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1. Introduction

This paper studies the following problem: how stable over time are the so-called “structural

parameters” of dynamic stochastic general equilibrium (DSGE) models? To answer this

question, we estimate a medium-scale DSGEmodel with real and nominal rigidities using U.S.

data. In our model, we allow for parameter drifting and rational expectations of the agents

with respect to this drift. We document that there is strong evidence that parameters change

within our sample. In particular, we illustrate variations in the parameters describing the

monetary policy reaction function and in the parameters characterizing the pricing behavior

of firms and households. Moreover, we show how the movements in the pricing parameters

are correlated with inflation. Thus, our results cast doubts on the empirical relevance of

Calvo models.

Our findings are important because DSGE models are at the core of modern macroeco-

nomics. They promise to be a laboratory that researchers can employ to match theory with

reality, to design economic policy, and to evaluate welfare. The allure of DSGE models has

captured the imaginations of many, inside and outside academia. In universities, a multitude

of economists implement DSGE models in their rich varieties and fashions. More remark-

able still, a burgeoning number of policy-making institutions are estimating DSGE models

for policy analysis and forecasting. The Federal Reserve Board (Erceg, Guerrieri, and Gust,

2005), the European Central Bank (Christoffel, Coenen, and Warne, 2007), the Bank of

Canada (Murchison and Rennison, 2006), the Bank of Sweden (Adolfson et al., 2005), and

the Bank of Spain (Andrés, Burriel and Estrada, 2006) are at the front of the tide, but a

dozen other institutions are jumping on the bandwagon. In addition, the profession is accu-

mulating experience with the good forecasting record of DSGE models, even when compared

with judgmental predictions from staff economists (Laforte and Windle, 2006).

At the center of DSGE models, we have the “structural parameters” that define the

preferences and technology of the economy. We call these parameters “structural” in the

sense of Hurwicz (1962): they are invariant to interventions, including shocks by nature. The

structural character of the parameters is responsible for much of the appeal of DSGE models.

Since the parameters are fully interpretable from the perspective of economic theory and

invariant to policy interventions, DSGE models avoid the Lucas critique and can be used to

quantitatively evaluate policy.

Our point of departure is that, at least at some level, it is hard to believe that the

“structural parameters” of DSGE models are really structural given the class of interventions

we are interested in for policy analysis. Let us think, for instance, about technology. Most

DSGE models specify a stable production function, perhaps subject to productivity growth.
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Except in a few papers (Young, 2004), the features of the technology, like the elasticity of

output to capital, are constant over time. But this constant elasticity is untenable in a world

where technological change is purposeful. We can expect that changes in the relative input

prices will induce changes in the new technologies developed and that those may translate

into different elasticities of output to inputs. Similar arguments can be made along nearly

every dimension of a modern DSGE model.

The previous argument is not sufficient to dismiss the practice of estimating DSGEmodels

with constant parameter values. Simplifying assumptions, like stable parameters, are required

to make progress in economics. However, as soon as we realize the possible changing nature

of “structural” parameters, we weaken the justifications for inference exercises underlying

the program of DSGE modeling. The separation between what is “structural” and what is

reduced-form becomes much more ambiguous.1

The possibility but not the necessity of parameter drifting motivates the main question of

this paper: how much evidence of parameter drifting in DSGE models is in the data? If the

answer is that we find much support for drifting (where the metric to decide “much” needs

to be discussed), we would have to re-evaluate the usefulness of our estimation exercises or at

least modify them to account for parameter variation. Moreover, parameter drifting may also

be interpreted as a sign of model misspecification and, possibly, as a guide for improving our

models. If the answer is negative, i.e., if we find little parameter drifting, we would increase

our confidence in DSGE models as a procedure to tackle relevant policy discussions.

Beyond addressing our substantive question, this paper also develops new tools for the

estimation of dynamic equilibrium models with parameter drifting. We show how the com-

bination of perturbation methods and the particle filter allows the efficient estimation of this

class of economies. Indeed, all the required computations can be implemented in a standard

PC in a reasonable amount of time. We hope that those tools may be put to good use in other

applications, not necessarily in general equilibrium, that involve time-varying parameters in

essential ways.

Our main results are as follows. First, we offer compelling proof of changing parameters in

the Fed’s behavior. Monetary policy became appreciably more aggressive in its stand against

inflation after Volcker’s appointment. This result agrees with Clarida, Galí, and Gertler

(2000), Lubick and Schorfheide (2004), Boivin (2006), and Rabanal (2007). Our contribution

1Indeed, Hurwicz (1962) himself emphasized the contingency of the definition of structural parameters:
“...the concept of structure is relative to the domain of modifications anticipated”; “If two individuals differ
with regard to modifications they are willing to consider, they will probably differ with regard to the relations
accepted as structural,” and “...this relativity of the concept of structure is due to the fact that it represents
not a property of the material system under observation, but rather a property of the anticipations of those
asking for predictions concerning the state of the system” (italics in the original).
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is to re-derive the result within a model where agents understand and act upon the fact that

monetary policy changes over time.

Second, we expose the instability of the parameters controlling the level of nominal rigid-

ity and indexation of prices and wages. Those changes are strongly correlated with changes in

inflation in an intuitive way: lower rigidities correlate with higher inflation and higher rigidi-

ties with lower inflation. Our finding suggests that a more thorough treatment of nominal

rigidities, possibly through state-dependent pricing models, may yield a high payoff.

We want to be up-front about the shortcomings of our exercise. First, and foremost, we

face the limitations of the data. With 184 quarterly observations of the U.S. economy, there

is a tight bound on how much we can learn from the data (Ploberger and Phillips, 2003,

frame the problem of empirical limits for time series models precisely in terms of information

bounds). The main consequence of the limitations of the short sample size is relatively

imprecise estimates.

The second limitation, forcefully emphasized by Sims (2001), is that we do not allow

for changing volatilities in the innovations of the model, which is itself a particular form

of parameter drift. If the innovations in the U.S. data are heteroskedastic (as we report

in Fernández-Villaverde and Rubio-Ramírez, 2007), the estimation may attempt to pick up

the changing variance by spurious changes in the structural parameters. At the same time,

Cogley and Sargent (2005) defend that there is still variation in the parameters of a VAR,

even after controlling for heteroskedasticity. We are currently working on an extension of the

model with both parameter drifting and changing volatilities.

In our work, we build upon an illustrious tradition of estimating models with parameter

drifting. One classic reference is Cooley and Prescott (1976), where the authors studied the

estimation of regression parameters that are subject to permanent and transitory shocks. Un-

fortunately, the techniques in this tradition are within the context of the Cowles Commission’s

framework and, hence, are of little direct application to our investigation.

Our paper is also linked with a growing body of research that shows signs of parameter

drifting on dynamic models. Since the estimation of this class of models is a new under-

taking, the evidence is scattered. One relevant literature estimates VARs with time-varying

parameters and/or stochastic volatility. Examples include Uhlig (1997), Bernanke and Mihov

(1988), Cogley and Sargent (2005), Primiceri (2005), and Sims and Zha (2006). The consen-

sus emerging from these papers is that there is evidence of time variation in the parameters

of a VAR, although there is a dispute about whether the variation comes from changes in

the autoregressive components or from stochastic volatility. This evidence, however, is only

suggestive, since a DSGE model with constant parameters may be compatible with a time-

varying VAR (Cogley and Sbordone, 2006).
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A second literature has estimated equilibrium models with parameter variation, but it has

been less ambitious in the extent of the fluctuations studied. Fernández-Villaverde and Rubio-

Ramírez (2007) and Justiniano and Primiceri (2006) demonstrate the importance of stochastic

volatility to account for U.S. data using a DSGEmodel. King (2005) works with a simple RBC

economy with parameter drift in four parameters. However, his approach relies on particular

properties of his model and it is too cumbersome to be of general applicability. Canova

(2005) estimates a small scale New Keynesian model with parameter drifting but without the

agents being aware of these changes in the parameters. He uncovers important movements

in the parameters that enter into the Phillips curve and the Euler equations. Boivin (2006)

estimates a parameter-drifting Taylor rule with real-time data. He corroborates previous

findings of changes in the rule coefficients obtained with final data. Benati (2006), elaborating

on an argument byWoodford (2006), questions the indexation mechanisms introduced in New

Keynesian models and shows that they are not structural to changes in monetary policy rules.

Oliner, Rudebusch, and Sichel (1996) find unstable parameters even in investment models

with more intricate representations of capital spending than those found in current DSGE

models. Owyang and Ramey (2004) estimate regime-switching models of monetary policy

and identify the evolving preferences of the monetary authority through their interaction with

the structural parameters.

There are also numerous papers that tell us about parameter drifting, albeit in an indirect

way. A common practice when estimating models has been to divide the sample into two

periods, usually before and after 1979, and argue that there are significant differences in the

inference results. One celebrated representative of this method is Clarida, Galí, and Gertler

(2000), a paper we will discuss later.

Finally, a literature that shares connections with our analysis is the one that deals with

DSGE models with a Markov-switching process in different aspects of the environment, like

monetary or fiscal policy (Davig and Leeper, 2006a and 2006b, Chung, Davig, and Leeper,

2006, and Farmer, Waggoner, and Zha, 2006). The stated motivation of these papers is that

Markov switches help us understand the dynamics of the economy better. So far, none of

these papers has produced an estimated model.

The rest of the article is organized as follows. First, in section 2, we discuss different ways

to think about parameter drifting in dynamic equilibrium models. In section 3, we develop

two simple examples of parameter drift that motivate our investigation. Section 4 spells out

a medium-scale model of the U.S. economy and discusses how to take this model to the data.

Section 5 introduces parameter drifting and explains how to adapt the approach in section 4

to handle this situation. We report our results in section 6. Section 7 concludes. An appendix

provides the interested reader with technical details.
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2. Parameter Drifting and Dynamic Equilibrium Models

There are at least three ways to think about parameter drifting in an estimated DSGE model.

The simplest approach, which we call the pure econometric interpretation, is to consider

parameter drifting as a convenient phenomenon to fit the data better or as the consequence

of a capricious nature that agents in the model neither understand nor forecast. Despite

its simplicity, this interpretation violates the spirit of rational expectations: not having free

parameters that the researcher can play with. Consequently, we will not investigate this case

further.

