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With unfettered access to a risk-free asset, agents can perform the following variation to

their consumption plans. At any point in time, individuals can lower their current consumption

by one unit and increase it in all future periods and contingencies by a constant absolute

amount, equal to the net rate of return. At a market equilibrium, individuals find themselves

at an optimum within this class of variations. The corresponding optimality condition is the

familiar intertemporal Euler equation.

Instead, a planner must consider the response that any change in the consumption plan

may have on work effort, if the latter is not fully under her control due to private information.

In general, there exists a class of variations available to the planner on the agent’s consumption

such that incentives and work effort are preserved. At the constrained-efficient allocation, the

planner finds the optimum within this class of variations.

The variations available to the planner do not always, or even typically, coincide with those

available to agents in a free market equilibrium. Difference in these sets of variations leads to

optimality conditions that are potentially incompatible. Distortions on savings may then be

required to implement the constrained optimum with an asset market.

The first point emphasized by this paper is that the particular form that the set of allowable

variations for the planner takes, depends critically on preferences. We begin by showing that

there exists a particular class of preferences for which the set of variations available to the

planner actually coincides with that available to agents in a free market. As a result, the

constrained efficient allocation requires no distortions on agents’ savings. The preferences

required for this result feature no income effects on work effort and constant absolute risk

aversion. This particular result demonstrates that the form of the discrepancy between the

constrained-optimum and the market equilibrium is likely to depend, in general, on preference

assumptions.

Next, we propose a class of homogeneous preferences with a balanced growth condition on

work effort that delivers a simple and intuitive class of variations. The allowable variations on

consumption for the planner in this case are as follows. At any point in time, the planner can

lower the agent’s current consumption and increase it in all future periods and contingencies

by a constant proportional amount. This type of variation is not available to the agent

through the asset market, which opens up the possibility for the planner to find Pareto-

improvements. The optimal savings distortions are dictated by the difference between the

absolute and proportional variations on consumption available to the agent and planner,

respectively.

Proportional changes in consumption leave incentives unaltered precisely because prefer-

ences are homogeneous and satisfy a balanced growth condition. We believe that the simplicity

and plausibility of these variations is a desirable feature of the preferences we propose. They
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lead to simple intuitions, transparent theoretical results and a tractable framework for quan-

titative analysis.

Within this class of variations the resulting optimality condition is extremely simple. It

requires that the ratio of current utility to lifetime utility always equal the ratio of current

consumption to the expected present discounted value of lifetime consumption. We term this

simple optimality condition the Golden Ratio. It can also be stated as a Modified Inverse

Euler equation in a form that resembles the standard Inverse Euler equation that was derived

as a necessary condition for optimality for the variations considered in Farhi and Werning

(2006).

These preferences have three advantages. First, they are flexible enough to allow us to

study the respective impact of two crucial parameters: the coefficient of relative risk aver-

sion and the intertemporal elasticity of substitution. Second, although they feature non-

separability of consumption and work effort, these preferences call for no savings distortions

in the absence of recurring uncertainty – just as the separable preferences studied in the lit-

erature on the Inverse Euler equation. Third, they lead to a very clean separation result for

welfare gains between an idiosyncratic part and an aggregate part.

Towards the end of the paper, we perform some quantitative welfare exercises that compute

the gains from optimal savings distortions. We follow Farhi and Werning (2006), where we

developed a new approach to analyze the welfare gains from distorting savings and moving

away from letting individuals save freely. The method forgoes a complete solution for both

consumption and work effort, and focuses, instead, entirely on consumption. We restrict our

attention to the case of geometric random walk consumption and constant work effort. Our

main goal is to isolate and compare the effects that the intertemporal elasticity of substitution

and the coefficient of relative risk aversion have on the size of the intertemporal wedge and the

welfare gains from optimal distortions. Thus, although we borrow from Farhi and Werning

(2006), the focus in that paper was on the generality in terms of the stochastic process for

the baseline allocation of consumption. Instead, our focus here is on a set of stylized baseline

allocations that allow us to clearly separate the impact of different preferences assumptions.

Welfare gains depend crucially on four factors: the concavity of the production function,

the coefficient of relative risk aversion γ, the intertemporal elasticity of substitution ρ−1 and

the variance of consumption growth σ2
ǫ .

As in Farhi and Werning (2006), we find that gains are decreasing in the concavity of the

production function. In partial equilibrium with a linear production function, gains can be

extremely large. By contrast, for an endowment economy welfare gains are zero under our

hypothesis of a geometric random walk consumption process. For the intermediate case of a

neoclassical production function, welfare gains are greatly mitigated.
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The steady state of the optimal allocation with saving distortions feature lower capital and

a higher interest rate then the corresponding steady state of the market equilibrium, where

the precautionary savings motive is at work. The variance of consumption growth and the

coefficient of relative risk aversion control the strength of this motive and hence both the

interest rate increase and the decrease in capital between the baseline steady state and the

optimal steady state. The intertemporal elasticity of substitution on the other hand controls

the speed of the transition: the higher ρ−1, the faster the transition, and the higher the welfare

gains. The configuration of these three parameters influences greatly the magnitude of the

welfare gains.

2 Constrained Efficiency vs. Free Savings

In this section we present a two period economy to introduce the basic concepts and set the

stage for the rest of the paper. Against this background, in the next section we turn to an

infinite horizon economy with recursive preferences.

Consider a simple economy with two periods t = 0, 1. There is no uncertainty at t = 0

but at the beginning of period t = 1 a state s1 ∈ S is realized; we assume S is finite, with #S

values and p(s) is the probability of outcome s1 = s. The agent consumes in the first period

and consumes and works in the second. Let c0 denote consumption in the first period and

(c1(s), Y1(s)) denote consumption and output as a function of the realized state in the second

period.

We adopt a general specification of preferences and denote the agent’s utility functional

over allocations by U(c0, c1(·), Y1(·)). Thus, U takes a scalar c0 and two functions c1(·) and

Y1(·) as inputs. As special benchmark case, one can assume the state s1 determines the

worker’s productivity and that the worker has an expected utility function u(c0, c1, e1) over

consumption in both periods and work effort e1(s) ≡ Y1(s)/s. Then U(c0, c1(·), Y1(·)) =

E[u(c0, c1(s), e1(s))].

Technology is linear

c0 + q
∑

s∈S

c1(s)p(s) ≤ q
∑

s∈S

e1(s)p(s) (1)

for some q > 0. Here, R = 1/q is the rate of return between periods 0 and 1.
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2.1 Free Savings

First-best. The first-best allocation simply maximizes utility subject only to technology equation (1).

At this allocation the first-order conditions for consumption are given by

Uc0(c0, c1(·), Y1(·)) = µ,

Uc1(s)(c0, c1(·), Y1(·)) = qp(s)µ,

where µ is the multiplier on the resource constraint. The first-order conditions for consumption

can be combined into the following generalized Euler equation:

1 =
1

q

∑

s∈S

Uc1(s)(c0, c1(·), Y1(·))

Uc0(c0, c1(·), Y1(·))
. (2)

In the expected utility case this equation specializes to the familiar Euler equation

1 = RE

[

uc1(c0, c1(s), e1(s))

uc0(c0, c1(s), e1(s))

]

. (3)

Competitive equilibrium with free savings. The Euler equation equation (2) also ob-

tains in a free market economy where individuals have access to saving at rate of return R.

For example, suppose that agents live in an incomplete market setting, facing the budget

constraints

c0 + k1 ≤ 0, (4a)

c1(s) ≤ Y1(s) + Rk1 ∀s ∈ S. (4b)

Then the first-order conditions for the agent’s utility maximization problem with respect to

savings k1 delivers equation equation (2).1 Note that the budgets constraints equation (4a)–

equation (4b) imply the resource constraint equation (1).

