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Abstract

We consider a difference based ridge regression estimator and a
Liu type estimator of the regression parameters in the partial linear
semiparametric regression model, y = Xβ + f + ε. Both estimators
are analysed and compared in the sense of mean-squared error. We
consider the case of independent errors with equal variance and give
conditions under which the proposed estimators are superior to the
unbiased difference based estimation technique. We extend the re-
sults to account for heteroscedasticity and autocovariance in the error
terms. Finally, we illustrate the performance of these estimators with
an application to the determinants of electricity consumption in Ger-
many.
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1 Introduction

Semiparametric partial linear models have received considerable attention in
statistics and econometrics. They have a wide range of applications, from
biomedical studies to economics. In these models, some explanatory variables
have a linear effect on the response while others are entering nonparametri-
cally. Consider the semiparametric regression model:

yi = x>i β + f(ti) + εi, i = 1, . . . , n (1)

where yi’s are observations at ti, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ 1 and x>i =
(xi1, xi2, . . . , xip) are known p-dimensional vectors with p ≤ n. In many ap-
plications ti’s are values of an extra univariate ”time” variable at which re-
sponses yi are observed. Here β = (β1, . . . , βp)

> is an unknown p-dimensional
parameter vector, f(·) is an unknown smooth function and ε’s are inde-
pendent and identically distributed random errors with E(ε|x, t) = 0 and
Var(ε|x, t) = σ2. We shall call f(t) the smooth part of the model and as-
sume that it represents a smooth unparametrized functional relationship.

The goal is to estimate the unknown parameter vector β and the nonpara-
metric function f(t) from the data {yi, xi, ti}ni=1. In vector/matrix notation,
(1) is written as

y = Xβ + f + ε (2)

where y = (y1, . . . , yn)>, X = (x1, . . . , xn), f = {f(t1), . . . , f(tn)}>, ε =
(ε1, . . . , εn)>.

Semiparametric models are by design more flexible than standard linear
regression models since they combine both parametric and nonparametric
components. Estimation techniques for semiparametric partially linear mod-
els are based on different nonparametric regression procedures. The most
important approaches to estimate β and f are given in Green et al. (1985),
Engle et al. (1986), Eubank et al. (1998), Eubank et al. (1988), Eubank
(1999), Ruppert et al. (2003), Härdle et al. (2004) and Härdle et al. (2000).

In practice, researchers often encounter the problem of multicollinearity. In
case of multicollinearity we know that the (p × p) matrix X>X has one or
more small eigenvalues, the estimates of the regression coefficients can there-
fore have large variances: the least squares estimator performs poorly in this
case. Hoerl and Kennard (1970) proposed the ridge regression estimator and
it has become the most common method to overcome this particular weak-
ness of the least squares estimator. For the purpose of this paper we will
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employ the biased estimator that was proposed by Liu (1993) to combat the
multicollinearity. The Liu estimator combines the Stein (1956) estimator
with the ridge regression estimator, see also Akdeniz and Kaçiranlar (1995);
Gruber (1985).

The condition number is a measure of multicollinearity. If X>X is ill-
conditioned with a large condition number, the ridge regression estimator
or Liu estimator can be used to estimate β, Liu (2003). We consider dif-
ference based ridge and Liu type estimators in comparison to the unbiased
difference based approach. We give theoretical conditions that determine su-
periority among the estimation techniques in the mean squared error matrix
sense.

We use data on monthly electricity consumption and its determinants (in-
come, electricity and gas prices, temperature) for Germany. The purpose
is to understand electricity consumption as a linear function of income and
price and a nonlinear function of temperature: semiparametric approach is
therefore necessary here. The data reveal a high condition number of 20.5, we
therefore expect a more precise estimation with Ridge or Liu type estimators.
We show how our theoretically derived conditions can be implemented for a
given data set and be used to determine the appropriate biased estimation
technique.

The paper is organised as follows. In Section 2, the model and the dif-
ferencing estimator is defined. We introduce difference based ridge and Liu
type estimators in Section 3. In Section 4, the differencing estimator pro-
posed by Yatchew (1997) and the difference based Liu type estimator are
compared in terms of the mean squared error. In Section 5, both biased
regression methodologies in semiparametric regression models are compared
in terms of the mean squared error. Section 6 relaxes the assumption of iid
errors and replicates the results of the previous sections in the presence of
heteroscedasticity and autocorrelation. Section 7 gives a real data example
to show the performance of the proposed estimators.

2 The Model and Differencing Estimator

In this section we use a difference based technique to estimate the linear
regression coefficient vector. This technique has been used to remove the
nonparametric component in the partially linear model by various authors
(e.g. Yatchew (1997), Yatchew (2003), Klipple and Eubank (2007), Brown
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and Levine (2007)).

Consider the semiparametric regression model (2). Let d = (d0, d1, . . . , dm)>

be an m + 1 vector where m is the order of differencing and d0, d1, . . . , dm
are differencing weights that minimise

m∑
k=1

(
m−k∑
j=1

djdk+j

)2

,

such that
m∑
j=0

dj = 0 and
m∑
j=0

d2j = 1 (3)

are satisfied.

Let us define the (n − m) × n differencing matrix D to have first and last
rows (d>, 0>n−m−1), (0>n−m−1, d

>) respectively, with i-th row (0i, d
>, 0>n−m−i−1),

i = 1, . . . , (n−m− 1), where 0r indicates an r-vector of all zero elements

D =


d0 d1 d2 · · · dm 0 · · · · · · 0
0 d0 d1 d2 · · · dm 0 · · · 0
...