The second way to think about parameter drifting is as a characteristic of the environment

that the agents understand and act upon. Let us come back to our example of the production

function. Imagine that the aggregate technology is given by a Cobb-Douglas function Yt =

AKαt
t L

1−αt
t where output Yt is produced with capital Kt and labor Lt given a technology level

A and share parameter αt. The only difference with the standard environment is that αt is

indexed by time (neither the realism nor the empirical justification of our example is crucial

for the argument, although we could argue in favor of both features). Let us also assume

that αt evolves over time as a random walk with reflecting boundaries at 0 and 1, to ensure

that the production function satisfies the usual properties. We could imagine that such drift

comes about because the new technologies developed have a random requirement of capital.

The solution of the agents’ problems are decision rules that have as one of their arguments

the current αt. Why? First, because αt determines current prices. Second, because αt helps

to forecast future values αt+j and hence to predict future prices. This interpretation is our

favorite one, and it will frame our reading of the results in section 6.

The final perspective about parameter drifting is as a telltale of model misspecification.

This point, raised by Cooley (1971) and Rosenberg (1968), is particularly cognate when

estimating DSGE models. These models are complex constructions. To make them useful for

policy purposes, researchers add many mechanisms that affect the dynamics of the economy:

sticky prices and wages, adjustment costs, etc. In addition, DSGE models require tight

parametric assumptions for the utility function, the production function, the adjustment

costs, the distribution of shocks, etc. If we seriously misspecified the model along at least one

dimension, parameter drifting may appear as the only possibility left to the model to fit the

data. Our example in section 3 illustrates this point in detail. We will exploit this possibility

in our empirical results and assess how the drift in the parameters determining the degree

of nominal rigidity in the economy implies that time-dependent models of pricing decisions

may be flawed.
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3. Two Examples

In this section, we present two simple examples that generate parameter drifting in estimated

DSGE models. We have chosen the examples to illustrate our points as clearly as possible

and not based on their relevance or plausibility. However, the examples are not far-fetched:

they deal with recurrent themes in the literature and are linked, albeit we do not explore this

connection to its fullest, to relevant features of the economy.

3.1. Parameter Drift as a Consequence of Changing Policies

The first example deals with the changes in the elasticity of monetary policy to different

variables. It is common to postulate that the monetary authority uses open market operations

to set the short-run nominal interest rate Rt according to a Taylor rule:

Rt
R
=

µ
Rt−1
R

¶γR
µµ

Πt
Π

¶γΠ
µ
ytbyt
¶γy

¶1−γR
exp (σmεmt)

The variable Π represents the target levels of inflation of the monetary authority, R the

steady-state gross return of capital, yt is output, and byt a measure of target output. The
term εmt is a random shock distributed according to N (0, 1).
In an influential contribution, Clarida, Galí, and Gertler (2000) drove the attention of

the profession to changes in the elasticity parameter γΠ before and after Volcker’s appoint-

ment as Fed chairman in 1979. They document, with a slightly different specification of the

Taylor rule, that γΠ more than doubles after 1979. This finding has been corroborated in

many studies and found resilient to modifications in the empirical specification (Lubick and

Schorfheide, 2004). The division of the sample between the time before and after 1979 has

also been exploited by Boivin and Giannoni (2006), who find that the point estimates of the

structural parameters also substantially vary between the two periods.

Changes in the policy coefficients are one particular example of parameter drift. They

can be the consequence of the shifting priorities of the policy-makers or, as emphasized by

Sargent (1999), of changes in the perception of the effectiveness of monetary policy. Once we

recognize that there is evidence of the parameter γΠ drifting over time, it is natural to assume

that agents are aware of the changes and act upon them. Such an environment may capture

some of the insights of Sims (1980) about the difference between a change in policy regime

(in our Taylor rule, a change in the way the interest rate is determined) and the evolution of

the policy within one regime, which could be represented in our context as the drift of the

parameters of the rule.
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3.2. Parameter Drift as a Telltale of Model Misspecification

Our second example revisits several of the themes in Browning, Hansen, and Heckman (1999).

We explore the consequences for inference of an econometrician estimating a model with

infinitely lived agents when the data are actually generated by an overlapping generations

model. We show how our estimate of the discount factor will be a function of the true discount

factor, the elasticity of output to capital, and the changing age distribution of the population.

This example is relevant because variations in the age structure of the U.S. population have

been continuous due to shifts in fertility and mortality.

3.2.1. An Artificial World

We begin by creating a simple artificial world. In each period t, there are two generations of

households alive, young and old. Each household maximizes the life utility

log ctt + βEt log ctt+1

where the superindex denotes that the household was born in period t, the subindex the

period in which it consumes, and Et is the conditional expectations operator. The discount
factor, β, captures the preference for current consumption. We pick a log utility function to

simplify the algebra below.

Households work when young and get a wage wt for a unit of time that they supply inelas-

tically. Households live off their savings when they are old. The period budget constraints

are ctt + st = wt and ctt+1 = Rt+1st, where st is the household savings and Rt+1 the gross

return on capital. From the first order condition of households, we have that ctt =
1
1+β
wt and

ctt =
β
1+β
wt.

In each period, a number nt of new households is born. For the moment, we will assume

only that lt is the realization of some random process. Nothing of substance for our argument

is lost by assuming that the size of the new generation is exogenous.

The production side of the economy is defined by a Cobb-Douglas function yt = kαt l
1−α
t

where kt is the total amount of capital in the economy and lt the total amount of labor. If

we assume total depreciation in the economy, again to simplify the algebra, and impose the

condition lt = nt, we get by competitive pricing wt = (1− α) kαt n
−α
t and Rt = αkα−1t n1−αt .

Now, all that remains is some accounting. Total consumption in the economy in period

t, Ct, is equal to the consumption of the old generation plus the consumption of the young

generation. The old consume all of their income, which is equal to the capital income of the

economy, Rtkt = αkαt n
1−α
t . The young consume a fraction 1

1+β
of their income, which is equal
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to the labor income of the economy wtlt = (1− α) kαt n
1−α
t . Then total consumption is:

Ct =
1 + αβ

1 + β
kαt n

1−α
t

By the aggregate resource constraint, investment (or, equivalently, capital in period t+ 1) is

It = kt+1 =
(1− α)β

1 + αβ
Ct

Finally, we find per capita consumption cpct as:

cpct =
Ct

nt + nt−1

3.2.2. An Econometrician

Let us now suppose that we have an econometrician who aims to estimate a model with a

representative infinitely lived agent and T observations generated from our economy. To do

so, the econometrician postulates that the agent has a utility function:

max
{cpct }

Et
∞X
t=0

βt

"
tY
i=0

(1 + γt)

#
log cpct

where γt is the (random) growth rate of the population between periods t− 1 and t:

1 + γt =
nt + nt−1
nt−1 + nt−2

and γ0 = 0. This utility function is the same as in the canonical presentation of the RBC

model in Cooley and Prescott (1995) except that the growth rate of the population is sto-

chastic instead of constant. The production side of the economy is the same as before,

yt = k
α
t l
1−α
t . Thus, the only difference between the artificial world we have created and the

model the econometrician estimates is that, instead of having two generations alive in each

moment, the econometrician estimates a model with a representative agent.

What are the consequences on the estimated parameters? Imagine that the econometrician

knows α and that the depreciation factor is 1. Then, a simple procedure to estimate the only

remaining unknown parameter in the model, the discount factor β, is to build the population

moment:
1

cpct
= βEt

¡
1 + γt+1

¢ Rt+1
cpct+1
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and substitute the expectation by the sample mean:

bβT = 1
T−1

PT−1
t=0

1
cpct

1
T−1

PT−1
t=0

¡
1 + γt+1

¢
Rt+1
cpct+1

We study how this expression evolves over time. First, note that, by substituting the

expressions found before, we get:

¡
1 + γt+1

¢ Rt+1
cpct+1

=
(nt+1 + nt)

2

nt + nt−1

α

1− α

1 + β

β

1

Ct

Then: bβT = β
1− α

α

1

1 + β

PT−1
t=0 (nt + nt−1)

1
CtPT−1

t=0
(nt+1+nt)

2

nt+nt−1
1
Ct

We want to work on the previous expression. First, we substitute aggregate consumption

for its value in terms of capital and labor:

bβT = β
1

1 + β

1− α

α

PT−1
t=0 (nt + nt−1)

1
kαt n

1−α
tPT−1

t=0
(nt+1+nt)

2

nt+nt−1
1

kαt n
1−α
t

The only remaining endogenous element in this equation is kt. To eliminate it, we recursively

substitute kt−i to find:

kt =

"
(1− α)β

1 + αβ
n1−αt−1

t−1Y
i=1

µ
(1− α)β

1 + αβ
n1−αt−1−i

¶αi
#
kαt0

Then:

bβT = β
1

1 + β

1− α

α

PT−1
t=0

nt+nt−1
n1−αt

µ∙
n1−αt−1

Qt−1
i=1

³
(1−α)β
1+αβ

n1−αt−1−i

´αi¸
kαt0

¶−α
PT−1

t=0
(nt+1+nt)

2

(nt+nt−1)n
1−α
t

µ∙
n1−αt−1

Qt−1
i=1

³
(1−α)β
1+αβ

n1−αt−1−i

´αi¸
kαt0

¶−α
which delivers a bβT , which is biased and drifts over time according to the evolution of the
population. This expression is composed of three parts. First, the true parameter, β, second

the deterministic bias,
1

1 + β

1− α

α

and finally the term involving the nt’s and k0, which fluctuates over time.
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Without further structure on population growth over time, it is difficult to say much aboutbβT . In the simple case where γt = γ is constant, as T →∞, the only factor dominating is:

bβT ' β
1

1 + β

1− α

α
(1 + γ)−2 (1)

To explore the behavior of bβT in the general case where γt varies, we simulate the model
and estimate the parameter recursively with data from an economy with α = 0.3 and β = 0.96.

The growth rates of population are 2, 4, 3, 1, 2, and 5 percent each for 50 periods (i.e., for

period 1 to 50, growth rate is 2 percent, for period 51 to 100, the growth rate is 4 percent

and so forth). We plot our results in figure 2.3.1, where we see the evolution over time of bβT
and how it inherits the properties of γt. To facilitate comparison with (1), we superimpose

the value of (1) that would be implied if the growth rate in a period stayed constant over

time. The graph shows how bβT converges to (1) within each block of 50 periods.
4. The Baseline Model

We will structure our investigation around a baseline New Keynesian business cycle model.

We pick this model because it is the paradigmatic representative of the DSGE economies

estimated by practitioners. Since on other occasions (Fernández-Villaverde, 2005), we have

gone on the record criticizing the problems of this framework, we do not feel obliged to repeat

those shortcomings here. Suffice it to say as a motivation that given the level of interest by

policy-making institutions in this model, it is difficult to see a more appropriate vessel for

our exploration.