A general set-up. More generally, under what conditions does equation (2) hold? Consider

the abstract optimization problem of maximizing utility U(c0, c1(·), Y1(·)) subject to

(c0, c1(·), Y1(·)) ∈ F

for some constraint set F . This nests as special cases both the first-best planning problem—

with F = Ffb defined by the resource constraint equation (1)—and the agent’s optimization

1 Indeed, this result holds more generally, even if we assume that there are some taxes and transfers that
are a function of output or the state, so that we impose c1(s) ≤ T (Y1(s), s)+Y1(s)+Rk1 in the second period.
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in the free market setting—with F = Ffm defined by the budget constraints equation (4a)–

equation (4b). Suppose that starting from any allocation (c0, c1(·), Y1(·)) ∈ F it is possible to

define simple variations that maintain the allocation in F :

(

c0 − q∆, c1(·) + ∆, Y1(·)
)

∈ F , (5)

for all ∆ in neighborhood of ∆ = 0. That is, a feasible allocation can be perturbed by decreas-

ing (increasing) consumption in the first period, while increasing (decreasing) consumption in

parallel across all states s in the second period. Note that the same output allocation Y (s),

and hence effort Y (s)/s, is maintained for all states s.

Property equation (5) holds for both the first-best planning problem and the agent’s op-

timization problem in a free-market setting. More generally, whenever it is satisfied at an

optimum, then the generalized Euler condition equation (2) must be satisfied.

Second-best with private information. Consider next a private-information setting,

where the state s is observed only by the agent. By the revelation principle, the best the

planner can do is to request a report r ∈ S from the agent regarding s ∈ S and assign con-

sumption and output in the second period accordingly. Without loss in generality, one can

assume that telling the truth is optimal.

Let r = σ(s) denote a reporting strategy for the agent, mapping true states of the world

s ∈ S into reports r ∈ S. Let Σ denote the set of all strategies. The truth-telling strategy is

denoted by σ∗(s) = s for all s ∈ S. An agent using strategy σ ∈ Σ obtains (cσ
1 (s), Y σ

1 (s)) =

(c1(σ(s)), Y1(σ(s))) in state s. Incentive-compatibility can be expressed as

U(c0, c1(·), Y1(·)) ≥ U(c0, c
σ
1(·), Y

σ
1 (·)) ∀σ ∈ Σ. (6)

The second-best planning problem corresponds to the case where F = Fsb defined by equation (1)

and equation (6). A second-best optimum maximizes utility subject to selecting an allocation

in Fsb.

In this general context, typically property equation (5) with Fsb fails. The next proposition,

however, provides an example where it holds.

Proposition 1. Let U(c0, c1(·), Y1(·)) = Û
(

c0, c1(·)−v(Y1(·), ·)
)

where Û monotone in its sec-

ond argument. Then property equation (5) holds for Fsb for all feasible allocations (c0, c1(·), Y1(·)) ∈

Fsb.

Proof. The result follows by noting that incentive compatibility equation (6) holds if and only

if

c(s) − v(Y (s), s) ≥ c(r) − v(Y (r), s) ∀r, s ∈ S,
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which is independent of c0 and invariant to the operation of exchanging c(·) for c(·) + ∆ for

any ∆.

If property equation (5) holds for all ∆ (not just in a neighborhood around ∆ = 0) then

it is without loss of generality to allow agents to freely save, in the sense that the planner

can allow the agent to select the value for ∆ in this variation. It follows that, for the class

of preferences identified by the proposition, the planner can allow the agent to save freely,

without distortions, at the technological rate of return R = 1/q. The economic interpretation

of the quasi-linear specification c − v(Y ; s) is that there are no income effects on work effort.

Savings from the first period do not then affect the choice between work effort and earnings.

As a result, they do not disturb incentive compatibility and property equation (5) holds.

An equivalent way of postulating property equation (5) is as follows. Any direct mechanism

(c0 − q∆, c1(r) + ∆, Y1(r)) essentially offers the agent an ex-post menu in each state s equal

to the loci of points (c1(·) + ∆, Y1(·)). In each state s, the agent selects an optimal point

on this menu, (c∗1, Y
∗
1 ). Property equation (5) then amounts to assuming that this optimum

Y ∗
1 is invariant to ∆. Proposition 1 then identifies the largest class of preferences that can

guarantee that this is the case for all feasible allocations.

2.2 Distorted Savings

From the previous subsection, we know that the variations that result from free savings do

not generally preserve incentive compatibility. In this situation, what can we say about the

desirability of free savings? We approach this question in two complementary ways.

A Lagrangian approach. The first is to attach Lagrange multiplier µ(σ) on the incentive

constraints equation (6), leading to an optimality condition that includes the effect that ∆

may have on the incentive constraints:

∂

∂∆
L =

(

1 +
∑

σ∈Σ

µ(σ)

)(

−qUc0(c0, c1(·), Y1(·)) +
∑

s∈S

Uc1(s)(c0, c1(·), Y1(·))

)

−
∑

σ∈Σ

µ(σ)

(

−qUc0(c0, c1(σ(·)), Y1(σ(·))) +
∑

s∈S

Uc1(s)(c0, c1(σ(·)), Y1(σ(·)))

)

= 0.

Note that if all the incentive constraints are slack, so that µ(σ) = 0 for all σ ∈ Σ, then

this expression boils down to the Euler equation equation (2). Otherwise, the Euler equa-

tion equation (2) will typically not hold. Indeed, if one signs the term −qUc0(c0, c1(σ(·)), Y1(σ(·)))+
∑

s∈S Uc1(s)(c0, c1(σ(·)), Y1(σ(·))) for different strategies σ and characterizes which multipliers

are nonzero, then one can sign the intertemporal wedge required in the Euler equation.
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Feasible variations. Another line of attack is to find a different variation, that does pre-

serve incentive compatibility, without changing work effort. This leads to an intertemporal

optimality condition that does not involve Lagrange multipliers. One can then compare this

optimality condition with the Euler equation equation (2).

The idea is to find a variation function δ(∆, s) on consumption in the second period that

depends on the realized state s so that:

(

c0 + ∆, c1(·) + δ(∆, ·), Y1(·)
)

∈ F , (7)

in a neighborhood of ∆ = 0. At an optimum we must then have that

Uc0(c0, c1(·), e1(·)) +
∑

s∈S

Uc1(s)

(

c0, c1(·), e1(·)
)

·
∂

∂∆
δ(0, s) = 0 (8)

For example, with expected utility and u(c0, c1, e1) = û(c0, c1) − h(e1) a variation that is

feasible is to set δ(∆, s) so that

û
(

c0 + ∆, c1(s) + δ(∆, s)
)

= û
(

c0, c1(s)
)

+ A(∆) ∀s ∈ S (9)

where A(∆) is such that
∑

s∈S

(∆ + δ(∆, s)) p(s) = 0. (10)

This variation shifts utility in a parallel way across states s ∈ S. It preserves incentive

compatibility because these parallel shifts cancel each other out on both sides of equation (6).

At an optimum A′(0) = 0 so that

∂

∂∆
δ(0, s) = −

ûc0(c0, c1(s))

ûc1(c0, c1(s))
. (11)

It then follows that

1 =
∑

s∈S

ûc0(c0, c1(s))

ûc1(c0, c1(s))
p(s), (12)

which is known as the Inverse Euler equation. By Jensen’s inequality, this condition is in-

compatible with the Euler equation equation (3), except in the special case where there is no

uncertainty in the marginal rate of substitution ratio ûc0(c0, c1(s))/ûc1(c0, c1(s)). Without un-

certainty the optimality of no intertemporal distortions follows from Atkinson-Stiglitz’s (1976)

result on uniform taxation, which requires separability between consumption and effort, as

assumed in this case.
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Logarithmic balanced-growth preferences. Within this class of preferences, an inter-

esting special case with several advantages is the logarithmic balanced growth specification

u(c0, c1) = log(c0) + β log(c1). In this case the variations induce parallel multiplicative shifts

over second-period consumption:

δ(∆, s) = δ̄(∆)c1(s), (13)

for some δ̄(∆). Intuitively, incentives are provided by proportional rewards and punishments.

If consumption is scaled up or down by a constant it does not change the incentives for work

effort.

In this case, unlike the preference class described in Proposition 1, income effects for

work effort are nonzero. Proportional variations are feasible precisely because of the balanced

growth condition, that implies that income and substitution exactly cancel each other.

This logarithmic case seems economically appealing, because of the primitives and the

simple proportional variations it permits. One simple generalization of this case, is to the

expected utility case where

u(c0, c1, e1) = ũ(c0) + βũ(c1)h(e1) (14)

and where ũ(c) = c1−α/(1 − α). This class of preferences also satisfies a balanced growth

condition. It is easily verified that once again the feasible variations are proportional in

consumption, as in equation (13).

