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el uncertainty has become a central focus of policy discus-
ounding the determinants of economic growth. Over 140
s have been employed in growth empirics due to the pro-
of several new growth theories in the past two decades.

Bayesian model averaging (BMA) has been employed to ad-
del uncertainty and to provide clear policy implications by
g robust growth determinants. The BMA approaches were,
limited to linear regression models that abstract from pos-
endencies embedded in the covariance structures of growth
ants. The recent empirical growth literature has developed
measures to highlight such dependencies. We address model
ty and covariate dependencies in a comprehensive Bayesian
k that allows for structural learning in linear regressions
ssian graphical models. A common prior specification across
e comprehensive framework provides consistency. Gaussian
l models allow for a principled analysis of dependency struc-
ich allows us to generate a much more parsimonious set

mental growth determinants. Our empirics are based on a
t growth dataset with 41 potential economic factors that
the utilized in numerous previous analyses to account for
certainty as well as jointness.

ion. The advent of the New Growth Theory (37) pro-
c increase in potential growth determinants that have been
onomic theory. After focusing heavily on about five growth
m the 1950s to the 1980s (41), the candidate regressors con-
al growth empirics has risen rapidly to 42 (28), 56 (39), 67
ecently to 140 (9).
, growth empirics have since become a case study of model
r initial attempts to apply the extreme bound analysis pro-
r (25), subsequent approaches have focused on Bayesian
g (BMA) to resolve model uncertainty – see Eicher et al
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2 A. DOBRA ET AL.

(11) for a review. The recent literature has pointed out, however, that early
assumptions regarding linear models and strict independence of candidate
regressors are inconsistent with growth theory. Durlauf et al. (9) survey
the list of nonlinearities and interactions suggested by growth theories, and
Brock and Durlauf (3) argue forcefully that the resolution of model uncer-
tainty must take into account the probability that the effect of one growth
determinant may depend on the inclusion of another.

Beyond the obvious collinearity, Brock and Durlauf (3) outline several
additional examples of interactions, including parameter heterogeneity and
exchangeability, where regressor interdependence determines explanatory
power. For example, the effect of a particular growth determinant might
(dis)appear only with the inclusion of specific covariates. Durlauf et al. (10)
introduce dillusion priors designed to address interdependencies among re-
dundant, collinear, or exchangeable regressors – see George (17). Doppel-
hofer and Weeks (8) and Ley and Steel (29) define measures of dependence
(which they call “jointness”) among explanatory variables that appear in
linear regression models. Aside from the related statistical issues, account-
ing for interdependencies may also deliver more parsimonious models with
equal or only minimally reduced explanatory power.

In this paper we propose a novel approach for selecting growth deter-
minants by considering regressions induced by Gaussian graphical mod-
els (GGMs) that take advantage of covariance structures (6). The graph-
ical models approach has the advantage that it relaxes the strict condi-
tional independence constraints implied by Normal linear regression models
(14; 40; 29; 11; 12) and explicitly accounts for the complex dependency
patterns that exist among the growth determinants. We are able to differen-
tiate between factors that affect growth directly and other factors that affect
growth indirectly by influencing other covariates. The overall consistency of
our methodology comes from a common prior specification for the model
parameters of the various families of GGMs considered.

While the use of GGMs in econometric modeling has been relatively un-
explored, the concepts of covariation and conditional independence amongst
macroeconomic variables have long been considered in the literature. It has
been shown that graphical models can be seen as structural or simultane-
ous equations models (SEMs) and can involve any combination of discrete,
continuous or categorical variables (24). SEMs are often used to model the
evolution of complicated systems in a variety of scientific fields where each
factor is believed to depend in some way on the state of other factors in
the system. Macroeconomic modeling frequently employs such techniques
(23). Often in such models, terms are included in selected equations and
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GROWTH DETERMINANTS AND GRAPHICAL MODELS 3

excluded from others, evidence that macroeconomists have long believed
conditional independencies exist amongst their convariates. Despite this as-
sumption, uncertainty in growth determinants has typically been considered
in the context of regression modeling. Through simulation studies, we show
that such an approach will have a tendency to link too many terms to the
response, especially as the interaction amongst the covariates grows sparser
and more complicated. This over-inclusion provides the motivation for en-
riching the model space by considering graphical models.

Modeling the covariance structure among candidate regressors using graph-
ical models is therefore an alternative to standard SEM modeling techniques
– see, for example, Broeck and Binder (4). A key advantage of the GGM ap-
proach is that model uncertainty can be easily incorporated into the frame-
work, especially when suitable conjugate priors are chosen and can therefore
help in identifying hypotheses regarding growth interactions that are sup-
ported by the observed data. Of course, the full set of candidate hypotheses
allowed by GGMs cannot be exhaustively enumerated and as a consequence,
the space of graphical models must be explored using suitable stochastic
search techniques (19; 21).

The focus of this paper is thus in developing a coherent methodology
for modeling uncertainty in macroeconomic growth determinants using a
framework that accurately represents the interaction structure believed to
underlie macroeconomic variables. As discussed above, we believe that the
GGM framework is better suited to this task than the standard regression
methodology currently used. As such, results in this paper will typically be
comparative in nature: in both simulation studies and the analysis of real
data we focus on comparing the results of GGM searches to regression vari-
able selection techniques. By characterizing regression models as a specific
type of undirected graphical model, we are able to specify a conjugate prior
framework, the G-Wishart distribution (38; 2; 26), that is consistent between
the two approaches. The method for scoring models – either regression or
graphical – therefore relies on a single common prior parameterization. This
fact is crucial as it allows for direct comparisons between the methodologies
that is not confused by arbitrary factors such as the use of different priors.
As an indirect, but desirable, consequence of this development we propose
a new methodology for regression variable selection that performs well for
high-dimensional problems.

