
Errors-in-variables models: a generalized

functions approach

Victoria Zinde-Walsh�

McGill University and CIREQ

Revised version of September 29, 2009

Abstract

Identi�cation in errors-in-variables regression models was recently

extended to wide models classes by S. Schennach (Econometrica, 2007)

(S) via use of generalized functions. In this paper the problems of non-

and semi- parametric identi�cation in such models are re-examined.

Nonparametric identi�cation holds under weaker assumptions than

in (S); the proof here does not rely on decomposition of generalized

functions into ordinary and singular parts, which may not hold. Con-

ditions for continuity of the identi�cation mapping are provided and

a consistent nonparametric plug-in estimator for regression functions

in the L1 space constructed. Semiparametric identi�cation via a �-

nite set of moments is shown to hold for classes of functions that are
�The support of the Social Sciences and Humanities Research Council of Canada
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explicitly characterized; unlike (S) existence of a moment generating

function for the measurement error is not required.

Keywords: errors-in-variables model, generalized functions
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1 Introduction

The familiar errors in variables model with an unknown regression function,

g; and measurement error in the scalar variable has the form

Y = g(X�) + �Y ;

X = X� +�X;

where variablesX and Y are observable; X� and�X;�Y are not observable.

A widely used approach makes use of instrumental variables. Suppose that

instruments are available and Z represents an identi�ed projection of X

on the instruments so that additionally X� = Z � U ; assume that U is

independent of Z (Berkson-type error from using the instruments) and that

E[�Y jZ;U ] = 0;

E[�X jZ;U;�Y ] = 0;

E(U) = 0:

These assumptions were made by e.g. Hausman et al. (1991) who examined

polynomial regression. Newey (2001) added another moment condition for es-

timation in semiparametric regression leading to two equations for unknown

g and F; the measurement error distribution (all integrals over (�1;1)) :

E(Y jZ = z) =

Z
g(z � u)dF (u);

E(Y XjZ = z) =

Z
(z � u)g(z � u)dF (u):
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De�ne Wy(z) � E(Y jZ = z);Wxy(z) � E(Y (Z � X)jZ = z): The model

assumptions then can be considered in terms of classes of functionsWy;Wxy; g

and distribution F that satisfy the equations:

Wy(z) =

Z
g(z � u)dF (u); (1)

Wxy(z) =

Z
(z � u)g(z � u)dF (u);

we say that these functions Wy;Wxy; g ; F satisfy model assumptions. The

functions g and F enter in convolutions; this motivates using Fourier trans-

forms (Ft). Fourier transforms:

"y(�) = Ft(Wy(�)); (2)

"xy(�) = Ft(Wxy(�));

(�) = Ft(g(�));

the characteristic function is obtained as �(�) =
R
ei�udF (u):

Provided that for some subclass of functions Fourier transforms are well

de�ned, derivatives exist and the convolution theorem applies, (1) is equiva-

lent to a system with two unknown functions, 
; � :

"y(�) = 
(�)�(�); (3)

i"xy(�) =
�

(�)�(�); (4)

where
�

 = d


d�
: S. Schennach (2007) (S) suggested that these equations can

be justi�ed for a wide class of functions if one uses generalized functions,

speci�cally, those in the space of tempered distributions, T 0 (de�ned below

in section 2.1)1.

Assumption 1. The functions g;Wy;Wxy that satisfy the model as-

1A referee pointed out that the usual notation for the space of tempered distributions
is S0; but here we follow the notation in (S).
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sumptions are such that each represents an element in the space of tempered

distributions, T 0:

Some examples of such functions are the class considered in (S, As-

sumption 1): functions such that jg(x�)j ; jWy(z)j ; jWxy(z)j are de�ned and
bounded by polynomials on R: However, the assumption here allows for very

wide classes of functions. This class may be di¢ cult to characterize explicitly;

the Assumption 1�below provides an important subclass of locally integrable

functions in T 0.

Consider functions b(t) for t 2 R that satisfyZ
(1 + t2)�l jb(t)j dt <1 for some l � 0: (5)

Assumption 1�. The functions g;Wy;Wxy that satisfy the model as-

sumptions are such that each satis�es (5).

The functions g;Wy;Wxy that satisfy (5) satisfy Assumption 1. Any func-

tion in the space L1 of absolutely integrable functions satis�es Assumption

1�here but not the Assumption 1 in (S) unless the function is everywhere

bounded. While the assumption in (S) extends to polynomial regression

functions or distribution functions for binary choice models (where Ft do not

exist in the ordinary sense), a regression function that is unbounded at some

points is not allowed. There are cases where such properties may arise, e.g.

for some hazard functions, for liquidity trap; the more general assumption

here accommodates such cases.

Fourier transform is a continuous invertible operator in T 0, all tempered

distributions are di¤erentiable in T 0 (thus
�

 is de�ned). Fourier transform

of an ordinary function of the type considered here may no longer be an

ordinary function (e.g. Ft(const) = �; the Dirac delta-function that cannot

be represented as an ordinary function), and thus is not de�ned point-wise;

thus the notation 
(�); etc. for the Ft in e.g. (3,4) which we keep here

for convenience refers just to the generalized function 
 without necessarily
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giving meaning to values at a point.

In the class of functions that satis�es the model assumptions denote by

A the subclass of functions (g; F ), by A� the subclass of functions (g); the

mapping P : A ! A� is given by P (g; F ) = g: Denote by B the class of

functions (Wy;Wxy). Equations (1) of model assumptions map A into B

(mapping M : A ! B); Fourier transforms map B into Ft(B); the class

of functions that are Fourier transforms of functions from B; if equations

(3,4) could be solved they would provide solutions �� = �I(
 6= 0) (where

I(A) = 1 if A is true, zero otherwise) and 
� if � 6= 0; applying inverse

Fourier transform would give g� = Ft�1(
�): This sequence of mappings can

be represented as follows:

A
(g;F )

M! B
(Wy;Wxy)

Ft! Ft(B)
("y ;"xy)

S! Ft( ~A)
(��;
�)

! Ft(A�)
(
�)

Ft�1! A�
(g�)
: (6)

If (6) provides the same result as P so that g� � g (and 
� � 
) then g can

be identi�ed from the functions (Wy;Wxy) with the identi�cation mapping

M� : B ! A� (7)

given by composition of the last �ve mappings in (6). The most challenging

part is in solving the equations to establish the mapping (for 
� � 
)

S : Ft(B)
("y ;"xy)

! Ft( ~A)
(��;
)

(8)

Two additional assumptions are similar to those in (S) and are standard.

Assumption 2. The function �(�) is continuous, continuously di¤eren-
tiable on R; and �(�) 6= 0:
In terms of the model this implies a further condition that absolute mo-

ment of U exist.

Assumption 3. Support of generalized function 
 coincides with j�j �
�� where �� > 0 and could be in�nite.
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Under Assumptions 1-3 identi�cation is possible as shown in Theorem 1

of this paper; the theorem in (S) asserts an analytic formula (S, (13)) that

relies on a decomposition that may not hold.

