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ABSTRACT

We show that if a certain nondegeneracy assumption holds, it is possible

to guarantee the existence of a solution to a system of nonlinear equations

f(x) 0 whose Jacobian matrix J(x) exists but may be singular. The

main idea is to modify small singular values of J(x) in such a way that

the modified Jacobian matrix (x) has a continuous pseudoinverse J(x)

and that a solution x of f(x) 0 may be found by determining an

asymptote of the solution to the initial value problem x(0)
x(t) = -J(x)f(x). We briefly discuss practical (algoritl-unic) implications

of this result. Although the nondegeneracy assumption may fail for rrny

systems of interest (indeed, if the assumption holds and J(x*) is non-

singular, then x is unique), algoritl-ffns using (x) may enjoy a larger

region of convergence than those that require (an approximation to)

J1(x).
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1. Introduction

In various settings it is necessary to solve a system of nonlinear

equations. Thus, given a mapping f: ff'-'- it is necessary to find

a point x c R" such that f(x*) 0. Often f is continuously

differentiable, i.e., f C1( iR'), as we shall henceforth assume.

Frequently certain features of the environment in which f arises,

such as physical features, imply the existence of a solution x.

However, it is of theoretical interest to determine conditions on f

which imply the existence of a solution without employing "outside"

considerations. Both constructive and nonconstructive approaches are

possible. For example, degree theory represents a nonconstructive

approach (see Chapter 6 of [Ortega C Rheinboldt, 1970]). Particular

algorithms usually underlie constructive existence theorems. Newton' s

method, for instance, underlies the well known Kantorovich theorem

(see below). In this paper we present a "semiconstructive" existence

theorem based on integrating a certain differential equation. Our

assumptions are weaker than those in the Kantorovich theorem and they

allow situations in which a continuum of solutions x* exists.

In the next section we introduce some notation and, for reference,

state several theorems. Section 3 presents our main results, and Section

' discusses some implications for practical algorithms.

A nuimder of other authors have considered integrating various differ-

ential equations in order to solve a system of nonlinear equations. See

LBoggs, 1970] for a survey of such work. Fletcher [1970] has briefly con-

sidered "modifying" singular values by the use of pseudoinverses when solv-

ing general systems of nonlinear equations, while Ben-Israel [1966] has made

similar use of pseudoinverses for solving nonlinear least squares problems.

(See EBoggs, 1975] for discussion of the convergence of the Ben-Israel iteration.)



Unless otherwise stated, denotes the

vector norm x (xTx)2 or the corresponding matrix

flXp stands for the set of real nxp rrtrices. B(x,5)

denote respectively the open and closed balls of radius
nx IR:

nxn there exist orthogonal matrices U

a1,. a [0 ,oo) such that A usvT,
is a diagonal matrix having a1,.. . ,a1 on

singular values a1,. . . , a are ordered so

they are unique. Moreover, if there

a. ,..., a. with j 0, j n,k
and if U and V are correspondingly

and V [V1 V2... Vk] with
Tmatrices a. U0V0 are unique, 1 �. Z k. SJ
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2. Notation and Background

Euclidean

norm.

and (x,S)
about

B(x,'S)

(x,'5)

{y c n < }
{y c I jx-y � }.

We shall make frequent use of pseudoinverses and the singular

value decomposition theorem. For our present purposes, we may state

the singular value decomposition theorem in the form:

(1) Theorem For any A c
nXnand V and scalers

where S dia.g (a1,. . . ,a)
the main diagonal. If the _____________

that a1 a 2... .� a 0, then

are k distinct singular values

and for < j,
partitioned as U [U1 U2... Uk]
U, V nx(j_j_1) then the

The pseudoinverse may be defined as follows. For any scaler a c IR,

let a (a . The pseudoinverse S of a diagonal matrix

S
diag(a1,..

