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Abstract

An alleged weakness of heuristic optimisation methods is the stochastic charac-
ter of their solutions. That is, instead of finding a truly optimal solution, they
only provide a stochastic approximation of this optimum. In this paper we look
into a particular application, portfolio optimisation. We demonstrate two points:
firstly, the randomness of the ‘optimal’ solution obtained from the algorithm can
be made so small that for all practical purposes it can be neglected. Secondly, and
more importantly, we show that the remaining randomness is swamped by the un-
certainty coming from the data. In particular, we show that as a result of the bad
conditioning of the problem, minor changes in the solution lead to economically
meaningful changes in the solution’s out-of-sample performance. The relation-
ship between in-sample fit and out-of-sample performance is not monotonous,
but still, we observe that up to a point better solutions in-sample lead to better
solutions out-of-sample. Beyond this point, however, there is practically no more
cause for improving the solution any further, since any improvement will only
lead to unpredictable changes (noise) out-of-sample.
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1 Introduction

The aim of portfolio selection is to derive decision rules that help investors
to allocate their wealth. The best known of these rules, mean–variance se-
lection (Markowitz, 1952), is often criticised for failing to take into account
the non-Gaussian nature of financial time series. Hence alternative and –
at least theoretically – superior models have been proposed, with selection
criteria that take into account ‘fat tails’ or asymmetric return distributions.
Unfortunately, many of these alternative models lead to optimisation prob-
lems that are much harder to solve, and are often infeasible for standard
optimisation techniques like linear or quadratic programming. For several
specific models, like Expected Shortfall (Rockafellar and Uryasev, 2000;
Bertsimas et al., 2004), exact solutions are available, but unfortunately,
these techniques are in general not flexible and often cannot accommodate
even minor changes in the model; neither can they generally handle real-
istic constraints like cardinality restrictions or limits to transaction costs.

There is an alternative approach to solve such optimisation problems –
heuristics. The term ‘heuristic’ is used in different scientific areas, with
different but related meanings. Mathematicians use it to describe an ex-
planation that is actually not correct (at least not provable), but leads to a
correct conclusion nonetheless; in the language of psychologists, heuristics
are ‘rules of thumb’ for decision making that, though sometimes seem-
ingly crude, work robustly in many circumstances (Gigerenzer, 2004, 2008).
Winker and Maringer (2007) (following Barr et al. (1995) and similarly
Zanakis and Evans (1981)) characterise the term ‘heuristic optimisation’
through several criteria:

· The method should produce ‘good’ stochastic approximations of the
true optimum, where ‘good’ is measured in terms of solution quality
and computing time.

· The method should be robust in case of comparatively small changes
to the given problem, and also for changes in the parameter settings
of the heuristic itself. Robustness, again, is measured in (changes in)
solution quality and computing time.

· The technique should be easy to implement.

· Implementation and application of the technique should not require
subjective elements.

For many techniques like Genetic Algorithms (Holland, 1992) or Simulated
Annealing (Kirkpatrick et al., 1983) a considerable theoretical background
is available, including mathematical analysis of their convergence. More
importantly, heuristics have been shown to work well for problems that are
completely infeasible for classical optimisation approaches (Michalewicz
and Fogel, 2004).
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The stochastics of ‘optimal’ solutions

Heuristics are, with only few exceptions (like Tabu Search), stochastic algo-
rithms. Thus repeated runs, called restarts, of the optimisation algorithm
will result in different solutions – even for identical starting points. It is this
stochastic nature of the solutions that sometimes causes distrust, for how
can we judge whether we have actually found a good solution?

When it comes to the stochastics of solutions, there are similarities and
differences between heuristics and classical, deterministic methods. For a
given problem with multiple local minima – and very few practical prob-
lems are truly convex – repeated runs with different starting points will result
in different solutions, for both types of techniques. If we characterise a so-
lution (in our case, a portfolio) by its associated objective function value,
we may consider the result of one restart as a realisation of a random vari-
able with some unknown distribution. The shape of this distribution will
depend on the chosen method, hence when we try to solve a given multi-
modal problem with a deterministic method, the probability of obtaining,
from one optimisation run, a solution of a given quality remains fixed
(though unknown). Heuristics on the other hand can move away from lo-
cal minima, hence allowing more iterations per restart generally changes
the shape of the distribution. If the algorithm works properly, with an
increasing number of iterations, the distribution becomes steeper (the so-
lutions become less dispersed), and moves to the left, closer to the global
minimum. In other words, with a heuristic, the probability for obtaining a
solution of a given quality will also depend on the computational resources
(iterations) spent on the problem.

