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Abstract
We propose a new method for multivariate forecasting which combines Dynamic 
Factor and multivariate GARCH models. The information contained in large datasets 
is captured by few dynamic common factors, which we assume being conditionally 
heteroskedastic. After presenting the model, we propose a multi-step estimation 
technique which combines asymptotic principal components and multivariate 
GARCH. We also prove consistency of the estimated conditional covariances. We 
present simulation results in order to assess the finite sample properties of the 
estimation technique. Finally, we carry out two empirical applications respectively on 
macroeconomic series, with a particular focus on different measures of inflation, and 
on financial asset returns. Our model outperforms the benchmarks in forecasting the 
inflation level, its conditional variance and the volatility of returns. Moreover, we are 
able to predict all the conditional covariances among the observable series. 

Keywords: Dynamic Factor Models, Multivariate GARCH, Conditional Covariance, 
Inflation Forecasting, Volatility Forecasting. 

JEL Classification: C52, C53. 
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Non-technical summary 
In this paper we combine Dynamic Factor models and multivariate GARCH models 

with the aim of explaining and forecasting a large number of variables together with 

their conditional covariances. The model we propose, named Dynamic Factor GARCH 

(DF-GARCH), can handle large panels of time series by estimating only a relatively 

small number of parameters, as it assumes a dynamic factor structure in the data. The 

dynamic common factors driving the data are precisely those of interest for structural 

analysis, i.e. they can be identified as structural shocks. Finally, thanks to the factor 

decomposition, we are able to disentangle the common, or systemic, component and 

the idiosyncratic component of the first and second, conditional and unconditional 

moments of each variable in the panel. These features of the DF-GARCH make it 

suitable for applications in several fields. For instance, large conditional covariance 

matrices are typically used in finance, e.g. for the construction of optimal portfolios 

and the pricing of options based on many underlying returns. Moreover, one could use 

the DF-GARCH to construct systemic credit risk indicators, by using data on leverage 

or asset volatility and exploiting financial risk measures such as Value-at-Risk and 

probability of default. Finally, the DF-GARCH could be used in macroeconomics for 

inflation forecasting, for assessing inflation uncertainty, for measuring upside and 

downside risks to price stability, and for a structural analysis of the conditional 

covariance structure between the real and financial sides of the economy. We firstly 

describe the model and the estimation procedure, together with its consistency 

properties. Then, we evaluate the potentialities of our model and the goodness of our 

estimation method by carrying out Monte-Carlo simulations and two empirical 

applications. In the first application, we employ the DF-GARCH for the forecast of 

inflation and its time dependent confidence intervals. We model also the conditional 

covariance matrix of the whole macroeconomic dataset. In this way we are able to 

detect and predict conditional correlations between inflation and other variables, which 

contain useful information for monetary policy. In a second application, we consider 

predictions of volatilities and covolatilities of daily asset returns. The DF-GARCH 

specification in both cases performs well compared with alternative benchmark 

specifications. 



6
ECB
Working Paper Series No 1115
November 2009

1 Introduction

It is well known that modelling the conditional variance of inflation may improve the predic-
tion of its level (Engle, 1982). Knowing also the covariance structure between inflation and
other macroeconomic quantities may improve the forecast even further (see e.g. Hamilton,
2008). Moreover, assessing inflation uncertainty becomes of paramount importance now that
the era of the ‘Great Moderation’ might have come to an end. Indeed, central banks have to
evaluate carefully the risks associated with price stability, which in turn is often considered as
the avoidance of excess inflation but also of deflation. Moreover, predicting the covolatility
of a large number of variables is crucial not only in macroeconomics. In finance, many issues
involve the prediction of large covariance matrices, e.g. the construction of optimal portfo-
lios and the pricing of options based on many underlying returns. For these and many other
purposes we need to estimate the conditional covariances of large datasets.

We combine Dynamic Factor models and multivariate GARCH models, proposing a model
able to explain and forecast a large number of series together with their conditional covari-
ances. The model is parsimonious as the number of parameters, specifying the dynamics of
the few driving factors, is relatively small. We name the model Dynamic Factor GARCH (DF-
GARCH). As in Giannone et al. (2004) and Forni et al. (2009), we make use of the static rep-
resentation of the generalized (or approximate) dynamic factor model by Forni et al. (2005),
together with a VAR specification of the static factors. Estimation is based on asymptotic
principal components (see Bai, 2003) and on a subsequent VAR estimated on these latter. Fi-
nally, we add a multivariate GARCH structure to the vector of dynamic common factors. As
a consequence, we can model the conditional covariances of the observable series by simply
modelling the conditional covariances of the few underlying dynamic factors. We consider two
multivariate GARCH models: the full BEKK and the DCC specifications for which Maximum
Likelihood estimators are available (see Engle and Kroner, 1995; Engle, 2002, respectively).

In traditional multivariate volatility models an increase in the cross-sectional dimension
corresponds to a much larger increase in the number of the required parameters. Those spec-
ifications which bypass this problem, on the other hand, pay a price in terms of a severe loss
of generality or high complexity in estimation.1 Factor models offer a key for dimensionality
reduction, which consists in assuming a few latent variables, the common factors, as driving
forces for the whole dataset. By summarizing the bulk of the information into a few series,
the estimation of multivariate GARCH in large datasets becomes feasible.

The idea of a conditional heteroskedastic factor model is firstly suggested by Engle (1987),
where the conditional covariance of the observed series follows a one-factor process. Simi-
larly, Diebold and Nerlove (1989) develop a static heteroskedastic one-factor model for ex-
change rate series. Estimation is pursued by using a Kalman filter which is preferred to the
two-step procedure by Engle et al. (1990) where static factors are extracted from the uncon-
ditional covariance matrix before being modelled as univariate GARCH processes. In fact,

1See Bauwens et al. (2006) for a survey on multivariate GARCH models, and Harvey et al. (1994) for a survey
on Stochastic Volatility models.
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Sentana (1998) proves that the latter model is nested in the former. Both models have ho-
moskedastic idiosyncratic component. Harvey et al. (1992) build a modified version of the
Kalman filter for models with unobservable heteroskedastic factors and apply it to the case
of a dynamic one-factor model (a Structural ARCH). This modified version of the Kalman
filter is used also by King et al. (1994) to estimate a static factor model with a diagonal time-
varying conditional covariance matrix of the idiosyncratic component. All these models are
either static or allowing for just one factor.

The contribution of our model is twofold. First, it is a dynamic model and therefore the
underlying factors are really few (in particular, they are less than the factors one would find
when estimating a purely static model on a dataset where dynamics are important). These few
dynamic factors are those of interest for structural analysis. Second, thanks to the very small
dimension of the factor space, we are able to estimate the conditional covariance matrix of
very large datasets without estimating any highly parametrized model.

After studying the consistency properties of our estimation procedure for the cross-sectional
(n) and sample (T ) dimensions going to infinity, we evaluate the goodness of our estimation
method and the potentialities of our model by carrying out some Monte-Carlo simulations and
two empirical applications.

All the literature cited above deals with theoretical specifications and different possible
estimations of conditionally heteroskedastic factor models with a special focus on financial
applications. We believe that these kinds of models have a broader scope in time series anal-
ysis. For this reason, in the first application, we employ the DF-GARCH for the forecast
of inflation and its time dependent confidence intervals. We model also the conditional co-
variance matrix of the whole macroeconomic dataset. In this way we are able to detect and
predict conditional correlations between inflation and other variables, which contain useful
information for monetary policy.

There are three streams of literature related to this first empirical exercise. First, the
use of conditionally heteroskedastic models for inflation has originally been suggested by
Engle (1982, 1983) when forecasting UK and US inflation series. The importance of mod-
elling the conditional variance when forecasting the levels has been also remarked upon by
Stock and Watson (2007), who propose a stochastic volatility model for predicting inflation.
Moreover, modelling also the conditional covariances among macroeconomic variables can
considerably improve the forecasts of their conditional mean, as recently shown by Hamilton
(2008). In this light, the applications of dynamic factor models for forecasting macroeconomic
quantities (see Artis et al., 2002; Banerjee and Marcellino, 2006; Heij et al., 2008, among oth-
ers) can be revisited by taking explicitly into account the possible conditional heteroskedas-
ticity of the underlying dynamic factors. Second, there exists a whole stream of literature,
starting from the works by Friedman (1977) and Ball (1992), aiming at testing the hypothe-
sis that higher variability of inflation should lead to lower output, ceteris paribus, and higher
rates of inflation are generally associated with higher variability of inflation (see Engle, 1983;
Grier and Perry, 1998; Kontonikas, 2004, among others). If this hypothesis is true, then higher
rates of inflation would also be associated with lower levels of output, which implies a posi-
tively sloped Phillips curve. Finally, by considering policy makers and central bankers as risk
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managers, Kilian and Manganelli (2008) show that for maintaining price stability it is neces-
sary to have a model that provides a measure of the risk associated with inflation falling below
or breaching a given threshold.

In a second application, we consider predictions of volatilities and covolatilities of daily
asset returns. In this case we are just concerned about volatility forecasts, and not level fore-
casts, as derived from a factor decomposition of the returns. Together with all the literature
cited above, two other models are related to this empirical analysis. First, the Orthogonal
GARCH by Alexander (2001), which is typically used for Value-at-Risk modelling and is
based on a univariate GARCH specification of the principal components of the financial re-
turns. Second, the Generalized Orthogonal GARCH by van der Weide (2002), in which the
linear map that links components and observed data is allowed to be non orthogonal. There
are two differences between the DF-GARCH and these two models, which are in fact princi-
pal component and not factor models. First, both models are in practice applied only to very
small datasets (n � 10), while we are able to apply the DF-GARCH to very large datasets
(n � 100). Second, there is a technical and interpretative difference between the two ap-
proaches. Indeed, factor models require more structure since the number of factors is not
arbitrary but determined by the data. Moreover, factor models are more flexible than principal
components by allowing the idiosyncratic covariance matrix to be non-orthogonal.

