, J. (2006). �Real Business Cycle Dynamics under First Order Risk Aversion.�
Mimeo, Federal Reserve Bank of Dallas.

[23] Epstein, L., and S.E. Zin (1989). �Substitution, Risk Aversion, and the Temporal Be-
havior of Consumption and Asset Returns: A Theoretical Framework.�Econometrica
57, 937-969.

[24] Epstein, L., and S.E. Zin (1991). �Substitution, Risk Aversion, and the Temporal Be-
havior of Consumption and Asset Returns: An Empirical Analysis.�Journal of Political
Economy 99, 263-286.

[25] Fernandez-Villaverde, J. and J. Rubio-Ramirez (2006). �Solving DSGE Models with
Perturbation Methods and a Change of Variables.�Journal of Economic Dynamics and
Control 30, 2509-2531.

[26] Fornberg, B., 1998. A Practical Guide to Pseudospectral Methods. Cambridge University
Press, Cambridge.

[27] Gomes, F. and A. Michealides (2005). �Optimal Life-Cycle Asset Allocation: Under-
standing the Empirical Evidence.�Journal of Finance 60, 869-904.

[28] Hansen, L.P., and T.J. Sargent (1995). �Discounted Linear Exponential Quadratic
Gaussian Control.�IEEE Transactions on Automatic Control 40, 968-971.

[29] Hansen, L.P., J. Heaton, and N. Li (2008). �Consumption Strikes Back?: Measuring
Long Run Risk.�Journal of Political Economy 16, 260-302.

[30] Jin, H. and K.L. Judd (2002). �Perturbation Methods for General Dynamic Stochastic
Models.�Mimeo, Hoover Institution.

38



[31] Judd, K.L. (1992). �Projection Methods for Solving Aggregate Growth Models.�Journal
of Economic Theory 58, 410-452.

[32] Judd, K.L. (1998). Numerical Methods in Economics. MIT Press.

[33] Judd, K.L. and S.M. Guu (1992). �Perturbation Solution Methods for Economic Growth
Models.� In H. Varian (ed.), Economic and Financial Modelling with Mathematica.
Springer Verlag.

[34] Judd, K.L. and S.M. Guu (1997). �Asymptotic Methods for Aggregate Growth Models.�
Journal of Economic Dynamics and Control 21, 1025-1042.

[35] Kaltenbrunner, G. and L. Lochstoer (2007). �Long-Run Risk through Consumption
Smoothing.�Mimeo, London Business School.

[36] Kreps, D.M. and E.L. Porteus (1978). �Temporal Resolution of Uncertainty and Dynamic
Choice Theory.�Econometrica 46, 185-200.

[37] Kruger, D. and F. Kubler (2005). �Pareto Improving Social Security When Financial
Markets Are Incomplete.�American Economic Review 96, 737-755.

[38] Lettau, M. and H. Uhlig (2002). �Sharpe Ratios and Preferences: An Analytical Ap-
proach.�Macroeconomic Dynamics 6, 242-265.

[39] Levine, P., J. Pearlman, and R. Pierse (2007). �Linear-Quadratic Approximation, Ex-
ternal Habit, and Targeting Rules.�Mimeo, University of Surrey.

[40] Piazzesi, M. and M. Schneider (2006). �Equilibrium Yield Curves.�NBER Macroeco-
nomics Annual 2006, 389-442.

[41] Restoy, F. and P. Weil (1998). �Approximate Equilibrium Asset Prices.�NBER Working
Papers 6611.

[42] Rudebusch, G. and E. Swamson (2008). The Bond Premium in a DSGE Model with
Long-Run Real and Nominal Risks.�Mimeo, Federal Reserve Bank of San Francisco.

[43] Schmitt-Grohé, S. and M. Uribe (2004). �Solving Dynamic General Equilibrium Models
Using a Second-Order Approximation to the Policy Function.�. Journal of Economic
Dynamics and Control 28, 755-775.

[44] Schmitt-Grohé, S. and M. Uribe (2005). �Optimal Fiscal and Monetary Policy in a
Medium Scale Macroeconomic Model.�NBER Macroeconomic Annual 2005, 382-425.

[45] Smets, F. and R. Wouters (2007). �Shocks and Frictions in US Business Cycles: A
Bayesian DSGE Approach.�American Economic Review 97, 586-606.

[46] Tallarini., T.D. (2000). �Risk-Sensitive Real Business Cycles.�Journal of Monetary Eco-
nomics 45, 507-532.

[47] Tauchen, G. (1986). �Finite State Markov-Chain Approximations to Univariate and
Vector Autoregressions.�Economics Letters 20, 177-181.

39



[48] Uhlig, H. (2007). �Leisure, Growth, and Long Run Risk.�Mimeo, University of Chicago.

[49] Weil, P. (1990). �Nonexpected Utility in Macroeconomics.�Quarterly Journal of Eco-
nomics 105, 29-42.

[50] Woodford, M.D. (2003). Interest and Prices. Princeton University Press.

40