In the next section we extend this class to an infinite horizon economy. Preferences that

lead to the feasibility of proportional variations turn out to be very tractable. In particular,

they lead to a very simple optimality condition. Within a class of baseline allocations, the

optimum is easily identified and its welfare improvements quantified.

3 Recursive Preferences

We now turn to an infinite horizon and introduce a class of recursive preferences that are

homogeneous in the consumption process and separate risk aversion from the intertemporal

elasticity of substitution as in (Epstein and Zin, 1989). Consumption and work-effort are not

assumed to be separable, but satisfy a balanced-growth condition.

For this class of preferences, we provide simple variations on consumption that maintain

incentive compatibility. The variations involve proportional shifts in consumption that do not

affect incentives. Both the homogeneity and the balanced-growth specification on preferences

are crucial for this result.
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Based on these variations we derive the intertemporal optimality condition at the end of

the section. The condition is shown to be incompatible with allowing agents to freely save. In

this way, an intertemporal wedge on savings is present at the optimal allocation. Thus, some

form of distortions on savings are required in any tax implementation of the optimum. In

the next section we explore the welfare gains from adhering to this condition for some simple

cases.

Our preferences do not satisfy the separability condition required for Atkinson-Stiglitz’s

uniform taxation theorem. Despite this, it is optimal in the absence of uncertainty to set the

intertemporal distortions to zero. Thus, for these preferences, optimal distortions in savings

arise from ongoing idiosyncratic uncertainty, just as in the additively separable expected-utility

case that leads to the Inverse Euler condition.

3.1 Moral Hazard

We build on the following simple static moral-hazard model. At the beginning of the period,

the agent first exerts effort a, which is not observable by the planner. The state of nature

s is then realized from the distribution P (s|a). The planner observes s and gives the agent

consumption c(s). The agent’s expected utility is given by

E
[

U
(

c(s)h(a)
)

|a
]

.

We suppose the agent’s utility U(c) is a power function. This specification satisfies the stan-

dard balanced-growth assumption, for which income and substitution effects cancel out. An

equivalent reformulation of the agent’s objective is

U
(

Ch(a)
)

where

C ≡ CE[c(s)|a] = U−1
(

E[U
(

c(s)
)

|a]
)

represents the certainty-equivalent obtained from the random consumption c(s).

For our dynamic setting, we proceed analogously. At the start of period t the worker

chooses effort at−1, then the state st is realized and observed and the planner allocates con-

sumption c(st). Effort affects the distribution of state st and lowers utility by a factor h(at) ≤ 1

with h(0) = 1. Preferences are given by the recursion

v̂a(s
t−1) = C(st)h(a(st−1))
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where

C(st) ≡ CE
[

W
(

c(st), v̂a(s
t)
)

| a(st−1), st−1
]

, (15)

represents lifetime-certainty-equivalent consumption, with

CE = R−1ER (16)

is the certainty equivalent function and

W (c, v̂) ≡ u−1((1 − β)u(c) + βu(v̂)) (17)

is a time aggregator, mapping current consumption and future utility into a constant-consumption

equivalent.

With this representation of preferences, one can easily see the analogy with the simple

static setting. By a change of variables, however, the same preferences can be represented

in the following, more convenient, way. For any given effort plan a ≡ {a(st)}, an allocation

c ≡ {c(st)} implies a process for lifetime utility {va(s
t)} that solves

va(s
t) = W

(

c(st), CE[h(a(st))va(s
t+1) | a(st), st]

)

∀t, st. (18)

Incentive compatibility of c, v and a∗ requires a∗ to maximize initial lifetime utility

va∗(s0) ≥ va(s0) ∀a. (19)

Since preferences are recursive, this implies that a∗ maximizes continuation utility after any

history

va∗(st) ≥ va(s
t) ∀a, t, st, (20)

Otherwise, a plan that follows a∗ up to st and then switches to the actions prescribed by a at

and after st would be preferable to a∗. That is, Bellman’s Principle of Optimality applies to

the agent’s dynamic program.

We now consider variations in the consumption process that maintain incentive compati-

bility. After history sτ the consumption sequence is just shifted proportionally, and this does

not affect incentives. At sτ we shift consumption to compensate, so that incentives are not

affected in period τ and earlier periods. The key property we use is homogeneity of W (c, v′)

and of CE.

Proposition 2. Assume u(x) = x1−ρ/(1−ρ) and R(x) = x1−γ/(1−γ) with ρ, γ ≥ 0. Suppose
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that c, v and a∗ satisfy conditions (18) and (19). Fix a history sτ . Consider the variation:

c̃(st) =



















∆ c(sτ ) for st = sτ

∆′c(st) for t > τ and st ≻ sτ

c(st) otherwise

Then for any ∆′ there exists a ∆ such that c̃, ṽ and a∗ satisfy conditions (18) and (19).

Proof. Let ṽ be such that

ṽa(s
t) = ∆′va(s

t) for t > τ and st ≻ sτ

ṽa(s
t) = va(s

t) for t ≥ τ and st � sτ

so that condition equation (18) with c̃ is met for all st with t ≥ τ with st 6= sτ . Now set ∆ so

that

va∗(sτ ) = W
(

∆c(st), ∆′CE[h(a∗(sτ ))va∗(sτ+1) | a∗(sτ ), sτ ]
)

.

so that ṽa∗(sτ ) = va∗(sτ ). Using recursion equation (18), the inequality equation (20) evaluated

at sτ implies

CE
[

h(a∗(sτ ))va∗(sτ+1) | a∗(sτ ), sτ
]

≥ CE
[

h(a(sτ ))va(s
τ+1) | a(sτ ), sτ

]

,

so that

ṽa∗(sτ ) = W
(

∆c(st), ∆′CE[h(a∗(sτ ))va∗(sτ+1) | a∗(sτ ), sτ ]
)

≥ W
(

∆c(st), ∆′CE[h(a(sτ ))va(s
τ+1) | a(sτ ), sτ ]

)

= ṽa(s
τ ).

Hence, we have that

ṽa(s
τ ) ≤ ṽa∗(sτ ) = va∗(sτ ) for all a,

a∗ is optimal from period τ onward and delivers the same continuation utility as previously.

For any plan a define an alternative plan â that switches to a∗ from period τ onward:

â(st) = a(st) for t < τ and â(st) = a∗(st) for t ≥ τ . The result above implies that

ṽa(s0) ≤ ṽâ(s0) = vâ(s0) ≤ va∗(s0) = ṽa∗(s0). (21)

That is, â dominates a and yields the same utility as without the variation, which in turn

is dominated by the recommended action a∗ which also yields the same utility as after the

variation. This establishes that a∗ remains incentive compatible.
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3.2 Private Information: A Dynamic Mirrleesian Economy

Here we build on Mirrlees’ static private information model. At the beginning of the period,

the agent privately observes productivity θ. The agent then makes a report r and the planner

gives the agent consumption c(r) as function of the report. The agent’s expected utility is

E
[

U
(

c(r)h(r, θ)
)

|σ
]

.

where r = σ(θ) is the agent’s reporting strategy. We suppose the agent’s utility U(c) is

a power function. This specification satisfies the standard balanced-growth assumption, for

which income and substitution effects cancel out.

For our dynamic setting, we assume the following structure of uncertainty. At the begin-

ning of the period a state st is realized and publicly observed by the agent and planner. Then

θt is realized and observed only by the agent. To simplify we assume that st and θt take on

a finite number of values. After observing the shock θt the agent makes a report rt regarding

it to the planner. We collect the variables observed by the planner by zt = (st, rt) and their

histories by zt = (st, rt).

For any reporting strategy σ

vσ(zt, θt) = W
(

c(zt), CE[h(zt+1, θt+1)vσ(zt+1, θt+1) | σt+1, z
t, θt]

)

, (22)

where zt+1 = (st+1, σt+1(z
t, θt+1)).

We let σ∗ denote the truth-telling strategy σ∗
t (z

t, θt) = θt. Incentive compatibility requires

vσ∗(z0, θ0) ≥ vσ(z0, θ0) ∀σ. (23)

The proof of the next result is in the appendix.

