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1. Introduction

Estimation and simulation of medium-sized macroeconometric models has increasingly

attracted the attention of economists who study monetary policy and the business cycle.1

This paper contributes to that effort by focusing on a model in which sticky information is

the key imperfection that causes output to deviate from its long-run classical benchmark.

In this otherwise standard dynamic stochastic general equilibrium model, information is

updated sporadically by firms setting prices, workers setting wages, and consumers setting

the level of spending.

Solution and estimation of a general equilibrium model with sticky information raises

several thorny technical issues. We begin this paper outlining those issues and proposing

solutions. Our first contribution is methodological. It consists of two propositions that

provide an algorithm that efficiently solves medium-sized sticky-information models, derives

their impulse response functions, and calculates their likelihood in a few seconds.

We then proceed to estimate the model using five key time-series: inflation, output, hours

worked, wages, and an interest rate. The second contribution of this paper is to propose,

implement, and compare two estimation strategies for the model: maximum likelihood and

a Bayesian approach. The two strategies yield similar results.

We thus obtain estimates of how much information stickiness is needed to explain busi-

ness cycle dynamics. We find that about a fifth of workers and consumers update their

information sets every quarter, so the mean information lag for both household members is

approximately five quarters. By contrast, firms are estimated to be much better informed

when setting prices: about two-thirds update their information set every quarter.

The model also produces an estimated variance decomposition, which shows how much

of the variation in each variable is attributable to each of the five shocks in the model. For

inflation, over 80 percent of the variance is attributable to the monetary policy shock. For

output growth and hours worked, the monetary policy shock is important, but so is the

shock to aggregate demand. The other three shocks–to productivity, the goods markup,

and the labor markup–are estimated to explain only a small fraction of the variance of

inflation, output growth, and hours worked.

2. The model of the economy
1See, for instance, Smets and Wouters (2003) and Levin, Onatksi, Williams and Williams (2006)
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We study a general-equilibrium model with monopolistic competition and no capital

accumulation, familiar in the literature on monetary policy. We assume a continuum of

households with preferences that are additively separable and iso-elastic in consumption

and leisure. Households live forever and wish to maximize expected discounted utility while

being able to save and borrow by trading bonds between themselves. We think of households

as having two members: a worker and a consumer. The workers sell labor to firms in a set

of segmented markets for different labor varieties, where each worker is the sole provider of

each variety. The consumers buy a continuum of varieties of goods from firms, which they

value according to a Dixit-Stiglitz aggregator. There is a continuum of firms, each selling one

variety of goods under monopolistic competition. Each firm operates a decreasing returns

to scale technology in total labor input, which is a Dixit-Stiglitz aggregate of the different

varieties of labor. Finally, monetary policy follows a Taylor rule.

Less common is our assumption on information. There are three agents making decisions

in this economy: consumers, workers, and firms. We assume that each period, a fraction

δ of consumers, a fraction ω or workers, and a fraction λ of firms, randomly drawn from

their respective populations, obtain new information and calculate their optimal actions.

This assumption of sticky information can be justified by costs of acquiring, absorbing and

processing information (Reis, 2004, 2006) or by appealing to epidemiology (Carroll, 2002).2

We leave the detailed presentation of the model, the definition of an equilibrium and its

log-linearization to the appendix. Here, we discuss the 5 key reduced-form relations. The

first relation is the Phillips curve or aggregate supply curve:

pt = λ
∞X
j=0

(1− λ)jEt−j
∙
pt +

β(wt − pt) + (1− β)yt − at
β + ν(1− β)

− βνt
(ν − 1)[β + ν(1− β)]

¸
. (1)

The price level (pt) depends on past expectations of: its current value, real marginal costs,

and desired markups.3 Marginal costs are higher: the higher are the real wages paid to

workers (wt− pt), the more is produced (yt) because of decreasing returns to scale (β < 1),

and the lower is aggregate productivity (at). The desired markup falls with the elasticity

of substitution across goods varieties (νt), which we allow to vary randomly over time.

2The optimal behavior of these inattentive agents and their interaction in markets raise some interesting
challenges. We discuss these in Mankiw and Reis (2006).

3All variables with a t subscript refer to log-linearized values around their non-stochastic steady state.
Without any subscript are fixed parameters and steady state values.
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Unexpected shocks to any of these three variables only raise prices by λ since only this

share of price-setters is aware of the news.

The second relation is the IS curve:

yt = δ
∞X
j=0

(1− δ)jEt−j (yn∞ − θRt) + gt, (2)

where the long-run equilibrium output is yn∞ = limi→∞Et (yt+i), and the long real interest

rate is Rt = Et

hP∞
j=0 (it+j −∆pt+1+j)

i
. Higher expected future output raises wealth

and increases spending, while higher expected interest rates encourage savings and lower

spending. The impact of interest rates on spending depends on the intertemporal elasticity

of substitution θ. We denote by gt aggregate demand shocks, which in the model correspond

to changes in government spending, but could also be modelled as changes in the desire for

leisure. The higher is δ, the larger the share of informed consumers that respond to shocks

immediately.

Next comes the wage curve:

wt = ω
∞X
j=0

(1−ω)jEt−j
∙
pt +

γ(wt − pt)

γ + ψ
+

lt
γ + ψ

+
ψ (yn∞ − θRt)

θ(γ + ψ)
− ψγt
(γ + ψ)(γ − 1)

¸
. (3)

The five determinants of nominal wages are split into the five terms on the right-hand

side. First, nominal wages rise one-to-one with prices since workers care about real wages.

Second, the higher are real wages elsewhere in the economy the higher is demand for a

worker’s variety of labor so the higher the wage she will demand. Third, the more labor

is hired (lt) the better it must be compensated since the marginal disutility of working

rises. Fourth, higher wealth discourages work through an income effect, and higher interest

rates promote it by giving a larger return on saved earnings today. The product of ψ,

the Frisch elasticity of labor supply, and θ, the intertemporal elasticity of substitution,

determine the strength of this intertemporal labor supply effect. Fifth and finally, if the

elasticity of substitution across labor varieties (γt) rises, workers’ desired markup falls so

they lower their wage demands. If many workers are informed (ω is high), wages are

instantly very responsive to changes in these determinants, whereas otherwise wages only

respond gradually over time.
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The fourth relation is a standard production function:

yt = at + βlt, (4)

where β measures the extent of decreasing returns to scale from using more labor. The fifth

and final relation is the Taylor rule:

it = φy(yt − ynt ) + φp∆pt − εt, (5)

where yt − ynt is the output gap, or the difference between actual output and its level if all

agents were attentive, and εt are policy disturbances.