. ,a) is then defined by s E diag(a1,. . . ,a). Finally,
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if A and the notation of Theorem (1) holds, then

+ kA vs uT EavuT . (For more information on the singular

value decoirosition, see [Hanson a Lawson, l97'-] or [Stewart, 1973]; for

more on the pseudoinverse, see [Rao F Mitra, 1971] as well ..)

We shall write J(x) for the Jacobian matrix f' (x) of f at x.

Often we shall assume that J(x) is locally Lipschitz continuous, i.e •,
that for each point z IR there exists a constant y and a neighborhood

N of z such that

(2)
I
J(x) — J(y) I d Ix—yl

for all x,y E N.

Following Ortega & Rheinboldt [1970, p. 421], we may state the

Kantorovich theorem as follows:

(3) Theorem: With f as above, assume (2) holds on a convex set

c ffn• Suppose for some x0 that J (x0
-1

arid

£112, where n �. IIJ(x0Y'f(x0)II. Let t ()1[l(l2a)112]
arid t (y)1[l + (1—2a)2] arid assume (x,t) D. Then the

Newton iterates

(4) - J(xkYf(xk)

are well-defined, renin in (x0,t) and converge to a zero x' of f

which is unique in B (x0 ,t) rt D0. Moreover,

(k
I x]

— x £ (y2 ) (2a)
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We need below to be assured of the existence (and uniqueness) of

solutions to certain differential equations. The following theorem

(which follows easily from Theorems 1.2 - the Cauchy-Peano existence

theorem - and 2.2 of [Codding-ton Levinsort, 1955]) suffices for our

purposes.

(5) Theorem: If F: R'1 is continuous, then for each x0

and to E there exists a continuously differentiable function

x: such that

(6a) x(t0) x0 and

(Sb) x(t) F(x(t)) for all t c ff.

Moreover, if F is locally Lipschitz continuous, then the solution

x(t) of (6) is unique. •

3. Modifying Singular Values J (x)

The region of convergence of Newton' s method (14) may often be enlarged

by the introduction of appropriate damping factors in which case the

iteration becomes

—l
(7) X1 Xk — Ak J(x<) f(xk).

As AkO the iterates Xk approach points on the solution curve x(t)

of the differential equation

(8a) x(O)

(8b) x(t) -J(x)f(x),
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which, following Gavurin [1958], we call the "continuous analogue" of

(Li.). If J(x) is singular then (Li), (7), and (8) are undefined, while

if J(x) is nearly singular, then nunerical attempts to compute (i-i.) or

(7) or to solve (8) encounter serious difficulties. We could make (Li),

(7), and (8) well-defined by changing J(xYa to J Cx) but J (x)+

is discontinuous at - and unbounded near - points x where J(x) changes

rank. Thus it is nuch more appealing theoretically to modify the

singular values of J(x) to produce a continuous substitute J (x)

for J(x)1. We shall do this as follows. Given A c with singular
k T

value decomposition A USV' E . ULV as in Theorem 1 and
9l

S diag(1,. %) let , denotethe modified form of

let § diag(&i,. . n' and

A AT kA T
let A USV E . . Although the notation suggests thatjl
(Y

should depend only on a, in fact we shall allow to depend on

all of c,... 'ri' Specifically, for any S � 0 and A' = us ,v,T

with
I IA - A'

I
d we shall require the choice of to be such that

for some tolerance c> 0 and all j and k, 1 j n, 1 k n,

(9a)

(9b) Ia — ak+I
= O(ô + Ia —

(9c) , and

(9d) a O(a). At tires we shall also require

(9e) 0 � 1.
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(10) Lerma: With the above notation, if then

T
(11) IuuI � 6Ij -
'oof From uTA ov' and A'v we obtain

aVjVk U.AVk
arId

kUjuk uA'v , whence

(l2a) -
0.VTV u(A'

- A)v

Similarly, since Av au5 and TA, 0,tT we obtain

(12b) + avv T(A - A)v

Adding ci,' times (l2a) to times (12b), we have

(P2 -
a?)uTu, au(A'