When the errors-in-variables problem is examined in the space of tem-

pered distributions the corresponding (weak) topology is that of the space

T 0; in that topology the mappings Ft, Ft�1 are known to be continuous,

however, the mapping (8) may be discontinuous, rendering the identi�ca-

tion mapping (7) discontinuous as well thus implying ill-posedness of the

problem. One reason for this is that a too thin-tailed characteristic func-

tion may mask high-frequency components in the Fourier transform of the

regression function. Theorem 1 here provides a condition under which con-

tinuity obtains. When identi�cation is provided by a continuous mapping

nonparametric plug-in estimation is possible as long as Fourier transforms

of the conditional moment functions can be consistently estimated in T 0;

this applies e.g. if the regression function is in the L1 space; Proposition 2

establishes this result.

Identi�cation in classes of parametric functions requires that the mapping

from the parameter space to the function space be (at least locally) invert-

ible. (S) uses generalized functions to widen classes of parametric functions

for which identi�cation is provided by a �nite number of moment condi-

tions; in particular she expands classes of L1 functions to which the results

of Wang and Hsiao (1995, 2009) apply and also allows sums of such functions

with polynomial functions, where before polynomial functions were consid-

ered only by themselves in Hausman et al. (1991). Her results rely on

existence of a moment generating function for the measurement error and

use special weighting functions (some of which are improperly de�ned). Here

general classes of functions where such identi�cation is achievable are ex-

plicitly characterized rather than via existence of moments conditions (as

in S, Assumption 6), the requirement of a moment generating function for

measurement error is avoided; appropriate weighting functions are given.
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Section 2 deals with identi�cation and well-posedness in the non-parametric

case. Section 3 examines identi�cation for the semiparametric model. Proofs

are in Appendix A. Appendix B provides an explanation of the claims about

the main errors in (S).

2 Non-parametric identi�cation

In the �rst part of this section known results on generalized functions that

con�rm the existence and continuity of some of the mappings in (6) are

provided, in particular, for the Fourier transform and its inverse: Other map-

pings, such as (8) require special treatment because they involve multiplica-

tion of generalized functions. Multiplication in spaces of generalized functions

cannot be de�ned (Schwartz�s impossibility result, 1954, see also Kaminski

and Rudnicki (1991) for examples) although there are cases when speci�c

products are known to exist. Here conditions under which some generalized

functions can be multiplied by some continuous functions to obtain general-

ized functions are provided. With this additional insight the existence and

continuity of the mappings can be examined. In the second part of this

section the identi�cation result is proved and su¢ cient conditions for the

identi�cation mapping to be continuous are provided. A proposition about

consistent (in topology of T 0) nonparametric estimation that in particular

applies to functions in space L1 completes this section.

2.1 Results about generalized functions and existence

and continuity of mappings

All the known results in this section are in Schwartz (1966), Gel�fand and

Shilov�s monograph (vol.1 and 2, 1964) - (GS) and in Lighthill (1959)- (L);

they are listed for the convenience of the reader. The sequential approach

of Mikusinski in Antonisek et al (1973) is also referred to here. A somewhat
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distinct approach to multiplication by a continuous function in the space of

generalized functions is developed at the end of this section to explain the

validity of some of the mappings in (6).

De�nitions of generalized function spaces usually start with a topological

linear space of well-behaved "test functions", G: Twomost widely used spaces

are G = D and G = T (usually denoted S in the literature). The linear

topological space of in�nitely di¤erentiable functions with �nite support D �
C1(R); where C1(R) is the space of all in�nitely di¤erentiable functions;

convergence is de�ned for a sequence of functions that are zero outside a

common bounded set and converge uniformly together with derivatives of all

orders. The space T � C1(R) of test functions is de�ned as:

T =

�
s 2 C1(R) :

����dks(t)dtk

���� = O(jtj�l) as t!1; for integer k � 0; l > 0
�
;

k = 0 corresponds to the function itself; j�j is the absolute value; these

functions go to zero faster than any power. A sequence in T converges if in

every bounded region the product of jtjl (for any l) with any order derivative
converges uniformly.

A generalized function, b; is de�ned by an equivalence class of weakly

converging sequences of test functions in G :

b =

�
fbng : bn 2 G; such that for any s 2 G; lim

n!1

Z
bn(t)s(t)dt = (b; s) <1

�
:

An alternative equivalent de�nition is that b is a linear continuous functional

onG with values de�ned by (b; s)2: The linear topological space of generalized

functions is denoted G0; the topology is that of convergence of values of

functionals for any converging sequence of test functions (weak topology);

G0 is complete in that topology. For G = D or T the spaces are D0 and T 0;

2As a referee pointed out this is the more commonly used de�nition of generalized func-
tion; the one above (used by S) is a necessary and su¢ cient condition and thus represents
an equivalent characterization.
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correspondingly. It is easily established that D � T ; T 0 � D0 and that D0

has a weaker topology than T 0; meaning that any sequence that converges in

T 0 converges in D0; but there are sequences that converge in D0; but not in

T 0: The space T 0 is also called the space of tempered distributions.

Any generalized function b in T 0 or D0 is (weakly) in�nitely di¤eren-

tiable: the generalized function b(k) is the k� th order generalized derivative
de�ned by (b(k); s) = (�1)k (b; s(k)): The di¤erentiation operator is continu-
ous in these spaces. For any probability distribution function F on Rk the

density function exists as a generalized function (see e.g., Zinde-Walsh, 2008)

and continuously depends on the distribution function, thus the generalized

derivative of F , generalized density function f; is in T 0:

Any locally summable (integrable on any bounded set) function b(t) de-

�nes a generalized function b in D0 by

(b; s) =

Z
b(t)s(t)dt; (9)

any such function that additionally satis�es (5) similarly by (9) de�nes a gen-

eralized function b in T 0: A distinction between functions in the ordinary sense

(a pointwise mapping from the domain of de�nition into the reals or complex

numbers) and generalized functions is that generalized functions are not de-

�ned pointwise. Generalized functions de�ned via (9) by ordinary functions

b(t) are called regular functions; we can refer to them as ordinary regular

functions in G0: The functions F; g;Wy;Wxy are ordinary regular functions

in T 0 (and thus in D0) if they satisfy Assumption 1�.

If a generalized function b is such that a representation (9) does not hold,

it is said that b is singular, so any b 2 G0 is either regular or singular. A well-
known singular generalized function is the ��function: � : (�; s) = s(0): Any

generalized function in D0 or T 0 is a generalized �nite order derivative of a

continuous function. An ordinary function that de�nes a generalized function

is regular if it integrates to a continuous function and singular otherwise.
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For example, the ordinary function b(t) = jtj�
3
2 de�nes a singular generalized

function; it does not integrate to a continuous function; it does not satisfy

(9), in fact (see GS, v.1, p.51) it de�nes a generalized function by

(b; s) =

Z 1

0

t�
3
2 fs(t) + s(�t)� 2s(0)g dt: (10)

No special treatment is needed to consider complex-valued generalized

functions; all the same properties hold. For s 2 T or D Fourier transform

Ft(s) =
R
s(t)eit�dt exists and is in T: For b 2 T 0 : (Ft(b); s) = (b; F t(s));

so Ft(b) 2 T 0: Fourier transform de�nes a continuous and continuously in-

vertible linear operator in T 0 (but not for D0). Thus Fourier transforms of

Wy;Wxy; g; and of the generalized derivative, f; of F exist in T 0 and their

inverse Fourier transforms coincide with the original functions. Since all the

functions are di¤erentiable as generalized functions
�

 exists in T 0: By As-

sumption 2 the characteristic function � is continuous, as is its derivative,
�
�;

they are regular ordinary functions in T 0:

Since G0 does not have a multiplicative structure, products and convolu-

tions can be de�ned for speci�c pairs only and generally exist only for special

classes. The product between a generalized function in T 0 and a function

from C1 with all derivatives bounded by polynomial functions exists. This

class of multipliers is denoted by OM : Convolution of Fourier transforms of
generalized functions with Fourier transforms of functions from OM exists

and the convolution theorem applies. Products and convolutions may ex-

ist for other speci�c pairs of generalized functions. When such convolutions

and products of their Fourier transforms exist as generalized functions the

convolution theorem similarly applies to such pairs.