In this paper we solve a portfolio optimisation problem with a heuristic
technique called Threshold Accepting (Dueck and Scheuer, 1990; Dueck
and Winker, 1992), a descendant of Simulated Annealing. Since our main
argument does not relate to a specific technique, we describe the algorithm
informally here. Threshold Accepting (ta) builds on a simple concept in
optimisation called local search. A local search starts with a random feasi-
ble solution (that is, a random portfolio) which we call the ‘current solu-
tion’, representing the best solution we have so far. Then again randomly, a
new solution close-by is chosen. ‘Close-by’ means that we slightly perturb
the weights of the portfolio (eg, we ‘sell’ a small quantity of one asset, and
invest the proceeds in another asset). This new solution is called a neigh-
bour. If it is better than the current solution, the new solution is accepted
and becomes the current solution, if not, it is rejected, and another neigh-
bour is selected. This procedure stops after a preset number of iterations.

Since a local search stops at the first local minimum encountered, ta makes
a small adjustment to the procedure: when the algorithm evaluates a neigh-
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bour solution, it may also accept this new solution if it is worse than
the current solution – as long as the impairment does not exceed a given
threshold (hence the method’s name). This threshold is set rather gener-
ously initially, so that the algorithm may move freely in the search space.
Over time, the thresholds are decreased; hence the algorithm gets more
select and finally turns into a local search. For a detailed description of ta,
see Winker (2001).

So, how to judge the quality of a solution obtained from a ta run? For some
problems, the objective function can directly be interpreted. The simplest
approach then is to look at the realised value of the objective function
associated with the returned solution. Assume we minimise a portfolio’s
Value-at-Risk, then we could compare our results with the Value-at-Risk
of a benchmark portfolio. There is an important empirical question to be
asked: how is the in-sample ‘performance’ that our solution achieves re-
lated to its out-of-sample performance? Much research in portfolio opti-
misation relates to in-sample properties of different methods: given a data
set, we aim to minimise drawdown, or ratios of losses to gains. But what
we actually want to minimise is future drawdown, or the ratio of future
losses to future gains. There exists comparatively little research into how
these objectives relate to the quantities that we actually optimise.

The main point that we will stress in this paper is the following: the aim
of portfolio selection is to find decision rules that tell investors how to
invest. To this purpose, we set up a model (a selection criterion and con-
straints), but this model will depend on future asset prices which we do
not know. Hence, we need to approximate/estimate/simulate these prices,
and then solve the model. Zanakis and Evans (1981, p. 85) list cases where
a heuristic should be the method of choice, there first case being ‘[i]nexact
or limited data used to estimate model parameters [that] may inherently
contain errors much larger than the “suboptimality” of a good heuristic.’
We will argue that portfolio selection belongs to this class of optimisation
problems.

We show that a heuristic technique can give a good solution to the model.
Better solutions in-sample (ie, solutions of the model) also lead to better
solutions out-of-sample (the actual problem). But this holds true only up
to a certain point: beyond this point there is no more cause for improving
the model’s solution any further, for any improvement does not lead to
systematic improvements out-of-sample any more. The remainder of this
paper is structured as follows: in Section 2 we briefly describe the opti-
misation problem and our data. Section 3 and Section 4 then discuss both
the in-sample and out-of-sample performance of our algorithm. Section 5

concludes.
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2 Data and Methodology

There are nA risky assets available, with current prices collected in a vec-
tor p0. We are endowed with an initial wealth v0, and wish to select a
portfolio x = [x1 x2 . . . xnA ]′ of the given assets. We can thus write down
a budget constraint

v0 = x′p0 .

The vector x stores the number of shares or contracts, that is, integer num-
bers.

The chosen portfolio is held for one period, from now (time 0) to time T.
End-of-period wealth is given by

vT = x′pT ,

where the vector pT holds the asset prices at T. Since these prices are not
known at the time when the portfolio is formed, vT will be a random
variable, following some unknown distribution. It is often convenient to
rescale vT to a return rT, that is

rT =
vT

v0
− 1 .

Let J be the set of assets in the portfolio, then our optimisation problem
can be written as

min
x

Φ ,

xinf
j ≤ xj ≤ x

sup
j j ∈ J ,

Kinf ≤ #{J } ≤ Ksup .

We use the downside semi-variance as our objective function Φ, computed
as

1

nS
∑
r<rd

(rd − r)2 .