After using simulation studies to show the propensity of regression vari-
able selection techniques to over-include variables when the covariates ex-
hibit complicated independence structures, we turn to the modeling of growth
determinants. Our results are based on a well-known growth dataset with 41
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4 A. DOBRA ET AL.

potential determinants originally compiled by Fernández et al. (14) (here-
after FLS data). This dataset has become a consensus dataset in growth
empirics to examine growth determinants. It contains a consensus set of
growth regressors that have been utilized in the most important method-
ological advances that investigate model uncertainty in growth regressions
– extreme bound analysis in Levine and Renelt (28), Bayesian model av-
eraging, and Bayesian averaging of classical estimators (14; 40; 29; 11; 12)
– as well as sensitivity to priors and jointness measures (11; 29; 30; 42).
In addition, the FLS dataset has also been widely used in growth empirics
to resolve model uncertainty using the PcGets general-to-specific approach
(20), to explore panel regressions (1), or to investigate parameter hetero-
geneity (33; 12).

As a first step, we consider the FLS data using our new technique for
selecting regression terms. We show that the results of this search perform
well when compared to existing techniques and receive results broadly con-
sistent with the current literature. We then consider a GGM search and
show that by enriching the model space to allow for more complicated inter-
action structures, the set of potential growth determinants is significantly
reduced. A consequence of this refinement is that the core set of variables
interacting with growth are those associated with neoclassical theories or
purely exogenous characteristics of the countries. This is an encouraging
result: it suggests that the use of GGMs recovers those factors that have
the longest tradition of being associated with growth, and separates newer
covariates that may have been included in other searches types due to their
indirect association with such causes. Based on these results, we feel that as
datasets of increasing size and quality are developed, the GGM framework
will be better suited for modeling uncertainty in growth determinants than
traditional regression variable selection techniques.

The structure of this paper is as follows. In Section 2 we develop our
Bayesian statistical framework for performing variable selection using GGMs,
while in Section 3 we discuss a stochastic search algorithm for GGMs called
the mode oriented stochastic search (MOSS). In Section 4 we study jointness
measures associated with sets of regressions induced by GGMs. Section 5
contains simulation studies that show how our proposed methodology per-
forms in situations of highly correlated candidate predictors and parsimo-
nious interaction structures. In Section 6 we illustrate our methodology in
the analysis of the FLS data. In Section 7 we conclude.

2. Variable selection with Gaussian graphical models. Formally,
we assume that the observed data x = (x(1), . . . , x(n))T are independent ran-
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GROWTH DETERMINANTS AND GRAPHICAL MODELS 5

dom samples from a p-dimensional multivariate normal distribution Np(0,Σ)
with Σ = (Σij)1≤i,j≤p. The response variable Y is associated with the first
component of the random vector X = (X1, . . . , Xp), while the remaining
components are the candidate explanatory covariates. Let V = {1, 2, . . . , p}.
The likelihood function is proportional to

L(x|Σ) ∝ (det Σ)−n/2 exp
{
−1

2
〈Σ−1, U〉

}
,(2.1)

where U =
∑n

i=1 x(i)x(i)T , and 〈A,B〉 = tr(AT B) denotes the trace inner
product. We take the prior for the precision matrix K = Σ−1 to be a Wishart
distribution Wp(δ,D) that is conjugate to the likelihood (2.1). Its density is

p(K) =
1

Ip(δ,D)
(det K)(δ−2)/2 exp

{
−1

2
〈K, D〉

}
,(2.2)

with respect to the Lebesgue measure on the cone Pp of p-dimensional sym-
metric positive definite matrices. The normalizing constant

Ip(δ,D) = 2(δ+p−1)p/2Γp {(δ + p− 1)/2} (det D)−(δ+p−1)/2,(2.3)

is finite if δ > 2 and D−1 ∈ Pp. Here Γp(a) = πp(p−1)/4∏p−1
i=0 Γ

(
a− i

2

)
for

a > (p− 1)/2 (34). By comparing (2.1) and (2.2), we remark that the prior
parameters can be interpreted as being associated with a fictive dataset with
a sample size of δ − 2 and a sample covariance matrix D. Below we discuss
the impact of the prior specification on the set of chosen regressors by com-
paring it to well known results that examine the sensitivity of the resulting
growth determinants to various choices of diffuse priors. We assume that the
data x has been scaled to have unit variance and subsequently set δ = 3 and
D = Ip, the p-dimensional identity matrix. The interpretation of this prior
is that the components of X are independent apriori and that the “weight”
of the prior is equivalent with one observed sample.

The induced prior for the covariance matrix Σ is inverse Wishart IWp(δ,D)
with density

p(Σ) =
1

Ip(δ,D)
(det Σ)−(δ+2p)/2 exp

{
−1

2
〈Σ−1, D〉

}
,

with respect to the Lebesgue measure on Pp (2). It follows that the posterior
distribution of K is Wp(δ + n, D + U), while the posterior distribution of Σ
is IWp(δ + n, D + U).

Our goal is to reduce the large set of candidate regressors to a smaller

imsart-aoas ver. 2007/12/10 file: dobra-eicher-lenkoski-8.tex date: November 14, 2008

adobra
Rectangle



6 A. DOBRA ET AL.

subset of explanatory variables that are robustly related to the variable of in-
terest Y by explicitly modeling the multivariate dependency patterns among
the observed variables X. These patterns are identified by constraining to
zero some of the off-diagonal elements of K. The remaining elements of K
are associated with edges in an undirected graph G which is called a Gaus-
sian graphical model (GGM) – see Dempster (6) and Wermuth (43). We
discuss GGMs in our Bayesian framework in Section 2.1. In Section 2.2 we
show that linear regressions as they are currently defined in the literature
are a special type of GGMs.