Convolution Theorem. If for b1; b2 2 T 0; convolution b1 � b2 2 T 0;

product Ft(b1) � Ft(b2) 2 T 0; then Ft(b1 � b2) = Ft(b1) � Ft(b2):
The proof of this theorem uses exactly the same sequential argument

as in Antonisek et al (1973), where it utilized the speci�c delta-convergent
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sequences; the only di¤erence here is that the argument can be applied to

any sequence in the equivalence class that de�nes every given generalized

function.

To consider the product of a generalized function with a continuous func-

tion that may not be in�nitely di¤erentiable, the property that the product

does not depend on the sequence that de�nes the generalized function has

to be made a requirement. We thus say that ab for b 2 G0 and continuous a
is de�ned in G0 if for any sequence bn from the equivalence class of b there

exists a sequence (ab)n in G such that for any  2 G

lim

Z
a(x)bn(x) (x)dx exists and equals lim

Z
(ab)n (x) (x)dx: (11)

Denote by 0n a zero-convergent sequence that belongs to the equivalence

class de�ning the function that is identically zero in G0.

Proposition 1 For the product ab between a continuous function a and
b 2 G0 to be de�ned in G0 it is necessary and su¢ cient that (i) (11) hold for
some sequence ~bn in the class that de�nes b and (ii) for any zero-convergent

sequence, 0n(x);

lim

Z
a(x)0n(x) (x)dx = 0: (12)

Proof.

Any sequence bn di¤ers from a speci�c ~bn by a zero-convergent sequence.�
Here we consider functions that stem from the model assumptions. Ad-

ditionally, we distinguish the following cases.

Case 1. Support of 
 is a bounded set: �� <1:

Case 2. The function ��1 satis�es (5).

Case 3. The function � 2 OM :
Lemma 1 Under Assumptions 1-3
(i) the products 
� and 
 _� are de�ned in T 0 and in D0;

(ii) for ~�
�1
= ��1(�)I(j�j < ��) the product (
�) � ~��1 is always de�ned

in D0;
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(iii) if either case 1 applies or both cases 2 and 3 apply the product (
�) �
~�
�1
is de�ned in T 0;

(iv) if neither case 1 nor case 2 applies the product may not be de�ned in

T 0:

Proof. See Appendix.

From Lemma 1 existence of products to justify the convolution theorem

and thus equations (3,4) follows. The mapping (8) involves solving equations

(3,4) for the unknown functions and requires multiplication by ��1; as one

can see from Lemma 1 existence of such products in T 0 is not guaranteed.

2.2 The nonparametric identi�cation theorem

This section contains two results. The �rst is Theorem 1 that proves the

existence of the identi�cation mappingM� under Assumptions 1-3. It di¤ers

from the statement in (S, Theorem 1) in three ways: �rst, Assumption 1

(and even the more restrictive Assumption 1�) of this paper is more general;

second, it does not rely on decomposition of generalized functions3; third, it

provides the condition under which the mapping is obtained via operations

in the space T 0 and discusses the continuity of the identi�cation mapping.

The second result is Proposition 2 that shows that when continuity holds,

consistent (in the topology of T 0) plug-in non-parametric estimation of the

regression function is possible, e.g. for functions in space L1.

Theorem 1 For functions satisfying model assumptions and Assumptions
1-3 the mapping M� in (7) exists and provides identi�cation for g; if condi-

tions of (iii) of Lemma 1 are satis�ed the mapping is de�ned via operations

in T 0; it can be discontinuous under condition (iv) of Lemma 1.

Proof. See Appendix.

3There is no known decomposition in the space of generalized functions into generalized
functions corresponding to ordinary functions and to singular functions, claimed in (S);
the pointwise argument provided in (S, 2007, Supplementary Material) is incorrect (see
Appendix B).
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The implication of this Theorem is that the identi�cation result holds

under the general assumptions 1-3. If � is too thin-tailed, however, the map-

ping whereby the identi�cation is achieved may not be continuous: this point

is illustrated by the example in the proof of Theorem 1 where high frequency

components bn are magni�ed by multiplication with �
�1 from a thin-tailed

distribution; this produces inverse Fourier Transforms that diverge.

Continuity requires that the mappingM given by the model assumptions

be continuous in T 0: Continuity in T 0 allows for a consistent (in T 0) plug-in

estimator; the following Proposition provides su¢ cient conditions. Denote by

!T 0 convergence in topology of T 0: Following Gel�fand and Vilenkin (1964)

we de�ne a random generalized function as the random continuous functional

on the space of test functions.

Proposition 2 (a) Under the conditions of Theorem 1 suppose that

Wyn;Wxyn are random generalized functions (estimators) that satisfy model

assumptions and Assumptions 1-3 together with some (unknown) functions

gn; Fn; condition (iii) of Lemma 1 is satis�ed; �n 2 OM ; for "yn = Ft(Wyn);

"xyn = Ft(Wxyn) assume that the Fourier transforms satisfy: "yn(�) is con-

tinuous and non-zero a.e. on supp(
) and i"xyn(�) � _"yn(�) is continuous

and that

Pr("yn(�) ! T 0"y(�))! 1; (13)

Pr("xyn(�) ! T 0"xy(�))! 1;

then it is possible to �nd a sequence gn(x) such that Pr(gn(x)!T 0 g(x))! 1:

(b) Suppose that the function g(x) 2 L1: Then there exists a sequence of
step function estimators, gn; such that

Pr(gn(x)!T 0 g(x))! 1:

Proof. See Appendix.

Convergence of the estimators is in the weak topology of space T 0 of
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generalized functions, not in L1: If gn(x) !T 0 g(x) and g(x) is a continuous

function then there is pointwise convergence and uniform convergence on

bounded sets.

3 Semiparametric speci�cation and identi�-

cation

Semiparametric models with measurement error were examined for polyno-

mial regression functions by Hausman et al (1991), for regression function in

the L1 space by Wang and Hsiao (1995, 2009). (S) signi�cantly widened the

classes of semiparametric models with errors-in-variables where identi�cation

can be achieved via moment conditions by utilizing generalized functions, but

did not explicitly characterize the class of functions which she considered:

verifying moment conditions of (S, Assumption 6) is needed. In contrast, the

class of parametric functions is characterized directly in Assumptions 5 and 6

of this paper; the assumptions give su¢ cient conditions for identi�cation via

moments. The results in (S) rely on existence of a moment generating func-

tion for the measurement error; this restriction in not imposed here. In this

paper as well as in (S) some moment conditions involve limits for sequences

of weighting functions; the limits are explicitly given here.