Here r are the sample returns of a given portfolio, rd is a desired-return
threshold (which we set to zero), and nS stands for the number of ob-
servations (or scenarios). We do not include minimum-return constraints,
thus we solely minimise the risk of the portfolio (defined as the semi-
variance). This is equivalent to assuming equal means for all assets. There
is strong empirical evidence that such an approach gives good results in
out-of-sample tests (see Board and Sutcliffe (1994); Chan et al. (1999) for
variance-minimisation, Gilli and Schumann (2009) for alternative risk func-
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tions).

xinf
j and x

sup
j are minimum and maximum holding sizes, respectively, for

those assets included in the portfolio (ie, those in J ). Kinf and Ksup are
cardinality constraints which set a minimum and maximum number of

assets in J . We set xinf = 1% and xsup = 5%, thus we do not allow short
positions. An upper cardinality is set to 50;. the value of Kinf is set to 10.
We do not include a riskless asset. Since our algorithm works with actual
position sizes, that is integer numbers, a small fraction of less than 1% of
the portfolio is usually left uninvested.

The data set comprises more than 500 price series of European companies
from the Dow Jones stoxx universe, at a daily frequency, spanning the
period from March 2000 to March 2008. All stocks are denominated in
euro.

Moving windows

We conduct rolling-window backtests with an historical window of length H,
and an out-of-sample holding period of length F. We set H to one year, F
to three months. Thus we optimise at point in time t1 on data from t1 − H
to t1 − 1, the resulting portfolio is held until t2 = t1 + F. At this point, a
new optimal portfolio is computed, using data from t2 − H until t2 − 1,
and the existing portfolio is rebalanced. This new portfolio is then held
until t3 = t2 + F, and so on. This is illustrated in the following figure.

t1−H t1 t1+F
H

Fperiod 1

period 2

t2−H t2 t2+F

rebalance

With our data set, we have 35 investment periods, that is we optimise the
first time on 27 March 2000 (t1), the last date is 2 January 2008 (t35). From
the historical data in every period (the in-sample data) we create scenarios
via the bootstrapping procedure described in Gilli and Schumann (2009).
The created scenarios are saved for every period so that all optimisation
runs are conducted on the same data. The out-of-sample data for every
period is the actual, historical data.
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3 In-sample results

The portfolio optimisation is handled with Threshold Accepting (Winker,
2001; Gilli et al., 2006). We measure the computational resources that the
optimisation algorithm employs by the total number of iterations (ie, the
total number of objective function evaluations). With an increasing number
of iterations the average quality of a solution per restart should improve
while the solutions’ variability should decrease; eventually the solutions’
distribution should collapse into a single point (the global minimum) as
the number of iterations goes to infinity. In other words, if we run a ta with
I1 iterations, and one with I2 iterations, where I1 < I2, then on average the
ta with I2 iterations will give better solutions. In-sample, thus, we face a
trade-off between solution quality and computational resources spent.

We test the performance of ta with 1, 1 000, 5 000, 15 000, 50 000 and 100 000

iterations. With only 1 iteration, we actually obtain random (but feasible)
portfolios. Hence we will often write ‘random portfolios’ instead of 1 it-
eration. Setting the computational resources fixes the distributions from
which we draw our solutions. To approximate these distributions, we run
the algorithm 100 times for every level of iterations, and compute the em-
pirical cumulative distributions functions as estimates of the true distribu-
tions. Figure 1 shows the empirical results for the first four periods, for
later periods we obtain similar results.

0

0.5

1

Period 1

0

0.5

Period 2

random →
1 000 iterations →

← 5 000 iterations

left to right:
100 000,
50 000,
15 000
iterations →

0

0.5

Period 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

in-sample objective function

Period 4

Figure 1. In-sample convergence.

With an increasing number of iterations the distributions become rapidly
steeper and move to the left. There is virtually no difference any more
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between the results for 50 000 and 100 000 iterations. Thus we can make
the randomness of the in-sample objective function very small. To give a
concrete example: in period 4 (the lower panel in Figure 1) the objective
function ranges between 0.08 and 0.09 for 100 000 steps, while for random
portfolios there is a range between 0.36 and 0.90. The objective function is
the semi-variance of the portfolio, so taking the square root, 0.08 to 0.09

translates into a daily downside-deviation of between 0.28% and 0.30%.
Of course, we have no guarantee that we really have found the global
minimum. But with a bound at zero, and the best random portfolios having
about double the variation of our optimised portfolios (ie, a four times
higher objective function), ta seems to consistently find ‘good’ solutions.
In other words, ta seems well capable of solving our model.