These 5 equations give the equilibrium values for output, wages, prices, labor, and

nominal interest rates as a function of shocks to aggregate productivity growth, aggregate

demand, goods markups, labor markups, and monetary policy. We assume that each of

these shocks follows an autoregressive process of order 1 with coefficients ρ∆a, ρg, ρν , ργ ,

and ρε, and is subject to innovations e
∆a
t , egt , e

ν
t , e

γ
t , and eεt , that are independent and

normally distributed with standard deviations σ∆a, σg, σν , σγ , and σε.

3. Solving for the economy’s dynamics

Our model fits into the general class of linear rational expectations models for which

there are several ready-to-use solution algorithms. However, none of them is particularly

useful to solve the sticky-information model. The model involves both an infinite number of

past expectations of the present through sticky information, as well as present expectations

of variables at an infinite number of future dates through intertemporal smoothing. This

double infinity implies that the state-space of the model has an infinite dimension, which

current algorithms cannot handle.4

We have developed a general algorithm that can solve this and much larger general-

equilibrium models with sticky information in a few seconds. It is based on the following

result, which comes from using a method of undetermined coefficients and exploiting the

recursiveness of the model’s dynamics:

Proposition 1. Letting s ∈ S = {∆a, g, ν, γ, ε} denote the different shocks, then pt =

4Recently, Wang and Wei (2006) proposed an ingenious method to adapt existing algorithms to solve
sticky-information models. We leave a systematic comparison of their method with the one in this paper for
future research.
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P
s∈S

P∞
n=0 p̂n(s)e

s
t−n where p̂n(s) is a scalar measuring the impact of shock s at lag n on

the price level. The undetermined coefficients solve the second-order difference equation:

An+1p̂n+1(s)−Bnp̂n(s) + φpp̂n−1(s) = Cn(s) for n = 0, 1, 2, ... (6)

with boundary conditions : p̂−1 = 0 and lim
n→∞ (p̂n − p̂n−1) = 0.

The coefficients An and Bn do not depend on the shock, while Cn(s) does; all depend on

the parameters and are given in the appendix.

The appendix describes our algorithm to solve this difference equation and finds, in corollary

1, the solution for the other variables in the model as a function of the price dynamics.

Figure 1 shows the responses of inflation, the output gap, and labor to one-standard-

deviation shocks to monetary policy, aggregate productivity growth, and aggregate de-

mand.5 In response to a monetary expansion, output and labor increase as the economy

enters a boom. Inflation rises gradually, following the hump-shaped pattern that has been

found in empirical work. Noticeably, inflation is more persistent than output, another ro-

bust feature of the data that many monetary models have trouble reproducing. The model

fits well the facts on how the economy responds to monetary policy shocks.

In response to a positive technological shock, inflation falls but converges rapidly to its

previous level. Interestingly positive productivity shocks in this economy lead to recessions,

just as in sticky price models (Gali, 1999). However, this is not a robust feature of the

sticky-information model: for different parameter values, we can get a boom following

a technological improvement. Finally, a positive innovation to aggregate demand raises

inflation, output, and labor.

4. Estimating the model

We use U.S. quarterly data from 1954:3 to 2006:1 for the non-farm business sector. We

measure wages using the total compensation per hour and labor input using total hours.

We divide output and hours by the total civilian non-institutional population and deflate

nominal variables using the implicit price deflator for the nonfarm business sector. Changes

in the log of this deflator are our measure of inflation, and the effective federal funds rate

measures the nominal interest rate.
5The parameters are set at the maximum-likelihood estimates in Table 1, described in the next section.
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Using these data, we build series for de-meaned inflation, output growth, nominal inter-

est rates, real wage growth, and hours. These are our observables, collected in the vector

xt=(∆pt,∆yt, lt, it,∆(wt − pt))
0. The sticky-information general-equilibrium model implies

that xt =
P∞

i=0Φiet−i where et is the vector of shocks (e
ε
t , e

∆a
t , egt , e

ν
t , e

γ
t )
0 and the Φi are

5x5 matrices of coefficients, found in proposition 1 and corollary 1. The question we ask in

this section is how to estimate the vector of parameters of the model using these data.

We estimate our model using both maximum likelihood and Bayesian methods.6 The

key input into these methods is the likelihood function, which in standard dynamic models

with a state-space solution can be evaluated using the Kalman filter. The solution of the

model using proposition 1 does not have a convenient state-space representation, so we use

instead the following result:

Proposition 2. Given a sample of data of length T , let X be the 5T×1 vector that vertically
stacks the xt, and let Ω be the 5T×5N matrix that vertically stacks [Φj−1 Φj−2 ... Φ0 Φ1

... ΦN ] from j = 1 to j = T . Finally, let Σ be a diagonal matrix with (σ2ε, σ
2
∆a, σ

2
g, σ

2
ν , σ

2
γ)

in the diagonal and IN be an identity matrix of size N . The log-likelihood function is:

L = −2.5T ln(2π)− 0.5 ln ¯̄Ω(IN ⊗Σ)Ω0¯̄− 0.5X 0 ¡Ω (IN ⊗ Σ)Ω0¢−1X (7)

The main difficulty with evaluating this expression is that inverting the large 5T×5T matrix
Ω (IN ⊗ Σ)Ω0 is both slow and subject to potentially large numerical errors. The appendix
shows how to evaluate (7) without inverting this matrix by instead solving a recursive linear

system of equations. This provides an algorithm to evaluate the log-likelihood function

quickly and reliably.

Turning to estimation, we set the value of 9 out of the 20 parameters. Namely, we

set the intertemporal elasticity of substitution to 1 (the King-Plosser-Rebelo, 1988, utility

function) to guarantee that hours are stationary, the Frisch elasticity of labor supply to

4, and the labor share to 2/3. Using the production function, we can then measure the

aggregate productivity shocks exactly, and estimate that ρ∆a = .350 and σ∆a = .010. We

set φy = 0.33 and φp = 1.24 to match Rudebusch’s (2002) estimates of the Taylor rule, and

using these we estimate that ρε = .918 and σε = .012.

We start our estimation of the model by finding the set of parameters that maximize
6See An and Schorfheide (forthcoming) and Canova (forthcoming) for recent surveys on the estimation

of dynamic stochastic general equilibrium models.
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the likelihood function. Table 1 presents the estimates. Curiously, we estimate a value

for the elasticity of substitution between goods that is higher and a value for the elasticity

of substitution between labor that is lower than what is typically assumed. The implied

price markup is only 3% and the implied wage markup is 31%, whereas usually these are

calibrated to values between 5% and 20%. A second feature to note is that most estimates

are quite precise, with tight confidence intervals.