Assumption 4. The function g(x�) is in a parametric class of locally
integrable functions g(x�; �) where � 2 �; � is an open set in Rm; for some
�� 2 � model assumptions and (1) hold.
Denote all the Fourier transforms of the parametric functions in the

model assumptions as 
(�); "y(�); "xy(�): The following assumption restricts

the generalized function 
(�) to have no more than a �nite number of special

points: � points of singularity and J of "jump" discontinuity in some region

j�j < �� <1. Notation [x] is for integer part of x; �(� � a) denotes a shilted

� � function : (�(� � a);  ) =  (a) for  2 G:
Assumption 5. The Fourier transform, 
(�); of the real function g(x�; �)
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in the region j�j < �� <1 that belongs to its support (and may coincide with

it) can be represented as


(�) = 
o(�) + 
s(�); (14)

where

(i) if � = 0; 
s(�) � 0 ; if � � 1


s(�) = 2�
LX
l=0


sl(�); where L =
�
�

2

�
and (15)


sl(�) =

�klX
k=0

�

k(sl; �)�

(k)(� � sl) + 
k(sl; �)�
(k)(� + sl)

�
; for l = 0; 1; :::L;

(ii) 
o(�) � 
o(�; �) is de�ned by a locally integrable function of � contin-

uous except possibly in a �nite number of points and such that its generalized

derivative,
�

o(�); is of the form

�

o(�) =

�

oo(�) +

�

os(�);

where if J = 0; then
�

os(�) = 0; and if J > 0; then for points bj; j = 1; :::

�
J
2

�
;

�

os(bj; �) =


os0(0; �)�(�)I(J is odd) + �
[J2 ]
j=1

�

osj(bj; �)�(� � bj) + 
osj(bj; �)�(� + bj)

�
;

�

oo(�) �

�

oo(�; �) is an ordinary locally integrable function continuous except

possibly in a �nite number of points;

(iii) 
o(�; �) 6= 0 except possibly for a �nite number of points in (���; ��);
(iv) At any non-zero singularity point: sl 6= 0; 
o(�; �) is continuous and

non-zero.

Under Assumptions 1 and 5 g could be in L1; or a sum of a function from

L1 and a polynomial (singularity point �0 = 0) and also possibly a periodic
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function, e.g. sin (�) or cos (�) with singularities at some points �s; s 6= 0.

Here the parameters, 
�(�; �); are allowed to take complex values, otherwise
one would need to be more speci�c about the functions with singular Fourier

transforms; since the functions are assumed known it is easy in each speci�c

case to separate out the imaginary parts as in the case of polynomials.

Assumption 5 permits to write moment conditions; however, to get a suf-

�cient condition for identi�cation of all parameters additionally the following

Assumption 6 is made.

If � > 0 de�ne the matrices �y(sl; �) and �xy(sl; �) for each sl � 0

(similarly to (S) for the case sl = 0 ) by their elements:

�y;i+1;k+1(sl; �) =

 
k + i

i

!

k+i(sl; �)I(k + i � �kl);

�xy;i+1;k+1(sl; �) =

 
k + i+ 1

i+ 1

!

k+i(sl; �)I(k + i � �kl);

i; k = 0; 1; :::�kl:

Denote by fAg11 the �rst matrix element of a matrix A:
Assumption 6. The function 
 satis�es Assumption 5. Additionally all


o(�; �);
�

oo(�; �); 
sl(�) are continuously di¤erentiable with respect to the

parameter, �; in some neighborhood of ��: The m� 1 parameter vector can
be partitioned as �T = [�TI ; �

T
II ]: For any component, �i; of mI � 1 vector �I

(where m � mI � 0) either


o(�; �
�)
@

@�i

�

oo(��; �)j�� +

�

oo(�; �

�)
@

@�i

o(��; �)j�� 6= 0 (16)

a.e., or if (16) does not hold for some i�, then @
@�i�


o(��; �)j�� 6= 0: If mII > 0

the matrix that stacks for all sl; l � 0 matrices 
@

@�TII
[�y(sl; �)]

�1 j���y(sl; ��) + @
@�TII

[�xy(sl; �)]
�1 j���xy(sl; ��)

@
@�TII

�
[�y(sl; �)]

�1 j���y(sl; ��)
	
11
j��

!
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is of rank mII :

By checking we can see that all the examples provided in (S) satisfy

assumptions 5 and 6 here and thus su¢ cient conditions for identi�cation

hold. If the same parameters enter into both the ordinary and singular parts

(S, assumption 6) may be violated, even though identi�cation is possible and

the results of this paper hold.

Additional assumptions 7 and 8 below are needed.4

Assumption 7. The density function p(z) exists and is positive.
Assumption 8. The characteristic function of measurement error, �(�);

is such that (i) �(�) 6= 0 for j�j < �� where it is continuously di¤erentiable;

(ii) it is �kl times continuously di¤erentiable at every sl:

Theorem 2 below establishes that moment conditions for the parame-

ters � of 
(�; �) hold and Theorem 3 that the assumptions are su¢ cient for

identi�cation. The notation Re(x) refers to the real part of a complex x:

Theorem 2. Under model assumption and Assumptions 1�, 4, 7, 8
(i) if Assumption 5 (i,ii) holds there exist real functions ry(z; �); rxy(z; �)

such that the moment

E

�
Y rxy(z; �) +XY ry(z; �)

p(z)

�
(17)

exists for � in some neighborhood of �� and equals zero for � = ��;

(ii) if 5(i-iii) holds there are functions ry1n(z; �) such that

lim
n!1

E

�
Y ry1n(z; �)

p(z)
� 1
�

(18)

exists for � in some neighborhood of �� and equals zero for � = ��;

(iii) If � > 0 and 5(i-ii) hold then for each sl � 0 there exist vector

functions rysl(z; �); rysl;n(z; �); rxysl(z; �); rxysl;n(z; �); and a diagonal invert-

4Assumptions 7 and 8(ii) are also implicit in the proofs in (S).
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ible matrix Ml such that

lim
n!1

Re[��1y (sl; �)M
�1
l E

�
Y rys;l;n(z; �)

p(z)

�
(19)

+��1xy (sl; �)M
�1
l E

�
XY rxys;l;n(z; �)

p(z)

�
]

exists for � in some neighborhood of ��and equals zero for � = ��;

(iv) If � > 0 and 5(i-iv) hold then for each sl � 0 there exist functions
rysl;1;n(z; �); ryslo;1;n(z; �) such that for s0 = 0

lim
n!1

E

�
Y rys0;1;n(z; �)

p(z)
� 1
�

(20)

and

lim
n!1

ReE

�
Y (rysl;1;n(z; �)� ryslo;1;n(z; �))

p(z)

�
(21)

exist for � in some neighborhood of ��and equal zero for � = ��:

Proof. See Appendix. The functions r�(z; �) and matricesMl are provided

there.