- A)v + a.u,TAT -
A)v

Since u, v., u, arid v are unit vectors arid I IA'
- Al I

we thus have Ju'u,j �
+ )1I2 -

whence (11) follows.U

(More generally, if M, E c are complex nxp matrices and x, y,

are unit right singular vectors of M and M+E with corresponding distinct

singular values A and p � 0 and unit left singular vectors and

respectively, then similar reasoning shows that (2 - x2)yHx pEx + AyHE

whence again y1x I E / -
I •)

We may now prove that A is a Lipschitz continuous function of A

(13) Theorem If (9b, c, d) hold, then
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(114) I I — A'l I
= 0(1 IA

— A' II)

Proof We shall show for any A c ]R'" that (114) holds whenever

6 E I IA — A' I I is sufficiently small, say 6 < 60(A), where 0(6)

is independent of A. A simple compactness argument then shows that

(114) holds no matter how large 6 is.

It suffices to show for arbitrary j, 1 � 5 � n, that I (At A')u. I 0(6)

Since vuT. we have

II( - )u5II � IIV'(I - §I+)UITII + (\T -
v,u,T)u5!I

whence it suffices to show

l5) II((41 — S,+)U,Tu II 0(6) and

(16) (T -
v,u,T)u5 II = 0(6)

To demonstrate (15), it suffices to show for each k, 1 � k n, that

(17) I( — "?+)?T1 = 0(6)

We may assume that the singular values are arranged in decreasing order:

� 0 and ... � 0, whence (by Theorem 6.6 of

[Stewart, 1973]) — I � 6. If a ak, then (17) follows from

(9b, c). Otherwise we nay assume 6 < Ia5 - /2 , whence (9b) becomes
"+ "1+

I — a3< I 0(1 - I) and (17) follows from Leimia (10).

If 0 then (9d) implies c4 0, whence (16) holds. Otherwise,

since
u5A

=
a5u.UV , we have

(A -
A,)Tu5

(VSUT - v,s,u,T)u. V'(a51 - S,)UTTu. + a(T - v,u,T)u.,
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whence - v,u,T)uH L [(A - A,)Tu.II + lv'(.I - S,)UtTuH]

[6 + I !(aI — S,)U,Tu
J

J

Leiruiia (10) thus imples I(VUT - v?utT)u I O()/a , which, together

with (Gd), yields (16). U

(Note that if A arid A' are syrrmetric, then we may substitute the

eigendecomposition for the singular value one, with the result that

V U and VT U' , whence the left hand side of (16) vanishes and

Theorem (13) holds without (Gd). This has implications for minimization

problems, but we shall not pursue them here.)

Suitable choices for include

(18) min{a/c2 1/a} + max{0, c2 —

2 2
(19) a a/La + c /L1.] , and

(20) a/[a + max{0, 2 — o}], where

an is the smallest singular value of A. Choices (19) and (20) amount

T -l T
to the Levenberg-Ma.rquardt modification A (A A + pI) A

(see [Levenberg, l9L] and [Marquardt, 1963]) with a special choice of

the rrodification factor . If A usvT, then choice (18) may be
T -l T

similarly expressed as A (A A + M) A where N is the positive

semidefinite matrix V diag(d1,. ,d) vT, with rnax{O, 2 -
As such, this modification bears some resemblance to the modification

which Murray [1972] has proposed for the Cholesky decomposition of a
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symmetric matrx. Choices (18) and (20) have the virtue of producing no

modification when the smallest singular value a c, while choice

(19) is a bit easier to compute,

It is readily verified that choices (18) and (19) satisfy (9). As
for (20), it is easily seen that (9a, c, d, e) hold. To obtain (9b), note

that if A' has singular values
aj a ? ... a � 0 with A - A' � (5

and if i nx{ 0, - and i' max{ 0, - a' } , then

— _____ — _______
(. - 1Ixaj:: - a) +

a(u'
—

i k
a'2+p' (a2+p)(a'2+')

Since ak — a]l (5, we have cy,' - a < (5 + a - akl. We

may assume (5 c/ 2, whence i ' 0 if a � c and

— < 2 — a'2 (a + c')(a - a) L(5 otherwise.