Our main focus of interest are the measures of information stickiness. We estimate that

firms are relatively attentive, updating their information about every 4 months, whereas

consumers and workers are quite inattentive, only updating their plans about every 16

months. We test the null hypothesis that both members of a household, the consumer and

the worker, update their information at the same time. The likelihood ratio statistic is

.089, which has a p-value of .23 in the χ21 distribution. The data do not reject this plausible

hypothesis.7

Table 2 presents the variance decompositions associated with these estimates. Notice-

ably, the variance of inflation, output, and hours is almost entirely accounted for solely by

monetary and aggregate demand shocks. Shocks to productivity and price markups are rel-

atively unimportant for these three variables, but play a role on the fluctuations of interest

rates and real wages. Wage markups are on average large, but their fluctuations explain

little of the variance of any of the variables.

Next we estimate our model using Bayesian methods instead. We see the main virtue

of these methods as allowing us, through the priors, to focus on an area of the parameter

space that we are particularly interested in. In our case, this area corresponds to the typical

calibrations of these models. For instance, we pick priors for the average substitutability of

goods and labor that imply average markups that are with 95% confidence between 6% and

21%, the values commonly assumed in the literature. For the parameters of inattentiveness,

we instead opt for a flat prior in order to impose as little as possible on the data. The

priors for the correlation and the variance of shocks are similar to those on the literature,

although they are more diffuse than usual.

Table 1 contains the results, which turn out to be similar to the maximum-likelihood

7With δ = ω, the wage curve can be re-written instead as:

wt = δ
∞

j=0

(1− δ)jEt−j pt +
γ(wt − pt) + lt − ψγt/(γ − 1)

γ + ψ
+

ψ (yt − gt)

θ(γ + ψ)
. (8)
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results. As expected, the difference between the markups on goods and labor is not as

extreme as before, as our prior heavily penalizes those extreme results. Also as expected,

our diffuse priors lead to wider credible sets. However, the estimates of inattentiveness are

relatively similar: consumers and workers update their information every 5 to 6 quarters,

whereas firms update every 1.5 quarters. Table 2 shows the variance decompositions using

these Bayesian estimates. These are similar to the maximum-likelihood conclusions, with

the exception of shocks to goods markups, which now account for a larger share of the

variance of all variables.

5. Conclusion

In Mankiw and Reis (2002) we proposed a new way to model sluggish macroeconomic

adjustment. In this paper we have explored how this approach can be used in an empirical

dynamic stochastic general equilibrium model.

One lesson from our estimation (and also emphasized in Mankiw and Reis, 2006) is that

information stickiness is pervasive: it applies to firms, workers, and consumers. Some recent

research has estimated empirical dynamic stochastic general equilibrium models with sticky

information on the part of firms, assuming fully informed workers and consumers.8 Our

results suggest that these models were misspecified; this misspecification can potentially

explain reported poor fits of the model. Although more work is needed before reaching a

final verdict, we believe the assumption of sticky information remains a promising tool for

applied macroeconomists.

8See Trabandt (2003) and Keen (2003) for early attempts to build DSGE models with sticky information
on the part of firms, and Andres et al (2005), Korenok and Swanson (2005), Kiley (2005) and Laforte (2005)
for estimations. Coibion (2006) finds that sticky information on the part of consumers is important to
explains inflation dynamics.
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Appendix

This appendix sets out the model in the paper formally, solves it, proves the propositions,

and describes the algorithms that we used.

A.1. The economic environment

The model is similar to the one in Mankiw and Reis (2006), but allows for shocks to

the elasticities of substitution between varieties of goods and labor. The reader is referred

to that article for a more detailed exposition and a description of the intuition behind our

assumptions and optimal behavior. Here, we are brief.

There are three types of agents: consumers, workers and firms, of which there is a con-

tinuum evenly distributed in the unit interval. Consumers and workers share a household

and strive to maximize the same utility function subject to the same budget constraint.

Within consumers, there are two members: a shopper, that decides the allocation of spend-

ing across the different varieties and is always attentive, and a planner that decides total

expenditure and is often inattentive. Firms have two departments: a purchasing depart-

ment that is always attentive and chooses how much of each variety of labor to hire, and a

sales department that is only sporadically attentive and sets the price of the firm’s output.

These agents meet in three sets of markets. In the labor market, workers sell their labor

to firms; in the goods market, firms sell their goods to consumers; and in the savings market

consumers trade bonds between themselves. Monetary and aggregate demand policy follow

exogenous rules and close the model.

To lay down the model formally, we start by describing the market clearing conditions

and policy processes, then set out the attentive agents’ problem, and finally write down the

inattentive agents’ problem.

Policy and market clearing. We assume that the government consumes a common frac-

tion of each good in the economy. This is financed by lump-sum taxes that keep the budget

balanced at all dates. Therefore, the market clearing condition in the market for goods’

variety i is:

Gt

Z 1

0
Ct,j(i)dj = Yt,i, (9)

where 1 − 1/Gt is the fraction of output consumed by the government, Ct,j(i) is the con-

sumption of variety i by agent j at time t, and Yt,i is the total production of good i at time

t. The fraction Gt is stochastic and shocks to it can be interpreted broadly as aggregate
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demand shocks.9

The market clearing condition in each labor variety i is:

Lt,i =

Z 1

0
Nt,j(i)dj, (10)

where Lt,i is the total labor supply of variety i at time t, and Nt,j(i) is the labor demand

by firm j of variety i at time t.

Monetary policy sets interest rates according to:

it ≡ log [Et (Πt+1Pt/Pt+1)] = φy log

µ
Yt
Y n
t

¶
+ φp log

µ
Pt
Pt−1

¶
− εt. (11)

The definition of the nominal interest rate follows the Fisher relation, whereas policy is

set according to a Taylor rule. The new notation is Pt for the price level, Πt+1 for the

gross real interest rate between t and t + 1, Y n
t for the equilibrium level of output if all

are attentive, and εt to discretionary policy shocks. Note that a positive εt corresponds to

an expansionary shock. The coefficient φy is positive reflecting a desire for stabilization,

and φp > 1 to respect the Taylor principle and lead to a determinate solution for inflation.

This rule by itself leaves the price level indeterminate, but we peg the initial price level at

P−1 = 1 ensuring determinacy.