Some of the moment conditions can be redundant. Di¤erent sets of

weighting functions could be appropriate; similarly to reasoning in (S) the

weighting functions are designed in a way that isolates di¤erent components

of the 
 function: the ones in (i) are for the ordinary function component

and are supplemented by moments in (ii) for the case of a scale multiple

for the ordinary component, the ones in (iii) are for the coe¢ cients of the

singular part with (iv) for the possible scale factor at each singularity. If

only (17) applies then the weighting functions proposed in (S) can be used,

but for the other components the weights proposed here solve the problem

without additional requirements that moment generating function for errors

exist and avoid the problematic function � in (S, De�nition 2): �(0) and any

derivatives of � at 0 are zero (see Appendix B).

De�ne by EQ(�) the vector with components provided by the stacked
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expressions (whichever are de�ned) from (17, 18, 19, 21).

Theorem 3. Under the conditions of Theorem 2 and Assumption 6 the

functions r�(z; �) can be selected in such a way that the matrix @
@�
EQ(��)

exists and has rank m.

Proof. See Appendix.

Theorem 3 provides su¢ cient conditions under which the equationsEQ(�) =

0 fully identify the parameter vector ��:

4 Appendix A

4.1 Proofs

Proof of Lemma 1.
(i) By model assumption and Assumption 1 the convolutions in (1) pro-

vide elements in T 0; this implies that any of the sequential de�nitions of

convolution in Kamiski (1982) hold, therefore by his theorem 9, the "ex-

change formula" implies that the products for some sequences in the equiv-

alence classes de�ning the Ft0s exist. By Proposition 1 it follows that since

�;
�
� 2 T 0; (12) holds for continuous functions � and

�
� then 
� 2 T 0; �
� 2 T 0

and additionally (by applying the product rule to (3,4)) 
 _� 2 T 0: Since

T 0 � D0, the products are de�ned in D0 as well.

(ii) Now consider a sequence (
�)n de�ned as follows: select some se-

quence ~
n for 
 from D; then each ~
n has �nite support; for a sequence of

numbers "n ! 0 select ~�n in D such that
���~�n � �

��� < "n
supj~
n��1j on compact

support of 
n: Then for the sequence (
�)n = ~
n~�n and any  2 DZ
~
n
~�n�

�1 =

Z
~
n +

Z
~
n(
~�n � �)��1 !

Z

 :

Now we check that (12) holds for a = ��1: In D support of any  is bounded,

on that compact set ��1 is bounded thus (12) will hold and the product is
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de�ned in D0.

(iii) For Case 1 the product with ��1(�)I(j�j < ��) is similarly to (ii)

de�ned in T 0 since it is su¢ cient to consider  2 T with bounded support

(containing support of 
): If cases 2 and 3 hold it is straightforward to verify

that the function ��1 is in OM , thus the product is de�ned (continuously) in
T 0.

(iv) We construct a counterexample. The function �(x) = e�x
2
does not

belong to either case 1 or case 2. The product of function b(x) � 0 and

�(x)�1 does not exist in T 0. Consider bn(x) =8><>:
e�n if n� 1

n
< x < n+ 1

n
;

0 � bn(x) � e�n if n� 2
n
< x < n+ 2

n
;

0 otherwise.

(22)

This bn(x) converges to b(x) � 0 in T 0. Indeed for any  2 TZ
bn(x) (x)dx =

Z n+2=n

n�2=n
bn(x) (x)dx! 0:

But the sequence bn(x)~�(x)�1 does not converge in the space T 0 of tem-

pered distributions. Indeed if it did then
R
bn~� would converge for any

 2 T: But for  2 T such that  (x) = exp(� jxj) for, e.g. jxj > 1Z n+2=n

n�2=n
bn(x)e

x2 (x)dx � e�n
Z n+1=n

n�1=n
ex

2�xdx

� 2

n
e�2n+(n�1=n)

2

:

This diverges.�
Proof of Theorem 1.
The proof makes use of di¤erent spaces of generalized functions and ex-

ploits relations between them. It proceeds in two parts.

First in part one, it is shown that from equations (3,4) the continuous
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function { = _���1 can be uniquely pointwise determined on the interval

[���; ��] (which is in the support of 
 and consequently of "1); this requires
additionally considering the generalized functions spaces, D0 and also D0(U)

0

which is de�ned on the space of test functions that are continuous with

support contained in U: The function � is uniquely de�ned on the interval

(���; ��) as the solution of the corresponding di¤erential equation that sat-
is�es the condition �(0) = 1: De�ne ~� = �I(j�j < ��); de�ne ~�

�1
to equal

��1I(j�j < ��). Of course, when �� =1; ~� = � and ~�
�1
= ��1 on R:

Next in part two, 
 is de�ned as "y~�
�1
. By Lemma 1 this product can

always be uniquely de�ned as a generalized function in D0; by construction 


de�nes a generalized function in T 0 � D0; this provides the required mapping

M� by applying inverse Fourier Transform to 
. If condition (iii) of Lemma

1 applies the product "y~�
�1
is de�ned in T 0; in this case all the mappings

that de�ne the mapping M� are de�ned in T 0. The proof concludes with an

example that demonstrates that the mapping can be discontinuous if (iv) of

Lemma 1 applies.

Part one. Consider the space of generalized functions D0: By Assumption

2 � is non-zero and continuously di¤erentiable, then by di¤erentiating (3),

substituting (4) and making use of Lemma 1 to multiply by ��1 in D0 we get

that the generalized function

"y�
�1 _�� (_"y � i"xy)

equals zero in the sense of generalized function in D0: Denoting { = _���1 we

can characterize { as a continuous at every point (by Assumption 2) function
in D0 that satis�es the equation

"y{ � (_"y � i"xy) = 0: (23)

If (23) holds in D0; it holds also for any test functions with support limited

to U :  2 D(U) � D; and thus holds in any D(U)0:
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We show that the function { is uniquely determined in the class of con-
tinuous functions on on [���; ��] by (23) holding in D(U)0 for any interval

U � (���; ��): Proof is by contradiction. Suppose that there are two distinct
continuous functions on [���; ��]; {1 6= {2 that satisfy (23), then {1(�x) 6= {2(�x)
for some �x 2 (���; ��); by continuity {1 6= {2 everywhere for some interval
U � (���; ��): Consider now D(U)0; we can write

("y({1 � {2);  ) = 0

for any  2 D(U): A generalized function that is zero for all  2 D(U)

coincides with the ordinary zero function on U and is also zero for all  2
D0(U), where D0 denotes the space of continuous test functions. For the

space of test function D0(U) multiplication by continuous ({1 � {2) 6= 0 is
an isomorphism. Then from (23) we can write

0 = (["y({1 � {2)] ;  ) = ("y; ({1 � {2) )

implying that "y is de�ned and is a zero generalized function in D0(U)
0: If

that were so "y would be a zero generalized function in D(U)0 since D(U) �
D0(U); this contradicts Assumption 2. This concludes the �rst part of the

proof since from { the function

�(�) = exp

Z �

0

{(�)d�

that solves on [���; ��]
_���1 = {;�(0) = 1

is uniquely determined on [���; ��] and ~� (and ~��1) de�ned above are uniquely
determined.

Part two.