Proposition 3. Assume u(x) = x1−ρ/(1 − ρ) and R(x) = x1−γ/(1 − γ). For any allocation

(c, h, v) satisfying (22) and (23), fix a history ẑτ and consider the following variation:

c̃(zt) =



















∆ c(zτ ) for zt = ẑτ

∆′c(zt) for t > τ and zt ≻ ẑτ

c(zt) otherwise

Then for any ∆′ there exists a ∆ such that (c̃, h, ṽ) satisfy (22) and (23) if: (a) Conditional

on st, the realization of θt is independent and identically distributed; or (b) ρ = 1 so that

u(x) = log x.

We do not impose restrictions on the stochastic process for the observable state st. Re-
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garding the unobservable shock, the requirement in part (a) does not restrict the process

for productivity, and can, in particular, accommodate any degree of persistence. What this

requirement does ensure is that the states that affect the evolution of shocks are observable,

that there are no hidden states. Although this implies that the observable state st is a suf-

ficient statistic for (st, θt), in the sense that Pr(st+n, θt+n|st, θt) = Pr(st+n, θt+n|st), optimal

allocations typically depend on the history θt. In this way, the history of reports rt is rele-

vant. False past reports may then affect the allocation the agent receives, but do not affect

the planner’s capacity to predict the agent’s future productivity. This tractability allows us

to find variations that maintain incentive compatibility.

In the logarithmic case, ρ = 0, the crucial property is that

W (∆c, ∆′v′) = ∆1−β(∆′)βW (c, v′).

Hence, setting ∆1−β(∆′)β = 1 in the variations does not affect the utility delivered by any

reporting strategy. As a result, no assumption on the structure of uncertainty is required.

3.3 The Intertemporal Optimality Condition: The Golden Ratio

or The Modified Inverse Euler Equation

Let us say that an allocation is efficient if it minimizes the present value of consumption

E
∑∞

t=0 qtct and delivers a given lifetime utility level in an incentive compatible way. Then

any efficient allocation cannot be improved by the variations above. That is, these variations

cannot reduce the discounted value of consumption.

Fix a node ŝτ . Increase consumption at ŝτ proportionally by ∆, and increase consumption

at all nodes that follow it, st ≻ ŝτ , proportionally by ∆′. This variation is permitted by the

propositions above. Indexing the variation by ∆′ and solving for ∆ = δ(∆′) that keeps utility

constant, we consider the minimization

min
∆′



δ(∆′)c(ŝτ ) + ∆′
∑

t>τ,st

qtc(st) Pr[st|a∗, ŝτ ]



 . (24)

The first-order necessary and sufficient condition for optimality is simply

ct
∑∞

s=0 qsEt[ct+s]
=

(1 − β)u(ct)

u(vt)
, (25)

Thus, optimality requires the ratio of current to lifetime utility (1 − β)u(ct)/u(vt) to be

equated to the ratio of current consumption with its expected present value ct/
∑∞

s=0 qsEt[ct+s].
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Rearranging, the ratio of current consumption and utility must be equated to the ratio of the

present value of consumption with lifetime utility:

ct

(1 − β)u(ct)
=

∑∞
s=0 qsEt[ct+s]

u(vt)
. (26)

Both conditions formalize the optimality of a form of consumption smoothing. We call them

the Golden Ratio conditions.

The next result reexpresses the optimality condition above in a way that is more suitable

for comparison with the optimality condition – the Euler equation – that results when agents

can save freely at the interest rate q−1. We call this condition the Modified Inverse Euler

equation.

Proposition 4. Define

xt+1 ≡
ht+1vt+1

CEt[ht+1vt+1]
. (27)

(a) At the optimum in (24) the following condition holds:

1 =
q

β
Et

[

x1−ρ
t+1

u′(ct)

u′(ct+1)

]

. (28)

(b) If agents can borrow and save freely at the interest rate q−1, then the allocation must satisfy

the following Euler equation:

1 =
β

q
Et

[

xρ−γ
t+1

u′(ct+1)

u′(ct)

]

. (29)

Savings will generally be distorted at the optimal allocation, since the Modified Inverse

Euler equation and the Euler equation are incompatible. Thus, in any implementation of the

planner’s optimum, agents cannot be allowed to borrow and save freely at the interest rate

1/q.

Suppose that the optimality condition equation (28) holds. Define the intertemporal wedge

τ by solving for the factor (1− τ) required so that the Euler equation (29) holds when 1/q is

replaced with (1 − τ)/q:

1 − τ = Et

[

xρ−γ
t+1

u′(ct+1)

u′(ct)

]

Et

[

x1−ρ
t+1

u′(ct)

u′(ct+1)

]

(30)

so that

τ = −Cov

(

u′(ct+1)

u′(ct)

x1−γ
t+1

x1−ρ
t+1

,
u′(ct)

u′(ct+1)
x1−ρ

t+1

)

(31)

Importantly, the intertemporal wedge τ is zero whenever there is no uncertainty. For the case

of certainty, Atkinson-Stiglitz’s uniform-taxation result requires preferences to be separable
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between consumption and leisure. However, in our recursive specification preferences are not

separable. Interestingly, despite this, the absence of resolution of uncertainty between two

periods implies that there should be no intertemporal distortion on savings there. In other

words, although the separibility conditions required by Atkinson-Stiglitz are violated, their

uniform commodity taxation result holds under certainty with our preferences. Thus, optimal

distortions can be entirely attributed to ongoing idiosyncratic uncertainty, just as in the

additively separable expected-utility case that leads to the Inverse Euler equation (Golosov

et al., 2003).

Note that if γ = 1 one gets that τ > 0, guaranteeing that the intertemporal distortion

on savings is positive. Another interesting case is when ct is a geometric random walk at the

baseline allocation, so that ct+1 = εt+1ct. It then follows that vt is proportional to ct, and

τ > 0. We shall study this case in more detail in the next section.

3.4 Constant Absolute Risk Aversion Preferences

In this subsection, we show that for a particular class of preferences with constant absolute

risk aversion the optimal distortion on savings is zero. In a static moral-hazard setting, a

convenient specification of preferences is

E[U(c − h(a))|a] (32)

where U(x) = −e−αx is exponential. Equivalently, one can express ex ante utility as

CE[c − h(a)|a] (33)

In our dynamic setting, we generalize this specification as follows. Let u(x) = −e−ρx and

R(x) = −e−γx and consider the recursion

va(s
t) = W

(

c(st), CE[va(s
t+1) − h(a(st)) | a(st), st]

)

(34)

where W (c, v′) = u−1((1−β)u(c)+βu(v′)) and CE = R−1ER. Incentive compatibility requires

inequalities (19) as before. The next proposition is proved in the appendix.

Proposition 5. Assume u(x) = −e−ρx and R(x) = −e−γx. Suppose we have c, v and a∗
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satisfying conditions (18) and (19). Fix a history sτ . Consider the variation:

c̃(st) =



















c(sτ ) + ∆ for st = sτ

c(st) + ∆′ for t > τ and st ≻ sτ

c(st) otherwise

Then for any ∆′ there exists a ∆ such that c̃, ṽ and a∗ satisfy conditions (18) and (19).

As above, we say that an allocation is efficient if it minimizes the present value of con-

sumption
∑

t,st

qtc(st) Pr[st|a∗] (35)

required to deliver a given lifetime utility level in an incentive compatible way. Then any

efficient allocation cannot be improved by the variations above. That is, these variations

cannot reduce the net present value of consumption.

Indexing the variation at any node by ∆′ and solving for ∆ that keeps utility constant we

can write the minimization subproblem as in (24). In this case, the first-order necessary and

sufficient condition coincides with the condition obtained if the worker could save and borrow

freely at a market interest rate q−1.

Proposition 6. The optimum in (24) corresponds to the economy where agents can borrow

and save freely at the interest rate q−1. The following Euler equation holds:

u′(ct) =
β

q
u′(CE(ct+1 − ht)). (36)

Hence, for the CARA preferences under consideration, the constrained-optimality condi-

tion and the Euler equation coincide.

4 Welfare Gains: Quantitative Explorations

In this section, we investigate the welfare gains from the optimal savings distortions derived in

Section 3. The analysis proceeds along the lines of Farhi and Werning (2006). We focus on the

case where the baseline allocation features a geometric random walk consumption process while

work effort is constant. The analysis in this section covers both to the private-information

and moral-hazard settings.

Assumption 1. The baseline allocation {ct, ht} is such that ht = h̄ is constant and ct is a

geometric random walk ct+1 = ctεt+1 with εt+1 identically and independently distributed over

time.