Finally, we define total output and total labor as the aggregators across all varieties:10

Yt =

µZ 1

0
Y

ν̂t−1
ν̂t

t,i di

¶ ν̂t
ν̂t−1

, (12)

Lt =

µZ 1

0
L

γ̂t−1
γ̂t

t,i di

¶ γ̂t
γ̂t−1

. (13)

Attentive agents. Consumer’s shopper j at date t solves:

min
{Ct,j(i)}i∈[0,1]

Z 1

0
Pt,iCt,j(i)di s.t. Ct,j =

µZ 1

0
Ct,j(i)

ν̂t−1
ν̂t di

¶ ν̂t
ν̂t−1

. (14)

The price of each variety of goods is Pt,i, and the consumer values them according to a

Dixit-Stilitz utility function, with a stochastic elasticity of substitution ν̂t. The standard

9Shocks to the utility of leisure relative to consumption enter the model in a similar way to Gt.
10Note that using instead the definitions Yt =

1

0
Yt,idi and Lt =

1

0
Lt,idi leads to the same results up to

a first-order approximation.
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solution to this problem is:

Ct,j(i) = Ct,j (Pt(i)/Pt)
−ν̂t with Pt =

µZ 1

0
Pt(i)

1−ν̂tdi
¶ 1

1−ν̂t
, (15)

so that Pt is the static price index. Summing over all consumers and using the market

clearing condition gives the total demand for variety i:

Yt,i = (Pt(i)/Pt)
−ν̂t C̄tGt, where C̄t ≡

Z 1

0
Ct,jdj. (16)

The purchasing department of firm j at date t minimizes expenditures given a Dixit-

Stiglitz production function that aggregates labor of different varieties into a labor aggre-

gate:

min
{Nt,j(i)}i∈[0,1]

Z 1

0
Wt,iNt,j(i)di s.t. Nt,j =

µZ 1

0
Nt,j(i)

γ̂t−1
γ̂t di

¶ γ̂t
γ̂t−1

. (17)

Wt,i is the wage paid to labor variety i and γ̂t is the stochastic elasticity of substitution

across labor varieties. The solution is:

Nt,j(i) = Nt,j (Wt(i)/Wt)
−γ̂t with Wt =

µZ 1

0
Wt(i)

1−γ̂tdi
¶ 1

1−γ̂t
, (18)

where Wt is the static wage index. Summing over all firms and using the market clearing

condition, we obtain the demand for labor variety i:

Lt,i = (Wt(i)/Wt)
−γ̂t N̄t, where N̄t ≡

Z 1

0
Nt,jdj. (19)

Inattentive agents. We start by considering the problem facing the pricing department

of a firm that last updated its information j periods ago. We assume that each period, a

randomly drawn fraction of firms λ updates their information, so there are λ(1− λ)j firms

in this situation. They choose a nominal price to maximize expected real profits:

max
Pt,j

Et−j
∙
Pt,jYt,j
Pt

− WtNt,j

Pt

¸
(20)

s.t.: Yt,j = AtN
β
t,j and (16) (21)

The first constraint is the production function, where β measures the degree of returns to
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scale. We interpret this model with no capital accumulation as one in which there is a

fixed stock of capital, so β corresponds to the labor share. Aggregate productivity At is

stochastic. The second constraint is the demand for the firm’s product in (16). After some

rearranging, the first-order condition of this optimization problem is:

Pt,j =
Et−j [ν̂tWtNt,j/Pt]

Et−j [β(ν̂t − 1)Yt,j/Pt] . (22)

Next, consider the problem of an inattentive consumer’s planner. If she updates her

plan at date t, she chooses a plan for current and future consumption to solve:

V (At) = max
{Ct+i,i}

( ∞X
i=0

ξi(1− δ)i
C
1−1/θ
t+i,i − 1
1− 1/θ + ξδ

∞X
i=0

ξi(1− δ)iEt [V (At+1+i)]

)
, (23)

s.t. : At+1+i = Πt+1+i

µ
At+i − Ct+i,i +

Wt+1+i,.Lt+1+i,. + Tt+1+i,.
Pt+1

¶
for i=0,1,...(24)

and a no-Ponzi scheme condition. V (.) is the value function of the agent that depends on

her wealth At. The parameter ξ is the discount factor, while δ is the probability at each

date that the consumer updates her plan. The coefficient θ is the intertemporal elasticity

of substitution so preferences are iso-elastic. Preferences are also additively separable in

consumption and leisure, but since the consumer does not control labor supply, the term in

leisure drops out of her problem. The budget constraint assumes that wages are received at

the beginning of the period so they earn interest before the next period. Finally Tt,. denote

both lump-sum taxes as well as the payments from an insurance contract that all agents

sign at the beginning of time that ensures that they all have the same wealth at the start

of each period. This is a standard assumption in these models to avoid tracking the wealth

distribution over time. The optimality conditions are:

ξi(1− δ)iC
−1/θ
t+i,i = ξδ

∞X
k=i

ξk(1− δ)kEt

£
V 0 (At+1+k) Π̄t+i,t+1+k

¤
for i=0,1,2,... (25)

V 0 (At) = ξδ
∞X
k=0

ξk(1− δ)kEt

£
V 0 (At+1+k) Π̄t,t+1+k

¤
. (26)

We denote by Π̄t+i,t+1+k=
t+kQ
z=t+i

Πz+1 the compound return between t + i and t + 1 + k.

Combining (25) for i = 0 with (26) one learns that C−1/θt,0 = V 0 (At). Writing (26) recursively

and using these results one gets the first condition below. Condition (25) for i = j and (26)
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for date t+ j imply the second result:

C
−1/θ
t,0 = ξEt

h
Rt+1C

−1/θ
t+1,0

i
, (27)

C
−1/θ
t+j,j = Et−j

h
C
−1/θ
t+j,0

i
, (28)

Finally, we turn to workers. They solve a similar problem to consumers:

V̂ (At) = max
{Wt+i,i}

(
−

∞X
i=0

ξi(1− ω)iEt

Ã
L
1+1/ψ
t+i,i + 1

1 + 1/ψ

!
+ ξω

∞X
i=0

ξi(1− ω)iEt

h
V̂ (At+1+i)

i)
,(29)

s.t. (24) and (19) (30)

where V̂ (.) is the value function perceived by the worker, ω is the probability each period

that she will update her information, and ψ is the Frisch elasticity of labor supply in the iso-

elastic utility function. The worker faces as constraints the same budget as the consumer,

as well as the total demand for her services. The optimality conditions are:

ξi(1− ω)iEt

³
γ̂t+iL

1+1/ψ
t+i,i

´
/Wt+i,i =

ξω
∞X
k=i

ξk(1− ω)kEt

£
V 0 (At+1+k) Π̄t+i,t+1+k

¡
γ̂t+i − 1

¢
Lt+i,i/Pt+i

¤
for i=0,1,2,... (31)

V̂ 0 (At) = ξω
∞X
k=0

ξk(1− ω)kEt

h
V̂ 0 (At+1+k) Π̄t,t+1+k

i
. (32)

Combining (31) for i = 0 with (32) one learns that

Wt,0 =
γ̂t

γ̂t − 1
× PtL

1/ψ
t,0

V̂ 0t (At)
. (33)

Writing (32) recursively and using these results one gets the first condition below. Condition

(31) for i = j and (32) for date t+ j imply the second result:

γ̂t
γ̂t − 1

× L
1/ψ
t,0 Pt

Wt,0
= ξEt

Ã
Rt+1 × γ̂t+1

γ̂t+1 − 1
× L

1/ψ
t+1,0Pt+1

Wt+1,0

!
, (34)

Wt+i,i =
Et

³
γ̂t+iL

1/ψ
t+i,i

´
Et

³
γ̂t+iLt+i,iL

1/ψ−1
t+i,0 /Wt+i,0

´ . (35)

Monopolistically competitive equilibrium. A competitive equilibrium of this economy is

14



an allocation of total expenditures, consumption of varieties, labor supplied of the different

varieties, and output produced of each variety such that consumers, workers and firms all

behave optimally, monetary policy follows the Taylor rule, and all markets clear.