4 Out-of-sample results

A given portfolio maps not only into an in-sample objective function, but
also into an out-of-sample return. This link between in-sample fit and ac-
tual out-of-sample performance is very noisy, though. Figure 2 shows a
scatter plot of in-sample objective functions against out-of-sample returns
for one investment period. (We will only look at out-of-sample returns
here. The exercise could be easily extended to include other performance
measures.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 2. In-sample objective functions vs out-of-sample return for one period.

The picture shows several characteristic features that we also found in the
other periods: for high in-sample objective functions (associated with the
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random portfolios), the returns are widely scattered. When we move to the
left, closer to the in-sample optimum, the cloud becomes denser. There is
no clear monotonous relationship between in-sample fit and out-of-sample
return. In particular, the leftmost part of the cloud, which covers only a
narrow range in terms of the in-sample objective function, still gives rise
to highly variable out-of-sample returns. Thus, even though the in-sample
stochasticity is small, the out-of-sample randomness is disproportionately
larger, which shows the high sensitivity of the model with respect to small
changes in the solution.

To be more concrete: the objective function values of the 10 best solutions
for the pictured period cover a range from 0.0783 to 0.0797, which means
portfolios with a daily downside-deviation between 0.2779% and 0.2824%.
(We give 4 digits to illustrate how small the differences are, not because we
think that working with such ‘precision’ is a good idea.) These minuscule
differences translate into out-of-sample returns between 1.13% and 2.37%
over the following 3-month period. In other words, less than half a basis
point in-sample leads to a difference of more than one percentage point
out-of-sample.

To better understand the link between in-sample and out-of-sample, we
compute the performance of ‘rank-portfolios’. Rank-portfolios are con-
structed as follows. In every period, with iterations set to six different
levels (1, 1 000, 5 000, 15 000, 50 000 and 100 000), and 100 restarts for each
level, we have a total of 600 portfolios. We sort these portfolios according
to their in-sample objective function. A natural decision rule is to select
the best in-sample portfolio, that is the portfolio with the lowest objec-
tive function. We call this the rank-1 portfolio. Likewise, we can determine
portfolios ranked from 2 to 600 for every period. This is illustrated in Fig-
ure 3, where we have indicated the rank-1 and the rank-200 portfolios for
the periods one to four.

While the rank is determined in-sample, let us write ri
t for the out-of-

sample performance of the portfolio with rank i in period t. The total
out-of-sample return Ri

T along the path of the ith rank portfolio is

Ri
T =

T

∏
t=1

1 + ri
t

with T the number of periods. Hence R1
T is the total return for an investor

who always chooses the best (rank-1) in-sample portfolio, R2
T is the total

return for an investor who always chooses the second-best (rank-2) in-
sample portfolio, and so on, until R600

T gives the total return for the worst
in-sample portfolios.

Figure 4 plots the growth of AC 1 invested in the rank-1 portfolio and the

9



0

0.5

1

Period 1
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Period 2rank-1 (best) portfolio

rank-200 portfolio

0

0.5

Period 3
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0

0.5

in-sample objective function

Period 4

Figure 3. In-sample objective functions for the first four periods.

growth of AC 1 invested in the rank-600 portfolio (ie, the paths of R1
t and

R600
t for t = 1, . . . , T). The in-sample-best portfolio clearly dominates the

in-sample-worst portfolio. The total return difference is more than 6% per
year.

Jan00 May01 Oct02 Feb04 Jul05 Nov06 Apr08
0.5

1

1.5

2

rank-1 portfolio

rank-600 portfolio

Figure 4. Paths.

Figure 5 plots the total return Ri
T − 1 (annualised) for all 600 rank portfo-

lios, plotted against the respective rank. While there is a negative relation-
ship between rank and out-of-sample performance, we can see that this
relation is far from monotonous. (Again, we only look at returns. Given
that returns range between 0% and 8%, it seems unlikely that any risk-
adjustment would change the conclusion.) We regress the out-of-sample
return of a portfolio on its in-sample rank; the following table shows the re-
sults. (A linear regression is certainly an inappropriate tool to measure the
actual relationship between rank and return, but it underlines the loose-
ness of the relation as becomes manifest in the small estimated slopes, and
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large residuals.)