17



4.1 Partial equilibrium

Let us first assume that there is a linear technology to transfer resources from period to period

with a gross rate of return R = q−1.

The following proposition shows that if the baseline allocation is a pure geometric random

walk and ht is constant, then the cost minimizing allocation attainable through our variations

is also a pure geometric random walk.

Proposition 7. Suppose that Assumption 1 holds. Then the cost minimizing allocation {c̃t}

is obtained by multiplying {ct} by a deterministic drift g−1:

c̃t = αg−tct

with

g ≡
(

qβ̂−1E[ε]
(

E
[

ε1−γ
])− 1−ρ

1−γ

)
1

ρ

and α ≡

(

1 − qg−1E[ε]

1 − qg−ρE[ε]

)
1

1−ρ

.

where β̂ = βh̄1−ρ.

Hence the optimal allocation c̃t attainable from the baseline allocation through our varia-

tions is such that c̃t also follows a geometric random walk, but with a different drift g−1E[ε] in-

stead of E[ε] for the baseline allocation. This new drift ensures that the constrained-optimality

condition—a necessary and sufficient condition for optimality within our class of variations—

holds at the optimal allocation c̃t. Note that β and h̄1−ρ play exactly similar roles in this

formula: when ht = h̄ is constant, h̄ acts as a discount factor. This effect is compounded with

β to produce an effective discount factor β̂ = βh̄1−ρ. It is also useful to note that if g > 1,

then α > 1 and vice versa.

Increasing g while maintaining the value of qE[ε] is exactly equivalent to decreasing the

effective discount factor β̂. In other words, the higher g, the lower the effective discount factor

β̂ that makes the constrained-optimality condition hold.

Note also that given qE[ε] and g, the intercept α depends only on the intertemporal

elasticity of substitution parameter ρ. The risk aversion parameter γ only shifts the effective

discount factor β̂ required for the constrained-optimality condition to hold.

Economists are used to thinking of the discount factor as a primitive of the model, and

as the equilibrium interest rate as an outcome. However, contrary to interest rates, discount

factors are not directly observable. In fact, most of the evidence concerning discount factors

comes from equilibrium values of interest rates. Therefore, in the formula for the intercept

α, we prefer to think of the equilibrium interest rate q as the primitive and to solve for the

effective discount factor β̂ that makes the constrained-optimality condition hold given g and

qE[ε].
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Intertemporal wedge. We can compute the optimal wedge in closed form:

τ =
−Cov(ε, ε−γ)

E[ε]E [ε−γ]
.

Note that the wedge is always positive. Its magnitude in this example is independent of ρ

and is entirely determined by γ, that is by the agent’s attitude toward risk. This highlights

that the origin of the wedge is the combination of two factors: the riskiness of tomorrow’s

consumption from today’s perspective and the agent’s risk aversion. Absent shocks, there

would be no reason to distort savings and the Euler equation would hold. Similarly, if the

agent were risk neutral, there would be no reason to distort savings and the wedge would also

be zero.

We can re-express the wedge using the formalism of cumulants: let m be the moment

generating function of log (ε) :

m(θ) = log E[exp(θ log (ε))] = log E[εθ]

The nth cumulant of log (ε) is given by κn ≡ dnm
dθn (0). Cumulants are closely related to

moments, as we see from the first four: κ1 = µ1, κ2 = µ2, κ3 = µ3, κ4 = µ4 − 3(µ2)
2. The

notation is standard, with µ1 denoting the conditional mean of log(ε) and µn, for n ≥ 1 ,

denoting the nth central conditional moment.

Using this notation we derive a formula that ties the wedge to the higher order moments

or cumulants of log(ε):

− log(1 − τ) = m(1) + m(−γ) − m(1 − γ) =
∞
∑

n=2

κn/n! (1 + (−γ)n − (1 − γ)n)

In the lognormal case, which we explore below, the higher cumulants κn of log(ε) are zero for

n ≥ 3 and we obtain a closed form for the wedge which depends only on the variance σ2
ε of

log(ε): − log(1 − τ) = γσ2
ε .

Outside of the lognormal case, higher cumulants are non-zero and higher moments of the

distribution of consumption growth rates affect the wedge. For example, we can analyze the

impact of skewness κ3. The contribution of this term to the wedge is given by κ3
γ(1−γ)

2
. Hence

negative skewness – κ3 – decreases the wedge if γ < 1 and increases the wedge if γ > 1.

Welfare gains. The costs k̃ and k of the baseline and the optimal allocations are easily

computed to be

k̃ =
αc

1 − qg−1E[ε]
.

19



and

k =
c

1 − qE[ε]

Combining these two expressions, we can derive the relative reduction in expected discounted

cost allowed by our variations.

Proposition 8. Suppose that Assumption 1 holds. Then the relative expected discounted cost

reduction achieved by going from the baseline allocation to the optimal allocation is

k

k̃
=

(

1 − qg−ρE[ε]

1 − qE[ε]

)
1

1−ρ
(

1 − qg−1E[ε]

1 − qE[ε]

)1− 1

1−ρ

(37)

By homogeneity, the ratio of the cost of the optimal allocation to the cost of the baseline

does not depend on the current level of consumption c. Given the cost of the baseline allocation,

or in other words, given qE[ε], g is a sufficient statistic for the welfare gains attainable through

the variations. It is therefore instructive to perform some comparative statics with respect to

g.

Given qE[ε] and g, the relative expected cost reduction depends only on the intertemporal

elasticity of substitution parameter ρ. This is a direct consequence of the fact noted above

that given g and qE[ε], the intercept α does not depend on the risk aversion parameter.

At g = 1, the reduction in cost is 0. This is because in this case, the constrained-optimality

condition holds at the baseline allocation. Moreover, a Taylor expansion around g = 1 reveals

that the cost reduction is zero at the first order in g and increasing in g :

k

k̃
≃ 1 +

1

2

qE[ε]

(1 − qE[ε])2
ρ(g − 1)2.

When g goes to infinity on the other hand, the cost reduction goes to 1
1−qE[ε]

. Taking g to

infinity is like taking the effective discount factor to 0. In that case, the optimal allocation for

∆−1 = 1 is

c̃t = 0 for t ≥ 1 and c̃0 = c0.

In the limit where ρ goes to 1, we get

g =
q

β
E[ε] and

k

k̃
=

β−1 − 1

β−1 − g
g− β

1−β

which is exactly the expression derived in Farhi and Werning (2006).

Euler at the baseline. Given the importance of g, we now investigate its main determinants

in the interesting case where the Euler equation holds at the baseline allocation. That the
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Euler equation holds at the baseline means that

c−ρ
t = βq−1E

[

c−ρ
t+1h̄

1−ρvρ−γ
t+1

] (

E
[

v1−γ
t+1

])

γ−ρ
1−γ

which can be re-expressed as

1 = βq−1h̄1−ρE
[

ε−γ
] (

E
[

ε1−γ
])

γ−ρ
1−γ (38)

The effective discount factor β̂ = βh̄1−ρ can then be determined:

β̂ = q (E [εγ])−1 (E
[

ε1−γ
])

ρ−γ
1−γ

Knowing β̂, the sufficient statistic g for the welfare gains in formula (37) can be derived

using the formula in Proposition (7).

Proposition 9. If Assumption 1 holds and the Euler equation holds at the baseline allocation,

then

g =
(

E[ε]E
[

ε−γ
] (

E
[

ε1−γ
])−1

) 1

ρ

.

The optimal change in drift g is positively related to the wedge τ : g = (1 − τ)−1/ρ. The

wedge reflects the strength of the precautionary savings motive: the higher the wedge, the

larger the gains from frontloading consumption. The higher the intertemporal elasticity of

substitution, the more agents are willing to accept reductions in consumption in the future

for inceased consumption today. The two effects combined determine the optimal change in

drift g.

When ε is lognormally distributed log ε ∼ N(µ, σ2
ε), then the wedge τ, the change in drift

from the baseline allocation g and the welfare gains can be computed in terms of the mean µ

and the variance σ2
ε of consumption growth:

Corollary 1. Suppose that ε is lognormally distributed log ε ∼ N(µ, σ2
ε), then τ and g are

given by

τ = 1 −
E [ε1−γ]

E[ε]E [ε−γ]
= 1 − exp

[

−γσ2
ε

]

≃ γσ2
ε .

and

g = exp

(

γ

ρ
σ2

ε

)

≃ 1 +
γ

ρ
σ2

ε .