The New Keynesian model is well known (see the book-length description in Woodford,

2003). Consequently, we will be short in our presentation, and we will omit some of the tech-

nical aspects. On the other hand, for concreteness, we need to discuss the model in certain

detail. The interested reader can access the whole description of the model at a complemen-

tary technical appendix posted at www.econ.upenn.edu/~jesusfv/benchmark_DSGE.pdf.

In this section, to fix ideas, we will introduce the model without changes in the parameters.

In section 5, we will introduce the parameter change over time.

4.1. Households

The basic structure of the economy is as follows. A representative household consumes, saves,

holds real money balances, supplies labor, and sets its own wages subject to a demand curve

and Calvo’s pricing. The final output is manufactured by a competitive final good producer,
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which uses as inputs a continuum of intermediate goods manufactured by monopolistic com-

petitors. The intermediate good producers rent capital and labor to manufacture their good.

Also, the intermediate good producers face the constraint that they can only change prices

following a Calvo’s rule. Finally, there is a monetary authority that fixes the one-period

nominal interest rate through open market operations with public debt. Long-run growth

is induced by the presence of two unit roots, one in the level of neutral technology and one

in the investment-specific technology. These stochastic trends will allow us to estimate the

model with the raw, undetrended data.

We have a continuum of households in the economy indexed by j. The households maxi-

mize the following lifetime utility function, which is separable in consumption, cjt, real money

balances, mjt/pt, and hours worked, ljt:

E0
∞X
t=0

βtdt

(
log (cjt − hcjt−1) + υ log

µ
mjt

pt

¶
− ϕtψ

l1+ϑjt

1 + ϑ

)

where β is the discount factor, h controls habit persistence, ϑ is the inverse of Frisch labor

supply elasticity, dt is a shock to intertemporal preference with the law of motion:

log dt = ρd log dt−1 + σdεd,t where εd,t ∼ N (0, 1),

and ϕt is a labor supply shock with the law of motion:

logϕt = ρϕ logϕt−1 + σϕεϕ,t where εϕ,t ∼ N (0, 1).

Households trade on the whole set of Arrow-Debreu securities, contingent on idiosyncratic

and aggregate events. Our notation ajt+1 indicates the amount of those securities that pay

one unit of consumption in event ωj,t+1,t purchased by household j at time t at (real) price

qjt+1,t. To save on notation, we drop the explicit dependence on the event. Households also

hold an amount bjt of government bonds that pay a nominal gross interest rate of Rt and

invest xt. Then, the j − th household’s budget constraint is:

cjt + xjt +
mjt

pt
+
bjt+1
pt

+

Z
qjt+1,tajt+1dωj,t+1,t

= wjtljt +
¡
rtujt − μ−1t Φ [ujt]

¢
kjt−1 +

mjt−1

pt
+Rt−1

bjt
pt
+ ajt + Tt +zt

where wjt is the real wage, rt the real rental price of capital, ujt > 0 the intensity of use of

capital, μ−1t Φ [ujt] is the physical cost of ujt in resource terms, μt is an investment-specific

13



technological shock to be described momentarily, Tt is a lump-sum transfer, and zt is the
profits of the firms in the economy. We assume that Φ [1] = 0, Φ0 and Φ00 > 0.

Investment xjt induces a law of motion for capital:

kjt = (1− δ) kjt−1 + μt

µ
1− V

∙
xjt
xjt−1

¸¶
xjt

where δ is the depreciation rate and V [·] is a quadratic adjustment cost function such that
V [Λx] = 0, where Λx is the growth rate of investment along the balance growth path. Note

that we index capital by the time its level is decided. The investment-specific technological

shock follows an autoregressive process:

μt = μt−1 exp (Λμ + zμ,t) where zμ,t = σμεμ,t and εμ,t ∼ N (0, 1)

The first order conditions with respect to cjt, bjt, ujt, kjt, and xjt are:

dt (cjt − hcjt−1)−1 − bβEtdt+1 (cjt+1 − hcjt)−1 = λjt,

λjt = βEt{λjt+1
Rt
Πt+1

},

rt = μ−1t Φ0 [ujt] ,

qjt = βEt
½
λjt+1
λjt

¡
(1− δ) qjt+1 + rt+1ujt+1 − μ−1t+1Φ [ujt+1]

¢¾
, and

1 = qjtμt

µ
1− V

∙
xjt
xjt−1

¸
− V 0

∙
xjt
xjt−1

¸
xjt
xjt−1

¶
+ βEqjt+1μt+1

λjt+1
λjt

V 0
∙
xjt+1
xjt

¸µ
xjt+1
xjt

¶2
,

where λjt is the lagrangian multiplier associated with the budget constraint and qjt is the

marginal Tobin’s Q, the lagrangrian multiplier associated with the investment adjustment

constraint normalized by λjt.

The first order condition with respect to labor and wages is more involved. The labor em-

ployed by intermediate good producers is supplied by a representative, competitive firm that

hires the labor supplied by each household j. The labor supplier aggregates the differentiated

labor of households with the production function:

ldt =

µZ 1

0

l
η−1
η

jt dj

¶ η
η−1

(2)

where η controls the elasticity of substitution among different types of labor and ldt is the

aggregate labor demand.

14



The labor “packer” maximizes profits subject to the production function (2), taking as

given all differentiated labor wages wjt and the wage wt. From his maximization problem we

get:

ljt =

µ
wjt
wt

¶−η
ldt ∀j (3)

Then, to find the aggregated wage, we use again the zero profit condition wtldt =
R 1
0
wjtljtdj

to deliver:

wt =

µZ 1

0

w1−ηjt dj

¶ 1
1−η

.

Households set their wages following a Calvo’s setting. In each period, a fraction 1−θw of

households reoptimize their wages. All other households can only partially index their wages

by past inflation. Indexation is controlled by the parameter χw ∈ [0, 1]. This implies that if
the household cannot change its wage for τ periods, its normalized wage after τ periods is
τY
s=1

Π
χw
t+s−1
Πt+s

wjt.

Since we assume complete markets and separable utility in labor (see Erceg et al., 2000),

we will concentrate on a symmetric equilibrium where cjt = ct, ujt = ut, kjt−1 = kt, xjt = xt,

λjt = λt, qjt = qt, and w∗jt = w
∗
t . In anticipation of that equilibrium, and after a fair amount

of manipulation, we arrive at the recursive equations:

ft =
η − 1
η

(w∗t )
1−η λtw

η
t l
d
t + βθwEt

µ
Π

χw
t

Πt+1

¶1−η µ
w∗t+1
w∗t

¶η−1
ft+1

and:

ft = ψdtϕt

µ
wt
w∗t

¶η(1+ϑ) ¡
ldt
¢1+ϑ

+ βθwEt
µ
Π

χw
t

Πt+1

¶−η(1+ϑ)µ
w∗t+1
w∗t

¶η(1+ϑ)

ft+1.

that determine the evolution of wages.

Then, in every period, a fraction 1 − θw of households set w∗t as their wage, while the

remaining fraction θw partially index their price by past inflation. Consequently, the real

wage index evolves:

w1−ηt = θw

µ
Π

χw
t−1
Πt

¶1−η
w1−ηt−1 + (1− θw)w

∗1−η
t .
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4.2. The Final Good Producer

There is one final good produced using intermediate goods with the following production

function:

ydt =

µZ 1

0

y
ε−1
ε

it di

¶ ε
ε−1

. (4)

where ε controls the elasticity of substitution.

Final good producers are perfectly competitive and maximize profits subject to the pro-

duction function (4), taking as given all intermediate goods prices pti and the final good

price pt. Repeating the same steps as for wages, we obtain the demand functions for each

intermediate good:

yit =

µ
pit
pt

¶−ε
ydt ∀i,

where ydt is the aggregate demand and the zero profit condition pty
d
t =

R 1
0
pityitdi to deliver:

pt =

µZ 1

0

p1−εit di

¶ 1
1−ε

.

4.3. Intermediate Good Producers

There is a continuum of intermediate good producers. Each intermediate good producer i

has access to a technology represented by a production function:

yit = Atk
α
it−1

¡
ldit
¢1−α − φzt

where kit−1 is the capital rented by the firm, ldit is the amount of the “packed” labor input

rented by the firm, the parameter φ corresponds to the fixed cost of production, and where

At follows:

At = At−1 exp (ΛA + zA,t) where zA,t = σAεA,t and εA,t ∼ N (0, 1)

The fixed cost φ is scaled by the variable zt = A
1

1−α
t μ

α
1−α
t . We can think of zt as a weighted

index of the two technology levels At and μt, where the weight is the share of capital in the

production function. The product φzt guarantees that economic profits are roughly equal

to zero in the steady state. Also, we rule out the entry and exit of intermediate good

producers. Note that zt evolves over time as zt = zt−1 exp (Λz + zz,t) where zz,t =
zA,t+αzμ,t

1−α
and Λz =

ΛA+αΛμ
1−α . We will see below that Λz is the mean growth rate of the economy.

Intermediate good producers solve a two-stage problem. First, given wt and rt, they rent
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ldit and kit−1 in perfectly competitive factor markets in order to minimize real costs, which

implies a marginal cost of:

mct =

µ
1

1− α

¶1−αµ
1

α

¶α
w1−αt rαt
At

The marginal cost does not depend on i: all firms receive the same shocks and rent inputs at

the same price.

Second, intermediate good producers choose the price that maximizes discounted real

profits under the same pricing scheme as households. In each period, a fraction 1 − θp of

firms reoptimize their prices. All other firms can only index their prices by past inflation.

Indexation is controlled by the parameter χ ∈ [0, 1], where χ = 0 is no indexation and χ = 1

is total indexation.

The problem of the firms is then:

max
pit
Et

∞X
τ=0

(βθp)
τ λt+τ

λt

(Ã
τY
s=1

Πχ
t+s−1

pit
pt+τ

−mct+τ

!
yit+τ

)

subject to

yit+τ =

Ã
τY
s=1

Πχ
t+s−1

pit
pt+τ

!−ε
ydt+τ ,

where the marginal value of a dollar to the household is treated as exogenous by the firm.

Since there are complete markets in securities, this marginal value is constant across house-

holds and, consequently, λt+τ/λt is the correct valuation on future profits.

We write the solution of the problem in terms of two recursive equations in g1t and g
2
t :

g1t = λtmcty
d
t + βθpEt

µ
Πχ
t

Πt+1

¶−ε
g1t+1

g2t = λtΠ
∗
ty
d
t + βθpEt

µ
Πχ
t

Πt+1

¶1−εµ
Π∗t
Π∗t+1

¶
g2t+1

where εg1t = (ε− 1)g2t and Π∗t = p
∗
t/pt.