Since ji j c2, rra + , 2 + p'} > 2, and (9a) holds, we thus

find — < (5(5 + a — a'J )/e2 , which establishes (Sb) for (20).

We shall devote the remainder of this section to establishing and discussing

an existence theorem based on integrating the differential equation

(2la) x(0)

(2lb) x(t) -J (x) f(x)

Theorem (13) implies that J Cx) is well behaved for suitable choices bf

,+ Af
a : J (x) is continuous and is locally Lipschitz continuous whenever J(x)

is likewise. Thus Theorem (5) applies to (21).

Now we prove the main result of this paper. While we allow
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J(x) to be singular, we require a certain kind of nondegeneracy: we

must assume that f and J are such that

(22) f(x)TJ(x) J(x)f(x) � eIlf(x)!12

for some fixed > 0 and all relevari-t x E 1R. We shall discuss

this condition in more detail below. The following theorem rests heavily

upon it.

(23) Theorem If f c and (9a—d) and (22) hold, then for each

x ]PJ' there exists a solution x(t) to (21). Such a solution has an

asptote x Urn x(t) with f(x"O z 0. Moreover, the following bound
t-

holds:

(2L)
I Ix(t) - x*I [I f(x0)I I/(ec)] e°

Proof: Fix x0. As already rerrrked, the existence of x(t) follows

easily from Theorems (13) and (5).

Note that liii f(x(t)) 0. Indeed, let (t) f(x(t))
2

Then (t) = -2fJf so (22) lies '(t) <20 If(x(t))I -20 (t).

Hence p(t) E 9n (t) Las iP(t) < -2 so (for t > 0)

(t) (o) + i)d < (O)-2e t

ff(x(t))H2 (t) et) < Jf(x0)1I2 e2° .
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Mow we show that lini x(t) = x exists arid (2q.) holds. It suffices

to show that x(t1) I IIIf(X0)I 1(9 E)]le_0t2 _e_0t1

which follows from (9a), since

I x(t)I I3f(x(t))I I I If(x(t))I I/c I (I I()I /c)e°
whence

Hf(x )II t2
IIx(t1)-x(t2)II j x(T)dTH IIx)H dT < 0

e TdT
ti 1 ti

(Thus the sequence x(t1), x(t2), x(t3), ... is a Cauchy sequence for any

choice of t1, t2, ... with urn t = +°, whence x lin x(t) exists.
t-

By the continuity of f, f(x) lin f(x(t)) 0)1
t-*

It complicates the proof only slightly if Theorem (2 3) is restated in

"semilocal" form; we state this form as a corollary:

(25) Corollary Suppose f e C1(D), where D C fl, and assume that (22)

holds on D. If x c D is such that (x0, f(x) I/(0 c)) ' D, then

the conclusion of theorem (23) holds, x ID, and x (t) c ID for all t c [0 ,oo).
While Theorems (3) and (23) are both existence theorems, they differ

in a siüficant way. Whereas the nondegeneracy

assumptions of (3) imply that J(x) is nonsingular at each Newton iterate

xk, the corresponding assumption (22) of (23) allows J(x) to be

singular everywhere (as we shall see presently). This weaker nondegeracy
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assumption is made at the cost of one of the prime conclusions of (3):

the uniqueness of For example, if f: 2 is the linear mapping

f (x) ( ) x, then (22) holds with G 1 and x can be any point
in the set {O} x IR.

Note that (22) implies

(26) J(x) J(x) f(x) G f(x)

Qn the other hand, if (9e) holds, then (26) implies fTJJ+f(x) > ®2
2

To see this, let J J(x) have singular value decomposition usvT, whence

fTJ+f (uTf)T suTf) (Uf) (S)2 (uTf) 2 o2 f 2

Thus (22) and (26) are qualitatively the same and we could have assumed

(26). We have chosen (22) since it yields sharper bounds.