The paper is structured as follows. In Section 2 we present the model and its assumptions.
In Section 3 we describe the estimation procedure and we prove its consistency. In Section 4
we report the results from Monte-Carlo simulations. In Section 5 we apply the DF-GARCH to
a large panel of macroeconomic series in order to forecast inflation’s level and its conditional
variance and covariance with other relevant series. In Section 6 we compare the predictions
of financial volatilities and covolatilities for different specifications of the DF-GARCH. In
Section 7 we conclude and discuss possible developments.

2 The Dynamic Factor GARCH

We consider a modification of the model by Forni et al. (2009), which in turn is a special case
of the model in Forni and Lippi (2001) and Forni et al. (2005). It is an approximate factor
model as it allows for mildly cross-correlated idiosyncratic component. For this reason we
need in principle to have an infinite number of cross-sectional units. Closely related models
are in Stock and Watson (2002) and Bai (2003).

Denote by x an n × T rectangular array of observations:2

Assumption 1: x is a finite realization of an infinite dimensional real-valued stochastic pro-
cess defined in L2(Ω,F , P ), where all the n-dimensional vector processes {xt = (x1t . . . xnt)

′ ,

2Throughout the paper, we omit the dependence on n and T to avoid heavy notation. In particular, we do not
make explicit the dependence on n when considering quantities at population level. In the same way, we indicate
the estimate of a generic quantity B, which depends on n and T , simply as B̂.



9
ECB

Working Paper Series No 1115
November 2009

t ∈ Z}, n ∈ N, are stationary, with zero mean and finite second-order moments Γx
k =

E[xtx
′
t−k], k ∈ Z.

We assume that each variable xit is the sum of two unobservable components: the common
component χit and the idiosyncratic component ξit. The common component is driven by q
common shocks ut = (u1t . . . uqt)

′, where q is independent of n and, typically, q << n. By
defining χt = (χ1t . . . χnt)

′ and ξt = (ξ1t . . . ξnt)
′, we have

xt = χt + ξt = B(L)ut + ξt, (1)

where:

Assumption 2: ut is a q-dimensional orthonormal white noise, B(L) is a one-sided n × q
absolutely summable matrix polynomial, i.e. a filter (infinite in general). Moreover, there
exists an integer r > q, an n × r matrix Λ, a one-sided absolutely summable r × r matrix
polynomial (infinite in general) N(L), and a maximum rank r × q matrix H, such that

B(L) = ΛN(L)H

Defining the r × 1 vector Ft = N(L)Hut, (1) can be written in the static form

xt = ΛFt + ξt. (2)

We call static factors the r entries of Ft, while the common shocks ut are also referred to
as dynamic factors.

Assumption 3: for all n, the vector ξt is stationary. Moreover, ujt is orthogonal to ξis, for all
i, j ∈ N, and t, s ∈ Z, i.e. E[ujtξis] = 0.

Let Γχ
k = E[χtχ

′
t−k] and Γξ

k = E[ξtξ
′
t−k], and denote by μχ

j and μξ
j the j-th eigenvalue, in

decreasing order of Γχ
0 and Γξ

0. Moreover, let Σχ(θ) and Σξ(θ) be the spectral density matrix
of χt and ξt, respectively, and denote by λχ

j (θ) and λξ
j(θ) their eigenvalues as functions of

θ ∈ [−π, π], in decreasing order.

Assumption 4: (a) as n → ∞, λχ
q (θ) → ∞ for θ a.e. in [−π, π];

(b) there exist constants cj , cj , j = 1, . . . , r, such that cj > cj+1, j = 1, . . . , r − 1, and

0 < cj < lim inf
n→∞

n−1μχ
j ≤ lim sup

n→∞
n−1μχ

j ≤ cj.

Assumption 5: there exists a real K such that λξ
1(θ) ≤ K for any n ∈ N and a.e. in [−π, π].

This implies that μξ
1 ≤ K for any n ∈ N.



10
ECB
Working Paper Series No 1115
November 2009

Under these Assumptions, the number q of dynamic factors and the common component
χit are uniquely identified. In particular, a representation of the form (1) with a different
number of dynamic factors is not possible (see Forni and Lippi, 2001). Assumption 4(b) is
necessary to identify r. In particular, a static representation of the common component with a
different number of static factors is not possible. The existence of the static representation (2)
is crucial for the estimation of our model and it is proved in Forni et al. (2009). Finally, we
add to our model two other Assumptions.

Assumption 6: the entries of N(L) are rational functions, and in particular N(L) results
from inversion of the VAR(m) Ft = (Ir −AL− . . .−AmLm)−1εt. For simplicity, we assume
m = 1, so that N(L) = (Ir −AL)−1, where Ir is the r-dimensional identity matrix, and A is
an r × r matrix.

Notice that, according to Assumption 2, εt = Hut, i.e. the residuals of the VAR have
reduced rank q. More precisely, εt ∈ span {ut}, i.e. the residuals belong to a q-dimensional
linear space generated by the dynamic factors.

Assumption 7: (a) the dynamic factors are conditionally heteroskedastic ut| It−1 ∼ N (0,Qt),
Qt being a nondiagonal time-dependent q× q matrix. It−1 contains all the information avail-
able at time t−1, including previous estimates of the dynamic factors, thus Qt = E[utu

′
t|It−1];

(b) the idiosyncratic component evolves according to a univariate ARMA-GARCH model
ξt| It−1 ∼ N (μt,Pt), where μt is an n-dimensional vector of ARMA specifications and Pt is
an n × n diagonal matrix containing the conditional variances of each idiosyncratic series.

In practice, we allow for two possible specifications of Qt. The first one is the full BEKK
specification by Engle and Kroner (1995):

Qt = C′
0C0 + C′

1ut−1u
′
t−1C1 + C′

2Qt−1C2. (3)

As we require E[Qt] = E[utu
′
t] = Iq, an additional condition applies on the coefficients of

the BEKK representation: C′
0C0 = Iq − C′

1C1 − C′
2C2. Alternatively, Qt can be modelled

according to the DCC specification by Engle (2002):

Qt = DtWtDt, Wt = (V∗
t )

−1Vt(V
∗
t )

−1. (4)

Dt is a diagonal matrix containing on its diagonal the conditional standard deviations for each
ut obtained from a univariate GARCH(1,1) specification:

Djjt = ωi + αiu
2
jt−1 + βiDjjt−1, j = 1, . . . , q. (5)

Wt is the dynamic correlation matrix and has ones on its diagonal, while its out-of-diagonal
elements are given by the corresponding elements of Vt. More precisely, after defining the
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standardized residuals vjt = ujt(Djjt)
−1 for j = 1, . . . , q, we have

Vt = (1 − a − b) E[vtv
′
t] + a (vt−1v

′
t−1) + bVt−1,

(6)
V ∗

jjt = (Vjjt)
1/2 and V ∗

jht = 0 for j �= h j = 1, . . . , q.

We indicate Qt(C1,C2) when considering the full BEKK and Qt(ω,α, β, a, b) when consid-
ering the DCC, with ω = (ω1 . . . ωq)

′, α = (α1 . . . αq)
′, and β = (β1 . . . βq)

′.

For the univariate idiosyncratic conditional variances we use a GARCH(1,1) model:

Piit(π0i, π1i, π2i) = π0i + π1iξ
2
it−1 + π2iPiit−1(π0i, π1i, π2i), i ∈ N. (7)

We do not define in this paper any particular structure of the ARMA process governing the
dynamics of ξt, although this is in principle possible without any further complication. In the
empirical application on financial returns, which are unlikely to have a strong dynamic struc-
ture in their levels, we do not consider any ARMA structure of the idiosyncratic component
(i.e. μt = 0). When instead we forecast inflation, we do not model the idiosyncratic compo-
nent at all as we are interested in building an indicator for inflation based only on the common
component.

Under Assumption 4(b), the space spanned by the static factors and the common compo-
nent are always identified. However, the r common static factors can be identified only up to
a unitary transformation G. Under Assumption 4(a), also the space spanned by the dynamic
factors is identified. Assumption 6 implies that also the ut’s are identified up to a unitary
transformation R (see Proposition 2 in Forni et al., 2009). The roles of G and R are however
different and are discussed in the next Section.

Finally, for identification purposes we need some techincal assumptions: Λ′Λ/n → Ir as
n → ∞, where Ir is the r-dimensional identity matrix, and

∑
t FtF

′
t/T → ΓF

0 as T → ∞ for
some positive definite ΓF

0 (see Bai, 2003, for details).

3 Estimation and consistency

The estimation of the DF-GARCH is based on Giannone et al. (2004) and Forni et al. (2009).
We make use of the static representation (2) together with the VAR(1) specification of the
static factors as given in Assumption 6:

xt = ΛFt + ξt, (8)
Ft = AFt−1 + εt, with εt = Hut. (9)

This state-space representation is equivalent to the dynamic representation (1), with filters
defined as

B(L) = Λ(Ir − AL)−1H. (10)
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Before estimating (8)-(9), we have to specify the number of dynamic factors q and the number
of static factors r. Hallin and Liška (2007) and Bai and Ng (2002) provide consistent estima-
tors, as n, T → ∞, of q and r, respectively.

The estimation of the DF-GARCH is in four steps.

STEP 1 Given a consistent estimator of the covariance matrix Γ̂x
0 , the static factors Ft are

consistently estimated as the r largest principal components as in Stock and Watson (2002)
and Bai (2003). We have also a consistent estimate of the loadings Λ, as proved in the next
Proposition.3

Proposition 1: (a) the estimated loadings Λ̂ are
√

n times the normalized eigenvectors corre-
sponding to the r largest eigenvalues of the sample covariance matrix Γ̂x

0; the estimated fac-
tors are F̂T

t = 1
n
Λ̂′xt, moreover there exists a r × r unitary matrix G such that as n, T → ∞

||Λ̂ − ΛG|| P−→ 0, ||F̂t − G′Ft|| P−→ 0;

(b) we have also a consistent estimation of the common and idiosyncratic components: χ̂t =
Λ̂F̂t, and ξ̂t = xt − χ̂t. As n, T → ∞

χ̂it − χit
P−→ 0, ξ̂it − ξit

P−→ 0, ∀ i.