Given Calvo’s pricing, the price index evolves:

p1−εt = θp
¡
Πχ
t−1
¢1−ε

p1−εt−1 + (1− θp) p
∗1−ε
t

or, dividing by p1−εt ,

1 = θp

µ
Πχ
t−1
Πt

¶1−ε
+ (1− θp)Π

∗1−ε
t
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4.4. The Government

The government sets the nominal interest rates according to the Taylor rule:

Rt
R
=

µ
Rt−1
R

¶γR

⎛⎝µΠt
Π

¶γΠ

⎛⎝ ydt
ydt−1

Λyd

⎞⎠γy⎞⎠1−γR

exp (mt) (5)

through open market operations that are financed with lump-sum transfers Tt to ensure that

the government budget is balanced period by period. The variable Π represents the target

levels of inflation (equal to inflation in the steady state), R the steady-state gross return of

capital, and Λyd the steady-state gross growth rate of ydt . With a bit of abuse of language,

we will refer to the term ydt
ydt−1

/Λyd as the growth gap. The term mt is a random shock to

monetary policy that follows mt = σmεmt where εmt is distributed according to N (0, 1). We
introduce the previous period interest rate, Rt, to match the smooth profile of the interest

rate over time observed in the U.S.

4.5. Aggregation

First, we begin with the aggregate demand:

ydt = ct + xt + μ−1t Φ [ut] kt−1

Then, using the production function for intermediate good producers, the fact that all the

firms pick the same capital-labor ratio, and market clearing in the output and input markets,

we find the aggregate demand must be equal to aggregate supply:

ydt =
At (utkt−1)

α ¡ldt ¢1−α − φzt

vpt

where:

vpt =

Z 1

0

µ
pit
pt

¶−ε
di

is the aggregate loss of efficiency induced by price dispersion. By the properties of the index

under Calvo’s pricing:

vpt = θp

µ
Πχ
t−1
Πt

¶−ε
vpt−1 + (1− θp)Π

∗−ε
t .
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Finally, we integrate labor demand over all households j to obtain:Z 1

0

ljtdj = lt =

Z 1

0

µ
wjt
wt

¶−η
djldt

where lt is the aggregate labor supply of households. Hence if we define:

vwt =

Z 1

0

µ
wjt
wt

¶−η
dj

we get:

ldt =
1

vwt
lt

and:

vwt = θw

µ
wt−1
wt

Π
χw
t−1
Πt

¶−η
vwt−1 + (1− θw) (Π

w∗
t )

−η .

4.6. Equilibrium

A definition of equilibrium in this economy is standard and the equations that characterize

it are determined by the first order conditions of the household, the first order conditions of

the firms, the Taylor rule of the government, and market clearing.

To undertake our quantitative analysis, we must approximate the equilibrium dynamics

of the economy. Ours is a large model (even the version without parameter drifting has 19

state variables). Moreover, we will need to solve the model repeatedly during our estimation

process. We have argued elsewhere (Fernández-Villaverde, Rubio-Ramírez, and Santos, 2006)

that there is much to be gained from a nonlinear estimation of the model, both in terms of

accuracy and in terms of identification. This is particularly true if we want to allow the agents

in the economy to insure themselves against future changes in the parameters of the model.

Hence, we require a nonlinear solution method that is fast and accurate. In previous work

(Aruoba, Fernández-Villaverde, and Rubio-Ramírez, 2006), we have found that a second

order perturbation around the deterministic steady-state of the model fulfills the previous

desiderata.

But before solving the model, we clear up some technical issues. First, because of techno-

logical change, most of the variables are growing in average. To achieve the right accuracy in

the computation, we make the variables stationary and solve the model in the transformed

variables. Hence, we define ect = ct
zt
, eλt = λtzt, ert = rtμt, eqt = qtμt, ext = xt

zt
, ewt = wt

zt
, ew∗t = w∗t

zt
,ekt = kt

ztμt
, and eydt = ydt

zt
. Also note that Λc = Λx = Λw = Λw∗ = Λyd = Λz. Second, we choose

functional forms for Φ [·] and V [·]. For Φ [u] we pick Φ [u] = Φ1 (u− 1) + Φ2
2
(u − 1)2. We
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normalize u = 1 in the steady state. Hence, er = Φ0 [1] = Φ1 and Φ [1] = 0. The investment

adjustment cost function is V
h
xt
xt−1

i
= κ

2
( xt
xt−1
−Λx)

2. Then, along the balanced growth path,

V [Λx] = V
0 [Λx] = 0.

We will perform our perturbation in logs. For each variable vart, we define dvart =
log vart − log var, as the log deviation with respect to the steady state. Then, the states of
the model St are given by:

St =

⎛⎝ bΠt−1, bewt−1,bg1t−1,bg2t−1,bekt−1, bRt−1,beydt−1,bect−1,bvpt−1, bvwt−1,beqt−1, bef t−1,bext−1, beλt−1,bezt−1, zμ,t−1, bdt−1, bϕt−1, zA,t−1
⎞⎠0

,

and the exogenous shocks are εt = (εμ,t, εd,t, εϕ,t, εA,t, εm,t)
0 .

As a first step, we parameterize the matrix of variances-covariances of the exogenous

shocks asΩ (χ) = χΩ, whereΩ (1) = Ω, is a diagonal matrix. However, nothing really depends

on that assumption, and we could handle an arbitrary matrix of variances-covariances. Then,

we take a perturbation solution around the deterministic steady state of the model, i.e., χ = 0.

From the output of the perturbation, we build the law of motion for the states:

St+1 = Ψs1

³
S
0
t, ε

0
t

´0
+
1

2

³
S
0
t, ε

0
t

´
Ψs2

³
S
0
t, ε

0
t

´0
+Ψs3 (6)

where Ψs1 is a 1×24 vector and Ψk2 is a 24×24 matrix. The term Ψs1

³
S
0
t, ε

0
t

´0
constitutes

the linear solution of the model,
³
S
0
t, ε

0
t

´
Ψs2

³
S
0
t, ε

0
t

´0
is the quadratic component, and Ψs3

is a 1×24 vector of constants added by the second order approximation that corrects for
precautionary behavior. Some of the entries of the matrices Ψsi will be zero.

From the same output, we find the law of motion for the observables

YT =
¡
4 logμ−1t ,4 log yt,4 log lt, logΠt, logRt

¢0
Now, define St =

³
S
0
t, S

0
t−1, ε

0
t−1

´
. We keep track of the past states, S

0
t−1, because some of

the observables in the measurement equation below will appear in first differences. Then, we

write to the observation equation:

YT = Ψo1 (S
0
t, ε

0
t)
0
+
1

2
(S0t, ε

0
t)Ψo2 (S

0
t, ε

0
t)
0
+Ψo3 (7)

where Ψo1 and Ψo3 1×48 matrices and Ψo2 is a 48×48 matrix.
While the law of motion for states is unique (or at least equivalent to a class of different

states, all of which have the same implications for the dynamics of the model), the observation
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equation depends on what we assume the researcher actually observes. In our case, we have

chosen the first differences of the relative price of investment, output, hours, inflation, and the

federal funds rate. Unfortunately, we do not know much about the right choice of observables

and how they may affect our estimation results (for one of the few articles on this topic, see

Boivin and Giannoni, 2006).

4.7. The Likelihood Function

Equations (6) and (7) constitute the state space representation of our model. One convenient

properties of this representation is that we can exploit it to evaluate the likelihood of a DSGE

model, an otherwise challenging task. The likelihood, L
¡
YT ;Ψ

¢
, is the probability that the

model assigns to a sequence of realizations of the observable YT given parameter values:

Ψ =
©
β, h, υ,ϑ, δ, η, ε,α,φ, θw,χw, θp,χp,Φ2, γR, γy, γΠ,Π,Λμ,ΛA, ρd, ρϕ,σμ,σd,σA,σm,σϕ

ª
.

Note that Φ1 is not included in Ψ because it is a function of the other parameters in the

economy to ensure that er = Φ1. With L
¡
YT ;Ψ

¢
, we can estimate Ψ by maximizing the

likelihood or by combining it with a prior density for the model parameter to form a posterior

distribution.

How do we evaluate the likelihood L
¡
YT ;Ψ

¢
? Given the Markov structure of our state

space representation, we begin by factorizing the likelihood function as:

L
¡
YT ;Ψ

¢
=

TY
t=1

L
¡
Yt|Yt−1;Ψ

¢
Then, conditioning on the states:

L
¡
YT ;Ψ

¢
=

Z
L (Y1|S0;Ψ) dS0

TY
t=2

Z
L (Yt|St;Ψ) p

¡
St|Yt−1;Ψ

¢
dSt (8)

If we know St, computing L (Yt|St;Ψ) is relatively easy. Conditional on St, the measure-
ment equation (7) is a change of variables from εt to YT . Hence, we can apply the change
of variable formula to evaluate the required probabilities. Similarly, if we know S0, we can

employ (6) and the measurement equation (7) to compute L (Y1|S0;Ψ) . Consequently, knowl-
edge of the sequence {p (St|Yt−1;Ψ)}Tt=1 and of p (S0;Ψ) allows us to find L

¡
YT ;Ψ

¢
. Eval-

uating (or at least drawing from) p (S0;Ψ) is usually straightforward, although often costly

(Santos and Peralta-Alva, 2005). The difficulty is to characterize the sequence of conditional

distributions {p (St|Yt−1;Ψ)}Tt=1 and to compute the integrals in (8).
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An algorithm for doing so (but not the only one!; see the technical appendix to Fernández-

Villaverde and Rubio-Ramírez, 2007, for alternatives and references) is to use a simulation

technique known as the particle filter. Fernández-Villaverde and Rubio-Ramírez (2005 and

2007) have shown that the particle filter can be successfully applied to the estimation of

nonlinear and/or non-normal DSGE models. The particle filter is a sequential Monte Carlo

method that replaces the {p (St|Yt−1;Ψ)}Tt=1 by an empirical distribution of draws generated
by simulation. The bit of magic of the particle filter is that the simulation is generated through

a procedure known as sequential importance resampling (SIR). SIR guarantees that the Monte

Carlo method achieves sufficient accuracy in a reasonable amount of time, something that

cannot be achieved without resampling (Arulampalam et al., 2002). The appendix describes

in further detail the working of the particle filter.