Let us see what (22) means if f(x) Ax-b is affine. We may assume

that b lies in the column space of A, for otherwise at x Ab we
would have J(x) f(x) 0 with f(x) 0, whence (22) could not hold.

By the change of variables y x-Ab we may thus arrange that b 0 and

hence f(x) Ax. Let A usvT be a singular value decomposition of A,

with the singular values ordered so that 01 02 2. . . G > OcY+f.
If & is given by (18), then > for

j I , so if g (g1,. . . ,g)T uTfx, then

o for i > , arid fTJj+f(x) fTussJTf gTS+g

gil mm l, a2/2}
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Since
I

II in this case, we thus see that (22) holds with

0 mm {l,

Assi.miption (22) implies that only zeroes x of f can be critical

points of the least squares function x) I If(x) I
2 But it implies

more than this, at least when J(x) is locally Lipschitz continuous, which

we henceforth assume. In this case the zeros of f form a connected

set, arid if J(x) is nonsingular for some zero then this set

consists exactly of x, i.e. f has a unique zero. Indeed, from

Theorems (13) and (5) we see that the solution x(t) of (21) and hence

him x(t) are uniquely determined by x0 x( 0). Thus we may
t-*co

n ndefine X: ff. - (P. by

(27) X(xd = x.

Note that f o X 0 and X(x) = x for any zero x' of f. Therefore

x ( ) f (0), i.e. the range of X is the set of zeroes of f. The
above claims about this set now follow from

(2 8) Theorem The mapping X defined by (27) is continuous.

Proof: Let y and > 0 be given: we nust demonstrate the

existence of > 0 such that XC B(y0 , 5)) C BCX (y0), ). Let y (t)
solve y(t) -J(y)f(y) with y(O) y. Using (2) and (13), it is
easy to show that there are constants r and K such that if x0 B(y0,l)
and x(t) solves (21), then I Ix(t) - x"I I < K eOt and

Ix(t) - y(t) I I I I x-y0I I er for all t [0 ,oo) (with x X(x0)).
_ot*

Let t be large enough that Ke < and let 5 mm {1, e_l't / 2 } > 0.



Setting y X(y0), we then find for x0-y0 I 5 that

HX(x0) — X(y0)iI Ilx(t)—xIl + Hx(t)—y(t)H +

rt< 2Ke "L + lix —y— 00
<ç/2 +/2 = . I

. Practical Implications

Theorem (28) implies that if f(O) has at least two components,

(in particular, if f has at least two isolated zeroes), then (22) cannot

hold. (Note that the existence of 0 such that (22) holds does not depend

on which value of c > 0 has been chosen, though the value of 0 does,

of course, depend on E.) Thus we may expect (22) to hold globally only

for a small class of problems. However, it appears very likely that (22)

would often hold in a region D (as in Corollary (25)) containing points x

where J(x) is singular or nearly so and thus that methods using

instead of J(x) would enjoy a larger region of convergence.

Eoggs [1971] advocates the use of A-stable integration techniques

for numerically solving (8). His arguments suggest that weakly A—stable

integration techniques (see [Soggs a Dennis, l97L]) would be appropriate

for attacking (21) directly: such techniques aim to detennine the

asymptote x quickly without spending excessive time compute x(t)

accurately. In practice, Boggs [1976] has experienced numerical difficulties

when J(x) becomes singular or nearly so. Intended numerical experiments

will hopefully indicate how much these problems can be alleviated by using

in place of J(x).
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The damped Newton's method (7) results when (8) is numerically

integrated by Euler's method with k- stepsize Xk• By considering (21) in

place of (7), we obtain a modified damped Newton' s method

Xk+l - Xk
- XkJ(x)f(xK). While a proper choice of the damping

factor Ak surely mekes this more robust than the undamped method

(29) Xk÷l
-

it is possible for (29) to state a theorem similar to (3) (but without the

uniqueness assertion), as the following cnj.de example illustrates.