Proof: see Bai (2003); part (a) is in Theorems 1 and 2, while part (b) is in Theorem 3.4

Alternatively, we can estimate the static factors as the r largest generalized principal com-
ponents as in Forni et al. (2005). In this case we need consistent estimators of Γ̂χ

0 and Γ̂ξ
0,

which can be obtained from the spectral decomposition of a periodogram smoothing consis-
tent estimator of the spectral density matrix Σx(θ). A result analogous to Proposition 1 can
be proved (see Proposition 1 in Forni et al., 2005). In the first empirical application we use
standard principal components, while in the second one we use generalized principal compo-
nents. The method by Bai (2003) does not require the spectral decomposition used instead in
Forni et al. (2005), and it is, in this sense, a static method. Although in theory we may miss
some relevant information by computing only static principal components, in practice the evi-
dence is mixed and it has been shown that the two estimation methods deliver similar results in
terms of forecasting performance (see e.g. Boivin and Ng, 2005; D’Agostino and Giannone,
2006).

STEP 2 Given an estimate of the static factors Ft and of the loadings Λ, we need to esti-
mate equation (9) in order to have an estimate of the dynamic factors. We just have to run a
VAR on the estimated static factors.

3Given a matrix B, ||B|| denotes the spectral norm of B, thus ||B|| =
√

μ1(BB′), where μ1(BB′) is the
largest eigenvalue of BB′. If B is a row matrix, then ||B|| is the euclidean norm.

4In this and the following Propositions we do not study the rate of convergence, which for the common
component is typically equal to min(

√
T ,

√
n).
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Proposition 2: the coefficients of equation (9) and the covariance matrix of the residuals
are estimated as:

Â = Γ̂F
1

(
Γ̂F

0

)−1

, Γ̂ε
0 =

(
Γ̂F

0 − ÂΓ̂F
0 Â′

)
;

these estimates are consistent up to the unitary transformation G defined in Proposition 1,
i.e., as n, T → ∞,

||Â − G′AG|| P−→ 0, ||Γ̂ε
0 − G′Γε

0G|| P−→ 0, ||ε̂t − G′εt|| P−→ 0.

Proof: see the Appendix.

STEP 3 Since the estimated residuals ε̂t have reduced rank, as they belong to the space
spanned by the q dynamic factors, we can simply use principal components in order to esti-
mate an orthogonal linear basis for this space. Therefore we have:

Proposition 3: (a) the columns of estimated matrix Ĥ are
√

r times the normalized eigen-
vectors corresponding to the q largest eigenvalues of the covariance matrix Γ̂ε

0; the estimated
dynamic factors are ût = 1

r
Ĥ′ε̂t; moreover there exists a q × q unitary matrix R such that, as

n, T → ∞,
||Ĥ − G′HR|| P−→ 0, ||ût − R′ut|| P−→ 0,

where G is defined in Proposition 1;

(b) we have also a consistent estimation of the filters (10); define B(L) =
∑s

k=0 BkL
k, then,

as n, T → ∞,
||B̂k − BkR|| P−→ 0, ∀ k ≥ 0.

Proof: see the Appendix.

Notice that, since the static factors are unobserved and therefore estimated up to a unitary
transformation G, then the reduced rank matrix H is estimated up to the same transformation
with the addition of a q × q unitary transformation R that comes from principal component
analysis. However, Proposition 3 proves that the estimated dynamic factors and the associated
filters do not depend on G, but only on R. If we interpret the dynamic factors as structural
shocks, then R could be identified by imposing economic meaningful restrictions. This is
the procedure adopted in Forni et al. (2009): if we were able to identify the dynamic factors
according to some economic criterion, then we could first estimate R and then estimate the
conditional covariance matrix of R′ût interpreting these as the “true” dynamic factors. If
we want to give a structural interpretation to the dynamic factors, we can estimate R with
standard techniques used in the Structural VAR literature (e.g. long run restrictions). The
use of dynamic factor models for structural analysis is however beyond the scope of this
paper, mainly because in a forecasting context there is no objective criterion that can lead
us to identify R. In this respect R does not represent an issue for us, therefore we assume
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R = Iq.5 It is important to remark that the estimate of the dynamic factors does not depend
on G. Indeed, this matrix would be of difficult interpretation as no economic meaning could
be attached to the unobserved static factors.

STEP 4 We impose heteroskedasticity on the estimated principal components of εt and in
Assumption 6 we define the “true” dynamic factors as these principal components. Therefore,
ût is a consistent estimate of ut and R = Iq. Under this condition, in the next Proposition we
use Maximum Likelihood (ML) to consistently estimate conditional covariances.

Proposition 4: (a) in the DCC specification, the estimated conditional covariance matrix
of the dynamic factors, given in (4), (5), and (6), is estimated as Q̂t(ω̂, α̂, β̂, â, b̂)), where

(ω̂j, α̂j, β̂j) = argmax
ωj ,αj ,βj

−1

2

T∑
t=1

(
log Djjt(ωj, αj, βj) +

û2
jt

Djjt(ωj, αj, βj)

)
, j = 1, . . . q,

and

(â, b̂) = argmax
a,b

−1

2

T∑
t=1

(
log (detWt(a, b)) + v̂′

tW
−1
t (a, b)v̂t

)
,

where v̂jt = ûjt(D̂jjt)
−1 for any j = 1, . . . , q;

(b) in the full BEKK specification, the estimated conditional covariance matrix of the dynamic
factors, given in (3), is Q̂t(Ĉ1, Ĉ2) such that

(Ĉ1, Ĉ2) = argmax
C1,C2

−1

2

T∑
t=1

(
log (detQt(C1,C2)) + û′

tQ
−1
t (C1,C2)ût

)
;

(c) the estimated conditional variance of the i-th idiosyncratic component, given in (7), is
P̂iit(π̂0i, π̂1i, π̂2i), where

(π̂0i, π̂1i, π̂2i) = argmax
π0i,π1i,π2i

−1

2

T∑
t=1

(
log Piit(π0i, π1i, π2i) +

ξ̂2
it

Piit(π0i, π1i, π2i)

)
, i = 1, . . . n

.

(d) Q̂t and P̂t are consistently estimated, i.e., as n, T → ∞,

||Q̂t − Qt|| P−→ 0, ||P̂t − Pt|| P−→ 0.

Proof: see the Appendix.

If we model also the conditional mean of the idiosyncratic component then also an ARMA
model should be estimated for each series, in order to obtain an estimate of the conditional
mean μ̂t. No complication is added as the properties of the ML estimate of a univariate

5Notice also that simulated and empirical results show that even without taking into account the indeterminacy
due to R, the performance of our model is remarkably good.
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ARMA-GARCH are well known and can be generalized to a two-step procedure as in part (d)
of Proposition 4.

We then have a complete estimate of the DF-GARCH. The dynamics of xt are specified
through an unobserved component model as in (8)-(9), while the conditional heteroskedas-
ticity of xt enters the model through (3) or (4)-(6), and (7). Therefore, we can consistently
estimate the common component as stated in Proposition 1 and its conditional covariance as
proved in the following Proposition.

Proposition 5: the estimated conditional covariance matrix of the common component is
consistently estimated as Γ̂χ

t = Λ̂ĤQ̂tĤ
′Λ̂′, i.e., as n, T → ∞,

||Γ̂χ
t − Γχ

t || P−→ 0.

Proof: see the Appendix.

Some remarks are necessary.

Remark 1 The conditional covariance matrix of xt is consistently estimated as

Γ̂x
t = Λ̂ĤQ̂tĤ

′Λ̂′ + P̂t.

This matrix is positive definite by construction. Indeed P̂t and Q̂t come respectively from n
univariate GARCH and a multivariate GARCH, and the first term on the right-hand-side is a
quadratic form.

Remark 2 In traditional factor models the h-steps ahead forecast of the common component
is obtained by projecting the observed series onto the space spanned by F̂T . The coefficients
of this projection are computed by means of the estimated lagged covariance matrix of xt (in
Stock and Watson, 2002) or of χt (in Forni et al., 2005). The main limit of this forecasting
method is due to the fact that no dynamic model is estimated for the static factors, therefore
we can rely only on their in-sample estimation. Following Giannone et al. (2004), in equation
(9) we specify the dynamic evolution of the static factors. The h-step ahead forecast of the
common component is obtained as

χ̂T+h|T = Γ̂x
hΛ̂(Λ̂′Γ̂x

0Λ̂)−1ÂF̂T+h−1|T .

Remark 3 The proposed estimation method is a multi-step procedure, therefore it suffers from
loss of efficiency, i.e. the asymptotic covariance matrix will be larger than the inverse of the
Fisher information matrix (see Newey and McFadden, 1994) and given the cumbersome ex-
pression it will take we do not attempt here to compute it. Moreover, efficiency is lost because
the static factors are unobserved, therefore an additional term expressing the uncertainty in the
estimate F̂t should be added to the asymptotic covariance matrix.

Remark 4 Kalman filter estimation could provide us with new, and in principle more efficient,
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estimates of static factors. Moreover, as prediction strongly depends on the last time-period es-
timation, the implementation of a Kalman filter may increase forecasting accuracy. We could
follow Doz et al. (2006) and use Quasi Maximum Likelihood to estimate both the parameters
and the static factors with an EM algorithm. We keep things simpler and propose in Appendix
B a modified version of the Kalman filter proposed by Harvey et al. (1992). While the factors,
together with their conditional covariances, are reestimated by the filter, we keep the parame-
ters of the linear part of the model fixed. The filter can only be quasi-optimal because, at each
step, past disturbances are not observable, and therefore we are not sure that the distribution of
current disturbances is conditionally Gaussian. In the following Sections, we use this iterative
procedure only when dealing with forecasts, while in-sample estimations are computed using
the four-step the method explained above.