4.8. A Bayesian Approach

We will confront our model with the data using Bayesian methods. The Bayesian paradigm

is a powerful and flexible perspective for the estimation of DSGE models (see the survey by

An and Schorfheide, 2006). First, Bayesian analysis is a coherent approach to inference based

on a clear set of axioms. Second, the Bayesian approach handles in a natural way misspec-

ification and lack of identification, both serious concerns in the estimation of DSGE models

(Canova and Sala, 2006). Moreover, it has desirable small sample and asymptotic properties,

even when evaluated by classical criteria (Fernández-Villaverde and Rubio-Ramírez, 2004).

Third, priors are a flexible procedure to introduce presample information and to reduce the

dimensionality problem associated with the number of parameters. This property will be

especially attractive in our application, since parameter drifting will increase the practical

number of dimensions of our model.

The Bayesian approach combines the likelihood of the model L
¡
YT ;Ψ

¢
with a prior

density for the parameters p (Ψ) to form a posterior

p
¡
Ψ|YT

¢
∝ L

¡
YT ;Ψ

¢
p (Ψ) .

The posterior summarizes the uncertainty regarding the parameters, and it can be used for

point estimation. For example, under a quadratic loss function, our point estimates will be

the mean of the posterior.

Since the posterior is also difficult to characterize, we generate draws from it using a

Metropolis-Hastings algorithm. We use the resulting empirical distribution to obtain point

estimates, variances, etc. We describe this algorithm in the appendix.
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5. Parameter Drifting

Now we are ready to deal with parameter drifting. Since the extension to other cases of

parameter variation is rather straightforward, we present only one example of drift within

our model.

Motivated by the first example in section 3, we will investigate the situation where the

Taylor rule is specified as:

Rt
R
=

µ
Rt−1
R

¶γRt

⎛⎝µΠt
Π

¶γΠt

⎛⎝ ydt
ydt−1

Λyd

⎞⎠γyt⎞⎠1−γRt

exp (mt) (9)

Note the difference with the specification in (5): in the new equation the elasticities of the

response of the interest rate
©
γRt, γΠt, γyt

ª
are indexed by time.

We will postulate that the parameters follow an AR(1) in logs to ensure that the parameter

is positive:

log γRt = min
©
(1− ρR) log γR + ρR log γRt−1 + εRt, 0

ª
(10)

log γΠt = (1− ρΠ) log γΠ + ρΠ log γΠt−1 + εΠt (11)

log γyt =
¡
1− ρy

¢
log γy + ρy log γyt−1 + εyt (12)

where {εRt, εΠt, εyt} are i.i.d. normal shocks and Q is a 3 × 3 matrix of covariances.2 We
allow for arbitrary correlation in the innovations, since it is plausible that the reasons why

the monetary authority becomes more (less) responsive to inflation are the same reasons it

will become less (more) responsive to the growth gap. Also, we could generalize the changes

in parameters by allowing changes in Π or in the variance of mt (R and Λyd are not chosen

by the monetary authority but they are implied by the other parameters of the model and

by Π). Finally, we impose the stability condition that the smoothing coefficient γRt must be

less than 1 in levels (or less than 0 in logs).

Our specification of parameter drift emphasizes the continuity of the change process, in

opposition to the discrete changes in the parameters captured by a Markov-switching process

(see Davig and Leeper, 2006a and 2006b). We do not have a strong prior preference for one

version or the other. We like our specification because it is parsimonious and easy to handle,

and it captures phenomena such as the Fed’s gradual learning about the behavior of the

2The autoregressive coefficients
©
ρR, ρΠt, ρy

ª
and the matrix Q become in this formulation the new “struc-

tural parameters.” We are also skeptical about their true structural nature, but to avoid the infinite regression
problem, we will ignore our doubts for the moment.
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economy.

According to our favorite interpretation of parameter drifting, we will assume that agents

understand that policy evolves over time following (10)-(12). Consequently, they react to it

and make their decisions based on the current values of γt and on the fact that γt will evolve

over time.

The drift of the parameters implies that the economy will travel through zones where the

Taylor principle is not satisfied. However, this may not necessarily mean that the equilibrium

is not unique. In the context of Markov-regime changes in the coefficients of the Taylor rule,

Davig and Leeper (2006a) have developed what they call the generalized Taylor principle.

Davig and Leeper argue that a unique equilibrium survives if the Taylor rule is sufficiently

active when the economy is in the active policy regime or if the expected length of time

the economy will be in the nonactive policy regime is sufficiently small. To keep this paper

focused, we will not dwell on generating results equivalent to Davig and Leeper’s in our

environment. Suffice it to say that one further advantage of the Bayesian approach is that

we can handle restrictions on the parameter drifting with the use of the priors. For example,

we can implement a reflecting boundary on (10) by putting a zero prior on the possibility of

violating that boundary. Also, in our empirical analysis, we estimate γΠ as being bigger than

one. This suggests that the Taylor principle will be satisfied, at least on average.

Our formulation of parameter drifting has one important drawback: we do not model

explicitly why the parameters change over time. In section 3, we discussed that changes

in the policy parameters could be a reflection of changing political priorities or evolving

perceptions about the effectiveness of policy. A more complete model would include explicit

mechanisms through which we discipline the movement of the parameters over time. Many of

those mechanisms can be incorporated into our framework, since we are rather flexible with

the type of functional forms for the parameter drift that we can handle.

The model in section 4 carries on except with the modification of (9) and the fact that all

the conditional expectations now incorporate the process (10). Thus, the states of the model

with parameter drifting are:

St =

⎛⎝ bΠt−1, bewt−1,bg1t−1,bg2t−1,bekt−1, bRt−1,beydt−1,bect−1, bvpt−1,bvwt−1,beqt−1, bef t−1,bext−1, beλt−1,bezt−1, zμ,t−1, bdt−1, bϕt−1, zA,t−1; γRt−1, γΠt−1, γyt
⎞⎠0

,

where we have included γRt, γΠt, and γyt as three additional states. We will follow the

convention of separating drifting parameters from the other states with a “;” since they

are an object of interest by themselves. Similarly, we apply the particle filter to evaluate the

likelihood of the model and the Metropolis-Hastings algorithm to simulate from the posterior.
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6. Empirical Analysis

This section presents our empirical analysis. First, we report the point estimates of the model

when we keep all parameters fixed over the sample. This estimation sets a natural benchmark

for the rest of the study. Second, we discuss the results of an exercise where we allow the

parameters of the Taylor rule of the monetary authority to change over time. Third, we

analyze the evolution of the parameters that control the level of price and wage rigidities. In

the interest of space, we select these two exercises as particularly illustrative of the procedure

we propose. However, we could have performed many other exercises within the framework

of our methodology.

We estimate the model using five time series for the U.S.: 1) the relative price of investment

with respect to the price of consumption, 2) real output per capita growth, 3) hours worked

per capita, 4) the CPI and 5) the federal funds rate. Our sample goes from 1955:Q1 to

2000:Q4. We stop our sample at the end of 2000 because of the absence of good information

on the relative price of investment after that time. To make the observed series compatible

with the model, we compute both real output and real gross investment in consumption

units. For that purpose, we use the relative price of investment defined as the ratio of an

investment deflator and a deflator for consumption. The consumption deflator is constructed

from the deflators of nondurable goods and services reported in the NIPA. Since the NIPA

investment deflators are poorly measured, we rely on the investment deflator constructed by

Fisher (2006), a series that ends at 2000:Q4. The appendix provides further information on

the construction of the data.

6.1. Point Estimation

Before reporting results, we specify priors for the model’s parameters. We adopt flat priors

for all parameters. We impose boundary constraints only to make the priors proper and

to rule out parameter values that are either incompatible with the model (i.e., a negative

value for a variance, Calvo parameters outside the unit interval) or implausible (the response

to inflation in the Taylor rule being bigger than 100). The looseness of such constraints

is shown by the fact that the simulations performed below never travel even close to the

bounds. Also, we fix four parameters, {υ,φ,Φ2, δ} . The parameter controlling money demand
υ is irrelevant for equilibrium dynamics because the government will supply as much money

as required to implement the nominal interest rate determined by the Taylor rule. We fix

the parameter φ to zero, since we do not have information on pure profits by firms (in the

absence of entry/exit of firms, there are no serious implications for equilibrium dynamics).

The parameter of the investment adjustment cost, Φ2, is set to 0.001 and depreciation, δ, to
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0.0149 because they are difficult to identify. Our choice of δ matches the capital-output ratio

in the data (remember that in our model we have both physical depreciation, controlled by

δ, and economic depreciation induced by the change in the relative price of capital).

Our choice of flat priors is motivated by the observation that, with this prior, the posterior

is proportional to the likelihood function.3 Consequently, our Bayesian results can be inter-

preted as a classical exercise where the mode of the likelihood function (the point estimate

under an absolute value loss function for estimation) is the maximum likelihood estimate.

Moreover, a researcher who prefers more informative priors can always reweight the draws

from the posterior to accommodate his favorite priors (Geweke, 1998).4 We repeated our

estimation with an informative prior without finding important differences in the results.

Table 6.1 summarizes our results by reporting the mean and the standard deviation of the

posterior.5 Most of our point estimates coincide with the typical findings of other estimation

exercises and the standard deviations are small. Hence, we comment only on a few of them.

We have a high degree of habit persistence, h is 0.88, and we have a Frisch elasticity of labor

supply of 0.74 (1/1.36), well within the bounds of findings in the recent microeconomic liter-

ature (Browning, Hansen, and Heckman, 1999). The estimates of elasticities of substitution

ε and η are around 8, implying average mark-ups of around 14 percent.

[TABLE 6.1 HERE]

The Calvo parameter for price adjustment, θp, is a relatively high 0.91, while the indexa-

tion level χp, is 0.15. It is tempting to compare our estimates with the microeconomic evidence

on the average duration of prices (Bils and Klenow, 2004, or Nakamura and Steinsson, 2006).

However, the comparison is difficult because we have partial indexation: prices change every

quarter for all producers, a fraction θp because producers reoptimize and a fraction 1 − θp

because of indexation. The Calvo parameter for wage adjustment, θw, is 0.45, while the

indexation, χw, is 0.85. Our point estimates imply stronger nominal rigidities in price than

in wages, in line with Rabanal and Rubio-Ramírez (2005) or Galí and Rabanal (2004) but

diverging from Smets and Wouters (2003), who have much more informative priors.

The policy parameters
©
γR, γΠ, γy,Π

ª
are quite standard. The Fed smooths the interest

rate over time (γR is estimated to be 0.79), and responds actively to inflation (γR is 1.25)

3There is a small qualifier: the bounded support of the priors. We can fix this small difference by thinking
about those bounds as frontiers of admissible parameter values in a classical perspective.