Consider two cases.
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Case 1.Part (iii) of Lemma 1 applies. Multiplying "y(= 
~�) by ~�
�1
pro-

vides a tempered distribution by Lemma 1; it is equal to 
: The inverse

Fourier Transform provides g: The theorem holds and moreover, all the op-

erations by which the solution was obtained were de�ned in T 0.

Case 2. The condition (iii) of Lemma 1 may not hold, so multiplication by
~�
�1
= ��1 may not lead to a tempered distribution. Consider now D0; T 0 �

D0: Multiplication by ��1 is a continuous operation in D0; de�ne the same

di¤erential equations, solve to obtain � and get via multiplication (
�) � ��1

in D0 the function 
 2 D0. Since 
 is the Fourier transform of g (a tempered

distribution) it also belongs to T 0; and it is possible to recover g by an inverse

Fourier Transform.

In the following example the mappingM� in (7) is not continuous. De�ne

�n = Ft�1(bn) where bn is de�ned by (22); bn 2 T; thus �n 2 T: In was shown
in proof of Lemma 1 that bn(x) converges to b(x) � 0 in T 0.
Suppose that the model mapping M in (6) is de�ned for functions in L1

and is continuous in L1 (and thus in T 0): Suppose that Wyn = Wy + �n;

from bn ! 0 in T 0 and the continuity of the Fourier Transform mapping in

T 0; it follows that �n ! 0 and thus Wyn ! Wy in T 0: Then "yn = "y + bn:

Suppose that � is proportionate to e�x
2
. Then by the proof in part 1 each


n = "yn�
�1 2 D0; but as a Ft of a function in T 0 (even in L1 here) is de�ned

in T 0; the inverse Fourier transform, ~gn = Ft�1(
n); exists. However, ~gn does

not converge to g in T 0: Indeed, if it did so converge, then that would imply

convergence 
n ! 
 in T 0, but bn(x)ex
2
does not converge in the space T 0 of

tempered distributions as was shown in the proof of Lemma 1. �
Proof of Proposition 2.
(a) We establish that the mapping from (Wyn;Wxyn) to gn is continuous.

Consider � 2supp(
): Similarly to proof in Theorem 1 applied to every n a

continuous function {n(�); that satis�es the equation

{n(�)"yn(�) + (i"xyn(�)� _"yn(�)) = 0 (24)
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in generalized functions, exists (de�ned as _�n�
�1
n ) and is unique. Moreover,

from Lemma 1 it follows that the product with {n = _�n�
�1
n 2 OM always

exists. Since all functions in (24) are continuous it represents an equality of

continuous functions and since "yn is non-zero a.e. we have

{n(�) = (i"xyn(�)� _"yn(�))("yn(�))�1:

The generalized functions

{n"yn � {"y = i("xyn � "xy) + (_"yn � _"y) and {n("y � "yn)

converge to zero as generalized functions in T 0; as a result, so does ({n�{)"yn;
but since this is a continuous function this implies pointwise convergence.

Suppose that on some bounded interval {n � { is separated away from zero

for some subsequence fnig, this implies then that on that set "yni converges
to zero pointwise, thus the limit in T 0 (="y) is zero on this interval which

belongs to support of 
; and thus of "y: This contradiction establishes that

{n ! { pointwise and uniformly on any bounded set. From the di¤erential

equation ��1n _�n = {n with the condition �n(0) = 1 the function �n is uniquely
determined; and �n ! � where ��1 _� = {; �(0) = 1: Then also since � is non-
zero, ��1n ! ��1 pointwise; ��1n satis�es (5) so that "1n�

�1
n can be de�ned as

a tempered distribution. Finally consider

"yn�
�1
n � "y�

�1 = "yn(�
�1
n � ��1) + ("yn � "y)�

�1:

The continuous function "yn(�
�1
n ���1)! 0; the generalized function ("yn�

"y)�
�1 ! 0 in T 0 (as a tempered distribution) "yn�

�1
n converges to 
 in T 0;

and its inverse Fourier Transform converges to g as a tempered distribution

(by continuity of inverse Fourier Transform in T 0).

From continuity of the mapping the result follows.

(b) For any g 2 L1 there exists a sequence of step-functions gn 2 L1

such that kgn � gkL1 ! 0 (implying gn !T 0 g); for F there is a sequence of

25



step-functions Fn such that sup jFn � F j ! 0 (implying Fn !T 0 F ):

Speci�cally,

gn(x) =
NX
k=1

akI(bk � x < bk+1) for b1 < ::: < bN ;

Fn(x) =

NX
j=1

cjI(dj � x) with cj > 0; �cj = 1; d1 < ::: < dN ;

where all the parameters depend on n: The generalized derivative of Fn is

fn(x) = �cj�(x � dj) where �(x � dj) is a shifted ��function:
R
�(x �

dj) (x)dx =  (di) for  2 T: Then �n(�) = �cje
i�dj : The function �n is

not integrable (otherwise f would be continuous), thus ��1n satis�es (5). All

the parameters depend on n:

Then

Wyn(v) =
N2X
m=1

�mI(jv � tmj < �m);

Wxyn(v) =
N2X
m=1

�m(v � "m)I(jv � tmj < �m);

where m corresponds to a pair (k; j) and �m = akcj; tm = dj +
bk+bk+1

2
; "m =

dj; �m =
bk+1�bk

2
: This representsWyn as a step-function andWxyn as a piece-

wise linear function: The conditional mean function Wy can be consistently

estimated in L1 by step functions implying existence of a sequence Wyn(v)

such that Pr(Wyn !T 0 Wy)! 1; similarly, for some piece-wise linearWxyn(v)

Pr(Wxyn !T 0 Wxy)! 1 implying (13), moreover, we can write (using known

26



Fourier transforms)

"yn(�) =
NX
k=1

2� k�k�k(�)sinc(
� k�

�
);

"xyn(�) = �i
NX
k=1

2� k
d

d�

�
�k�k(�)sinc(

� k�

�
)

�
�

NX
k=1

2� k�k"k�k(�)sinc(
� k�

�
);

where the sinc(x) function is de�ned as sin�x
�x

and �k(�) = eitk� : The condi-

tions about continuity and "yn(�) non-zero a.e., required in (a) are satis�ed;

(13) follows from the continuity of the Fourier transform operator in T 0.�
Prior to proof of Theorem 2 we make two preliminary observations.

Firstly, under Assumption 5 and 8 (that justi�es products of 
s and
�

s

with �) and by Lemma 1 equations (3,4) in T 0 lead to (i2 = �1):

"y = "yo + "ys (25)

with "yo(�) = 
o(�; �
�)�(�); "ys = 
s(�

�)�(�);

i"xy = i"xyo + i"xyos + i"xys (26)

with i"xyo(�) =
�

oo(�; �

�)�(�);

i"xyos(�) =
�

os(�; �

�)�(�);

and i"xys =
�

s(�

�)�; where
�

s(�) is the generalized derivative of 
s(�):

Second, to construct weighting functions some well-known functions are

used. Denote by TR � T the space of real test functions that are Ft of real-

valued functions from T ; they satisfy  (��) =  (�): A smooth cut-o¤ (or

"smudge") function is de�ned (e.g. in GS or L) as

fcut(�) = exp(�
1

1� �2
)I(j�j < 1);
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"bump function" is

fbump(�) =
fcut(�)R 1

�1 fcut(�)d�
:

Consider sets V; U de�ned as

V = [ ([ai; bi] [ [�bi;�ai]) � [(ai� "; bi+ ")[ (�bi� ";�ai+ ") = U; (27)

where ai 6= bi and the intervals and " are such that the only two intervals in

U that could intersect would correspond to some i with bi = �ai; de�ne the
function

fV (�) = I(j�j 2 V ) � fbump(
2�

"
)
2

"
:

This function has the property that it equals 1 on V; 0 outside of U and takes

values between 0 and 1.