2.1. Gaussian graphical models. Let G = (V,E) be a GGM with E =
{(i, j)|Kij 6= 0}. The precision matrix K is now constrained to the cone PG

of symmetric positive definite matrices with entries Kij equal to zero for all
(i, j) /∈ E. Let nbdG(Y ) = {i ≥ 2|(1, i) ∈ E} be the neighbors of Y in G. The
local Markov property associated with G shows that Y is independent of the
remaining explanatory variables given its neighbors XnbdG(Y ), which implies
that the conditional of Y given X{2,...,p} coincides with the conditional of Y
given XnbdG(Y ) (24). Therefore G reduces the set of explanatory variables
that seem to be related with Y by distinguishing between direct and indirect
associations. The variables in nbdG(Y ) are directly related with Y . The
variables that can be reached from Y by following paths in G of length
at most two influence Y indirectly through some subset of XnbdG(Y ). The
variables that cannot be reached from Y (i.e., that belong to a different
connected component of G) are independent of Y .

Conditional on G, the Wishart prior Wp(δ,D) for K becomes a G-Wishart
prior WG(δ,D) defined on PG (38; 2; 27). We need to have D−1 ∈ PG that
is satisfied if we choose D = Ip. The posterior distribution of K given G
is WG(δ + n, D∗). Here D∗ coincides with D + U on the diagonal and on
elements associated with the edges of G, while the elements of (D∗)−1 are
set to zero for all the other entries. The marginal likelihood of G is the ratio
of the normalizing constants of the G-Wishart posterior and prior:

p(x|G) = IG(δ + n, D∗)/IG(δ,D).

If G is decomposable (24) with cliques {C1, . . . , Ck} and separators {S2, . . . , Sk}
the marginal likelihood can be explicitly calculated (38):

p(x|G) = p(xC1)
k∏

j=2

[p(xCj )/p(xSj )].(2.4)

where xA are the rows of the p× n observed data matrix x specified by the
indices A ⊂ V , |A| is the size of A and p(xA) = I|A|(δ + n, D∗

A)/I|A|(δ,DA).
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GROWTH DETERMINANTS AND GRAPHICAL MODELS 7

If G is not decomposable, numerical approximation methods for p(x|G)
have to be employed (38; 5; 2). We use the Laplace approximation developed
in Lenkoski and Dobra (26) for IG(δ+n, D∗) because it is fast and accurate,
and the Monte Carlo method of Atay-Kayis and Massam (2) for IG(δ,D).

We assume throughout this paper that the GGMs are apriori equally
likely. Therefore the GGMs with the highest posterior probability are those
GGMs with the largest marginal likelihoods. Our framework can be easily
used to accommodate other prior specification on GGMs if such choices seem
to be more suitable for some reason. In Section 3 we describe a stochastic
search algorithm called MOSS that identifies a subset of GGMs S having
the highest posterior probabilities.

The joint posterior distribution of X given the graphs S is Np(0, (Kx,S)−1)
where the distribution of Kx,S is obtained by Bayesian model averaging (22)
as a mixure of G-Wishart posterior distributions

p(Kx,S) =
∑
G∈S

WG(δ + n, D∗)p(G|x,S),(2.5)

with weights equal to the marginal likelihoods of the graphs normalized
within S:

p(G|x,S) = p(x|G)/

∑
G′∈S

p(x|G′)

 .

Sampling from the mixture (2.5) as well as estimation of Kx,S is discussed in
Lenkoski and Dobra (26). Given an estimator K̂x,S = (K̂ij)1≤i,j≤p of Kx,S ,
the conditional posterior distribution of Y given X(2:p) = x(2:p) is:

p(Y |X(2:p) = x(2:p)) = N

(
−

p∑
i=2

K̂1i

K̂11

xi,
1

K̂11

)
.(2.6)

Here (2 : p) = {2, . . . , p}. The relevance of the direct interaction between
two variables Xi and Xj is given by the posterior inclusion probability of the
edge (i, j) in the graphs S defined as the sum of p(G|x,S) such as G ∈ S and
G contains the edge (i, j). This posterior inclusion probability represents the
posterior probability that Xi and Xj are conditionally independent given the
rest of the variables XV \{i,j} = xV \{i,j}. From (2.5) we see that the variables
Xi, i > 2, with a zero posterior inclusion probability of the edge (1, i) have
K̂1i = 0 and consequently do not appear in the regression (2.6).

2.2. Linear regressions. We consider the regression model specified by
the p-dimensional indicator vector γA with A = {i1, . . . , i|A|} ⊆ (2 : p). We
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8 A. DOBRA ET AL.

have γi = 1 if Xi is in the regression model and γi = 0 otherwise. The only
conditional independence assumption implied by the regression γA is that
Y is conditionally independent of X(2:p)\A given XA, which implies:

p(Y |X(2:p) = x(2:p)) = p(Y |XA = xA).(2.7)

There is a unique GGM G(A) = (V,E(A)), where

E(A) = {(i, j) : i > 1, j > 1} ∪ {(1, i) : i ∈ A}.

that implies the same conditional independence relationship and does not
imply any other conditional independence relationships that are not a direct
consequence of (2.7). The graph G(A) is decomposable with two cliques {1}∪
A and (2 : p) and one separator A. From (2.4) it follows that the marginal
likelihood of the regression γA is given by

p(x|γA) = p(x|G(A)) = p(x{1}∪A)p(x(2:p))/p(xA).(2.8)