4We do not argue that our flat priors are uninformative. After a reparameterization of the model, a flat
prior may become highly curved. Moreover, if we wanted to use the model for other purposes like forecasting
or to compare it with, for example, a VAR, we would need to elicit our priors more carefully.

5A word of caution here: the estimates of the standard deviation with the particle filter are relatively un-
stable (Fernández-Villaverde and Rubio-Ramírez, 2007, and DeJong et al., 2007). Computational constraints
preclude us from running a simulation sufficiently long to fully avoid this problem.
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and weakly to the output growth gap (γy is 0.19). We estimate that the Fed has a target for

quarterly inflation of 0.78 percent (or around 3 percent yearly).

The growth rates of the investment-specific technological change, Λμ, and of the neutral

technology, ΛA, imply that most of the growth in the U.S. economy (83 percent) is induced

by improvements in the capital-producing technology. This result corroborates the impor-

tance of modelling biased technological change for understanding growth and fluctuations

that Greenwood, Herkowitz, and Krusell (1997 and 2000) have so forcefully defended. The

estimated long-run growth rate of the economy, (ΛA + αΛμ) / (1− α) is 0.4 percent per quar-

ter, or 1.6 percent annually, roughly the observed mean in the sample. Also, the standard

deviation σμ is much higher than σA.

Our estimation serves different roles. First, it validates our model as a promising labora-

tory for our exercises with parameter drifting. Since in the benchmark case we obtain results

compatible with the literature and with the basic growth properties of the U.S. economy,

we know that the results with parameter drifting will indeed come from that feature of the

estimation. Second, we use our point estimates to initialize the parameters in the exercises

with parameter drifting.

In the next two subsections, we will report our findings when we allow one parameter

to vary at a time. We do this for convenience. First, allowing several parameters to move

simultaneously makes the computation and estimation of the model much more costly. Sec-

ond, the information in the sample is limited, and it is difficult to obtain stable estimates

otherwise. Third, especially in our second exercise, our objective is not so much to have the

richest possible model to fit the data well but to show that as soon as you let parameters

change over time, strong signs of misspecification appear. We will continue the exploration

of joint moves of parameters in the near future.

6.2. Evolution of Policy Parameters

Our first exercise studies the evolution of the policy parameters in the Taylor rule. This

investigation evaluates how much evidence there is in the data of a changing monetary policy

over time. As we discussed in section 3, the literature has extensively debated the topic

(Clarida, Galí, and Gertler, 2000, Cogley and Sargent, 2001, Lubick and Schorfheide, 2004,

Sims and Zha, 2006, Boivin, 2006, just to cite some papers). However, the empirical methods

applied so far are unsatisfactory because they rely either on divisions of the sample that do

not let the agents in the model forecast the changes in policy or on the estimation of reduced

forms.

Arguably, the most interesting parameter is γΠt−1, since this parameter controls how
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aggressively the monetary authority responds to inflation. In addition, γΠt−1 is intimately

linked with the issue of multiplicity of equilibria and the possibility of monetary policy being

a source of instability. Figure 6.2.1 plots our point estimate of the evolution of γΠt−1 over time

plus the two standard deviations interval to gauge the uncertainty present in the estimation.

We report the smoothed values of γΠt−1 using the whole sample (Godsill, Doucet, and West,

2004). We find it convenient, for expositional purposes, to eliminate some of the quarter-to-

quarter variation of the parameter. To accomplish this goal, in figure 6.2.2, we graph the

trend of the change of the parameter where we compute the trend using a Hodrick-Prescott

filter. We emphasize that this trend is only a device to read the graph more clearly and lacks

a formal statistical interpretation.

In both figures 6.2.1 and 6.2.2, γΠt−1 starts low, slightly above 1 during the 1950s, 1960s,

and early 1970s, with periods when it was even below 1. However, in the mid-1970s, and

especially after Volcker’s appointment as chairman of the Board of Governors, γΠt−1 soared.

The response to inflation reached its peak in the early 1980s, where it was as high as 6 in one

quarter. After that maximum, γΠt−1 slowly decreases during the 1990s, perhaps reflecting the

Fed’s more permissive attitude to accommodate the strong productivity growth associated

with the Internet boom.

Since our model has parameter drifting, it is not straightforward to compare these numbers

with estimates obtained in fixed-parameter models. However, we clearly confirm the findings

of Clarida, Galí, and Gertler (2000), Lubick and Schorfheide (2004), and Boivin (2006) that

monetary policy has become much more active in the last 25 years. Our finding is also

consistent with the results of figure 12 in Cogley and Sargent (2001), where they trace the

evolution of the activism coefficient as measured by a parameter-drifting VAR.

Another parameter of importance is the inflation target of the monetary authority, Π.

Histories like those in Taylor (1998), Sargent (1999), or Primiceri (2006) explain that the

inflation target may have changed over time as a reflection of the Fed’s varying beliefs about

the trade-off between unemployment and inflation. Figure 6.2.3 plots the evolution of the

target over time plus the two standard deviation interval. From the start of the sample until

the early 1970s and, later, for the 1990s, Π hovers around 1.004 or, in annual terms, around

1.6 percent. This number is close to the informal target or comfort zone that describes the

Fed’s behavior according to many commentators. During the intermediate years, the inflation

target increases, reflecting perhaps the views the Fed had about the possibility of exploiting

the Phillips curve or illustrating the information lags regarding the changing features of the

economy emphasized by Orphanides (2002). We find intriguing the similarity of figure 6.2.3 to

Romer and Romer’s (2002) hypothesis, based on narrative accounts and internal Greenbook

forecasts of the Fed, that monetary policy in the U.S. has gone through a long cycle of
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moderation, aggressiveness, and renewed temperance.

Our estimates of the evolution of the inflation target provide a reality check on our pro-

cedure. In figure 6.2.4, we plot the inflation target versus realized inflation. If the estimation

is working properly, part of the variation in the inflation target needs to be accounted for,

in a purely mechanical fashion, by changes in inflation. That is precisely what we observe:

as inflation increases and then falls during the late 1960s and the 1970s, the target inflation

estimated goes up and down.

Note, however, that the inflation target fluctuates roughly between 40 and 50 percent

less than inflation. In particular during the 1970s, the inflation target is well below actual

inflation. This difference is accounted in two ways. First, by the form of our Taylor rule. We

assume that one input into the rule is the growth gap between the growth of output ydt /y
d
t−1

and the long-run growth rate of the economy Λyd . The 1970s were years of very low growth

in comparison with Λyd .
6 Thus, our model interprets the behavior of the Fed as lowering the

interest rates as a response to low output growth in exchange for higher inflation. Second, our

model backs up large negative technology shocks in the 1970s that push inflation above the

target level. Hence, an alternative way to think about this result is that our model suggests

that the big rise in inflation during the 1970s had less to do with changes in the inflation

target than with a series of unfavorable aggregate shocks.

We summarize our results. First, the Fed’s response towards inflation became more ag-

gressive in the late 1970s and early 1980s and has stayed high since then with perhaps a small

fall. Second, the inflation target was relaxed in the 1970s but not enough to account for the

high inflation of that decade. We trust our results not only because they come from the

estimation of a coherent DSGE model, but also because they are consistent with the findings

of the existing literature that uses alternative estimation procedures, with narrative accounts

of monetary policy, and with the reality check explained above.

6.3. Evolution of Price and Wage Rigidities

A key set of parameters in our model are those determining the extent of price and wage

rigidities,
©
θp,χp, θw,χw

ª
. These four parameters generate the nominal rigidity in the econ-

omy required to match the impulse response functions documented by VARs (Christiano,

Eichenbaum, and Evans, 2005).

Given their importance in the model, it is unfortunate that these parameters have only

a tenuous link with microeconomic foundations. Even if the Calvo adjustment probabilities

6This observation may have motivated a model where Λyd changes over time, but such models are, as
argued by Bansal and Yaron (2004), quite difficult to estimate in small samples.
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are the reduced form of a convex adjustment cost model, the environment that produces

this reduced form has changed over the years in our sample. We have gone from periods

of high inflation and low response of the monetary authority to rising prices to periods of

much lower inflation and a more aggressive attitude toward inflation by the Fed. Moreover,

the U.S. economy has experienced a notable level of deregulation, increasing competition in

internal markets from international trade, and lower unionization rates. The justification of

the indexation parameters or their relation to the Calvo adjustment probabilities is even less

clear. Why do agents index their prices and wages? And if they do, to which quantity? Past

inflation? Current inflation? Steady-state inflation? Wage inflation? Consequently, it is

natural to examine the possibility that the parameters
©
θp,χp, θw,χw

ª
drift over time, both

as a measure of how strong nominal rigidities have been in each different moment and as a

tool to assess the extent of possible misspecification of the model along this dimension.

As in the case of policy parameters, we specify an AR(1) as the law of motion for the

parameters:

log θpt = min
n³
1− ρθp

´
log θp + ρθp log θpt−1 + εθpt, 0

o
logχpt = min

n³
1− ρχp

´
logχp + ρχ logχpt−1 + εχpt, 0

o
log θwt = min

©¡
1− ρθw

¢
log θw + ρθw log θwt−1 + εθwt, 0

ª
logχwt = min

©¡
1− ρθw

¢
logχw + ρχ logχwt−1 + εχwt, 0

ª
where

n
εθpt, εχpt, εθwt, εχwt

o
are i.i.d. normal shocks and where we take the minimum of the

value of the parameter induced by the autoregressive component and 0 to be sure that the

parameters are less than 1 in levels (they will always be more than 0 because we are taking

logs).

We report first the experiment where we let θpt, the Calvo parameter of price changes,

evolve over time. We find it more informative (and more directly comparable to the mi-

cro evidence) to report the average duration of the spell before the producers reoptimize,

1 (/1− θpt), in quarter terms. Figure 6.3.1 plots that duration while figure 6.3.2 plots the

HP-trend and, for comparison purposes, the HP-trend of the CPI. In this figure, as in all the

rest of the figures of the paper where we plot two different variables, we follow the convention

that the continuous line represents the parameter on the left y-axis and the discontinuous

one the parameter on the right y-axis.7

7We do not plot the standard deviations interval for the average price duration (neither later for the
average wage duration) because the transformation 1 (/1− θpt) generates implausibly large upper bounds as
soon as the simulation of θpt travels close to 1. The standard deviations interval for θpt show, however, that
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Figures 6.3.1 and 6.3.2 reveal a clear pattern: average duration was high in the late 1950s,

dropped quickly in the 1960s, and only started to pick up in the late 1970s, continuing with

an upward trend until today. Interestingly enough, the changes in the average duration of

the spell before the producers reoptimize are strongly correlated with changes in inflation.