A.2. The log-linearized economy and shocks

We log-linearize the equilibrium conditions around the non-stochastic steady state.

Small caps denote the log-deviations of the respective large-cap variable from this steady

state, with the exceptions of: νt and γt which are the log-deviations of ν̂t and γ̂t, rt which

is the log-deviation of the short rate Et[Πt+1], and Rt which is the log-deviation of the long

rate limk→∞Et[Π̄t,t+1+k ].

Log-linearizing the market clearing conditions and policy rules, we get:

yt = gt + ct, (36)

it = φy(yt − ynt ) + φp∆pt − εt, (37)

it = rt +Et (∆pt+1) , (38)

ct = δ
∞X
j=0

(1− δ)jct,j , (39)

From the attentive agents’ section:

yt,j = yt − ν (pt,j − pt) , (40)

pt = λ
∞X
j=0

(1− λ)jpt,j , (41)

lt,j = lt − γ(wt,j − wt), (42)

wt = ω
∞X
j=0

(1− ω)jwt,j (43)

From the inattentive firm’s problem:

yt,j = at + βlt,j , (44)

pt,j = Et−j [wt − (yt,j − nt,j)− νt/(ν̄ − 1)]
= Et−j

∙
pt +

β(wt − pt) + (1− β)yt − at − νtβ/(ν̄ − 1)
β + ν̄(1− β)

¸
. (45)

The second expression uses the two constraints in (21) to eliminate firm-specific variables.
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From the inattentive consumer’s problem:

ct,0 = Et (ct+1,0 − θrt) , (46)

ct,j = Et−j (ct,0) , (47)

and from the inattentive worker’s problem:

wt,0 − pt − lt,0/ψ + γt/(γ̄ − 1) = Et[−rt + wt+1,0 − pt+1 − lt+1,0/ψ + γt+1/(γ̄ − 1)],(48)
wt,j = Et−j (wt,0) . (49)

There are five source of shocks in the model: monetary policy, aggregate productivity

growth, aggregate demand, goods markups, and labor markups. We assume that each

follows an independent AR(1):

εt = ρεεt−1 + eεt , ∆at = ρ∆a∆at−1 + e∆a
t , (50)

gt = ρggt−1 + egt , νt = ρννt−1 + eνt , γt = ργγt−1 + eγt , (51)

where the shocks est ∼ N(0, σ2s) are i.i.d. over time, E[e
s
te

s
t+k] = 0 for k 6= 0, and independent

of each other, E[este
s0
t ] = 0 for s 6= s0.

A.3. The attentive equilibrium

The attentive equilibrium is the one that obtains when δ = ω = λ = 1, so all are

attentive. Following convention, we refer to variables in this equilibrium as being at their

“natural” levels and superscript them with n. Note however that this is not a Pareto optimal

equilibrium since there is monopoly power. Moreover, note that because the elasticities of

substitution change, markups change as well, so the “natural” levels or output or labor are

not a constant fraction of their Pareto optimal levels.

If all are attentive, all are identical, so: yt,j = yt, lt,j = lt, pt,j = pt, wt,j = wt, and
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ct,j = ct. The model then collapses into the system of 6 equations:

ynt = gt + cnt ,

Et

¡
∆pnt+1

¢
= φp∆p

n
t − rnt − εt,

ynt = at + βlnt ,

0 = β(wn
t − pnt ) + (1− β)ynt − at − νtβ/(ν̄ − 1),

cnt = −θrt +Et

¡
cnt+1

¢
,

zt = −rnt +Et (zt+1) , with zt ≡ wn
t − pnt − lnt /ψ + γt/(γ̄ − 1),

in 6 variables (ynt , c
n
t , l

n
t , p

n
t , r

n
t , w

n
t ). The solution for output is:

ynt = Ξaat + Ξggt + Ξγγt + Ξννt, where:

Ξa ≡ (1 + 1/ψ)/ (1 + 1/ψ + β/θ − β) , Ξg ≡ (β/θ)/ (1 + 1/ψ + β/θ − β) ,

Ξγ ≡ (β/(γ − 1))/ (1 + 1/ψ + β/θ − β) , Ξν ≡ (β/(ν − 1))/ (1 + 1/ψ + β/θ − β) .

Using the solution for output, the solution for the other real variables follows: lnt = (y
n
t −

at)/β, wn
t − pnt = ynt − lnt − νtβ/(ν̄ − 1), cnt = ynt − gt, and θrnt = Et

¡
ynt+1 − ynt − gt+1 + gt

¢
.

Note that for hours to remain bounded, E(lnt ) = 0, requires the King-Plosser-Rebelo (1988)

restriction, θ = 1. In this case, output and real wages increase proportionally with aggregate

productivity and labor is independent of productivity shocks. This economy respects the

classical dichotomy as real variables are determined independently of monetary shocks.

Finally, the solution for inflation in the θ = 1 case is:

∆pnt =
ρa∆at
φp − ρa

+
(1− β/(1 + 1/ψ))(1− ρg)gt

φp − ρg
− (1− ργ)γt
(γ̄ − 1)(1 + 1/ψ)(φp − ργ)

− (1− ρν)νt
(ν̄ − 1)(1 + 1/ψ)(φp − ρν)

+
εt

φp − ρε
. (52)

Expansionary monetary policy, higher productivity growth, higher government spending,

and higher markups all raise inflation. Nominal interest rates are int = rnt + Et

¡
∆pnt+1

¢
,

and the equilibrium is fully characterized.