4 Simulation results

In order to assess the validity of our estimation method we apply it to simulated panels that
differ in the cross and time dimensions, in the number of dynamic and static factors and in the
amount of variance explained by the common component with respect to the total.6 As possi-
ble values we choose n = 75, 150 and T = 250, 500, 750 and for every chosen (n, T ) combi-
nation we take 2 or 3 dynamic factors, loaded with 2 or 4 lags, and an average variance ratio
(VR) between idiosyncratic and common components of 0.3 or 0.5 (the noise-to-signal ratio).
We simulate ut as a multivariate GARCH following the full BEKK as in (3). Idiosyncratic
components are simply simulated as univariate GARCH(1,1) as in (7). Parameters of GARCH
and full BEKK are extracted from uniform distributions with range determined according to
empirical estimates. Namely, C1 has diagonal elements in [0.1, 0.5] and off-diagonal ele-
ments in [−0.2, 0.2]; C2 has diagonal elements in [0.8, 0.95] and off-diagonal elements in
[−0.15, 0.15]; and for any i, π1i has values in [0, 0.1] and π2i has values in [0.8, 0.95]. At each
extraction of the parameters, positive definiteness of the simulated conditional variances has
been checked before proceeding.

We simulate the dynamic factor model as in (1) instead of simulating it in its static form
(8). Indeed, we consider (1) as the real data-generating-process, while (8)-(9) is just a possible
way to represent the data, which is necessary for estimation. Such a choice also avoids the
simulation of the static factors. Finally, we simulate the filters (10) by extracting them from a
standard normal distribution. All these loadings are then renormalized in such a way that on
average xt has unit variance and zero mean, and the chosen VR is on average respected. For
each parameter set we repeat the simulation of the data and the estimation of the DF-GARCH
model 250 times.

Figure 1 shows the confidence interval at 90% level. Figures 2.1, 2.2, 3.1 and 3.2 show
four examples of estimated and simulated conditional variances and covariances. We notice
the remarkably good performance of our estimation method.

6We performed all computations and simulations by using the standard Matlab software packages (v.7.0) plus
the freely available toolboxes MATNEM by Christian T. Brownlees and ucsd_garch by Kevin K. Sheppard.
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At every Monte-Carlo replication, we run Mincer-Zarnowitz regressions to evaluate the
performance of the estimation. For each series i, we regress the entries of the simulated
common component or of its variance-covariance matrix on the estimated ones. First, we
consider only the diagonal elements of the conditional covariance matrix, thus obtaining a
measure of the goodness-of-fit relative to estimated volatilities. Then, we consider only the
out-of-diagonal elements in the upper-triangular part of the conditional covariance matrix,
in order to measure the goodness-of-fit relative to estimated covolatilities. We thus run the
regressions using all the n(n − 1)/2 elements of the upper-triangular part of Γ̂χ

t . We focus
upon the R2 coefficient, which roughly measures the amount of variability of the estimated
quantities that can be explained by the model, thus giving a general idea of its potentialities.
Table 1 and 2 report the average R2 over all series and over all 250 replications. Notice
the improvement achieved on the estimate of the last in-sample observations, when using the
Kalman filter. This supports the use of a modified Kalman filter for making accurate out-
of-sample forecasts. Notice also from both Tables that, as n and T increase, the estimation
improves.

5 Forecasting Inflation and its Volatility

We consider a panel of 130 US macro time series (from the Global Insight Database) with
monthly observations from December 1986 to November 2006.7 We focus on four price in-
dexes: Personal Consumption Expenditure (PCE) for all items or core (i.e. excluding oil and
food), Consumer Price Index (CPI) for all items or core. We transform all series in order to ob-
tain stationarity, and, in particular, for every price index pt we define the percentage monthly
inflation rate (on an annual basis) as

πt = 1200 log

(
pt

pt−1

)
.

We consider all values greater than five standard deviations (in a univariate setting) as outliers
and we replace them with the mean of the series. The criterion by Hallin and Liška (2007)
suggests the presence of four dynamic factors. In order to choose the number of static factors
we use a heuristic argument (see D’Agostino and Giannone, 2006). We include as many static
factors as it is necessary to explain the same amount of variance as explained by the selected
common dynamic factors. With q = 4 dynamic factors we explain 64% of the total variance
and we need r = 12 static factors to explain the same amount of variance.

We estimate the model using a rolling window of 13 years, leaving the remaining 7 years
for out-of-sample prediction. As we compute predictions from 1 to 12 months ahead, we
repeat estimation and prediction 72 times (i.e. 6 years). Each time we repeat the forecast, we
reestimate all the parameters of every considered model and the factor decomposition, except

7This dataset is often used in factor models literature (see Stock and Watson, 2002; Giannone et al., 2004;
D’Agostino and Giannone, 2006, among others). A complete list of the considered variables is available upon
request.
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for the number of dynamic factors which is estimated once and for all at the beginning of the
forecasting exercise.

As expected, when testing for ARCH effects on the standardized residuals of an AR model
for inflation, we find little evidence of heteroskedasticity. This property becomes evident
only when considering a longer time-span (i.e only for T ∼ 200) and longer horizons (more
than 12 lags) than those considered here. Indeed, also Engle (1983) finds evidence of ARCH
effects only at one and two-year horizons. Given the low degree of heteroskedasticity in recent
years inflation, we do not expect that a model which considers heteroskedasticity improves
level forecasts with respect to its homoskedastic counterpart. We would be satisfied with a
heteroskedastic model that forecasts levels with the same accuracy of a homoskedastic one,
but that is also able to provide reliable forecasts of conditional variances that can be used
as a proxy of inflation uncertainty. In addition, our model is able to provide forecasts of
the conditional covariances, which might be very useful for the implementation of monetary
policy.

The lack of heteroskedasticity in inflation is not in contrast with the hypotheses of our
model. Indeed, if ut is a multivariate GARCH process, then the static factors Ft, which are
contemporaneous linear combinations of ut, are Weak GARCH processes and so are the xt

(see Nijman and Sentana, 1996; Drost and Nijman, 1993, for details). Therefore, the hypothe-
sis of heteroskedastic dynamic factors is consistent with the observed weak heteroskedasticity
of inflation. Once we have an estimate of ut, we test for GARCH effects by means of the
ARCH test. Results for the first and the last 13-year windows of our sample are in Table 3. At
least two of the four dynamic factors display ARCH effects, confirming our initial hypothesis.
This result suggests to apply the multivariate GARCH on the dynamic factors and not directly
on the observable series.

We compute the average correlation between the series of a given group of series and the
four estimated dynamic factors. The largest factor is anticorrelated with industrial produc-
tion growth rates (-0.38) and mildly anticorrelated with inflation (-0.12). Also the second
largest factor is correlated with inflation series (0.38), while the fourth largest factor seems to
be strongly correlated with asset returns (0.79). Nothing can be said about the third largest
factor. According to the ARCH test, the first, second and fourth largest factors display con-
ditional heteroskedasticity and are correlated with typically conditional heteroskedastic series
as inflation and asset returns.

We compare all results with a univariate AR-GARCH(1,1) and a simple AR for inflation
series, where the autoregressive order is always computed by means of the Akaike Infor-
mation Criterion. Moreover, we test the predictive performance of the DF-GARCH against
the static factor model by Stock and Watson (2002) and its homoskedastic counterpart by
Giannone et al. (2004). The Root Mean Squared Error is defined as

RMSEh =

√√√√ 1

72

72∑
k=1

(πT+k+h−1 − π̂T+k+h−1|T )2 h = 1, . . . , 12,
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where πT+h is the true value of inflation while π̂T+h|T is the h-steps-ahead forecast of infla-
tion, given all the available information at time T . When using factor models, we consider the
estimate of the common component of inflation as an estimate of inflation itself, i.e. π̂t ≡ χ̂πt.
In the DF-GARCH, forecasts are obtained with the Kalman filter procedure described in Ap-
pendix B. Table 4 summarizes the results in terms of RMSE ratios: a ratio smaller than one
indicates that the forecast based on the model of interest on average yields smaller forecast er-
rors than the forecast based on the benchmark model, i.e. the univariate AR. The DF-GARCH
and the model by Giannone et al. (2004) outperform all the other models at least at horizons
larger than one, which are those of major interest for policy makers, given the lag between
monetary policy interventions and their effects on inflation. Therefore a simple VAR specifi-
cation of the dynamics of the static factors is enough to achieve better forecast performances
with respect to the Stock and Watson (2002) model, where the behavior of the static factors is
not modeled. As expected, the heteroskedastic models do not improve significantly over their
homoskedastic counterparts.

In Table 5 we show the results of the Diebold-Mariano test of equal predictive accuracy
(see Diebold and Mariano, 1995, for details). Although some of the models we are comparing
may be considered as nested, this test is already useful to make a first distinction between
them. When the null hypothesis of equal predictive accuracy is rejected with high significance
levels, then, no matter if the models are nested, we already have an indication of which one is
better. According to this test, the model by Stock and Watson (2002) delivers forecasts which
are not significantly better than those of the univariate AR-GARCH. Also the DF-GARCH
and the model by Giannone et al. (2004) turn out to be equally informative. Both improve
over the univariate AR-GARCH especially for long horizons and for the core variables, which
are actually the least volatile inflation measures. When we cannot reject the null hypothesis of
equal predictive accuracy for two nested models, we consider also the test by Clark and West
(2007), who suggest to add a correction term to the RMSE of the DF-GARCH to account
for the possible errors made in estimating more parameters. Results comparing the univariate
AR-GARCH and the DF-GARCH are reported in Table 6.