In figure 6.3.2 we see how times of increasing trend inflation (late 1960s, 1970s) are times of

falling average duration and vice versa: how times of decreasing trend inflation (the 1980s

and the 1990s) are times of increasing average duration.

Our second experiment regarding price rigidities is with χpt, the parameter that controls

price indexation. Figure 6.3.3 plots the evolution of the parameter over the sample plus the

two standard deviation interval and figure 6.3.4 its HP-trend (again, with the HP-trend of

the CPI superimposed). Indexation evolves in an opposite way to price duration: it starts

low in the 1950s and 1960s but rises very strongly during the late 1960s. Then, it drops

dramatically in the mid-1970s and stays low over the next 20 years (except for a temporary

increase in the early 1980s). In the last part of the sample, during the 1990s, χpt steadily

drops. The drop in indexation in the second half of the 1970s may be accounted for by firms

switching to more often optimal price adjustments and less automatic pricing rules. Firms

were perhaps induced by the volatile inflation of those years, which made partial indexation

a costly option. Mechanically, our estimation finds less indexation because inflation is less

persistent in the 1970s.

We find it illuminating to combine the evolution of the Calvo parameter θpt and of index-

ation χpt. We do so in figure 6.3.5 (for their levels) and in figure 6.3.6 (for their HP-trends).

The comparison of both parameters shows that periods of high price rigidities are also periods

of low indexation. The converse is true as well, except for the mid-1970s. This result points

out that adding indexation as an ad hoc procedure to increase the level of inflation inertia

may hide important dynamics in price adjustments.

We repeat our two experiments for wages. Figure 6.3.7 (in levels) and figure 6.3.8 (in HP-

trends, with inflation superimposed) plot the evolution of the average duration of the spell

before workers reoptimize wages, 1 (/1− θwt), in quarter terms. In this case the evidence is

more difficult to interpret, with a big spike in the second half of the 1980s which is probably

due to sampling uncertainty. However, it is still the case that, during the 1970s, as inflation

went up, wage rigidity went down, and as inflation was tamed in the early 1980s, wages again

became more rigid.

Figures 6.3.9 and 6.3.10 draw the evolution of wage indexation. Here, in comparison, the

clarity of the result is embarrassing: wage indexation is nearly the perfect mirror of inflation.

the parameter itself is estimated without too much uncertainty.
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As we did for prices, we interpret this finding as the natural consequence of workers switching

to more often wage reoptimizations that make indexation less of an interesting rule in times of

high inflation.8 Less wage indexation is what the model needs to capture the higher volatility

of inflation in the data.

For completeness, we finish our graphical display with figures 6.3.11 to 6.3.16, where we

plot the evolution of the different parameters controlling nominal rigidities against others.

Because of space constraints, we refrain from further discussion of the plots. However, the

reader can appreciate that the similarity in the evolution of the parameters over time solidifies

our confidence that we are uncovering a systematic pattern of relationships between nominal

rigidities and inflation.

We consider our findings to be strong proof of the changing nature of the nominal rigidities

in the economy and of a strong indication of model misspecification along the dimension of

price and wage adjustment. Calvo’s price adjustment cannot capture the evolution of the

fundamentals that determine the pricing decisions of firms and households. Our results

underscore that this problem is relevant empirically. Also, they suggest that the evidence

in Klenow and Kryvtsov (2005) that the intensive margin of price changes accounts for 95

percent of the monthly variance of inflation may be a product of the sample period (1988-

2003), where the low level of inflation limits identification because it eliminates the source of

variation of the data. Indeed, in our figures 6.3.5 and 6.3.6, if we look at the period 1988-2000,

we observe less variation in the pricing parameters.

There are at least two possible sources for this misspecification of the pricing mechanism

of the model that could rationalize our findings. First, time-varying price and wage rigidity

parameters may be revealing a problem of omitted variables. For example, a change in the

probability of price adjustment translates into a different slope of the (implicit) Phillips curve

in our model and thus, into a variation of inflation. However, in the data, there are other

shocks that affect inflation, like the price of energy, the price of commodities, or exchange

rate fluctuations. Since we do not include these shocks, we may be capturing the changing

influence of these sources of inflation through variations in the Calvo parameters.9

8During the early 1970s, there was a raise in the prevalence of cost-of-living allowance (COLA) escalators
in collective bargaining agreements (Hendricks and Kahn, 1985). This observation could be used to undermine
our result. However, even at their peak, COLAs only covered 6 million workers, a small percentage of the
labor force. Moreover, it is difficult to map COLAs from the 1970s into our model, since they had many
contingent rules that make them quite different from the naïve indexation rules that we use. In fact, it could
even be possible to think about a state-contingent COLA as an implicit form of reoptimization.

9Similarly, part of the variation in the Calvo parameters may be accounted for by mark-up shocks, which
play an important role in models like Smets and Wouters’ (2003). However, it is difficult to see which type of
mark-up shocks will have the level of persistence that we observe in the movements of the Calvo parameters
that we estimate.
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The second source of misspecification may be the time-dependent structure of pricing

(either à la Calvo as in the model we have presented or à la Taylor). Thus, we can read our

results as favoring models of state-dependent pricing (Caballero and Engel, 1993, Caplin and

Leahy, 1991 and 1997), since those have an endogenously changing duration of prices and

wages. The extra analytical difficulty implied by state-dependent models (Dotsey, King, and

Wolman, 1999) may be a price we are forced to pay. Another strand of the literature that may

consider our results interesting is the one that deals with sticky information (Mankiw and

Reiss, 2002, and Sims, 2002). Higher inflation increases the incentives to gather information

and, hence, it is likely to imply more frequent price and wage adjustments.

Finally, our findings have relevant implications for optimal policy design. First, if we

interpret the evolution of parameters like θpt as exogenously given, it may be something that

the monetary authority may condition its behavior on (we do not enter into a discussion

of how it would estimate them in real time, we only raise this as a theoretical possibility).

Second, if we read our results as showing that the measured amount of price rigidities are

endogenous to monetary policy, optimal design becomes tougher than in the basic Ramsey

exercises.

7. Conclusion

How structural are the structural parameters of DSGE models? Less so than we often claim.

Our analysis indicates that there are large variations in the estimated values of several of

the key parameters of a benchmark medium-scale macroeconomic model during our sample

period.

We document changes in the response of the monetary authority to inflation and in the

inflation target that confirm previous findings by other researchers. In particular, we report a

move by the Fed toward a much more aggressive stand against raising prices in the late 1970s.

Also, we find that changes in the inflation target account, at most, for 40-50 percent of the

increase in inflation in the 1970s. Our results are remarkable because they are derived in a

context where agents understand that policy evolves over time and respond to that evolution.

We uncover that the parameters controlling nominal rigidities drift in a substantial way,

and more important, are strongly correlated with inflation. These findings cast serious doubts

on the usefulness of models based on Calvo pricing and invite deeper investigations of state-

dependent pricing models.

We do not want our work to be interpreted as a sweeping criticism of the estimation of

DSGE models, because it is not. The literature has made impressive progress over the last

years and has contributed much to improving our understanding of aggregate fluctuations
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and the effects of economic policy. We ourselves have been engaged in this research agenda

and plan to continue doing so. We hope, instead, that our paper will be read as an invitation

to further estimation of DSGE models with parameter drifting. This avenue is promising,

both as a mechanism for incorporating richer dynamics and as a diagnostic tool for detecting

gross misspecifications.

In fact, as our discussants have rightly pointed out, much remains to be done. We have

only scratched the surface of the problem of estimating DSGEmodels with parameter drifting.

We have not explored the model when we have different sources of variations in the parameters

at the same time or when there is stochastic volatility in the shocks. Also, we have not

studied the consequences of drifting parameters for the dynamics of the business cycle or

for the impulse-response functions of the model. Finally, we have not evaluated different

specifications of parameter drift or analyzed the possible reasons for parameter drifting in

detail.

Our skepticism about the structural nature of most “structural” parameters is not a call

to perform reduced-form exercises. Along with Tom Sargent and Mark Watson (Fernández-

Villaverde et al., 2007), we have singled out some of the problems of estimating reduced-

form models. But there are many other papers emphasizing the weaknesses of reduced-form

inference, too many indeed to even bother with a list. The fundamental point is that every

empirical procedure has strengths and limitations. As Hurwicz (1962) warned us many years

ago, just because we name something “structural,” we should not believe we have taken the

theoretical high-ground.

8. Appendix

This appendix offers further details about the technical aspects of the paper. First, we discuss

some general computational aspects and elaborate on the solution of the model. Second, we

describe the particle filter that evaluates the likelihood function of the model. Third, we

comment on the estimation procedure. Fourth, we close with the details of the construction

of the data.

8.1. Computation of the Model

The most important feature of the algorithm to be described below to solve and estimate the

model is that it can be implemented on a good desktop computer. We coded all programs for

the perturbation of the model and the particle filter in Fortran 95 and compiled them in Intel

Visual Fortran 9.1 to run on Windows-based machines (except some Mathematica programs
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to generate analytic derivatives). We use a Xeon Processor 5160 EMT64 at 3.00 GHz with

16 GB of RAM.

The solution of the model is challenging because we have 19 state variables plus the drifting

parameters that we allow in each empirical exercise. Moreover, we need to recompute the

solution of the model for each new set of parameter values in the estimation. The only

non-linear procedure that accomplishes this computation in a reasonable amount of time is

perturbation (Aruoba, Fernández-Villaverde, and Rubio-Ramírez, 2006). We implement our

solution by perturbing the equilibrium conditions of the rescaled version of the model (i.e.,

the one where we have already eliminated the two unit roots) around the deterministic steady

state. This means that the solution is locally accurate regardless of the level of technology in

the economy. Also, note that the steady state will depend on the level of inflation targeted

by the monetary authority.