A.4. The sticky-information equilibrium

Starting with (41), replace yt,j using (40) and pt,j using (45) and rearrange to get the
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AS curve in (1). Denoting by mct (real marginal costs) the fraction on the right-hand side,

it can be re-arranged to obtain a sticky-information Phillips curve:

∆pt =
λmct
1− λ

+ λ
∞X
j=0

(1− λ)jEt−1−j (∆pt +∆mct) . (53)

Next, starting with (46), iterate forward and take the limit as time goes to infinity. Then,

use the definition of the long rate Rt and the fact that complete insurance plus the fact that

eventually all become aware of shocks implies that limi→∞Et (ct+i,0) = limi→∞Et

£
ynt+i

¤ ≡
y∞t . Then, using this solution to replace for ct,0 in (47) and (39) gives an expression for

aggregate consumption. Replacing it in (36) and using the fact that gt is stationary gives

the IS curve in (2).

Very similar steps, using the expressions for wt,0 in (48), for wt,j in (49), the aggregator

for wt in (43) and replacing out lt,j using (42), gives the wage curve in (3). Aggregating

(44) over j gives the aggregate production function in (4). Finally, the expressions for the

nominal interest rate in (37) and (38) give the Taylor rule in (5).

These 5 equations together with the initial condition p−1 = 0 define an equilibrium in

the 5 variables (yt, pt, wt, lt, it) as function of the five stochastic variables (εt,∆at, gt, νt, γt)

A.5. Proof of Proposition 1

Using a method of undetermined coefficients, the solution for the generic variable zt ∈
Zt = {yt, pt, wt, lt, it} as a function of the innovations est−n for all non-negative n and

s ∈ S = {∆a, g, ν, γ, ε} is:
zt =

X
s∈S

∞X
n=0

ẑn(s)e
s
t−n, (54)

where ẑn(s) is the undetermined coefficient measuring the impact of shock s at lag n on

variable z. Define the following auxiliary parameters that will be useful:

Λn = λ
nX
i=0

(1− λ)i, ∆n = δ
nX
i=0

(1− δ)i, and Ωn = ω
nX
i=0

(1− ω)i; (55)

Ψn =
θ∆n

n
[ψ + γ(1− Ωn)]

h
β+ν(1−β)

Λn
− ν(1− β)

i
− βψΩn

o
(1− β)(γ + ψ)θ∆n +Ωn {θ∆n [1− γ(1− β)] + ψβ} ≡ Ψ

num
n

Ψden
n

. (56)
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Focus first on the impact of monetary policy shocks. The AS in (1) implies that

∙
β + ν(1− β)

Λn
− ν(1− β)

¸
p̂n(ε) = (1− β)ŷn + βŵn (57)

for all n. The IS in equation (2) implies that:

ŷn = −∆nθ
∞X
i=0

r̂n+i, (58)

for all n. The wage curve in (3) in turn implies that:

(γ + ψ − Ωnγ) ŵn = Ωnψp̂n +Ωn

Ã
ŷn/β − ψ

∞X
i=0

r̂n+i

!
. (59)

for all n. Using these three equations to substitute out
P∞

i=0 r̂n+i and ŵn and first-

differencing (58) gives the two equations:

ŷn = Ψnp̂n, (60)

θr̂n =
ŷn+1
∆n+1

− ŷn
∆n

. (61)

where we used the definition of the parameter Ψn. Finally, using the Taylor rule: (5):

φpp̂n = φyŷn+1 + (1 + φp)p̂n+1 − p̂n+2 − r̂n+1 − ρn+1e , (62)

and replacing for ŷn and r̂n gives the solution in the proposition with:

An = 1 +
Ψn

θ∆n
, Bn = An + φyΨn + φp, Cn(ε) = ρe (63)

You can go through the exact same steps for the other four shocks. It should be evident

though that the only change is that there is a new term on the right-hand side of (60) which

we denote by Υn(s), and that the term in ρe no longer appears on the right-hand side of
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(62). The solution will therefore have the same form, but now:

Cn(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
1−ρa

h
(1− ρn+1a )

³
φyΥn(a)− φyΞa +

Υn(a)
θ∆n

´
− (1−ρn+2a )Υn+1(a)

θ∆n+1

i
for s = ah

(1−Υn+1(g))ρg
θ∆n+1

− 1−Υn(g)
θ∆n

+ φy (Υn(g)− Ξg)
i
ρng for s = gh³

φy +
1

θ∆n

´
Υn(γ)− φyΞγ − Υn+1(γ)ργ

θ∆n+1

i
ρnγ for s = γh³

φy +
1

θ∆n

´
Υn(ν)− φyΞν − Υn+1(ν)ρν

θ∆n+1

i
ρnν for s = ν

,

(64)

and

Υn(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ∆n [γ + ψ +Ωn(1− γ)] /Ψden
n for s = a

βψΩn/Ψ
den
n for s = g

βθψΩn∆n/Ψ
den
n (γ − 1) for s = γ

βθ∆n [ψ + γ(1− Ωn)] /Ψden
n (ν − 1) for s = ν

. (65)

Finally, turning to the boundary conditions, the first follows from the initial condition

that ensures the determinacy of the price level. The second condition follows from the fact

that as the time after a shocks goes to infinity, all become aware of the shock, inflation

approaches its natural level, and this in turn tends to zero since ∆pnt is stationary. This

concludes the proof.

A.6. Algorithm to solve for the sticky-information equilibrium

In principle, solving the second-order difference equation should be easy. In practice, we

found that shooting algorithms (including multiple shooting alternatives) or the extended

path method were often unreliable. Small numerical imprecisions are compounded by both

of these algorithms leading them to quickly diverge away from the solution. As an alternative

we found that solving the system of linear equations implied by the difference equation and

the boundary conditions:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−B0 A1 ... 0 0 0

φp −B1 ... 0 0 0

... ... ... ... ... ...

0 0 ... −BN−2 AN−1 0

0 0 ... φp −BN−1 AN

0 0 ... 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂0(s)

p̂1(s)

...

p̂N−2(s)

p̂N−1(s)

p̂N (s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0(s)

C1(s)

...

CN−2(s)

CN−1(s)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(66)

was fast and reliable even for a very large N . Because the matrix of coefficients is sparse
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and recursive, this system poses no difficulties to most equation-solving programs. Note

that An and Bn are bounded and non-zero: tedious algebra shows that Ψn > 0 for all finite

n and limn→∞Ψn = 0 and that as long as all parameters are finite, so is Ψn. Therefore,

An 6= 0, Bn 6= 0, limn→∞An = 1, and limn→∞Bn = 1 + φp. The system of equations is

therefore well-behaved. We have found that setting N = 1000, Matlab can find the solution

in less than 5 seconds, and that the ignored terms ẑn(s), for n > 1000, are typically lower

than 10−15.