The term p(x(2:p)) appears in the marginal likelihood of any regression and
consequently it is not needed when comparing the values of the marginal
likelihoods of two regression models. It follows that (2.8) becomes

p(x|γA) ∝
I1+|A|(δ + n, (D + U){1}∪A)I|A|(δ,DA)
I1+|A|(δ,D{1}∪A)I|A|(δ + n, (D + U)A)

.(2.9)

In particular, the marginal likelihood of the null regression that does not
contain any predictors is given by

p(x|γ∅) ∝ 2n/2 Γ{(δ + n)/2}(D11 + U11)−(δ+n)/2

Γ(δ/2)(D11)−δ/2
.(2.10)

Geiger and Heckerman (15) and Dobra et al. (7) show that the Wishart
prior (2.2) induces consistent normal/inverse Gamma priors for the regres-
sion parameters, that lead to conjugate normal/inverse Gamma posterior
distributions. See also Zellner (45) for related results. The corresponding
marginal likelihood of regression models is again given by (2.9) or (2.10).

This implies that linear regression models are a particular case of decom-
posable graphical models since there is a one-to-one correspondence between
the set of regressions {γA : A ⊂ (2 : p)} and the set of decomposable graphs
{G(A) : A ⊂ (2 : p)}. We call these regression graphs. We let S be the set
of regressions identified by MOSS. The revelance of each Xi, i ∈ (2 : p),
with respect to Y is given by its posterior inclusion probability defined as
the sum of the model probabilities p(γA|x,S) ∝ p(G(A)|x,S) in which Xi

appears, i.e. i ∈ A.
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GROWTH DETERMINANTS AND GRAPHICAL MODELS 9

2.3. Regressions induced by GGMs. We have described three families
of GGMs of increasing size and complexity: S1 comprises the regression
GGMs, S2 comprises the decomposable GGMs, S3 comprises all GGMs.
The following inclusion relationships hold:

S1 ⊂ S2 ⊂ S3.

These inclusions are strict if p ≥ 4. To be more precise, there exist decom-
posable graphs with more than two cliques and hence S2\S1 6= ∅. The graph
{(1, 2), (2, 3), (3, 4), (4, 1)} is not decomposable, hence S3 \ S2 6= ∅.

There is a unique regression graph in S1 associated with a regression γA,
A ⊂ (2 : p). On the other hand, it is likely that one, two, or possibly more
GGMs in the other sets S2 and S3 lead to the same regression γA. These are
graphs G such that nbdG(Y ) = A. The richer the set of admissible graphs,
the more likely it is that more GGMs are associated with γA. The posterior
probability of γA is therefore the sum of the posterior probabilities of all the
graphs that induce it.

It is important to remark that the graphs S1 embed the implicit assump-
tion that any pair of explanatory variables Xi and Xj are not conditionally
independent given the rest. By relaxing this assumption we consider various
possible patterns of dependencies among X(2:p) and consequently obtain a
more accurate measure of the relative relavance of each regression model.

3. Stochastic search for GGMs. The Bayesian approach to model
selection involves determining GGMs with high posterior probability. In this
paper we make use of the mode oriented stochastic search (MOSS) algo-
rithm described by Lenkoski and Dobra (26). MOSS is proven to find high
posterior probability graphs faster than the shotgun stochastic search algo-
rithm (SSS) of Jones et al. (21) or any Markov chain Monte Carlo stochastic
search algorithm (e.g., the Markov chain Monte Carlo model composition
algorithm of Madigan and York (32)) that visits models by sampling from
the posterior distribution over the candidate models space. Since the size
of the search space significantly increases from |S1| = 2p−1 for regression
graphs to |S3| = 2p(p−1)/2 for unrestricted GGMs, it is critical to employ an
algorithm that rapidly moves towards regions of high posterior probability
graphs by visiting a reduced number of graphs along the way.

Let M be a set of candidate graphs. The objective of MOSS is to identify
those graphs having the ratio between their posterior probability and the
largest posterior probability of the graphs in M greater than a threshold
c ∈ (0, 1). We denote this subset of models with M(c). Lower posterior
probability graphs in M\M(c) are discarded as suggested by the “Occam’s
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10 A. DOBRA ET AL.

window” principle of Madigan and Raftery (31). The other parameters that
appear in the description of MOSS are used to balance the running time of
the procedure with thoroughness of the exploration of M (26). Inference can
be subsequently performed with respect to the models in M(c) by Bayesian
model averaging (22) as explained in Section 2.1.

There are two critical requirements for a successful application of MOSS.
The first requirement is the existence of a method to rapidly calculate the
marginal likelihood of each graph in M – see Section 2.1. The second re-
quirement is the specification of a neighborhood set nbd(M) ⊂M for every
M ∈M. These neighborhood sets must be symmetric (i.e., M ∈ nbd(M ′) if
and only if M ′ ∈ nbd(M)) and must link any two graphs through a path of
graphs such that two consecutive graphs on this path are neighbors of each
other. We define the neighborhood of a graph with respect to the candidate
set of graphs as follows:

Regression GGMs. Let γA, A ⊂ (2 : p), be regression and let B = (2 : p)\A
be the indices of the explanatory variables that are not in the regression γA.
As suggested in Hans et al. (18), the neighborhood of γA comprises the
regressions obtained by (i) deleting one variable from γA, (ii) adding one
variable Xj , j ∈ B, to γA, and (iii) replacing any one variable Xi, i ∈ A
with any one variable Xj , j ∈ B. The replacement of a variable currently in
the model with another variable that is not in the model is especially im-
portant if we focus on small subsets regressions having a maximum number
of predictors that is much smaller than p− 1.