The R2 of the Mincer-Zarnowitz regressions confirm the previous results. Values (not
reported here) are however quite small. This fact can be explained by Figure 4, where we
show the actual CPI inflation level and the forecasts made with the DF-GARCH at 1 and 12
months horizons. DF-GARCH predictions are slightly lagging and have lower variance than
the actual series. The prediction is smoother because we are considering only the common
component, as it is always the case when using a factor based index to forecast a variable.
Although the variance of the univariate GARCH forecasts is higher, this does not improve the
performance, on the contrary sometimes the estimated series misses completely the variations
in the actual data.

In Figure 5 we show, for CPI inflation, the 90% confidence intervals forecasted by the DF-
GARCH with h = 1 and h = 12. In Figure 6 we plot the 90% confidence intervals estimated
in-sample. The performance of our model seems qualitatively good, and indeed the observa-
tions are contained in the 90% confidence intervals 90% of the times (as expected under the
assumption of normality). The confidence intervals (not shown) for the core variables, which
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are less volatile, are quite flat and this is imputable again to the lack of heteroskedasticity.

To assess upside/downside risks to price stability, we compute the 5% and 95% Value-at-
Risk (VaR) measures for inflation, which are simply the 5-th and 95-th conditional percentiles
of the distribution of inflation. The simplest method to determine the adequacy of a Value-at-
Risk measure is to test the hypothesis that the proportion of violations is equal to the expected
one 9under the assumption of normality). Kupiec (1995) develops the likelihood ratio statistic

LR = 2 log

[(
1 − τ

T

)T−τ ( τ

T

)τ
]
− 2 log

[
(1 − p)T−τpτ

] ∼ χ2
1,

under the null hypothesis that the observed exception frequency, τ/T , equals the expected
one, p, where τ is the number of violations over a period of length T . Results for the 5-th
and 95-th percentiles are in Table 7. Both the GARCH and the DF-GARCH perform well,
although the DF-GARCH tends to overpenalize the 95-th percentile for noncore variables,
and to underpenalize the 5-th percentile for core variables.8

Finally, as we do not have an observable proxy of inflation’s conditional variance, we build
an indicator as the one proposed by Engle (1983). We fit an AR model, with 3, 6 or 12 lags,
on the first five years of data (i.e. 60 observations) and we compute the standard error of
the regression which we interpret as the standard deviation of the estimation. Then we drop
the first observation and we add a new one at the end of the sample. We reestimate the AR,
again with five years of observations. In this way, we obtain a series of standard deviation
estimates under the assumption that the model and its variance are constant for the preceding
five years.9 RMSEs between this proxy and the estimates obtained with the GARCH or the
DF-GARCH are in Table 8. For noncore variables the DF-GARCH performs better than the
AR-GARCH when using a low number of lags in the AR specification of Engle’s measure of
inflation volatility. The viceversa holds for core variables.

Summing up, the intervals predicted by the DF-GARCH contain the expected propor-
tion of observations and for noncore variables follow quite well the fluctuations of the series.
Moreover, if we consider the proxy of inflation’s conditional variance by Engle (1983), the DF-
GARCH has a comparable performance with respect to a univariate GARCH. We thus have
a model that forecasts inflation levels better than univariate AR and traditional factor mod-
els (Stock and Watson, 2002), and equally well when compared to factor models estimated
in state-space form (Giannone et al., 2004). Moreover, our model forecasts also conditional
variances at least as well as the univariate GARCH.

Being multivariate, the DF-GARCH provides also forecasts and estimates of conditional
covariances. In Figure 7 we show estimates of conditional covariances for the last window of
the rolling scheme. We consider economically interesting couples of series, in particular we
show the conditional covariances between CPI inflation and total industrial production growth

8A more sophisticated version is the test proposed by Christoffersen (1998), which allows also to examine
whether the violations are randomly distributed through time.

9As noted by Engle: “[...] the statistical properties of this procedure are not clear as the assumptions are
continually changing, but the interpretation is quite straightforward”.
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rate (Δyt) or unemployment rate (vt). While the former is positive, the latter is negative, a
result which is in line with the estimated unconditional covariances and with economic theory.
Indeed, for our dataset we have cov(Δyt, πt) = 0.14 and cov(vt, πt) = −0.06. The perfor-
mance of the DF-GARCH is remarkable in estimating the right sign of conditional covariances
and in following the peaks and troughs in the comovements between the variables. This fea-
ture of our model is particularly useful for policy makers who want to act as risk managers
with two targets as inflation and output growth. Moreover, even in the case in which output
does not enter the objective function at all, information on conditional covariances allows to
better predict the effects of monetary policy on the whole economy. As an example, our model
could be useful in deepening the knowledge of the mechanisms that relate the nominal and the
real sides of the economy.

6 Forecasting Volatility in Finance

The dataset we use for the second empirical application includes all the transaction prices
of 89 stocks traded on the London Stock Exchange (LSE) and participating in the construc-
tion of the FTSE100 index for the whole period from 1st October 2001 to 31st July 2003
(457 working days).10 Transaction prices have been cleaned from outliers by using the pro-
cedure described in Brownlees and Gallo (2006). Returns have been computed by using
the last transaction recorded each day before the closing time of the LSE. Daily realized
volatilities and covolatilities for out-of-sample evaluation are computed on a 5-minute fre-
quency after removing the first 15 minutes of each day in order to avoid open effects (see
Shephard and Barndorff-Nielsen, 2005). When computing realized covolatilities, we do not
use leads and lags of intra-daily returns, as the 5-minute frequency should be low enough to
avoid the nonsinchronicity bias (see Martens, 2004).

The criterion by Hallin and Liška (2007) suggests two common dynamic factors explain-
ing 44% of the total variance. We need about 5 or 6 static factors to explain at least this same
amount of variance. We use a rolling window of 350 observations and we repeat estimation
and one-step-ahead volatility forecasts 100 times. At each iteration we reestimate the param-
eters, but we keep fixed the number of dynamic and static factors. As for the volatility proxy,
we always use realized volatilities, but results are robust to other proxies as the naïve squared
returns or the more sophisticated squared adjusted range.11

According to the ARCH test on the dynamic factors, one of the two dynamic factors is
highly heteroskedastic. In particular, it is the most important (in terms of explained vari-
ance) of the two factors (see Table 9). Therefore, the largest factor determines the conditional
heteroskedasticity of asset returns. This result, which holds for samples of different length,
justifies our assumptions.

10As previous members of the Center for the Analysis of Financial Markets (CAFiM) at Sant’Anna School of
Advanced Studies in Pisa, we had access to the Bloomberg financial dataset used in this section.

11We report only results averaged on the total number of series and only compared to realized volatility.
Detailed results for all proxies and all series are available upon request.



22
ECB
Working Paper Series No 1115
November 2009

We compare the forecasting accuracy of a univariate GARCH and of the DF-GARCH
with 2 dynamic and 6 static factors estimated using both the full BEKK and the DCC speci-
fications. We choose the univariate GARCH(1,1) model as a benchmark because it is by far
the most used in practice and has usually a better performance than other models, despite be-
ing relatively simple. Moreover, to our knowledge O-GARCH and GO-GARCH applications
available in the literature employ a number of series which is about ten times smaller than
ours. Therefore, to have an idea of how a static model will perform with this dataset, we
estimate also a static version of the DF-GARCH, i.e. a model with r = q.

We look at the confidence intervals at 90% significance level under the assumption of
normality and show the results for four asset returns Figure 8: the univariate GARCH and the
DF-GARCH have a qualitatively similar performance.12 We also consider the 5% confidence
level VaR prediction for each series and report the results averaged across the 89 series in
Table 10: the DF-GARCH has a comparable and sometimes even better performance than the
univariate GARCH. These are encouraging results concerning the in-sample properties of our
estimation method.

To have a comparative performance evaluation for each series, we take the prediction of
the different competing models and compute the one-step-ahead RMSE against the realized
volatility RVit. For each series i, we compute

RMSEi =

√√√√ 1

100

100∑
k=1

(
RViT+k − Γ̂x

iiT+k|T+k−1

)2

i = 1, . . . , n.

We then compute the ratio between the RMSE obtained with the DF-GARCH and the RMSE
obtained using the univariate GARCH model. Average results across the n series are reported
in Table 11 and show that the DF-GARCH in all specifications has on average a smaller RMSE
than the GARCH.

Following Andersen et al. (2003), we evaluate the volatility forecasts of our model by run-
ning a Mincer-Zarnowitz regression. For each series i, we consider all the 100 one-step-ahead
predictions we have computed and we regress the realized volatility on the estimated condi-
tional variance. Table 11 reports also the average coefficient of multiple determination R2 over
all n regressions. For 71 series (i.e. 80% of the total number of series) the DF-GARCH with
full BEKK specification obtains a larger R2 coefficient than the traditional GARCH model.
If we use the DCC specification the performance is slightly worse and the DF-GARCH has a
larger R2 than the univariate GARCH for 64 series (i.e. 72% of the total). The static appli-
cation of DF-GARCH also performs better than the univariate GARCH with results similar to
the dynamic case.

In Table 11 we report also the percentage of series for which the DF-GARCH outperforms
the univariate GARCH in terms of RMSE. For the majority of the series in the sample (82%),
the DF-GARCH using the full BEKK turns out to be a better predictor than the univariate

12Whenever we name just “DF-GARCH”, we refer to the proper dynamic (i.e. r > q) estimation of the model
independently of the chosen multivariate GARCH specification.
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GARCH. When the DF-GARCH is estimated in its static representation, this percentage is
slightly lower (80%).

Since the univariate GARCH could be considered as nested in the DF-GARCH, we evalu-
ate the significance of the results described above by means of the tests of predictive accuracy
proposed by Clark and West (2007). In Table 12 we show a summary of the results: at 90%
significance level, the DF-GARCH with BEKK specification performs better than the tradi-
tional GARCH for 70 series (79% of total).