With a solution for prices, after tedious algebra, we can find:

Corollary 1. The coefficients for output, real interest rates, nominal interest rates, real

wages and labor are:

ŷn(s) = Ψnp̂n(s) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Υa
n(1−ρn+1a )
1−ρa for s = a

Υs
nρ

n
j for s = g, γ, ν

0 for s = ε

(67)

r̂n(s) =
ŷn+1(s)

θ∆n+1
− ŷn

θ∆n
+

⎧⎨⎩
gn
θ∆n
− gn+1

θ∆n+1
for s = g

0 for s = a, γ, ν, ε
(68)

ı̂n(s) = r̂n(s) + p̂n+1(s)− p̂n(s) (69)

(ŵn − p̂n)(s) = [1 + ν(1/β − 1)] (1/Λn − 1) p̂n(s) + (1− 1/β)ŷn(s) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−ρn+1a
β(1−ρa) for s = a

ρnν
ν−1 for s = ν

0 for s = g, γ, ε

(70)

l̂n(s) =
ŷn(s)

β
−
⎧⎨⎩

1−ρn+1a
β(1−ρa) for s = a

0 for s = g, γ, ν, ε
(71)

A.7. Proof of Proposition 2

From the properties of the exogenous shocks: et v N(05,Σ) and E(ete
0
t−j) = 0 for any

j 6= 0. The properties of the normal distribution then imply that X v N(05T ,Ω(IN⊗Σ)Ω0).
The likelihood function follows from the density of the multivariate normal.

A.8. Two algorithms to evaluate the log-likelihood function.

The formula for the log-likelihood function in proposition 2 involves inverting a 5T×5T
matrix V = Ω (I5 ⊗ Σ)Ω0, which is both slow and subject to potentially large numerical

errors. There are two approaches to getting around this problem.
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The first approach is common in the estimation of ARMA models. A Choleski decom-

position gives V = LL0, where L is a lower triangular matrix. Defining LX̃ = X, we

can construct the X̃ vector easily since this is a recursive system of equations. Moreover,

ln |V | = |LL0| = |L|2 = 2P5T
j=1 ln(lj), where lj is the j

th element in the diagonal of L. The

first equality uses the Choleski decomposition, the second the properties that the determi-

nant of the product of two square matrices is equal to the product of the determinants and

that the determinant of a matrix is equal to the determinant of its transpose, and the third

equality uses the fact that for triangular matrices the determinant equals the product of

the elements in the diagonal and the properties of logarithms. The log-likelihood function

then becomes:

L = −2.5T ln(2π)−
5TX
j=1

ln(lj)− 0.5X̃ 0X̃. (72)

We have found that this algorithm takes less than 5 seconds to execute.

There is an alternative algorithm that is sometimes faster but only applicable if we have

a long data series. If T is large, then setting N = T leads to a negligible error in the solution

of the model. In this case, defining ΩX̂ = X, thenX 0 (Ω (I5 ⊗ Σ)Ω0)−1X=X̂ 0 ¡I5 ⊗Σ−1¢ X̂.
Because Σ is diagonal with σ2k as its k

th element, this expression equals
P5

k=1

PT
j=1 x̂

2
5(j−1)+k/σ

2
k.

Moreover, ln |V | = 2 ln |Ω| + ln (I5 ⊗ Σ) = 2 ln |Ω| + T
P5

k=1 ln(σ
2
k). Therefore, the log-

likelihood function becomes:

L = −2.5T ln(2π)− ln |Ω|− 0.5T
5X

k=1

ln(σ2k)− 0.5
5X

k=1

TX
j=1

x̂25(j−1)+k/σ
2
k. (73)

One difficulty with applying this algorithm is that it requires solving the linear system of

5T equations ΩX̂ = X. While in principle this could be difficult and numerically imprecise,

we have typically found that Matlab is able to do it well.

A.9. Estimation

The goal is to estimate the vector of parameters θ = (ν, γ, ρg, σg, ρν , σν , ργ, σγ , δ, ω,

λ). The parameter space is (1,+∞) for ν and γ, (−1, 1) for ρg, ρν , and ργ, (0,+∞) for σg,
σν , and σγ and (0, 1] for δ, ω, and λ.

Maximum likelihood estimates come from maximizing L with respect to these para-

meters. We tried several algorithms (Matlab’s simplex-search algorithm, fminsearch, Mat-

lab’s modified Newton-Raphson algorithm, fmincon, and Chris Sims’s alternative modified

22



Newton-Raphson algorithm, csminwel), and we started them from several points. While

there were several local maxima, especially close to the boundaries of the parameter space,

the clear global maximum found by all the algorithms is reported in table 1. For an esti-

mate of the variance-covariance matrix of the estimates, we use the inverse of the Hessian:

− ¡∂2L/∂θ∂θ0¢−1.
Bayesian estimates come from postulating a prior density for the parameters f(θ), and

computing their posterior density using Bayes law: f(θ |X ) ∝ exp (L) f(θ). The priors
we use are described in the notes of table 1. There is no closed-form solution for the

posterior, which must be simulated numerically using Markov Chain Monte Carlo methods.

We developed two ways to do so.

The first uses the Gibbs sampler and exploits the fact that conditional on the remaining

parameters, the posterior for (σ2g, σ
2
ν , σ

2
γ) is known. Since the prior for each of these

parameters is an independent inverse-gamma distribution with parameter (τk,1, τk,2), the

density of the prior is proportional to:

5Y
k=3

¡
σ2k
¢−0.5τk,1+1 exp(−0.5τk,2/σ2k). (74)

Multiplying by the likelihood in (73) shows that the posterior for (σ2g, σ
2
ν , σ

2
γ) conditional

on the other parameters is proportional to:

5Y
k=3

¡
σ2k
¢−0.5(τk,1+T )+1 exp"−0.5Ãτk,2τk,1 +

PT
j=1 ŷ

2
5(j−1)+k)

τk,1 + T

!
/σ2s

#
. (75)

Therefore, the posterior is also proportional to the product of three independent inverse-

gamma distributions, with parameters
³
τk,1 + T,

³
τk,2τk,1 +

PT
j=1 x̂

2
5(j−1)+k)

´
/(τk,1 + T )

´
.

The density of the other parameters conditional on the variance does not have a known den-

sity, so it must be simulated using a Metropolis algorithm. The Gibbs sampler therefore

alternatively draws variances from the product of inverse gamma densities conditional on

the other parameters, and then uses a Metropolis step to draw these other parameters

conditional on the variances.

The second approach is to use a Metropolis random-walk algorithm for all 11 parameters.

The proposal function is a multivariate normal with mean equal to the last draw and

variance covariance matrix proportional to its maximum-likelihood estimate. A natural
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starting point is the vector of maximum-likelihoods estimates.