As we already discussed, the wedge is increasing in the degree of risk aversion γ and in the

magnitude of the shocks σ2
ε . Moreover, γ and σ2

ε affect the wedge in a complementary way.

When shocks are lognormal, the formula takes the remarkably simple form τ = 1−exp [−γσ2
ε ] .
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The crucial parameter g is associated with γ
ρ
σ2

ε . The higher the variance of the shocks, and

the higher risk aversion, the higher the required change in drift g between the baseline and

the optimum. Similarly, the higher the intertemporal elasticity of substitution ρ−1, the higher

g.

Intuitively, this can be seen by taking the limit as ρ goes to 0, so that consumption at

different dates become perfect substitutes. The Euler equation and the optimality condition

are incompatible in the limit where ρ goes to 0, since the required change in drift g goes to

infinity. Note however that in this case, the intercept α converges to 1− q (E [ε−γ])
−1 E [ε1−γ].

Intuitively, when ρ goes to 0, it is optimal to front-load consumption more and more. In

the limit, it is best to deliver all consumption in the first period so that agents are entirely

shielded from consumption risk. The cost reduction is non trivial. Indeed, we have:

lim
ρ→0

k

k̃
=

1 − q exp
[

µ + (1 − 2γ)σ2
ε

2

]

1 − q exp
[

µ + σ2
ε

2

] ≃ 1 +
qeµ

1 − qeµ
γσ2

ε

The gains are increasing in the intertemporal elasticity of substitution ρ−1: intuitively, as

consumption at different dates become more substitutable, it becomes easier to compensate

the agent for a decrease in the drift in consumption in order to lower his exposure to risk. In

fact, we can derive a simple formula for small σε:

k

k̃
≃ 1 +

qeµ

(1 − qeµ)2

γ2

ρ
σ4

ε . (39)

From this formula it is apparent that at the first relevant order, risk aversion and the in-

tertemporal elasticity of substitution enter the formula for the gains only through γ2

ρ
.

Quantitative exploration. Figure 1 and 2 plot the reciprocal of the relative cost reduction

using equation equation (37) as a measure of the relative welfare gains as a function of σ2
ε .

The figures use an empirically relevant range for σ2
ε which is taken to vary between 0 and

0.007. The value of qE[ε] is set to 0.97.

In figure 1, the intertemporal elasticity of substitution ρ−1 is set to 1 and the different

curves correspond to different values of the relative risk aversion coefficient γ ranging from

1 to 3 in increments of 0.5. The gains are increasing in γ: Increasing γ by 10% is exactly

equivalent to increasing σ2
ε by 10%.

In Figure 2, the relative risk aversion coefficient γ is set to 1, and the different curves

correspond to different values of the intertemporal elasticity of substitution ρ−1 ranging from

0.5 to 1 in increments of 0.1. The gains are increasing in ρ−1. Increasing ρ−1 by 10% is roughly

equivalent to increasing σ2
ε by 5%.
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Figure 1: Welfare gains as a function of σ2
ε . Baseline consumption is a geometric random walk

and ht is constant. The Euler equation holds. The different curves correspond to different
values of σ̂ ranging from 1 to 3.

Two lessons emerge from our simple exercise. First, welfare gains range from small to

potentially large. Second, they depend a lot on three parameters of the model: γ, ρ and σ2
ε .

The coefficient of relative risk aversion γ and the variance of consumption growth σ2
ε play an

especially important role over the range consistent with the available empirical evidence con-

cerning these two parameters. The intertemporal elasticity of substitution ρ−1 is important,

but its influence over the empirically relevant range is somewhat less dramatic. This is both

because the range for this parameter is smaller and because ρ−1 enters with a smaller power

than γ and σ2
ε as can be seen from (39).

4.2 General equilibrium

Up to now we have restricted the analysis to partial equilibrium. Alternatively, one can think

of the results we have derived so far as applying to an economy facing some given constant rate

of return to capital. In Farhi and Werning (2006), we argue that neglecting general equilibrium

effects magnifies the welfare gains from reforming the consumption allocation. Here we explore

the joint influence of risk aversion and the intertemporal elasticity of substitution on general

equilibrium welfare gains.

Planning problem. Consider a baseline allocation {ct, ht}. In order to setup the planning

problem, it is useful to introduce the following notation: let Υ({ct, ht}, ∆−1) be the set of

allocations c̃t attainable through our variations from the baseline allocation {∆−1ct, ht}. Note

that the shifted allocation {∆−1ct, ht} is incentive compatible and delivers a value lifetime

utility increased by a multiplicative factor ∆−1 to the agent. In general equilibrium, the
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Figure 2: Welfare gains as a function of σ2
ε when baseline consumption is a geometric random

walk and ht is constant. The different curves correspond to different values of ρ−1 ranging
from 0.5 to 0.9.

planning problem can be set-up as

W (K0) = max
{c̃t,K̃t+1}

ṽ0 (40)

subject to

ṽt = ht

(

(1 − β)c̃1−ρ
t + β

(

E[ṽ1−γ
t+1 ]

)
1

1−γ

)

1

1−ρ

for t = 0, 1, ...

{c̃t} ∈ Υ({ct, ht}, ∆−1),

K̃t+1 + E[c̃t] ≤ F (K̃t, Ñt) + (1 − δ)K̃t for t = 0, 1, ...

K̃0 = K0.

Necessary and sufficient conditions for this problem are:

c̃ρ
t =

1

βh1−ρ
t

[

FK(K̃t, Ñt) + (1 − δ)
]Et





ṽt+1

(

Et[ṽ
1−γ
t+1 ]

)
1

1−γ

c̃ρ
t+1



 for t = 0, 1, ...

Of course, we have W (K0) = ∆−1W where W is the welfare achieved at the baseline

allocation and ∆−1 is the maximand in ( 40).

Note that we can always decompose c̃t = c̃i
tC̃t with the property that E[c̃i

t] = 1 and

C̃t = E[c̃t], where the superscript i stands for idiosyncratic. Since our variations allow for

deterministic parallel shifts in consumption, we have that {c̃t} ∈ Υ({ct, ht}, ∆−1) for some
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∆−1 if and only if {c̃i
t} ∈ Υ({ci

t, ht}, ∆−1).

The analysis of this planning problem is tackled in full generality in Farhi and Werning

(2006), where we also explore non geometric random walk baseline allocations: we provide

cases where (40) can be separated into two different planning problems, one involving only

the idiosyncratic part of the allocation c̃i
t and the other only the aggregate part C̃t. Here

instead, we focus on the special case were the baseline allocation features geometric random

walk consumption with constant ht.

Geometric random walk with constant ht. Suppose that the baseline allocation features

geometric random walk consumption with constant ht and constant aggregate consumption:

ct+1 = ctεt+1 and ht = h̄,

where εt+1 is independently and identically distributed across agents and time and with

E[εt+1] =1. In other words, Assumption 1 holds and E[ε] =1.

Define

βε ≡ β
(

E
[

ε1−γ
])

1−ρ
1−γ and β̂ε ≡ h̄1−ρβε.

Proposition 10. Suppose that Assumption 1 holds and E[ε] =1. The solution to (40) is

c̃t = C̃tc
i
t where C̃t and ∆−1 are the solutions of the standard neoclassical growth model with

CRRA preferences:
(∆−1C0)

1−ρ

1 − ρ
=
(

1 − β̂ε

)

max
{C̃t,K̃t+1}

∞
∑

t=0

β̂t
ε

C̃1−ρ
t

1 − ρ
(41)

subject to

K̃t+1 + C̃t ≤ F (K̃t, Ñt) + (1 − δ)K̃t for t = 0, 1, ...

K̃0 = K0.

The property that the idiosyncratic component of the baseline allocation is already optimal

relies crucially on the assumption of geometric random walk with constant ht. Intuitively, as

we saw above, the planner only wants to affect the drift of {c̃i
t}, which is impossible in the

case of an endowment economy where 1 = E[c̃i
t].

In the case where the baseline allocation is a geometric random walk with constant ht, we

can therefore restrict our attention to the aggregate part of the allocation: all the potential

welfare gains come from modifying the aggregate component of the allocation.