Decomposable GGMs. The neighborhood of a decomposable graph G is
comprised of all the decomposable graphs obtained from G by adding or
deleting one edge.

GGMs. The neighborhood of a graph G is comprised of all the graphs
obtained from G by adding or deleting one edge.

4. Jointness measures. The relevance of each predictor Xi, i > 2 with
respect to the outcome Y is measured through the posterior inclusion prob-
ability of Xi in a regression for Y . In the context of GGMs or GDAGs, this
is the posterior probability of the undirected edge (1, i) since it represents
the probability that Xi is in the set of neighbors of Y which, in turn, are the
regressors present in the implied regression for Y . As an aside, the posterior
probability that Xi is a regressor for Y equals the posterior probability that
Y is a regressor for Xi.

Doppelhofer and Weeks (8) as well as Ley and Steel (29) raise the question
of how to measure the co-occurence (or jointness) of two explanatory vari-
ables Xi and Xj in the context of linear regressions. In particular, Ley and
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GROWTH DETERMINANTS AND GRAPHICAL MODELS 11

Steel (29) argue that any useful jointness measure should satisfy four cri-
teria: (i) interpretability: any jointness measure should have either a formal
statistical or a clear intuitive meaning in terms of jointness; (ii) calibration:
values of the jointness measure should be calibrated against some clearly de-
fined scale, derived from either formal statistical or intuitive arguments; (iii)
extreme jointness: the situation where two variables always appear together
should lead to the jointness measure reaching its value reflecting maximum
jointness; and (iv) definition: the jointness measure should always be defined
whenever at least one of the variables considered is included with positive
probability. Ley and Steel (29) propose two jointness measures as follows:

J ∗
ij =

p(i ∩ j)
p(i) + p(j)− p(i ∩ j)

∈ [0, 1],

Jij =
p(i ∩ j)

p(i) + p(j)− 2p(i ∩ j)
∈ [0,∞).

Here p(i∩j) is the sum of the posterior probabilities of the regression models
that contain both Xi and Xj , while p(i) and p(j) are the posterior inclusion
probabilities of Xi and Xj , respectively. The disjointness of Xi and Xj is
the reciprocal of J ∗

ij or Jij (29).
One can evaluate J ∗

ij and Jij for GGMs by considering the set of neighbors
of Y in each corresponding undirected graph. In this case p(i) is the posterior
probability of the edge (1, i), while p(i∩j) represents the sum of the posterior
probabilities of the graphs in which both the undirected edges (1, i) and (1, j)
appear. Remark that p(i ∩ j) should not be confused with the posterior
inclusion probability of the edge (i, j) which is equal with the posterior
probability that Xi and Xj are independent given the remaining variables
(24).

5. Simulated data. When conditional independencies exists amongst
covariates, a search in the space of GGMs will perform better than regres-
sion variable selection at determining which covariates interact directly with
growth. This section considers two simulation studies that bear out the util-
ity of GGMs when compared to regression models. When considering vari-
ous techniques for evaluation of posterior model probabilities, a number of
factors will clearly affect results. For instance, different settings of prior pa-
rameters will yield richer or sparser models. Therefore, if the methodology
for scoring graphical models were fundamentally different than that used for
regression models, it would be unclear whether the conclusions of a simu-
lation study were the result of true methodological differences or simply an
artifact of model settings. The benefit of the model scoring framework out-
lined in Section 2 is that both regression models and GGMs are scored using
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12 A. DOBRA ET AL.

the same underlying prior parameters. This allows for a direct comparison of
the regression models and GGMs in placing high posterior probability on the
factors that interact with growth. As such, the interest in the following will
be to make comparisons of posterior variable inclusion probabilities under
the same prior settings of regressions models and GGMs when it is known
whether a given variable is independent of a response. The first simulation
study examines a case when the covariates exhibit a strong degree of multi-
collinearity, and focuses on the ability of the model selection techniques to
place zero inclusion probability on variables that have no relationship to the
response. The second study examines the relative performance of regression
variable selection to graphical model selection when a graphical model un-
derlies the data generation process.

5.1. First simulated example. This is a variation of the example sug-
gested by Nott and Green (35). As in George and McCulloch (16), we gen-
erate Z1, . . . , Z15, Z ∼ N300(0, I300). Let Xi = Zi + 2Z, i = 1, 3, 5, 8, 9, 10,
12, 13,14, 15, X2 = X1+0.15Z2, X4 = X3+0.15Z4, X6 = X5+0.15Z6, X7 =
X8 +X9−X10 +0.15Z7 and X11 = X14 +X15−X12−X13 +0.15Z11. George
and McCulloch (16) point out that this design matrix leads to correlations
of about 0.998 between Xi and Xi+1 for i = 1, 3, 5. There are also strong
linear associations between (X7, X8, X9, X10) and (X11, X12, X13, X14, X15).
We let X̃ = [X(1)X(2)] be a 300 × 30 design matrix obtained by indepen-
dently simulating two instances X(1) and X(2) of the 300×15 design matrix
X. Consider the 30-dimensional vector of regression coefficients β defined
by βj = 1.5, if j = 1, 3, 5, 7, 11, 12, 13, β8 = −1.5 and βj = 0 otherwise. We
generate the response vector as Y = X̃β + ε where ε ∼ N300(0, 2.5 · I300).