0 100 200 300 400 500 600

−2

0

2

4

6

8

10

in-sample rank

o
u
t-

o
f-
sa

m
p
le

re
tu

rn
in

%

Figure 5. In-sample rank (lower is better) vs out-of-sample return.

ranks constant in % slope in % std. of residuals in %

1–100 7.72 -0.0005 0.60

101–200 7.55 -0.0025 0.72

201–300 6.98 0.0023 1.06

301–400 6.75 -0.0092 1.47

401–500 5.96 -0.0168 1.37

501–600 4.45 -0.0311 1.70

We see that for the portfolios with ranks 1 to 200 the slope is one-fourth
of a basis point or less. So advancing 100 ranks would, on average, result
in an improvement of 0.25% in total return. For the best 100 ranks, this
improvement would be less than 0.05%. Given the enormous uncertainty
in the data, reflected in a standard deviation of the residuals of 0.60%, this
‘improvement’ can economically be regarded as zero.

We can also conduct a more direct test: assume there are two investors, a

and b, both use ta to find portfolios. Investor a always lets his algorithm
run for 100 000 iterations, while b uses only one iteration (ie, random port-
folios). Going back to Figure 3, a will always pick portfolio from the left-
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most distribution, while b will choose from the more dispersed random
portfolios. In-sample, a’s portfolios will thus look much better than b’s,
but how likely is a to outperform b? Given the noisy link in-sample to
out-of-sample, we will unlikely observe that a’s portfolio dominates b’s in
every period (not even to a higher order), but maybe it ‘almost dominates’
(Leshno and Levy, 2002).

We start by randomly drawing one period from the T = 35 periods avail-
able. As explained before, each period can be split into an in-sample and
an out-of-sample part. Then, for a, we randomly pick one portfolio out of
the 100 that were optimised with 100 000 iterations on the in-sample part
of this period, and record its out-of-sample performance rA

1 . We do the

same for b, and hence obtain rB
1 . Next we pick again randomly one period

(could even be the same period), choose again a portfolio for a and one for
b, and record their out-of-sample returns, rA

2 and rB
2 . After p such draws,

a’s normalised net worth will be

(1 + rA
1 )(1 + rA

2 )(1 + rA
3 ) . . . (1 + rA

p ) ,

and b’s will have grown to

(1 + rB
1 )(1 + rB

2 )(1 + rB
3 ) . . . (1 + rB

p ) .

We then compute the geometric outperformance of a as

g =
∏

p
i=1 1 + rA

i

∏
p
i=1 1 + rB

i

− 1 .

We repeat this exercise 10 000 times, for different levels of p. Thus, for a
fixed investment horizon p, we obtain a distribution of g and can now
compare how much better a’s portfolio performed compared with b’s.

Figure 6 shows these distributions of g. A value of g = 1 means that a’s
wealth has grown to twice the wealth of b, while g = 0 indicates that a and
b are equally wealthy. One period (p = 1) in our setting was three months,
hence 5 years are 20 periods (p = 20), and 20 years are 80 periods (p = 80).
There is only a probability of 57% that a outperforms b after one period
(3 months) (ie, a probability that g > 0). After 5 years, the probability is
78%, and even after 20 years it is ‘only’ 94%. Note, however, that these
distributions are not symmetric.

Now let b switch to a ta with 50 000 iterations, half the computational re-
sources that a employs. Figure 6 gives a clear answer: even after 20 years,
the distribution of g is symmetric around g = 0, hence there is little pre-
dictable difference between the portfolios of a and b.

12



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1
3 months

← vs random
vs 50 000 iterations →

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1
5 years

vs randomvs 50 000 iterations

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

g

20 years

vs randomvs 50 000 iterations

Figure 6. Distribution of outperformance of portfolios with 100 000 iterations.

5 Conclusion

In this paper we analysed the stochastics of solutions obtained from a
heuristic optimisation method when applied to a financial problem, port-
folio optimisation. Our findings indicate that the randomness added as a
result of using a heuristic can be made so small that it practically becomes
irrelevant. The true uncertainty stems from the sensitivity of the model:
even small changes in a portfolio’s composition, reflected in minuscule
differences in the in-sample objective function, can lead to completely dis-
proportionate differences in the out-of-sample performance. Any ‘exact’
method would suffer from the same problem, while giving the false im-
pression of having provided the ‘optimal’ solution.

The advantage of heuristics here is that they give the analyst more freedom
when setting up the optimisation model in the first place, since heuristics
can accommodate alternative ways to model the data, or alternative objec-
tive functions. Thus, heuristics may be a valuable tool for truly improving
the solution not of the model, but of the actual problem.
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