One would expect that the first approach dominates the second. The pure Metropolis

algorithm must learn the shape of all of the distributions, whereas the Gibbs algorithm

exploits the knowledge that the density of the variances conditional on the other parameters

is a product of inverse gamma distributions. However, for our particular application, we

found that the pure Metropolis algorithm converged faster than the Gibbs algorithm. The

results in tables 1 and 2 were therefore generated using it. We started 5 Metropolis chains,

one at the maximum-likelihood value and the other 4 at overly dispersed draws from the

multivariate normal. Multiplying the maximum-likelihood variance-covariance matrix by

0.75 led to an acceptance rate of 25% for the Metropolis algorithm. Each chain was ran

for 50,000 draws and the first 30,000 were discarded. It took only about 3 days using in

two parallel Pentium 4, 3.2 Ghz computers to obtain these 250,000 draws–this confirms

the speed of the algorithms behind propositions 1 and 2. We monitored the scale reduction

factors proposed by Brooks and Gellman (1998). The largest of these factors was 1.010

supporting convergence, and plots of the between and within variances confirmed it. We

therefore proceeded to mix the draws from the 5 samples to obtain 100,000 independent

draws from the posterior density.
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Figure 1: Impulse responses to one-standard-deviation shocks
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Table 1. Parameter estimates 
 

 
 
 

Maximum likelihood  Prior    Bayesian posterior  

 Estimate Standard 
error 

95% confidence 
interval 

Density Mean Standard 
error 

95% coverage 
set 

Median Standard 
error 

95% coverage set 

ν 34.068 1.000 [32.109 ; 36.027] 1+G 11 3.162 [5.795 ; 18.085] 20.547 2.781 [15.554 ; 26.408] 
γ 4.196 .626 [2.970 ; 5.422] 1+G 11 3.162 [5.795 ; 18.085] 6.884 1.438 [4.542 ; 10.245] 
ρg .938 .021 [.897 ; .979] B .7 .224 [.198 ; .991] .950 .022 [.904 ; .988] 
σg .014 .002 [.010 ; .018] IG1/2 .222 .114 [.107 ; .507] .015 .002 [.012 ; .019] 
ρν .630 .019 [.593 ; .666] B .7 .224 [.198 ; .991] .676 .023 [.628 ; .719] 
σν 1.819 .252 [1.325 ; 2.313] IG1/2 .222 .14 [.107 ; .507] 1.289 .242 [.887 ; 1.838] 
ργ .667 .035 [.599 ; .735] B .7 .224 [.198 ; .991] .638 .043 [.534 ; .701] 
σγ .187 .047 [.094 ; .279] IG1/2 .222 .114 [.107 ; .507] .347 .122 [.184 ; .674] 
δ .184 .026 [.133 ; .234] U .5 .289 [.025 ; .975]  .176 .027 [.134 ; .242] 
ω .195 .011 [.173 ; . 217] U .5 .289 [.025 ; .975] .210 .016 [.182 ; .244] 
λ .702 .015 [.673; .731] U .5 .289 [.025 ; .975] .657 .023 [.612 ; .703] 

 
Notes: Sample size is 206. The calibrated coefficients are β=2/3, ψ=4, θ=1, φy=.33, φπ=1.24, ρε=.918, σε=.012, ρΔa=.350, σΔa=.010. Maximum 
likelihood estimates come from using a modified Newton-Raphson search algorithm to maximize the log-likelihood, and the standard errors from 
inverting the Hessian at the optimum. The confidence intervals come from the cumulative density function of the multivariate normal. For the prior 
densities we used the gamma (G), the beta (B), the inverse gamma (IG) and the uniform (U) distributions, with parameters (10,1), (2.24,.96), 
(2.02,.06) and (0,1) respectively. The posterior moments are based on 100,000 draws from the posterior, which come from mixing 5 independent 
simulations of 50,000 draws, each with the first 30,000 draws discarded to ensure convergence. 
 



Table 2. Variance decompositions 
 
Maximum likelihood estimates and 95% confidence intervals 
   Shock   

Variable Monetary 
Aggregate 

productivity 
Aggregate 

demand Goods markup Labor markup 
      
Inflation .896 

[.826 ; .937] 

.028 

[.019 ; .041] 

.004 

[.002 ; .009] 

.070 

[.033 ; .130] 

.003 

[.001 ; .006] 

Output 
growth 

.247 

[.171 ; .320] 

.153 

[.115 ; .198] 

.436 

[.257 ; .610] 

.101 

[.040 ; .185] 

.064 

[.024 ; .132] 

Hours .551 

[.319 ; .663] 

.032 

[.014 ; .067] 

.336 

[.179 ; .612] 

.041 

[.012 ; .084] 

.041 

[.010 ; .116] 

Interest 
rate 

.506 

[.352 ; .646] 

.066 

[.048 ; .089] 

.017 

[.008 ; .031] 

.295 

[.163 ; .438] 

.117 

[.053 ; .200] 

Wage 
growth 

.183 

[.136 ; .244] 

.262 

[.195 ; .360] 

.016 

[.007 ; .033] 

.479 

[.300 ; .605] 

.061 

[.027 ; .099] 

      
Bayesian median estimates and 95% credible sets 
   Shock   

Variable Monetary 
Aggregate 

productivity 
Aggregate 

demand Goods markup Labor markup 
      

Inflation 
 

.835 

[.717 ; .906] 

.028 

[.019 ; .040] 

.005 

[.003 ; .010] 

.129 

[.066 ; .242] 

.002 

[.001 ; .004] 

Output 
growth 

.213 

[.155 ; .274] 

.133 

[.101 ; .164] 

.446 

[.309 ; .590] 

.150 

[.080 ; .263] 

.048 

[.021 ; .107] 

Hours 
.469 

[.237 ; .603] 

.028 

[.010 ; .057] 

.398 

[.238 ; .703] 

.063 

[.023 ; .144] 

.025 

[.006 ; .076] 

Interest 
rate 

.408 

[.251 ; .569] 

.057 

[.039 ; .077] 

.016 

[.010 ; .027] 

.416 

[.266 ; .585] 

.093 

[.043 ; .188] 

Wage 
growth 

.093 

[.053 ; .146] 

.192 

[.125 ; .271] 

.035 

[.008 ; .027] 

.663 

[.514 ; .786] 

.035 

[.017 ; .070] 

      
Notes: Maximum likelihood estimates come from using the MLE parameter estimates. The 
confidence intervals are the 2.5% and 97.5% percentiles from 1,000 draws taken from a 
multivariate normal distribution with mean and variance-covariance equal to their MLE 
estimates. Bayesian estimates are the median, 2.5% and 97.5% percentiles cell-by-cell using 
100,000 draws from the posterior density. 