We perform a regression and a decomposable graphical models search.
The interest in both cases is to study whether predictors that belong to
X(2) are not selected by MOSS, and to compare which technique has a
larger tendency to exclude these variables. Due to the complex correlation
structure amongst the predictors in X(1), variables may be selected even if
their regression coefficients are zero. We employed MOSS with c = 0.3125,
c′ = 0.01, a prunning probability q = 0.1 and five different starting points.
We allowed MOSS to explore regressions containing at most 30 predictors.
In order to reduce the sampling variability, we report the results we obtained
by averaging across 100 replicates of this experiment.

Figure 5.1 shows the mean posterior inclusion probabilities for each vari-
able across the 100 simulated datasets after running a regression model
search and a decomposable GGM search. The figure shows that in both
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Fig 1. Average posterior inclusion probabilities and (95%) confidence bands by variable
for the simulation study described in Section 5.1 after employing MOSS for decomposable
GGMs and regression models.

cases all fifteen covariates in X(1) have non-negligible average posterior in-
clusion probabilities, while the posterior inclusion probabilities of the vari-
ables in X(2) are consistently low. While this fact alone suggests that both
the regression and GGM frameworks are well suited for discovering growth
determinants, comparing the two methods reveals the usefulness of consid-
ering GGMs. We see that instead of receiving low inclusion probabilities,
the variables in X(2) receive essentially zero inclusion probability, therefore
completely eliminating variables from this block. Furthermore, the inclusion
probabilities of the first fifteen variables are larger in the GGM case than
the regression case, particularly for variables 11 through 13, which is crucial
since these covariates interact directly with the response. We again remark
that the comparison of these two searches is the key component of the sim-
ulation study. Alternate prior specifications would have perhaps included or
excluded variables to different degrees, however the result that the GGM
search will be more likely to eliminate excess regressors and place higher
probability on variables that interact with the response remains robust to
such alterations.
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14 A. DOBRA ET AL.

5.2. Second simulated example. The second simulation study considers
the case when the data are truly generated from an undirected graphical
model. This situation was considered in-depth in Lenkoski and Dobra (26)
and originally stems from a study in Yuan and Lin (44). In the following we
consider four different, ten-dimensional graphical models:

• Independence: the graph G consists of individual nodes with no edges
between nodes.

• AR(1): the graph G is such that there exist edges from variable i to
variables i− 1 and i + 1.

• AR(2): similar to the graph above, except that i is also connected to
i− 2 and i + 2.

• Circle: In this graph, variable i is connected to variable i + 1, and, in
addition, there exists an edge between variables 1 and 10.

These represent four of the eight models considered in Yuan and Lin (44) and
Lenkoski and Dobra (26) and were chosen because they have a significant
degree of sparsity in their structure. To frame the simulation study in a re-
gression context, we considered variable 1 to be the “response” and variables
2 to 10 to be potential covariates. Interest again lies in comparing the results
of a graphical model search to a regression search, in particular the inclusion
probabilities linking variable 1 to the remaining variables. For each model, we
generated 100 datasets of 100 observations each, in the manner described in
Yuan and Lin (44) and ran MOSS for undirected GGMs and regression mod-
els. In both cases the MOSS settings were c = 0.1, c′ = 0.01, q = 0.1,m = ∞.

Figure 5.2 shows the results of the simulation study for these four mod-
els. The results are consistent across the four model types: when considering
either GGM or regression models, variables linked to the “response” are
correctly given high inclusion probabilities. However, as was the case in Sec-
tion 5.1, the GGM search consistently places lower inclusion probability on
variables that are not connected to variable 1. This phenomenon is perhaps
most striking in the circle model, where the regression search puts an average
of approximately 0.5 probability on variables 3 through 9, while the GGM
search gives these variables essentially zero probability. This result is im-
portant, as the circle model is the only nondecomposable graph considered
in Yuan and Lin (44), and it shows the importance of performing a model
search in the correct space, even when the interest lies in a regression-type
interpretation of interactions by ultimately focusing on a single variable.

6. Results: FLS data. Our analysis of the FLS growth data proceeds
as follows. The parameters for MOSS were chosen to be c = 0.3125, c′ = 0.01,
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Fig 2. Average posterior inclusion probabilities and (95%) confidence bands by variable
for the four models described in Section 5.2. As in Figure 5.1, the dots represent the mean
inclusion probability for each variable across 100 datasets for the regression search, while
the diamonds represent the mean for the GGM search
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16 A. DOBRA ET AL.

q = 0.1 – see Lenkoski and Dobra (26) for detailed explanations. We per-
formed an initial linear regression search involving the entire set of potential
growth determinants. Five separate instances of MOSS were run from ran-
dom starting regressions. MOSS identified 595 regressions having a Bayes
factor greater than c = 0.3125 with respect to the highest posterior probabil-
ity regression. There are 28 growth determinants with a posterior inclusion
probability greater than 0.05 – see the column “Regression” of Table 1 and
17 variables with posterior inclusion probability greater than 0.5.

We compare our findings with those from Eicher et al. (11) who performed
an extensive sensitivity analysis of Bayesian model averaging in linear re-
gressions across 12 diffuse priors. Eicher et al. (11) identified between 7 and
22 regressors having posterior inclusion probabilities greater than 0.5. Six-
teen growth determinants we identified having inclusion probability greater
than 0.5 in this initial search have been discovered before in the literature
– see Table 2 in Eicher et al. (11). Percent expenditure on public education
(PublEdu) is a new potential predictor; it is a fundamental tenant of the
new growth theory and therefore a welcomed addition to the set of growth
determinants. Interestingly, most of the other regressors that are excluded
(French, Spanish, and British colonial history) are regressors that are of-
ten introduced to instrument for the endogeneity of institutions. They are
certainly not thought of as direct causal growth determinants for the 1960-
1990 period. Political Rights is an additional regressor that is suggested by
a minority of priors. It is no surprise to see this excluded because of the
high collinearity with “Rule of Law” and it is commonly expected that one
of these political regressors is identified as relevant. More importantly, the
Wishart prior for model parameters we are employing is one of only four
priors that discover key growth variables public education and the degree of
capitalism (EcoOrg) that are considered fundamental to growth. The pos-
terior means of the regressors are all within the same range uncovered in
Eicher et al. (11).