We build the same statistics for the off-diagonal elements of our prediction, i.e. for the pre-
dicted conditional covariances. Results are in Table 13 and report the average statistics across
the n(n − 1)/2 elements. A comparison with the traditional univariate GARCH is clearly not
possible so the RMSE ratios are not defined. The coefficient of multiple determination R2 is
always higher than in the case of conditional variance prediction, being slightly better for the
static case. The percentage of covariances for which we forecast the right sign is 72% for all
the four DF-GARCH specifications we consider.

7 Conclusions and further research

In this paper we propose a dynamic factor model with conditionally heteroskedastic dynamic
common factors (DF-GARCH), which allows us to forecast and estimate conditional covari-
ances in large datasets. Traditionally, this issue is affected by a dimensionality problem due
to the large number of parameters involved by the conditional covariance dynamics. The dy-
namic factor model can reduce the complexity of the problem and give room for a volatility
forecast that takes into account all the cross and time relationships within the entire informa-
tion set. We show the consistency of our estimation procedure and the goodness of our method
in finite samples by carrying out Monte-Carlo experiments on different simulated panels. Fi-
nally, we present two empirical applications on large datasets.

The first empirical application deals with multivariate inflation forecasting. Results for the
inflation level, its conditional variance and its conditional covariance with other macroeco-
nomic variables are encouraging. The second empirical application that we present deals with
the volatility of asset returns. The DF-GARCH performs always better than a static factor
model and a univariate GARCH.

There are many possible ways to extend this work, for example by using the DF-GARCH
on data which exhibit strong comovements and high heteroskedasticity, to fully exploit its
potentialities. An ideal field of application would be disaggregated price indexes, which are
more dynamically correlated than asset returns and more conditionally heteroskedastic than
the aggregate inflation measures. Applying our method to these series may be a good way
to compute an aggregate inflation index with its confidence bands, and may also be useful
in shedding light on price dynamics. Indeed, one of the first applications of dynamic factor
models in the economic literature is related to the aggregation of heterogeneous microeco-
nomic series in Forni and Lippi (1997). The issue of aggregation of economic time series in
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a factor model context is also considered in Zaffaroni (2004) from a general perspective and
in Altissimo et al. (2007), who considers precisely the aggregation of sectoral price indexes in
order to study the dynamics of the aggregate inflation indicator.

Finally, the availability of conditional covariance forecasts is an additional information
that can give insights on the structural process of inflation and its interpretation in terms of
relations with other macroeconomic variables (e.g. measures of economic activity). In the
field of monetary policy, this road naturally leads to models of monetary rules in which not
only the target variables enter, but also their conditional variances (as measures of uncertainty)
and the conditional covariances between them.

Concerning estimation, we could employ the Quasi Maximum Likelihood estimator pro-
posed by Doz et al. (2006) when estimating the parameters of the state-space form of the
DF-GARCH in order to increase the asymptotic efficiency of the estimators. Concerning the
assumptions of the model, the possibility of time-varying parameters should also be consid-
ered. This is particularly important when one is interested in assessing inflation uncertainty:
if parameters are time-varying but are assumed to be constant, uncertainty is underestimated,
and agents’ forecasting ability is overestimated. One possible way to consider this source
of uncertainty is to follow Motta et al. (2009), who propose a static factor model with time-
varying loadings and estimate nonparametrically a time dependent covariance matrix of the
common component without estimating any GARCH model. However, since this model is
completely nonparametric, forecasting is not straightforward and has still to be developed.
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A Proofs

Proposition 2

The expressions for Â and Γ̂ε
0 come from the usual VAR estimation. From Proposition 1 we have that, as

n, T → ∞,
||Γ̂F

k − G′ΓF
k G|| P−→ 0, (A-1)

where ΓF
k = E[FtF

′
t−k]. Moreover, A = E[FtF

′
t−1] (E[FtF

′
t])

−1 = ΓF
1

(
ΓF

0

)−1. Therefore, since G−1 = G′,

||Â − G′ΓF
1 G

(
G′ΓF

0 G
)−1 || = ||Â − G′ΓF

1

(
ΓF

0

)−1
G|| = ||Â − G′AG|| P−→ 0.

Analogously, from (A-1) we can prove that, as n, T → ∞,

||Γ̂ε
0 − G′ (ΓF

0 − AΓF
0 A′)G|| = ||Γ̂ε

0 − G′Γε
0G|| P−→ 0.

Notice that, unlike in VAR, we also need n → ∞, as we need consistent estimates of Ft in order to have (A-1).�

Proposition 3

(a) We have to find a q-dimensional orthogonal linear basis of the space to which ε̂t = F̂t − ÂF̂t−1 belong.
One choice is to take the q largest principal components of Γ̂ε

0. Define as M the r × q matrix of normalized
eigenvectors corresponding to the q largest eigenvalues of Γε

0. Then, from Proposition 2 G′M is the correspond-
ing eigenvectors matrix for Γ̂ε

0. Moreover, from the theory of principal components, we know that the estimate
of this latter eigenvectors matrix is consistent only up to a q × q orthogonal transformation R. Therefore, as
n, T → ∞,

||M̂ − G′MR|| P−→ 0.

We need n → ∞ as we need Proposition 2 to hold. Finally, if we define ut = Hεt as the q principal components
we are looking for, then Ĥ =

√
rM̂ and

||Ĥ − G′HR|| P−→ 0. (A-2)

Moreover, from (9) ût = Ĥ(Ir − ÂL)F̂t. Therefore, from Propositions 1 and 2, and (A-2)

||ût − R′H′G(Ir − G′AGL)G′Ft|| = ||ût − R′ut|| P−→ 0.

This result is analogous to the result in Proposition 1, although here we are considering exact and not approx-
imate principal components. In practice each column of H must also be multiplied by the square-root of the
corresponding eigenvalue in order to have E[utu

′
t] = Iq. A similar result is in Proposition 2 in Forni et al.

(2009). This completes the proof of part (a).

Part (b) is proved in Proposition 3 in Forni et al. (2009).�

Proposition 4

Part (a) and (b) would be respectively the two-step ML estimator proposed by Engle (2002) and the ML estimator
proposed in Engle and Kroner (1995) if the dynamic factors were observed; part (c) would be the univariate
GARCH ML estimator if the idiosyncratic component were observed. Here we plug in these usual ML estimators
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the previous estimates of dynamic factors and in the univariate GARCH the previous estimates of idiosyncratic
components. Since approximate principal components estimates can be seen as ML estimates (see Bai, 2003) and
since VAR estimates are ML estimates, we have to solve for each step of our estimation method a maximization.
We therefore have four sets of M-estimators or, if we look at first order conditions, four GMM estimators. In
general we have to solve the four maximizations:

1. (Λ̂, F̂t) = arg maxΛ,Ft �PC(Λ,Ft|It−1;xt),

2. Â = arg maxA �V AR(A|It−1; F̂t), ε̂t = F̂t − ÂF̂t−1,

3. (Ĥ, ût) = arg maxH,ut
�PC(H,ut|It−1; ε̂t),

4. Q̂t = arg maxQt
�MGARCH(Qt|It−1; ût),

where �PC , �V AR, and �MGARCH are log-likelihoods for the principal components, VAR, and multivariate
GARCH models respectively. Newey and McFadden (1994) provide a proof of consistency of two-step ML
estimators (which can be generalized to the multi-step case) if some reasonable regularity assumptions on the
objective functions and the parameter space hold. In a few words, the log-likelihoods have to be twice differ-
entiable and must have a unique finite maximum, which is attained for values of the parameters interior to a
compact set (see Section 7 in Newey and McFadden, 1994, for details). Notice that in our model we also need
n → ∞ as we need consistent estimates of the static factors and the idiosyncratic component.�

Proposition 5

The conditional covariance matrix of the common component is defined as

Γχ
t = E

[
(χt − E[χt|It−1]) (χt − E[χt|It−1])

′ |It−1

]
.

From (8)-(9) we know that E[χt|It−1] = ΛAFt−1, therefore from Assumption 6

Γχ
t = ΛHE[utu

′
t|It−1]H′Λ′ = ΛHQtH′Λ′. (A-3)

We estimate the conditional covariance matrix of the common component by replacing Λ, H, and Qt in (A-3)
with the corresponding estimates. Given the results in Propositions 1 to 4 and assuming R = Iq we have, as
n, T → ∞,

||Λ̂ĤQ̂tĤ′Λ̂′ − ΛGG′HQtH′GG′Λ′|| P−→ 0.

Noticing that GG′ = Ir completes the proof.�

B The Modified Kalman Filter

We explain here in detail the estimation of the state-space model

xt = Λ̂Ft + ξt measurement equation ,

Ft = ÂFt−1 + Ĥut transition equation ,

where
ξt|t−1 ∼ N (0, R̂t) R̂t diagonal ,
ut|t−1 ∼ N (0,Qt) ,

Qt = Ĉ0
′
Ĉ0 + Ĉ1

′
ut−1u′

t−1Ĉ1 + Ĉ2
′
Qt−1Ĉ2 .
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The multivariate GARCH representation considered here is a full BEKK, but the following procedure can be
easily modified to allow for a DCC representation.

Initialization. Initial values are built as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F1|1 = F̂1

P1|1 sufficiently large
u1|1 = û1

Q1|1 = Q̂1

(u1u′
1)|1 = u1|1u′

1|1 + Q1|1 ,

where the variables with the hat have been obtained in the estimation step presented in Section 3, Q̂1 has been
obtained by the multivariate GARCH model, and the state initial covariance matrix P1|1 must represent the high
uncertainty about the initial value of the state vector.