Euler equation at the baseline. Suppose that in addition, the baseline allocation repre-

sents a steady state where the Euler equation holds.
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ρ−1 = 0.5 ρ−1 = 0.75 ρ−1 = 1
δWPE δWGE r̃SS δWPE δWGE r̃SS δWPE δWGE r̃SS

γ = 1 2.02% 0.09% 3.82% 1.56% 0.10% 3.82% 1.07% 0.10% 3.82%
γ = 2 3.62% 0.34% 4.55% 5.15% 0.37% 4.55% 6.53% 0.38% 5.28%
γ = 3 7.03% 0.69% 5.28% 9.85% 0.75% 5.28% 12.33% 0.79% 5.28%

Table 1: Welfare Gains.

Let qSS = (1 − δ + FK(KSS, NSS))−1 be the inverse of the steady state interest rate. In

that case, we can derive as above an expression for β̂ε:

β̂ε = qSS

(

E
[

ε−γ
])−1

E
[

ε1−γ
]

(E [ε])ρ−1 = qSS (E [ε])ρ E [ε1−γ]

E [ε] E [ε−γ]
.

That the baseline allocation is a steady state implies in particular that E[ε] =1. We can

therefore simplify the formula for β̂ε:

β̂ε = qSS
E [ε1−γ]

E [ε] E [ε−γ]
.

The optimal allocation will eventually reach a steady state where the inverse of the interest

rate q̃SS is given by q̃SS = β̂ε.

When ε is lognormally distributed log ε ∼ N(µ, σ2
ε), then we can compute β̂ε and q̃SS in

terms of µ and σ2
ε . We get the remarkably simple formula:

q̃SS = β̂ε = qSS exp
(

−γσ2
ε

)

. (42)

Equation (42) shows that the new interest rate is higher than the initial interest rate (that

is, K̃SS < KSS) by a factor given by exp (γσ2
ε ). The higher risk aversion and the variance

of consumption growth, the higher the increase in steady state interest rates, and the higher

the reduction in steady state capital stock. Because the baseline allocation has no trend, the

intertemporal elasticity of substitution does not affect the level of the new interest rate q̃−1
SS.

The only thing our variations allow in this case is to correct the externality created by the

precautionary savings motive, the intensity of which is controlled only by the relative risk

aversion γ and the variance of consumption growth σ2
ε .

As we just discussed, the coefficient of relative risk aversion γ and the variance of con-

sumption growth σ2
ε control the decrease in capital between the baseline steady state and the

optimal steady state. The intertemporal elasticity of substitution, on the other hand, controls

the speed of the transition: the higher ρ−1, the faster the transition, and the higher the welfare

gains.
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We now compute the welfare gains in general equilibrium for the neoclassical production

function F (K, N) = KαN1−α + (1 − δ)K. We set α = 0.36, δ = .09. We set the variance

of consumption growth at the highest end of the values we used in our partial equilibrium

computations: σ2
ε = 0.007. We take the initial interest rate at the baseline allocation to be

rSS = q−1
SS − 1 = 3.07%. We perform the computations of welfare gains for three different

values of the intertemporal elasticity of substitution ρ−1—0.5, 0.75 and 1—and three different

values for the relative risk aversion coefficient γ—1, 2 and 3. For each configuration of these

parameters, we report the welfare gains in partial equilibrium δWPE if the interest rate were

fixed at rSS, the welfare gains in general equilibrium δWGE and the interest rate r̃SS at the

new steady state for the optimal allocation.

An important general lesson from this exercise, as pointed out in Farhi and Werning

(2006), is that taking into account the concavity of the production function—that is, taking

into account general equilibrium effects—greatly mitigates the welfare gains. This is because

in general equilibrium, reducing the drift of the consumption process—the optimal policy

under partial equilibrium—yields lower and lower gains as consumption and capital go down

over time and the equilibrium interest rate increases. As a consequence, it is optimal to reduce

the drift differential. Eventually, under the optimal allocation, the drift differential goes to 0

and the economy reaches the new steady state with a higher interest rate and a lower capital

stock.

Even though the partial equilibrium welfare gains can be as high as 12.33% , the general

equilibrium welfare gains never go above 0.79%. The highest gains are reached for the highest

value of the intertemporal elasticity of substitution ρ−1 = 1 and the highest value of the

relative risk aversion coefficient γ = 3. For those parameter values, the new interest rate is

substantially higher than the initial interest rate: r̃SS = 5.28% whereas rSS = 3.07%. Despite

this large difference in interest rates and therefore in steady state capital stocks, the general

equilibrium welfare gains are moderate at 0.79%.

5 Conclusion

This paper studied constrained efficient allocations in private information economies. We

focused on how the optimal savings distortions featured in those allocations depend on indi-

viduals’ preferences. We introduced a recursive class of preferences that allowed a separation

of risk aversion from intertemporal substitution, and derived general results on the nature of

optimal distortions.

We then performed a quantitative investigation for a class of geometric random walk

consumption allocations. We showed that savings distortion depend only on risk aversion and
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the variance of the shocks to consumption. However, the welfare gains from these distortions

depend on both parameters, although we found greater sensitivity to risk aversion.

The purpose of the quantitative exercise was to illustrate the role preferences, but it was

limited in terms of the consumption allocations it considered. In Farhi and Werning (2006)

we undertake a comprehensive exploration of savings distortions and welfare gains for general

consumption processes.

Appendix

Proof of Proposition 3

Part (a). The proof parallels the proof of Proposition 2 closely. First note that since prefer-

ences are recursive an incentive compatible allocation satisfies

vσ∗(zt, θt) ≥ vσ(zt, θt) ∀zt, θt, σ, (43)

so that truth-telling maximizes continuation utility after any history of reports.

Let

ṽσ(zt, θt) = ∆′vσ(zt, θt) for t > τ and zt ≻ ẑτ

ṽσ(zt, θt) = vσ(zt, θt) for t ≥ τ and zt � ẑτ

so that condition equation (22) with c̃ is met for all θt with t ≥ τ with θt 6= θτ . Let ∆ solve

vσ∗(ẑτ , θτ ) = W
(

∆c(ẑτ ), ∆′CE[h(zτ+1, θτ+1)vσ∗(zτ+1, θτ+1) | σ∗
t+1, ẑ

τ , θτ ]
)

.

So that vσ∗(ẑτ , θτ ) = ṽσ∗(ẑτ , θτ ) for all θτ . Using the recursion equation (22), the inequal-

ity equation (43) evaluated at ẑτ implies

CE[∆′(sτ+1)h(zτ+1, θτ+1)vσ∗(zτ+1, θτ+1) | σ∗
t+1, ẑ

τ , θτ ]

≥ CE[h(zτ+1, θτ+1)vσ(zτ+1, θτ+1) | σt+1, ẑ
τ , θτ ]

for all histories θτ+1 and reporting plans σ. Hence,

ṽσ∗(zτ , θτ ) = W
(

∆c(zτ ), CE[∆′(sτ+1)h(zτ+1, θτ+1)vσ∗(zτ+1, θτ+1) | σ∗
t+1, ẑ

τ , θτ ]
)

≥ W
(

∆c(sτ ), ∆′(sτ+1)CE[h(zτ+1, θτ+1)vσ(zτ+1, θτ+1) | σt+1, ẑ
τ , θτ ]

)

= ṽσ(zτ , θτ ).
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Collecting the inequalities, we have shown that in period τ

ṽσ(zτ , θt) ≤ ṽσ∗(zτ , θt) = vσ∗(zτ , θt) for all zτ , θt, σ,

Thus, σ∗ is optimal from period τ onward and delivers the same continuation utility as pre-

viously.

For any plan σ define an alternative plan σ̂ that starts at σ and then switches to σ∗ from

period τ onward: σ̂t(z
τ , θt) = σt(z

τ , θt) for t < τ and σ̂t(z
τ , θt) = σ∗

t (z
τ , θt) for t ≥ τ . The

result above implies that

ṽσ(z0, θ0) ≤ ṽσ̂(z0, θ0) = vσ̂(z0, θ0) ≤ vσ∗(z0, θ0) = ṽσ∗(z0, θ0). (44)

That is, σ̂ dominates σ and yields the same utility as without the variation, which in turn

is dominated by the recommended action σ∗ which also yields the same utility as after the

variation. This establishes that σ∗ remains incentive compatible.