We conduct a more extensive analysis of the 28 regressors displayed in Ta-
ble 1, which have posterior inclusion probabilities greater than 0.05. Among
this reduced set of regressors, four are binary. The presence of discrete can-
not be incorporated into the GGM framework, and therefore the variables
must also be eliminated (see Section 7 for a discussion of future work re-
lated to this issue) from the reduced dataset, leaving 24 covariates. With this
smaller dataset, we then run MOSS for GGMs, using the settings above. In
order to cope with the large number of models that will be returned, we set
the parameter m = 1000, see Lenkoski and Dobra (26) for a discussion of
this parameter.
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GROWTH DETERMINANTS AND GRAPHICAL MODELS 17

Table 1
Posterior inclusion probabilities (p(i)) and regression coefficient estimates (β̂i) by search

type. Standard deviations of the estimates are given in parentheses. The values of
LabForce were divided by 100, 000 so that all the coefficients are on a similar scale. Since
LatAmerica and SubSahara are binary variables, they are excluded from the GGM search

and results are listed as “NA”.

Variable Regression GGMs

p(i) β̂i p(i) β̂i

Life 1 7e-04 1 0.0011
(0.0045) (0.005)

GDPsh560 1 -0.0134 1 -0.0116
(0.0153) (0.0127)

EquipInv 1 0.1162 1 0.1318
(0.0477) (0.0427)

SubSahara 1 -0.0186 NA NA
(0.0201) (NA)

Confucious 1 0.0646 1 0.0814
(0.0239) (0.023)

RuleofLaw 1 0.0113 0.274 0.0055
(0.0158) (0.0137)

Mining 0.981 0.0352 0 0.0274
(0.0252) (0.0239)

Protestants 0.968 -0.0129 1 -0.0104
(0.0173) (0.0171)

Hindu 0.943 -0.0567 0 -0.0385
(0.0508) (0.0382)

EcoOrg 0.936 0.002 0 0.0021
(0.0071) (0.0052)

NEquipInv 0.91 0.0415 0 0.0542
(0.0353) (0.0299)

LabForce 0.898 0.1818 0 0.1987
(0.1024) (0.0826)

BlMktPm 0.894 -0.0071 0 -0.0073
(0.0144) (0.0116)

HighEnroll 0.873 -0.0736 0 -0.0637
(0.0654) (0.0495)

Variable Regression GGMs

p(i) β̂i p(i) β̂i

LatAmerica 0.74 -0.0062 NA NA
(0.024) (NA)

EthnoLFrac 0.722 0.0068 0 0.0017
(0.0221) (0.0127)

PublEdu 0.651 0.1405 0 0.1477
(0.0909) (0.0838)

PrSc 0.42 0.0063 0.035 0
(0.0334) (0)

Age 0.397 0 0 0
(0.0013) (0.0011)

OutwarOr 0.34 -0.0012 NA NA
(0.0102) (NA)

CivlLib 0.33 -5e-04 1 1e-04
(0.0084) (0.0146)

Buddha 0.328 0.0032 0.086 0.0177
(0.0165) (0.0144)

Muslim 0.32 0.0035 0 0.018
(0.0233) (0.0146)

PolRights 0.282 -3e-04 0 -0.0016
(0.0068) (0.0143)

Catholic 0.236 -0.0015 1 0.0072
(0.0146) (0.0151)

SpanishCol 0.234 0.0013 NA NA
(0.0135) (NA)

Popg 0.059 0.008 0 -0.0102
(0.0331) (0.1128)

PrExports 0.057 -3e-04 0 -5e-04
(0.0064) (0.0178)

Table 1 is indicative of the parameter reduction properties discussed in
Section 1. For the most part, as more refined searches are considered, vari-
ables with lower inclusion probabilities are recognized to be conditionally
independent of the response and a smaller set of core variables is ultimately
returned. Table 1 also show two instances, similar to the simulation study
in Secton 5.1 where variables, in this case CivlLib and Catholic begin with
relatively low inclusion probabilities in the regression search and ultimately
receive probabilities of one when the model space is enriched. By conduct-
ing this analysis, we reduced the set of potential covariates from 42, to 28
and ultimately to 10, not by artificially adjusting prior parameters to favor
greater sparsity, but by expanding the richness of the model space to re-
semble conditional independencies that are more likely to exist in economic
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18 A. DOBRA ET AL.

data.
The resulting 10 variables represent an astounding support for the Neo-

classical growth model that dominated economic growth from the 1950s to
the 1980s. Life expectancy, initial GDP and Equipment investment are the
fundamental variables of that model. All other regressors identify character-
istics of the economy and can be grouped into pure exogenous and broadly
speaking “policy variables”. Rule of Law and Civil Liberties are variables
that constitutions and institutions can affect, while purely exogenous reli-
gious identifiers such as protestant, confucious and catholic, are the core
fundamental variables that seem to covary with many of the variables sug-
gested by the new growth theory. The insight here is that the large set of
economic regressors speaking to education, mining, market premia, or trade,
for example are not the fundamental causes of growth, but they covary with
it. Once purely exogenous religious and policy variables are accounted for,
the growth determinants have been established.