(30) Theorem Suppose f:D0-- IR is continuously differentiable and

that (2) holds for x,y E C n Suppose further that x0 e and

B (0,1] are such that

(31) a —Hf(x0)H + 1,

C D, and (26) holds for x B(x0,t'), where

I I (xe) II
(32) t

(1—a)c

If (9a, e) hold, then the iterates x.< generated by (29) are well-defined, remain
in D0, and converge at least Q—linearly to a zero x" c D0 of f. Moreover,

I x<
— x' . t'c.

Proof: Below we show that

(3k) IIf(x) - J(x)(x)f(x)II < f(x)
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for those x D of interest. Since (9a) implies
0

(35)
I l÷-l I I lJ(xk)f(xk)l I If(x)I I/

we thus obtain the estiinate

(36) IIf(1)H Hf() - J() J)()lI +

Hf()II + 11f(x)1 12
2c

YIIf(xk)II\
+

2c2 )
IIf!I

Using (31), we find by induction on k that

(37a) Ilf(xk+l)H 1cIlf(xk)II, whence

k(37b) If(xk)I I . llf(x0)Ha
k

Combining this with (35), we find
I IXk_XoI

< a I I f(x)
lCt S

whence x, s B(x ,t*) for all k; nreover, we see that x exists
0

and (33) holds. Let c rrx {
I
f (x) I I: x S (x ,t)}. Since

s (x0 ,t'O, we have I f(x) I I
s c

I x-x I I. Together with (35)

and (37a), this implies

I÷-xIl IIx.-x. II < IIf(x.)II
j=k+l

j+l —
jk+l

< If(xk)lI

S
j'

<— S (1-a) I XX I I
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which establishes the Q—linearity of the convergence. Now it only

remains to establish (3L).

Without loss of generality J(x) diag (cc1,... ,cc). Writing

f f(x) (f f)T we see from (26) that

for some T [9, 1] and hence

(38)

From (9e) we obtain

!IJJfH Tllf H

n A+ 2 2lIJJflI2 E (a.a. f.)
2

whencejl ii j-l j

'+ 2 n A+' 2 2 n "+ 2If - JJ fi (l-cc.a. ) f (1 + T)l fl - 2 E (a.a. )f
jl J j j1 : J

E (a a )f2 � E (+)2 f2 T If! 2

3] jjl I+ 2 2 2 2 2which with (38) implies lf—JJ H I (l—T )lI H � (1—0 )HH

whence (3 'i) follows. U

As can be seen from (36), the bounds (33) and (37) are not optimal,

and a value smaller than (32) would suffice for t. However, a better

factor than based on (36) would still satisfy k > (1_®2)k/2

1/(9c) which appears u-i (2L) y with c: in the linear case, if

(18) is used, E and 2 two choices for , and O are the

ccresponding largest possible choices for 0 in (22), and E2 > l LII

then
(c1/c2)2 o

As (3L) suggests, even if f is linear the iterates generated by

(29) may converge only Q—linearly to x". The speed of convergence

depends strongly on E: in the linear case, for instance, the iterates

converge in one step if E is no larger than the smallest nonzero singular

value I I I I

+
and is computer by (18) (20). Moreover, the factor
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and
l/(02c2) [l/(o11)J (c2/c1).

From this standpoint, the tolerance

should be chosen as small as possible. In practice, the accuracy to which

f is computed implies a lower bound on Moreover, the smaller c

is, the closer the search direction -Jf(x) can come to or'thogonality with

the gradient 2JTf(x) of (x)
I

f(x) 2; this phenomenon can severely

hamper the numerical solution of f(x*) 0, so c should not be too small.