Prediction. Hereafter, all the steps described must be repeated together for time t = 2 . . . T . First we pre-
dict the unobserved state vector

Ft|t−1 = ÂFt−1|t−1 ,

and its conditional covariance matrix

Pt|t−1 = ÂPt−1|t−1Â′ + Ĥ(utu′
t)|t−1Ĥ′ ,

where ⎧⎨⎩
(utu′

t)|t−1 = Qt|t−1

Qt|t−1 = Ĉ0
′
Ĉ0 + Ĉ1

′
(ut−1u′

t−1)|t−1Ĉ1 + Ĉ2
′
Qt−1|t−1Ĉ2 .

(B-1)

The conditional covariance matrix for the state vector is obtained by using the GARCH estimated parameters Ĉ0,
Ĉ1 and Ĉ2; they are applied on the updated conditional covariance of the transition error

(
ut−1u′

t−1

)
, which in

turn has been obtained by the Kalman update, as we see in the next step.
The prediction error is given by

ηt|t−1 = x̃t − x̃t|t−1 = x̃t − Λ̂Ft|t−1 ,

whose conditional covariance is built by using the predicted conditional covariance of the static factors and the
known conditional covariance of the measurement errors, as obtained previously by univariate modelling of the
idiosyncratic parts:

Yt|t−1 = Λ̂Pt|t−1Λ̂′ + R̂t .

Update. We compute the Kalman gain
Kt = Pt|t−1Λ̂′Y−1

t|t−1 ,

and we build more accurate inferences, exploiting information up to time t,

Ft|t = Ft|t−1 + Ktηt|t−1 ,

Pt|t = Pt|t−1 − KtΛ̂Pt|t−1 .

By inverting the transition equation, we get

ut|t = Φ−1/2M′
(

Ir − ÂL
)
Ft|t , (B-2)

and then
(utu′

t)|t = ut|t u′
t|t . (B-3)
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Smoothing. Smoothing would be especially useful when extending our procedure to a higher number of lags
in the GARCH structure of dynamic factors’ conditional covariances. In any case, the smoothing procedure is
recommended for getting a more precise estimate of the common and idiosyncratic components of the dataset.
Following de Jong (1989) and Durbin and Koopman (2001), the following fixed interval smoother can be applied
for t = T, T −1, . . . , 2 in order to find more precise in-sample values of the static factors and of dynamic factors’
conditional covariances. First we compute

rt−1 = L′
trt + Λ̂′Y−1

t|t−1ηt|t−1 ,

Ft|T = Ft|t−1 + Pt|t−1rt−1 ,

where Lt = Â
(

Ir − KtΛ̂
)

, rT = 0. At each step, we also find the smoothed state variance matrix

Pt|T = Pt|t−1 − Pt|t−1Θt−1Pt|t−1 ,

where Θt has been obtained by
Θt−1 = Λ̂′Y−1

t Λ̂ + L′
tΘtLt ,

with initial value ΘT = 0. At the end of each step, we get smoothed values for the dynamic factors and their
conditional covariances Qt

ut|T = Qt|t−1Ĥ′rt ,

Qt|T = Qt|t−1 − Qt|t−1Ĥ′ΘtĤQt|t−1 .

Equation (B-3), when put in the context of the following prediction step (B-1), is not precise. As noted by
Harvey et al. (1992), a correction term should be added on the right hand side in order to take the into account
the conditional variance of the dynamic factor. However, the same authors show that, when applied to the factor
model by Diebold and Nerlove (1989), the effect of this correction may be empirically negligible. The differ-
ences between their estimation procedure and ours, including the update passage described in (B-2), lead us to
avoid the estimation of the correction term.
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Table 1: Simulation results for T = 250.
With Kalman filter

n T q s VR χt vol. covol. χt vol. covol.

75 250 2 2 0.3 0.9673 0.5775 0.5616 0.9754 0.6344 0.5970
0.0145 0.2169 0.2252 0.0113 0.2040 0.2194

75 250 2 2 0.5 0.9436 0.5733 0.5504 0.9562 0.6234 0.5823
0.0187 0.2049 0.2084 0.0158 0.1949 0.2032

75 250 2 4 0.3 0.9509 0.5157 0.4930 0.9661 0.5687 0.5266
0.0130 0.2292 0.2312 0.0136 0.2276 0.2330

75 250 2 4 0.5 0.9091 0.5067 0.4806 0.9299 0.5630 0.5178
0.0301 0.2078 0.2100 0.0326 0.2011 0.2081

75 250 3 2 0.3 0.9653 0.4922 0.4689 0.9734 0.5316 0.4889
0.0040 0.1763 0.1800 0.0038 0.1720 0.1815

75 250 3 2 0.5 0.9398 0.4695 0.4397 0.9524 0.5069 0.4587
0.0094 0.1707 0.1729 0.0088 0.16846 0.1756

75 250 3 4 0.3 0.9437 0.4558 0.4283 0.9591 0.4991 0.4534
0.0080 0.1681 0.1677 0.0102 0.1694 0.1713

75 250 3 4 0.5 0.8963 0.3865 0.3519 0.9134 0.4340 0.3788
0.0201 0.1668 0.1608 0.0246 0.1624 0.1602

150 250 2 2 0.3 0.9792 0.5535 0.5300 0.9838 0.5561 0.5327
0.0043 0.2443 0.2424 0.0035 0.2454 0.2435

150 250 2 2 0.5 0.9653 0.5182 0.4902 0.9728 0.5227 0.4944
0.0067 0.2342 0.2331 0.0056 0.2353 0.2340

150 250 2 4 0.3 0.9666 0.5350 0.5110 0.9768 0.5401 0.5159
0.0076 0.2384 0.2358 0.0057 0.2400 0.2373

150 250 2 4 0.5 0.9467 0.4973 0.4686 0.9623 0.5045 0.4755
0.0106 0.2308 0.2272 0.0081 0.2338 0.2297

150 250 3 2 0.3 0.9774 0.5208 0.4942 0.9816 0.5640 0.5166
0.0028 0.1811 0.1824 0.0027 0.1736 0.1803

150 250 3 2 0.5 0.9592 0.5228 0.4900 0.9663 0.5655 0.5116
0.0067 0.1556 0.1584 0.0057 0.1542 0.1601

150 250 3 4 0.3 0.9622 0.4913 0.4618 0.9715 0.5347 0.4847
0.0063 0.1678 0.1654 0.0069 0.1649 0.1651

150 250 3 4 0.5 0.9265 0.4418 0.4056 0.9405 0.4827 0.4291
0.0143 0.1571 0.1527 0.0146 0.1536 0.1528

Mean and standard errors of the R2 coefficient of the Mincer-Zarnowitz regressions
over 250 Monte Carlo simulations.
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Table 2: Simulation results for T = 500 and T = 750.
With Kalman filter

n T q s VR χt vol. covol. χt vol. covol.

75 500 2 2 0.3 0.9717 0.6696 0.6484 0.9814 0.7117 0.6753
0.0055 0.2152 0.2189 0.0039 0.2056 0.2151

75 500 2 2 0.5 0.9535 0.6156 0.5939 0.9690 0.6222 0.6006
0.0074 0.2368 0.2383 0.0058 0.2390 0.2402

75 500 2 4 0.3 0.9551 0.6413 0.6176 0.9748 0.6898 0.6506
0.0075 0.2131 0.2132 0.0049 0.2022 0.2101

75 500 2 4 0.5 0.9255 0.6058 0.5765 0.9550 0.6194 0.5900
0.0137 0.2094 0.2123 0.0120 0.2128 0.2154

75 500 3 2 0.3 0.9594 0.5951 0.5558 0.9732 0.6265 0.5731
0.0058 0.1651 0.1680 0.0043 0.1568 0.1653

75 500 3 2 0.5 0.9341 0.5655 0.5233 0.9554 0.6016 0.5445
0.0093 0.1658 0.1656 0.0073 0.1565 0.1627

75 500 3 4 0.3 0.9355 0.5522 0.5135 0.9608 0.5932 0.5382
0.0094 0.1760 0.1768 0.0076 0.1705 0.1773

75 500 3 4 0.5 0.8968 0.5096 0.4631 0.9295 0.5515 0.4892
0.0129 0.1646 0.1630 0.0137 0.1612 0.1639

75 750 2 2 0.3 0.9805 0.8232 0.7963 0.9875 0.8500 0.8127
0.0036 0.1453 0.1615 0.0028 0.1288 0.1525

75 750 2 2 0.5 0.9668 0.8109 0.7831 0.9782 0.8404 0.8022
0.0062 0.1539 0.1627 0.0051 0.1368 0.1534

75 750 2 4 0.3 0.9689 0.7829 0.7566 0.9830 0.8172 0.7786
0.0052 0.1729 0.1818 0.0037 0.1511 0.1706

75 750 2 4 0.5 0.9459 0.7756 0.7455 0.9671 0.8095 0.7689
0.0142 0.1500 0.1595 0.0149 0.1362 0.1525

75 750 3 2 0.3 0.9623 0.6456 0.6011 0.9740 0.6765 0.6149
0.0045 0.1577 0.1699 0.0037 0.1527 0.1705

75 750 3 2 0.5 0.9312 0.6326 0.5811 0.9499 0.6650 0.5968
0.0166 0.1503 0.1550 0.0196 0.1425 0.1523

75 750 3 4 0.3 0.9372 0.6190 0.5747 0.9586 0.6528 0.5917
0.0077 0.1565 0.1611 0.0107 0.1520 0.1602

75 750 3 4 0.5 0.8855 0.5423 0.4907 0.9065 0.5812 0.5115
0.0228 0.1626 0.1630 0.0381 0.1580 0.1627

Mean and standard errors of the R2 coefficient of the Mincer-Zarnowitz regressions
over 250 Monte Carlo simulations.
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Table 3: ARCH-test on ût for heteroskedasticity. Macro dataset.