For any � 2 R; p � 0; " > 0 consider a closed set V� = [� � �; � + �] [
[�� � �;�� + �] and the function fV�(�); de�ned above. De�ne f�;p(�) =

(� � �)pfU�;V�(�): This function has the property that

dlf�;p;"

d� l
(�) = (�1)ld

lf�;p;"

d� l
(��) =

(
p! if l = p;

0 otherwise.

All the functions, fbump; fV ; f�;p;" are in TR:

Proof of Theorem 2.
(i) Let e be small enough that closed e�neighborhoods of all the points

of singularity and discontinuity of 
o and
�

o do not intersect in (���; ��).

De�ne the union of open intervals that is the compliment to this set in

(���; ��) by U: Construct for a small enough " a corresponding union of

closed intervals, V � U that can be de�ned by (27). De�ne � (�) = fV (�):

Then dp�
d�p
(sl) = 0 for all sl; p; integrals

R �

o(�; �)�(�)d� and

R

o(�; �)�(�)d�

are de�ned for any �: The inverse Ft�s ry(z; �) = Ft�1(
o(��; �)�(��))
and rxy(z; �) = Ft�1(i

�

o(��; �)�(��) exist. Since "yo(�) = 
o(�; �

�)�(�),

"xyo(�) = �i
�

o(�; �

�)�(�);
�

o(�; �) and "xyo(�) are ordinary locally integrable
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functions in T 0 and "yo(�) and 
o(�; �) are continuous and satisfy (5), the

products "yo(�)
�

o(��; �) and "xyo(�)
o(��; �) are well de�ned in T 0 : Thus

the integral (where � 2 TR)Z h
"yo(�)i

�

o(��; �)�(��) + "xyo(�)
o(��; �)�(��)

i
d�

exists. Since "yo(�) = 
o(�; �
�)�(�), "xyo(�) = �i �
o(�; ��)�(�) the value of

the integral is zero for � = ��: Moreover, because the functions � are zero

together with all the derivatives at singularity points, "yo can be replaced by

"y providing: Z h
"yo(�)i

�

o(��; �)�(��) + "xyo(�)
o(��; �)�(��)

i
d�

= (i"y
�

o(��; �); �(��)) + ("xy
o(��; �); �(��))

By applying Parseval identity to generalized functions this leads to

(Wy; rxy(�)) + (Wxy; ry(�))

=

Z
[Wy(z)rxy(z; �) +Wxy(z)ry(z; �)] dz

where the functionals are expressed via integrals for ordinary locally inte-

grable functions.

Multiplying and dividing by the non-zero function p(z) does not change

the integral. Then by law of iterated expectationsZ
1

p(z)
Ejz (Y rxy(z; �) +XY ry(z; �)) p(z)dz = E

�
Y rxy(z; �) +XY ry(z; �)

p(z)

�
:

This concludes the proof of (i).

(ii) By Assumption 5(iii) there exists a sequence �n ! 0 such that


o(�; �) 6= 0 for � : j� � �nj < "n < j�nj and is continuous in those inter-
vals; without loss of generality assume that � 2 U de�ned in (i). Consider
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the function

�n(�) =
1

2
ffbump(

� � �n
"n

) + fbump(
� + �n
"n

)g

The function �n(��)

o(��;�)

is a continuous function with bounded support. Set

r1yn(z; �) = Ft�1( �n(��)

o(��;�)

):Then for any n we get

Z
"yo(�)
o(��; �)

�1
�n(��)d� = ("y � 
o(��; �)

�1
; �n(��))

=

Z
E(Y jz)Ft�1(
o(��; �)�1�n(��))dz

= E

�
Y ry1n(z; �)

p(z)

�
;

where the �rst equality follows from the fact that ("ys
o(��; �)
�1
; �n(��)) =

0 (since � 2 U); the second by Parseval identity and the third by multiplying
and dividing by p(z) > 0 and iterated expectation; the integral exists for

each n. For �� we get (
o(�) = 
o(��))

E

�
Y ry1n(z; �

�)

p(z)

�
=

Z
"yo(�)
o(�; �

�)�1�n(��)d� =
Z
�(�)�n(��)d�

=
1

2
[�(�n) + �(��n)] +O("n)

This converges to �(0) = 1:

(iii) Consider any sl � 0. Below all relevant functions are subscripted by
l.

For " as de�ned in (i) de�ne the function �l;i(�) = fsl;i;"(�) 2 TR, then

�
(i)
l;i (0) 6= 0; but �(k)l;i (0) = 0; k = 0; :::i � 1; i + 1; :::�k + 1 and support of
�l;i is given by I(j� � slj < ") + I(j� + slj < "); denote the derivative of �l;i
by �0l;i. For a sequence "n ! 0 consider fVn(�) for Un = f� : j� � slj <
"ng [ f� : j� + slj < "ng;Vn = f� : j� � slj � "n

2
g [ f� : j� + slj < "n

2
g
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and de�ne �l;i;n(�) = �li(�)fUn;Vn(�)): The functions �� are in TR: Denote

by rxys;l;i;n(z) the inverse Ft: Ft�1(�l;i;n(��)) and by rys;l;i;n(z) the inverse
Ft: Ft�1(i�0l;i;n(��)); they exist in T: The vector rxys;l;n(z) is de�ned to have
rxys;l;i;n(z) as its i�th component; vector rys;l;n(z) is de�ned similarly. De�ne
byMl the diagonal matrix with non-zero diagonal entries fMlgii = �

(i)
l;i;n(0) �

�
(i)
l;i (0), i = 0; :::�k:

Consider now the vector ("y; �0l;n) with components ("y; �
0
l;i;n(��)) and

("xy; �l;n) with ("xy; �l;i;n(��)). Since the matrices �y(sl; �), �xy(sl; �) and
Ml are invertible the expression

�y(sl; �)
�1M�1

l ("y; �
0
l;n) + �xy(sl; �)

�1M�1
l ("xy; �l;n) (28)

is �nite for every n. By Parseval identity

("y(�); �
0
l;i;n(��)) = (Wy(z); ry;l;i;n(z))

=

Z
Wy(z)ry;l;i;n(z)dz;

the last equality follows since Wy is locally integrable. Thus by arguments

similar to those in (i) and (ii) this integral is E Y ry;l;i;n(z)

p(z)
so that ("y; �0l;n) =

E
Y ry;l;n(z)

p(z)
and analogously ("xy; �l;n) = E

XY rxy;l;n(z)

p(z)
: We need to establish

that limits as n!1 exist. First, note that����Z "yo(�)�
0
l;i;n(��)d�

���� =

����Z "yo(�)f�l;i;"(��)fUn;Vn(��)d�
����

� max
U

��"yo(�)f�l;i;"(��)�� 2"n
and goes to zero;

("ys; �
0
l;i;n(��)) = �

�k
k�i
(sl; �

�)(�1)i
 
k + i� 1
i� 1

!
�
(i)
l;i (sl)�

(k�i+1)(sl) (29)

and does not depend on n; �nally, "y = "yo + "ys; so the limit exists. By a
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similar representation for �("xys; �l;i;n(��)) existence of (19) is established.
For � = �� using (25,26) for "ys and "xys in (28) leads to

�y(sl; �
�)�1M�1

l ("ys; �
0
l;n) + �xy(sl; �

�)�1M�1
l ("xys; �l;n) = 0:

Note that the same considerations apply to singularity at �sl with the dif-
ference that the �:(�sl; �) matrices now are complex conjugate to �:(sl; �):
Combining provides the real part in (19).