The intended numerical experiments should indicate how crucial the choice

of c is.
Choices (18-20) for a all behave similarly for a << or a >> c

the relative difference between these choices remains bounded. Computationally

we should therefore not expect major differences between the perforrrnces to

which they lead. Since the small singular values contribute little to

fTJJ+f/ I I 12, we should expect the same to be true of any other choice of

a which satisfies (9) along with aa + 1 as a ÷ +

Once J(x) and f(x) are ]iown, J(x) f(x) can be computed with

a given by (18) or (20) in (t/3)n3 + 0(n2) multiplications (and a

similar number of additions), as opposed to (113)n3 + 0(n2) multiplications

for computing J(xY1 f(x) by Gaussian elimination (assuming that J(x)

is nonsingular without special structure); when (19) is used, J (x) f(x)

may be computed in (2/3)n3 + 0(n2) multiplications; thus may be

introduced with only a minor increase in the cost of an iteration. Go lab and

Reinsch [1970] show how the singular value decomposition of a matrix may be

efficiently and accurately computed. The above operation count for (18)

assumes that the factors U and V of the singular value decomposition

usvT of J = J(x) are not explicitly computed, but rather that uTf is

accumulated and V is maintained in factored form.



—19—

References

Ben-Israel, A. (1966), "A Newton-RaphsOn Method for the solution of Systems

of Equations", J. Math. Anal. Appl. 15, pp. 243.-'252,

Boggs, F. T. (1970), "The Solution of Nonlinear Operator Equations by
A-Stable Integration Techniques", Doctoral thesis, Cornell University,
Ithaca, N. Y. 14850. Also available as report TR7O-72, Computer Science

Dept., Co'neU University,

Boggs, P. T. (1971), "The Solution of Nonlinear Systems of Equations by
A-Stable Integration Techniques", SIAM J. Numer. Anal. 8#4, pp. 767-785.

Boggs, P. T. (1975), "The Convergence of the Ben-Israel Iteration for
Nonlinear Least Squares Problems", preprint from: Mathematics Division, U.S.

Army Research Office, P.O. Box 12211, Research Thiangle Park, N.C. 27709.

Boggs, P. T. (1976), private corimunication.

Bcggs, P. T. and Dennis, J. E. (l97L), "A Continuous Analogue Analysis
of Nonlinear Iterative Methods", Report Th74-200, Computer Science Dept.,
Cornell Univ., Ithaca, N. Y. 14850.

Coddington, E. A. and Levinson, N. (1955), Theory of Ordinary Differential
Equations, Graw-Hill Book Co., New York.

Fletcher, R. (1970), "Generalized Inverses for Nonlinear Equations arid
Otmization", in Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowjt, ed.; Gordon and Breach, London.

Gavurin, M. K. (1958), "Nonlinear Functional Equations and Continuous
Analogs", Isv. Vyss. Ucebn. Zaved. Mathematika 6, pp. 18-31; English'ans1ation: Report 68-70, Computer Science Center, Univ. of Maryland,
College Park, Md. 20742.

Golub, G. H. and Reinsch, C. (1970), "Singular Value Decomposition and
Least Squares Solutions", Nuiner. Math. Bi., pp. 403-420. Also: contribution
1/10 of Handbook for Automatic Computation, vol. II, Linear Algebra, edited
by J. H. Wilkinson & C. Reinsch, Springer Verlag, Berlin and New ?5rk (1971).

Hanson, R. J. and Lawson, C. L. (1974), Solving Least Squares Problems,
Prentice Hall, Englewood Cliffs, New Jersey.

Levenberg, K. (1944), "A Method for the Solution of Certain Nonlinear Problems
in Least Squares", Quart. Appl. Math. 2, pp. 164—168.

Marquardt, D. W. (1963), "An Algorithm for Least Squares Estintion of Nonlinear
Parameters", SIAM J. Appl. Math. 11, pp. 431-441.



—20—

Murray, W. (1972), "A Numerically Stable Modified Newton Method Based on
Cholesky Fac-torization", §L•9 (pp. 6L1—68) of Numerical Methods for
Unconstrained Optimization, edited by W. Murray, Academic Press, New York.

Ortega, J. M. and Rheinboldt, W. C. (1970), Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, New York.

Rao, C. R. and Mitra, S. K. (1971), Generalized Inverse of Matrices and
Its Applications, Wiley, New York.

Stewart, G. W. (1973), Introduction to Matrix Computations, Academic Press,
New York.