We use Mathematica to compute the analytical derivatives and to generate Fortran 95

code with the corresponding analytical expression. Then, we load that output into a Fortran

95 code that evaluates the solution of the model for each parameter value as implied by the

Metropolis-Hastings algorithm to be described below. The solution will have the form:³
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where, recalling our notation, St are the states, εt are the shocks, Jt is a vector of variables

of interest in the model that are not states, and the Γsi’s are matrices of the right size. With

(13), and by selecting the appropriate rows, we build the state space representation:
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8.2. Description of the Particle Filter

We provide now a short description of the particle filter. We will deliberately focus on the

intuition of the procedure and we will gloss over many technical issues that are relevant for

a successful application of the filter. We direct the interested reader to Fernández-Villaverde

and Rubio-Ramírez (2007), where we discuss most of those issues in detail, and the articles

in Doucet, de Freitas, and Gordon (2001), which present improved sequential Monte Carlo

algorithms, like Pitts and Shephard’s (1999) auxiliary particle filter.
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As we described in the main text, given the Markov structure of our state space repre-

sentation, we can factorize the likelihood function as:

L
¡
YT ;Ψ

¢
=

TY
t=1

L
¡
Yt|Yt−1;Ψ

¢
and obtain the factorization:

L
¡
YT ;Ψ

¢
=

Z
L (Y1|S0;Ψ) dS0

TY
t=2

Z
L (Yt|St;Ψ) p

¡
St|Yt−1;Ψ

¢
dSt (14)

Consequently, if we had the sequence {p (St|Yt−1;Ψ)}Tt=1 and p (S0;Ψ), we could evaluate
the likelihood of the model. Santos and Peralta-Alva (2005) show conditions under which

we can draw the numerical solution of the model to approximate p (S0;Ψ). The two diffi-

culties of evaluation (14) are then to characterize the sequence of conditional distributions

{p (St|Yt−1;Ψ)}Tt=1 and to compute the different integrals in the expression.
The particle filter begins from the observation that, if somehow we can get N draws of the

form
½n
sit|t−1

oN
i=1

¾T
t=1

from the sequence {p (St|Yt−1;Ψ)}Tt=1 , we can appeal to a law of large
numbers and substitute the integrals with a mean of the conditional likelihoods evaluated in

the empirical draws:

L
¡
YT ;Ψ

¢
' 1

N

NX
i=1

L
¡
Y1|si0|0;Ψ

¢ TY
t=2

1

N

NX
i=1

L
¡
Yt|sit|t−1;Ψ

¢
where our notation for the draws indicates in the subindex the conditioning set (i.e., t|t− 1
means a draw at moment t conditional on information until t−1) and the superindex denotes
the index of the draw. The intuition of the procedure is that we substitute the exact but

unknown sequence {p (St|Yt−1;Ψ)}Tt=1 by its empirical counterpart.
How do we draw from {p (St|Yt−1;Ψ)}Tt=1? The second key idea of the particle filter is

that we can extend importance sampling (Geweke, 1989) to a sequential environment. The

following proposition, due in its original form to Rubin (1988), formalizes the idea:

Proposition 1. Let
n
sit|t−1

oN
i=1

be a draw from p (St|Yt−1;Ψ). Let the sequence {esit}Ni=1 be
a draw with replacement from

n
sit|t−1

oN
i=1

where the resampling probability is given by

qit =
L
³
Yt|sit|t−1;Ψ

´
PN

i=1L
³
Yt|sit|t−1;Ψ

´ ,
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Then {esit}Ni=1 is a draw from p (St|Yt;Ψ).

The proposition 1 shows how to recursively use a draw
n
sit|t−1

oN
i=1

from p (St|Yt−1;Ψ)

to get a draw
n
sit|t

oN
i=1

from p (St|Yt;Ψ). This result is crucial. It allows us to incorporate
the information in Yt to change our current estimate of St. This is why this step is known
in filtering theory as update (the discerning reader has probably already realized that this

update is nothing more than an application of Bayes’ theorem).

The resampling step is key for the success of the filter. A naïve extension of Monte Carlo

techniques will just draw a whole sequence of
½n
sit|t−1

oN
i=1

¾T
t=1

without stopping period by

period to resample according to proposition 1. Unfortunately, this naïve scheme diverges.

The reason is that all the sequences become arbitrarily far away from the true sequence of

states, which is a zero measure set and the sequence that is closer to the true states dominates

all the remaining ones in weight. A simple simulation shows that the degeneracy appears

even after very few steps.

Given
n
sit|t

oN
i=1
, we draw N exogenous shocks, something quite simple, since the shocks in

our model εit+1 =
¡
εiμ,t+1, ε

i
d,t+1, ε

i
ϕ,t+1, ε

i
A,t+1, ε

i
m,t+1

¢0
are normally distributed. Then, we ap-

ply the law of motion for states that relates the sit|t and the shocks ε
i
t+1 to generate

n
sit+1|t

oN
i=1
.

This step, known as forecast, put us back at the beginning of proposition 1, but with the

difference that we have moved forward one period in our conditioning.

The following pseudocode summarizes the description of the algorithm:

Step 0, Initialization: Set tÃ 1. Sample N values
n
si0|0

oN
i=1

from p (S0;Ψ).

Step 1, Prediction: Sample N values
n
sit|t−1

oN
i=1

using
n
sit−1|t−1

oN
i=1
, the law of

motion for states and the distribution of shocks εt.

Step 2, Filtering: Assign to each draw
³
sit|t−1

´
the weight qit in proposition

1.

Step 3, Sampling: Sample N times with replacement from
n
sit|t−1

oN
i=1

using the

probabilities {qit}
N
i=1. Call each draw

³
sit|t

´
. If t < T set t Ã t + 1 and go to

step 1. Otherwise stop.

With the output of the algorithm, we just substitute into our formula

L
¡
YT ;Ψ

¢
' 1

N

NX
i=1

L
¡
Y1|si0|0;Ψ

¢ TY
t=2

1

N

NX
i=1

L
¡
Yt|sit|t−1;Ψ

¢
(15)
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and get an estimate of the likelihood of the model. Del Moral and Jacod (2002) and Künsch

(2005) show weak conditions under which the right-hand side of the previous equation is a

consistent estimator of L
¡
YT ;Ψ

¢
and a central limit theorem applies.

8.3. Estimation Procedure

We mention in the main part of the text that the posterior of the model

p
¡
Ψ|YT

¢
∝ L

¡
YT ;Ψ

¢
p (Ψ)

is difficult, if not impossible, to characterize. However, we can draw from it and build its

empirical counterpart using a Metropolis-Hastings algorithm. The algorithm is as follows:

Step 0, Initialization: Set i Ã 0 and an initial Ψi. Solve the model for Ψi

and build the state space representation. Evaluate prior p (Ψi) and approximate

L
¡
YT ;Ψ

¢
with (15). Set iÃ i+ 1.

Step 1, Proposal draw: Get a draw Ψ∗i from a proposal density q
¡
γi−1, γ

∗
i

¢
.

Step 2, Solving the Model: Solve the model for Ψ∗i and build the new state

space representation.

Step 3, Evaluating the proposal: Evaluate p (Ψ∗i ) and L
¡
YT ;Ψ∗i

¢
with (15).

Step 4, Accept/Reject: Draw χi ∼ U (0, 1). If χi ≤
L(YT ;Ψ∗i )p(Ψ∗i )q(Ψi−1,Ψ∗i )
L(YT ;Ψi−1)p(Ψi−1)q(Ψ∗i ,Ψi−1)

set

Ψi = Ψ∗i, otherwise Ψi = Ψi−1.

Step 5, Iteration: If i < M , set iÃ i+ 1 and go to step 1. Otherwise stop.

This algorithm requires us to specify a proposal density q (·, ·). We follow the standard
practice and choose a random walk proposal, Ψ∗i = Ψi−1 + κi, κi ∼ N (0,Σκ), where Σκ is a

scaling matrix. This matrix is selected to get the appropriate acceptance ratio of proposals

(Roberts, Gelman and Gilks, 1997).

To reduce the “chatter” of the problem, we will keep the innovations in the particle

filter (i.e., the draws from the exogenous shock distributions and the resampling probabili-

ties) constant across different passes of the Metropolis-Hastings algorithm. As pointed out

by McFadden (1989) and Pakes and Pollard (1989), this is required to achieve stochastic

equicontinuity, and even if this condition is not strictly necessary in a Bayesian framework,

it reduces the numerical variance of the procedure.
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8.4. Construction of Data

As we mention in the text, we compute both real output and real gross investment in con-

sumption units to make the observed series compatible with the model. We define the relative

price of investment as the ratio of the investment deflator and the deflator for consumption.

The consumption deflator is constructed from the deflators of nondurable goods and ser-

vices reported in the NIPA. Since the NIPA investment deflators are poorly measured, we

use the investment deflator constructed by Fisher (2006). For the real output per capita

series, we first define nominal output as nominal consumption plus nominal gross investment.

We define nominal consumption as the sum of personal consumption expenditures on non-

durable goods and services, national defense consumption expenditures, federal nondefense

consumption expenditures, and state and local government consumption expenditures. We

define nominal gross investment as the sum of personal consumption expenditures on durable

goods, national defense gross investment, federal government nondefense gross investment,

state and local government gross investment, private nonresidential fixed investment, and pri-

vate residential fixed investment. Per capita nominal output is defined as the ratio between

our nominal output series and the civilian noninstitutional population between 16 and 65.

Since we need to measure real output per capita in consumption units, we deflate the series

by the consumption deflator. For the real gross investment per capita series, we divide our

above mentioned nominal gross investment series by the civilian noninstitutional population

between 16 and 65 and the consumption deflator. Finally, the hours worked per capita series

is constructed with the index of total number of hours worked in the business sector and the

civilian noninstitutional population between 16 and 65. Since our model implies that hours

worked per capita are between 0 and 1, we normalize the observed series of hours worked per

capita such that it is, on average, 0.33.
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TABLE 6.1: Point Estimates

Parameter Point Estimate S.D.

β 0.9999 0.001

h 0.8773 0.009

ψ 8.9420 0.045

ϑ 1.3586 0.004

α 0.2550 0.011

ε 7.9570 0.1593

η 7.9650 0.2984

κ 7.6790 0.600

θp 0.9067 0.012

χp 0.1505 0.100

γR 0.7900 0.012

γy 0.1904 0.056

γΠ 1.2596 0.075

Π 1.0078 3.6e-4

Λμ 0.0100 2.86e-4

ΛA 0.0005 4.57e-4

ρd 0.9506 0.006

ρϕ 0.9420 0.015

σμ 0.1010 0.006

σd 0.0600 0.003

σA 0.0072 0.002

σm 0.0030 8.4e-5

σϕ 0.0700 0.011
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Figure 6.3.11: Wage Rigidity vs. Indexation
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Figure 6.3.12: HP−Trend Wage Rigidity vs. HP−Trend Indexation
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Figure 6.3.13: Price vs. Wage Rigidity
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Figure 6.3.14: HP−Trend Price vs. HP−Trend Wage Rigidity
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Figure 6.3.15: Price Indexation vs. Wage Indexation
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Figure 6.3.16: HP−Trend Price vs. HP−Trend Wage Indexation
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