(iv) Consider the �rst component of �y(sl; �)�1M�1
l ("ys; �

0
l;n) with �

0
l;n;Ml

de�ned in (iii); this component is f�y(sl; �)�1M�1
l g11("ys; �0l;1;n): Note that

�0l;1;n = �l;0;n; recall that � 2 TR:We see that �(sl) equals limf�y(sl; ��)�1M�1
l g11

R
"ys�l;0;nd�:

De�ne

rysl;1;n(z; �) = f�y(sl; �)�1M�1
l g11Ft�1(�l;0;n(��)):

Similarly to above by Parseval identity f�y(sl; �)�1M�1
l g11("ys; �l;0;n) = E(

Y rysl;1;n(z;�)

p(z)
)

and �(sl) = limE(
Y rysl;1;n(z;�)

p(z)
): For s0 = 0 we have �(0) = 1. Thus (20) fol-

lows.

Consider now for sl 6= 0 the function

�l;n(�) =
1

2
ffbump(

� � sl � �n
"n

) + fbump(
� � sl + �n

"n
)g

similar to the one in (ii) and de�ne rslo;n(z) = Ft�1(
�l;n(��)

o(��;�)

): For this function

E(
Y rslo;n(z;�)

p(z)
) =

R
"y(�)

�l;n(��)

o(��;�)

d� exists and at �� converges to �(sl). Thus

(21) follows.�
Proof of Theorem 3.

Let the vector Q(z; �) denote the vector of functions for which expecta-

tions are taken in E(Q); partition Q(z; �) into QI(z; �) corresponding to ex-

pressions in (17, 18) andQII(z; �) for (19, 21). Then the matrix @
@�T

E(Q(z; �))
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is a block matrix  
@
@�TI

E(QI(z; �)) �
� @

@�TII
E(QII(z; �))

!

and it is su¢ cient to show that @
@�TI

E(QI(z; �)) has rankmI and @
@�TII

E(QII(z; �))

has rank mII :

For �I �rst note that interchange of di¤erentiation with respect to the

parameter and integration (taking expected value) for @
@�TI

EQI(z; �) follows

from continuity in � of all the functions in the integrals and their continuous

di¤erentiability with respect to �; so that @
@�I
E(QI(z; �)) = E( @

@�I
QI(z; �)):

One can choose mI functions � de�ned in proofs of Theorem 2(i,ii) that

are functionally independent and under Assumption 6 the corresponding mI

conditions of type E( @
@�I
QI(z; �)) will provide a rank mI submatrix.

If for the functions � in expressionsQII(z; �) in (iii,iv) of Proof of Theorem

2 the matrix @
@�II

E(Qs(z; �)) has rank less than mII consider varying the

functions �� for all possible values of non-zero derivatives at the points sl; the

rank cannot be de�cient over all such choices without violation of Assumption

6.�
Appendix B
Three main problems with (S) are listed below.

1. The issue of decomposition.
(S) claims that any generalized function in T 0 can be decomposed into a

sum of an ordinary function and a singular function; this decomposition is

used in formula (13) of S., Theorem 1.

There is no proof of existence of such a decomposition in the literature,

as the example of the function in Section 2.1 in (10) shows no unique de-

composition into a singular and regular ordinary function exists in T 0 (nor in

D0). The attempted proof in (S, Supplementary material, p.3) is incorrect.

Indeed it states: "The result directly follows from the fact that every

generalized function can be written as the derivative of order k 2 N of some
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continuous function c(t) (Theorem III in Temple (1963) establishes this for a

class of generalized functions including those considered here as a particular

case). [-my comment: this is correct] At every point t where c(t) is k times

di¤erentiable in the usual sense, the generalized function can be written as

an ordinary function, while at every point where c(t) is not k times di¤eren-

tiable, a delta function derivative is created in the di¤erentiation process.[my

comment: this is incorrect, see (a) below] The fact that the two pieces are

additively separable follows from the linear nature of the space of generalized

functions. [my comment: this is incorrectly applied: see (b) below]"

(a). Consider the function b(�) = j�j�
3
2 ; it is a "weak" (or generalized)

second derivative of the continuous function c(�) = �4 j�j
1
2 . The �rst weak

derivative, �2 j�j�
1
2 sign(�); is an ordinary function that is summable and

so gives a regular functional and is an ordinary function that is at the same

time a generalized function. At point � = 0 it is not di¤erentiable in the

ordinary sense; yet no delta-function or its derivative appears.

(b) Any generalized function is either regular or singular; the "ordinary"

function b(�) above is a singular generalized function (see (10)). Since gen-

eralized functions are generally not de�ned pointwise a pointwise argument

cannot be helpful.

An additional assumption would have to be used to establish formula (13)

in Theorem 1 of (S).

2. Validity of products.
Validity of products in the space of generalized functions needs to be

established to provide a correct proof of the identi�cation result. Neither

the paper nor the supplementary material in (S) provides a complete correct

proof indicating in which space of generalized functions the multiplication

operations are valid; in fact as Lemma 1 here shows multiplication may not

be valid in T 0 under the Assumptions (despite the claim in (S)).

3. De�nition 2 in (S) leads to inappropriate weights.
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Def. 2 proposes the function

�(�) =

1X
k=0

1

k!
dk(�k�(�))=d�k

for � that satis�es S, Def. 1 (� is an analytic function). We have

1X
k=0

1

k!
dk(�k�(�))=d�k

=
1X
k=0

1

k!

kX
i=0

Cki
�
di�k=d� i

� �
dk�i�(�)=d�k�i

�
=

1X
k=0

1

k!

kX
i=0

Cki
k!

(k � i)!
�k�i

�
dk�i�(�)=d�k�i

�
=

1X
k=0

kX
i=0

Cki
1

i!
� i
�
di�(�)=d� i

�
:

Consider the values and derivatives of the function � at zero; they are

zero and thus are not suitable for the weighting functions. Indeed

�(0) =
1X
k=0

�(0); so �(0) = 0 and �(0) = 0

�0(0) =
1X
k=0

kX
i=0

Cki
1

i!
[� i�1

�
di�(�)=d� i

�
+ � i

�
di+1�(�)=d� i+1

�
j�=0

=

1X
k=0

[�0(0) + k�0(0)]; so �0(0) = 0; and �0(0) = 0;

etc., implying �(k)(0) = 0 for any k:
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