Table 2 gives estimates of the jointness measures Jij of Ley and Steel (29)
from the regression search, and the GGM search. In order to keep the size
of the table manageable, we have only displayed the jointness calculations
between the seven covariates that have inclusion probabilities above .5 in the
undirected GGM search. Jointness measures attempt to determine the ex-
tent to which pairs of variables act together to “jointly” affect the response
in a regression setting. The first column of Table 2 shows that the 21 pairs
have varying degrees of jointness in the regression search. However, after the
GGM search, jointness calculations show a significantly different interpreta-
tion. In the course of the GGM searches, a number of GGMs are returned.
Each of these typically differs in links between the covariates, particularly
the manner in which these seven covariates interact with the remaining vari-
ables not connected to growth. However, in the GGM search, the covariates
considered in Table 2 are linked directly to growth, and therefore every pair
shown receives a Jij value of +∞.

We contrast our findings with the results of Ley and Steel (29) who clas-
sify the posterior odds of jointness Jij as conveying positive, strong, very
strong or decisive evidence of jointness when Jij exceeds 3, 10, 30 or 100,
respectively. Ley and Steel (29) argue that “only 8 pairs (1% of the total)
display some degree of evidence of jointness” and determine that only the
pair Confucious and GDPsh560 (initial GDP) exhibit decisive evidence for
jointness in a regression search. We find in Table 2 that in the GGM de-
cisive evidence for jointness is much more prevalent especially among the
fundamental growth regressors that we have identified. While we used the
same data and the same measure for jointness, our results differ from Ley
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GROWTH DETERMINANTS AND GRAPHICAL MODELS 19

and Steel (29) because the dependency constraints among candidate growth
factors are explicitly taken into account, which highlights the differences
between the methods and the insights that can be derived using a GGM
instead of a regression search.

Table 2
Comparison of jointness measures by search type. We give estimates of Jij and their
interpretation for the 21 pairs involving the 7 growth determinants identified using

GGMs with posterior inclusion probability greater than .5.

Variable 1 Variable 2 Regression GGMs
Jij Interpretation Jij Interpretation

Life GDPsh560 ∞ Decisive ∞ Decisive
Life EquipInv ∞ Decisive ∞ Decisive
Life Confucious ∞ Decisive ∞ Decisive
GDPsh560 EquipInv ∞ Decisive ∞ Decisive
GDPsh560 Confucious ∞ Decisive ∞ Decisive
EquipInv Confucious ∞ Decisive ∞ Decisive
Life Protestants 29.87959 Strong ∞ Decisive
GDPsh560 Protestants 29.87959 Strong ∞ Decisive
EquipInv Protestants 29.87959 Strong ∞ Decisive
Confucious Protestants 29.87959 Strong ∞ Decisive
Life CivlLib 0.4930215 Little ∞ Decisive
GDPsh560 CivlLib 0.4930215 Little ∞ Decisive
EquipInv CivlLib 0.4930215 Little ∞ Decisive
CivlLib Confucious 0.4930215 Little ∞ Decisive
CivlLib Protestants 0.427147 Little ∞ Decisive
Catholic Protestants 0.3225106 Little ∞ Decisive
Life Catholic 0.3088408 Little ∞ Decisive
GDPsh560 Catholic 0.3088408 Little ∞ Decisive
EquipInv Catholic 0.3088408 Little ∞ Decisive
Catholic Confucious 0.3088408 Little ∞ Decisive
CivlLib Catholic 0.1768784 Little ∞ Decisive

7. Conclusions. The methodology proposed in this paper allows the
identification of a reduced set of growth determinants by modeling joint dis-
tributions of the observed variables. The linear regressions search is proven
to provide good initial results that are further refined when considering
Gaussian graphical models.

We showed that relaxing the constraints on the dependency patterns of
the candidate growth determinants leads to a significant decrease in the set
of determinants that are ultimately selected. We emphasize that this overar-
ching idea to variable selection should be viewed as the main contribution of
our work. The choice of priors for model parameters as well as the stochastic
search techniques we used seem to work well and allow the development of
a coherent framework that could be adapted to other prior specifications or
stochastic search methods.
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20 A. DOBRA ET AL.

The relevance of our work can be understood by carefully examining the
structure of the priors for regression parameters proposed in first-rate pa-
pers focusing on growth regression. For example, Fernández et al. (14; 13)
consider automatic priors based on the g-prior of Zellner (46). Posterior
model probabilities can be sensitive to prior specifications, which is partic-
ularly relevant in the growth context when the researcher must entertain
a large number of sampling models cares to employ little or no subjective
prior information. For this case Fernández et al. developed an automatic,
partly non-informative g-prior structure where the amount of subjective in-
formation requested from the user is limited to the choice of a single scalar
hyperparameter g. The choice is automatic because Fernández et al. simplify
matters even further, by facilitating the choice of the hyperparameter g as a
function of only the model size and the number of observations. In essence
the authors proposed an automatic data dependent prior that is more trans-
parent than the data dependent prior suggested by Raftery et al. (36) that
was a function of the number of observations and required the researchers
to set a hyper parameter (phi) with very little information.

The g-priors include in their specification the full sample covariance ma-
trix. As such, they implicitly assume that the observed data can be summa-
rized in a covariance matrix with no constraints imposed on its structure.
This assumption is consistent with the multivariate normal assumption re-
quired by the Gaussian graphical models as it is explicitly stated in Section
2. The Gaussian graphical models induce parsimony in the structure of the
covariance matrix by identifying the most relevant conditional independence
relationships. This is the reason why we are able to identify fewer growth
determinants while employing the same prior specification for all the classes
of models we consider.

Software implementing the methods described in this paper is available
upon request from the authors.
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