Part (b). Note that

ṽσ(zt, θt) = ∆′vσ(zt, θt) for t > τ and zt ≻ ẑτ

ṽσ(zt, θt) = vσ(zt, θt) for t ≥ τ and zt � ẑτ

Set ∆ = (∆′)−β so that

ṽσ(ẑτ , θτ ) = h(zτ , θτ )W
(

∆c(ẑτ ), ∆′CE[vσ∗(zτ+1, θτ+1) | σ∗
t+1, ẑ

τ , θτ ]
)

= h(zτ , θτ )W
(

c(ẑτ ), CE[vσ∗(zτ+1, θτ+1) | σ∗
t+1, ẑ

τ , θτ ]
)

= vσ(ẑτ , θτ ).

It follows by backward induction that

ṽσ(zt, θt) = vσ(zt, θt) for all st, t ≤ τ .

In particular, ṽσ(z0, θ0) = vσ(z0, θ0), so that the result follows from incentive compatibility of

the original allocation.

Proof of Proposition 5

Let ṽ be such that

ṽa(s
t) = va(s

t) + ∆′ for t > τ and st ≻ sτ

ṽa(s
t) = va(s

t) for t ≥ τ and st � sτ
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so that condition equation (18) with c̃ is met for all st with t ≥ τ with st 6= sτ . Now set ∆ so

that

va∗(sτ ) = W
(

c(st) + ∆, CE[va∗(sτ+1) + ∆′ − h(a∗(sτ )) | a∗(sτ ), sτ ]
)

= W
(

c(st) + ∆, ∆′ + CE[va∗(sτ+1) − h(a∗(sτ )) | a∗(sτ ), sτ ]
)

.

so that ṽa∗(sτ ) = va∗(sτ ). Using recursion equation (18), the inequality equation (20) evaluated

at sτ implies

CE[va∗(sτ+1) − h(a∗(sτ )) | a∗(sτ ), sτ ] ≥ CE[va(s
τ+1) − h(a(sτ )) | a(sτ ), sτ ],

so that

ṽa∗(sτ ) = W
(

c(st) + ∆, ∆′ + CE[va∗(sτ+1) − h(a∗(sτ )) | a∗(sτ ), sτ ]
)

≥ W
(

c(st) + ∆, ∆′ + CE[va(s
τ+1) − h(a(sτ )) | a(sτ ), sτ ]

)

= ṽa(s
τ ).

Hence, we have that

ṽa(s
τ ) ≤ ṽa∗(sτ ) = va∗(sτ ) for all a,

a∗ is optimal from period τ onward and delivers the same continuation utility as previously.

For any plan a define an alternative plan â that switches to a∗ from period τ onward:

â(st) = a(st) for t < τ and â(st) = a∗(st) for t ≥ τ . The result above implies that

ṽa(s0) ≤ ṽâ(s0) = vâ(s0) ≤ va∗(s0) = ṽa∗(s0). (45)

That is, â dominates a and yields the same utility as without the variation, which in turn

is dominated by the recommended action a∗ which also yields the same utility as after the

variation. This establishes that a∗ remains incentive compatible.

Proof of Proposition 6

The equation that defines ∆ as a function of ∆
′

is:

−(1 − β)u(ct)(e
−ρ∆ − 1) = βu(CE(vt+1 − ht))(e

−ρ∆
′

− 1).

From this equation we get that at ∆
′

= 0:

d∆

d∆′
= −

β

1 − β

u(CE(vt+1 − ht))

u(ct)
.
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At the optimum, we must have that at ∆
′

= 0:

d∆

d∆′
= −

1

r

where r is defined by r = q−1 − 1. Therefore, the following optimality condition must hold:

(1 − β)u(ct) = βru(CE(vt+1 − ht)).

Noting that u(c) = −1
ρ

u
′

(c), this condition is equivalent to:

(1 − β)u′(ct) = βru′(CE(vt+1 − ht))

which is the optimality condition in the problem where the agents can borrow and save freely

at the interest rate r. Transforming these two equivalent conditions into the Euler equation

in the text is straightforward.

Consider the constrained efficient allocation. We can rewrite the equation that defines ∆

as a function of ∆
′

in the following way:

−∆
′

=
1

ρ
log
(

1 + r(1 − exp(−ρ∆))
)

This defines −∆
′

as a concave function of ∆. Therefore, ∆
′

≥ −r∆. Now consider giving the

agents the constrained efficient allocation and allowing them to not only choose a reporting

strategy but also to borrow and save between history sτ and subsequent periods. The following

variations are then available to the agents:

c̃(st) =



















c(sτ ) + ∆ for st = sτ

c(st) + r∆ for t > τ and st ≻ sτ

c(st) otherwise

Since ∆
′

≥ −r∆, whatever reporting strategy the agent chooses when these variations are

permissible, he will always achieve lower utility than under the same reporting strategy if he

were given the variations allowed for the planner. Since the constrained efficient allocation

is incentive compatible, he cannot achieve higher utility than under the constrained efficient

allocation without any additional saving or borrowing. Generalizing that argument to any

history sτ , this proves the proposition.
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Proof of Proposition 7

When consumption is a geometric random walk and ht is constant, it is possible to derive

lifetime utility in closed form:

Lemma 1. Suppose that Assumption 1 holds. Then vt = Ah̄ct with

A =

(

1 − β

1 − βh̄1−ρ (E [ε1−γ ])
1−ρ
1−γ

) 1

1−ρ

The key feature that delivers this result is the homogeneity of agents’ preferences. For a

given h̄, a proportional shift in consumption today moves consumption in every future period

by a proportional factor, thereby shifting lifetime utility in consumption equivalent units by

the same multiplicative factor. The constant disutility h̄ on the other hand, acts exactly like

a discount factor. Hence utility in consumption equivalent units vt is directly proportional

to consumption and to the disutility from effort or work. This is reminiscent of the static

settings in section 2.1 and 2.2.

It is then easy to guess an verify that the solution proposed in Proposition 7 both preserves

the level of utility and satisfies the constrained-optimality condition.

Proof of Proposition 10

Before proving this proposition, it is useful to establish the following Lemma.

Lemma 2. Consider the allocation in Proposition 10. We can write ṽt = Ṽtv
i
t where vi

t is the

lifetime utility derived from {ci
t, h̄} : vi

t = Ah̄ci
t with A =

(

1−β

1−β̂ε

)
1

1−ρ

and

Ṽ 1−ρ
t

1 − ρ
= (1 − β̂ε)

∞
∑

s=t

β̂s−t
ε

C̃1−ρ
t

1 − ρ

Let us now prove Proposition 10. We only need to check that

c̃ρ
t =

1

βh̄1−ρ
[

FK(K̃t, Ñt) + (1 − δ)
]Et





ṽt+1

(

Et[ṽ
1−γ
t+1 ]

)
1

1−γ

c̃ρ
t+1





holds. Decomposing c̃1−ρ
t into the product C̃tc

i
t and using Lemma 2, we can express this

condition as

1 =





β̂εC̃
−ρ
t+1

[

FK(K̃t, Ñt) + (1 − δ)
]

C̃−ρ
t





−1

.
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This is the standard Euler equation that is trivially verified by the solution of the neoclas-

sical growth problem (41). This concludes the proof of Proposition 10.

33



References

Diamond, Peter A. and James A. Mirrlees, “A Model of Social Insurance With Variable
Retirement,” Working papers 210, Massachusetts Institute of Technology, Department of
Economics 1977.

Epstein, Larry. and Stan. Zin, “Substitution, Risk Aversion and the Temporal Behavior
of Consumption and Asset Returns: A Theoretical Framework,” Econometrica, 1989, 57,
937–968.

Farhi, Emmanuel and Iván Werning, “Capital Taxation: Quantitative Explorations of
the Inverse Euler Equation,” 2006. Mimeo.

Golosov, Mikhail, Narayana Kocherlakota, and Aleh Tsyvinski, “Optimal Indirect
and Capital Taxation,” Review of Economic Studies, 2003, 70 (3), 569–587.

Ligon, Ethan, “Risk Sharing and Information in Village Economics,” Review of Economic
Studies, 1998, 65 (4), 847–64.

Rogerson, William P., “Repeated Moral Hazard,” Econometrica, 1985, 53 (1), 69–76.

34