ARCH order 1 2 3 4 5 6 7 8 9 10

In-sample observations from 1986:M12 to 1999:M11

u1t 2.84* 3.21 3.91 4.51 4.69 5.25 6.41 7.93 8.35 12.71
u2t 0.04 0.29 4.14 4.08 4.21 4.34 15.29† 15.74† 15.58* 15.77
u3t 10.38† 13.81† 13.68† 13.96† 14.35† 14.32† 14.31† 16.52† 16.56* 16.38*
u4t 8.15† 11.61† 12.41† 12.40† 12.16† 15.67† 16.83† 18.33† 10.13 9.95

In-sample observations from 1992:M12 to 2005:M11

u1t 11.54† 11.79† 13.31† 15.32† 15.45† 15.54† 15.36† 16.20† 17.42† 17.36*
u2t 1.32 10.34† 10.48† 12.68† 12.96† 12.83† 12.93* 13.57* 14.37 16.51*
u3t 2.23 2.52 2.55 2.85 2.28 2.42 2.30 2.28 2.12 2.93
u4t 0.01 7.44† 9.17† 9.22* 12.20† 13.21† 13.20* 13.21 13.03 12.94

Values of the ARCH test; † significant at 95%, * significant at 90%.

Table 4: RMSE of inflation level forecasts.

AR-GARCH SW GRS DF-GARCH

PCE core

h=1 1.0133 1.0022 0.9612 0.9611
h=3 1.0193 1.0212 0.9177 0.9178
h=6 1.0033 1.0179 0.9025 0.9025
h=9 1.0005 0.9903 0.8877 0.8877
h=12 0.9959 0.9595 0.8640 0.8640
PCE

h=1 0.9955 0.9278 0.9390 0.9389
h=3 0.9985 0.9712 0.9720 0.9720
h=6 0.9872 0.9970 0.9358 0.9358
h=9 0.9980 0.9854 0.9522 0.9522
h=12 0.9955 0.9851 0.9696 0.9696
CPI core

h=1 0.9964 0.9732 0.9750 0.9749
h=3 0.9994 1.0109 0.9188 0.9187
h=6 0.9978 0.9633 0.8931 0.8930
h=9 1.0038 1.0497 0.8939 0.8939
h=12 1.0018 1.0665 0.8680 0.8680
CPI

h=1 1.0089 0.8579 0.8969 0.8970
h=3 1.0044 0.9210 0.8992 0.8991
h=6 0.9917 0.9370 0.9036 0.9036
h=9 0.9943 0.9782 0.9179 0.9179
h=12 0.9980 0.9749 0.9368 0.9368

RMSEs relative to the univariate AR. A value less than one means better forecast. For
a given h we compute 72 forecasts covering the period 1987:M1-2005:M12. SW =
Stock and Watson (2002) model; GRS = Giannone et al. (2004) model.
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Table 5: Diebold and Mariano test.

PCE core PCE CPI CPI core

a =AR-GARCH

b =SW

h=1 0.2917 1.7384* 4.0018† 0.4482
h=3 -0.0519 0.7713 2.6380† -0.2178
h=6 -0.1955 -0.2464 1.7225* 0.7469
h=9 0.1366 0.3508 0.5284 -0.5731
h=12 0.4672 0.2985 0.6820 -0.7793
a =AR-GARCH

b =DF-GARCH

h=1 1.2862 1.6543* 3.1010† 0.3900
h=3 2.3088† 0.8019 3.6413† 1.6258
h=6 1.7602* 1.6900* 2.6971† 2.3772†

h=9 2.2557† 1.7509* 2.3859† 1.9752†

h=12 2.3079† 1.2065 2.4801† 2.5553†

a =SW

b =DF-GARCH

h=1 1.5634 -0.6049 -2.2434† -0.0813
h=3 2.0749† -0.0244 0.8720 2.3486†

h=6 1.7472* 1.7775* 1.2507 1.9028*
h=9 1.6994* 1.1171 1.7711* 2.7254†

h=12 1.8361* 0.6211 1.6279 3.4923†

Values of the statistics d = (Forecasta − Observed)2 − (Forecastb −
Observed)2; † significant at 95%, * significant at 90%. Model b performs
better than model a when values are positive and significant.

Table 6: Clark and West test.

PCE core PCE CPI CPI core

h=1 3.2869† 3.2891† 4.3859† 2.0263†

h=3 3.7389† 2.1075† 4.7057† 3.0699†

h=6 2.5872† 2.6981† 3.4964† 4.0254†

h=9 3.6867† 2.8715† 3.2062† 3.3972†

h=12 3.4734† 1.9306* 3.2125† 4.0327†

Values of the statistics f = (ForecastGARCH − Observed)2 −
[(ForecastDF−GARCH − Observed)2 − (ForecastGARCH −
ForecastDF−GARCH)2]; † significant at 95%, * significant at 90%.
DF-GARCH performs better than AR-GARCH when values are positive and
significant.
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Table 7: Kupiec test for CPI and CPI core inflation.

Lower tail Upper tail

DF-GARCH GARCH DF-GARCH GARCH

CPI core

h=1 2.81† 0.13† 0.13† 0.03†

h=3 0.84† 0.09† 0.09† 0.56†

h=6 2.44† 0.05† 0.11† 0.05†

h=9 6.67 0.58† 0.58† 0.58†

h=12 2.01† 0.00† 2.01† 0.47†

CPI

h=1 0.03† 0.47† 0.13† 0.03†

h=3 0.56† 0.56† 4.40 0.56†

h=6 0.11† 0.11† 4.83 0.11†

h=9 1.98† 1.98† 1.98† 0.02†

h=12 1.04† 0.00† 5.79 1.04†

Values of the LR statistics; † significant at 95%, i.e. we accpet the null hypothesis
of a correct model specification.

Table 8: RMSE of in-sample inflation volatility estimates.

PCE core PCE CPI core CPI

AR lags

3 2.00 0.83 2.56 0.72
6 2.00 0.97 0.46 0.86

12 0.69 1.71 0.22 1.64

RMSEs are relative to univariate AR-GARCH, when considering as
a benchmark the proxy suggested in Engle (1983) built using 3, 6
or 12 lags. Values smaller than one indicate a better performance of
DF-GARCH.

Table 9: ARCH-test on ût for heteroskedasticity. Financial dataset.

ARCH order 1 2 3 4 5 6 7 8 9 10

Case q = 2
u1t 0.71 47.67* 72.44* 72.86* 81.43* 87.68* 88.04* 92.71* 93.18* 93.06*
u2t 2.54 2.53 3.44 8.13 9.03 11.26 11.59 12.78 12.41 12.62

Case q = 1
u1t 0.24 47.26* 75.35* 75.74* 85.02* 88.60* 88.77* 92.75* 96.22* 95.98*

* significant at 99%. Observations from t = 1 to t = 350, i.e. first in-sample window.
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Table 10: Confidence interval in-sample estimation.

Model num.obs./T
GARCH 0.0458
DF-GARCH (BEKK) 0.0507
DF-GARCH (DCC)) 0.0499

Average across the n series of the fraction of observa-
tions below the 5-th percentile of a Normal distribution.

Table 11: Volatility forecasts.

Model RMSE R2 P

GARCH 1.0000 0.0780 n.a.
DF-GARCH (BEKK)(static) 0.9728 0.1084 80.899
DF-GARCH (BEKK) 0.9713 0.1100 82.022
DF-GARCH (DCC)(static) 0.9757 0.0981 77.528
DF-GARCH (DCC) 0.9738 0.1000 79.755

Average results across the n series. RMSEs relative to univariate GARCH; R2 of
Mincer-Zarnowitz regressions; P is the percentage of series for which a given model
has a RMSE lower than the GARCH.

Table 12: Clark and West test.

DF-GARCH DF-GARCH DF-GARCH DF-GARCH

Signif. level (BEKK) (BEKK)(static) (DCC) (DCC)(static)

90% 79% 79% 76% 75%
95% 65% 67% 62% 63%

Percentage of series for which the DF-GARCH outperforms the univariate GARCH.

Table 13: Covolatility forecasts.

Model RMSE R2 P
DF-GARCH (BEKK)(static) 1.0000 0.1426 72
DF-GARCH (BEKK) 0.9624 0.1417 72
DF-GARCH (DCC)(static) 0.9044 0.1204 72
DF-GARCH (DCC) 0.9036 0.1160 72

Average results across the n(n − 1)/2 couples. RMSEs relative to the static
version of DF-GARCH (BEKK); R2 of Mincer-Zarnowitz regressions; P is
the percentage of couples for which we forecast the right sign.
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Figure 1: Estimated confidence interval for n = 150, T = 500, q = 2, s = 4, and VR= 0.3.
Simulated χt: solid line. Estimated 5th and 95th conditional percentiles: dashed line.
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2.1: n = 150, T = 500, q = 2, s = 4, VR= 0.3.
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2.2: n = 150, T = 250, q = 3, s = 2, VR= 0.3.

Figure 2: Conditional variances. Simulated: solid line. Estimated: dashed line.
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3.1: n = 150, T = 500, q = 2, s = 4, VR= 0.3.
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3.2: n = 150, T = 250, q = 3, s = 2, VR= 0.3.

Figure 3: Conditional covariances. Simulated: solid line. Estimated: dashed line.
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Figure 4: CPI inflation forecasts: levels. Observed series: black. DF-GARCH forecast: red.
AR(p)-GARCH(1,1) forecast: blue.
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Figure 5: CPI inflation forecasts: confidence intervals. Observed series (standardized): black.
DF-GARCH 90% confidence interval forecasts: red.
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Figure 6: CPI inflation in-sample estimate: confidence intervals. Observed series (standard-
ized): black. DF-GARCH 90% confidence interval estimate: red.
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Figure 7: In-sample estimated conditional covariances. CPI: red. Industrial production growth
rate (first panel) or unemployment (second panel): blue. Estimated conditional covariance:
green (scale on the right hand side).
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Figure 8: Confidence intervals for asset return series. DF-GARCH (BEKK) confidence inter-
val: solid line. Univariate GARCH confidence interval: dashed line.
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