...
0 · · · · · · d0 d1 d2 · · · dm 0
0 0 · · · · · · d0 d1 d2 · · · dm


Applying the differencing matrix to (2) permits direct estimation of the para-
metric effect. Eubank et al. (1988) show that the parameter vector in (2)
can be estimated with parametric efficiency. If f is an unknown function
with bounded first derivative, then Df is essentially 0, so that applying the
differencing matrix we have

Dy = DXβ +Df +Dε ≈ DXβ +Dε

ỹ ≈ X̃β + ε̃ (4)

where ỹ = Dy, X̃ = DX and ε̃ = Dε. The constraints (3) ensure that
the nonparametric effect is removed and Var(ε̃) = Var(ε) = σ2. With (4)
a simple differencing estimator of the parameter β in the semiparametric
regression model results:

β̂(0) =
{

(DX)>(DX)
}−1

(DX)>Dy (5)

=
(
X̃>X̃

)−1
X̃>ỹ
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Thus, differencing allows one to perform inferences on β as if there were no
nonparametric component f in the model (2), Fan and Wu (2008).
We will also use the modified estimator of σ2 proposed by Eubank et al.
(1998)

σ̂2 =
ỹ>(I − P⊥)ỹ

tr{D>(I − P⊥)D}
(6)

with P⊥ = X̃(X̃>X̃)−1X̃>, I (p× p) identity matrix and tr(·) denoting the
trace function for a square matrix.

3 Difference based ridge and Liu type esti-

mator

As an alternative to β̂(0) in (5), Tabakan and Akdeniz (2010) propose:

β̂(1)(k) = (X̃>X̃ + kI)−1X̃>ỹ, k ≥ 0

Here k is the ridge-biasing parameter selected by the researcher. We call
β̂(1)(k) a difference based ridge regression estimator of the semiparametric
regression model.

From the least squares perspective, the coefficients β are choosen to min-
imise

(ỹ − X̃β)>(ỹ − X̃β) (7)

Adding to the least squares objective (7) a penalising function of the squared

norm
∥∥∥ηβ̂(0) − β∥∥∥2 for the vector of regression coefficients, yields a conditional

objective:

L = (ỹ − X̃β)>(ỹ − X̃β) + (ηβ̂(0) − β)>(ηβ̂(0) − β) (8)

Minimising (8) with respect to β , we obtain the estimator β̂(2)(η) an alter-

native to β̂(0) in (5):

β̂(2)(η) = (X̃>X̃ + I)−1(X̃>ỹ + ηβ̂(0)) (9)

where η, 0 ≤ η ≤ 1 is a biasing parameter and when η = 1, β̂(2)(η) = β̂(0).
The formal resemblence between (9) and the Liu estimator motivated Akd-
eniz and Kaçiranlar (1995), Hubert and Wijekoon (2006) and Yang and Xu
(2009) to call it the difference based Liu type estimator of the semiparametric
regression model.
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4 Mean Squared Error Matrix (MSEM) Com-

parison of β̂(0) with β̂(2)(η)

In this section the objective is to examine the difference of the mean square
error matrices of β̂(0) and β̂(2)(η). We note that for any estimator β̃ of β,

its mean squared error matrix (MSEM) is defined as MSEM(β̃) = Cov(β̃) +

Bias(β̃) Bias(β̃)>, where Cov(β̃) denotes the variance-covariance matrix,

Bias(β̃) = E(β̃)− β is the bias vector. The expected value of β̂(2)(η) can be
written as

E{β̂(2)(η)} = β − (1− η)(X̃>X̃ + I)−1β

The bias of the β̂(2)(η) is given as

Bias{β̂(2)(η)} = −(1− η)(X̃>X̃ + I)−1β. (10)

Denoting Fη = (X̃>X̃ + I)−1(X̃>X̃ + ηI) and observing Fη and (X̃>X̃)−1

are commutative, we may write β̂(2)(η) as

β̂(2)(η) = Fηβ̂(0) = Fη(X̃
>X̃)−1X̃>ỹ

= (X̃>X̃)−1FηX̃
>ỹ.

Setting S = (D>X̃)>(D>X̃) and U = (X̃>X̃)−1 we may write Cov{β̂(2)(η)}
as

Cov{β̂(2)(η)} = σ2FηUSUF
>
η , (11)

Cov(β̂(0)) = σ2USU. (12)

Using (11) and (12) the difference ∆1 = Cov(β̂(0)) − Cov{β̂(2)(η)} can be
expressed as

∆1 = σ2
(
USU − FηUSUF>η

)
(13)

= σ2Fη{F−1η USU(F>η )−1 − USU}F>η

= σ2(1− η2)(U−1 + I)−1
{

1

1 + η
(US + SU) + USU

}
(U−1 + I)−1.

Let τ = 1
1+η

> 0, M = USU , N = US + SU . Since M = L>L and

rank(L) = p < n − m, then M is a (p × p) positive definite matrix, where

L = D>X̃(X̃>X̃)−1 and N = US + SU is a symmetric matrix. Thus, we
may write (13) as

∆1 = σ2(1− η2)H(M + τN)H

= σ2(1− η2)H(Q>)−1(Q>MQ+ τQ>NQ)Q−1H

= σ2(1− η2)H(Q>)−1(I + τE)Q−1H,
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where I + τE = diag(1 + τe11, . . . , 1 + τepp) and H = (U−1 + I)−1. Since
M is a positive definite and N is a symmetric matrix, a nonsingular matrix
Q exists such that Q>MQ = I and Q>NQ = E, here E is a diagonal
matrix and its diagonal elements are the roots of the polynomial equation
|M−1N − eI| = 0 (see Graybill (1983), pp. 408 and Haville (1997), pp. 563)
and since N = US+SU 6= 0 there is at least one diagonal element of E that
is nonzero. Let eii < 0 for at least one i, then positive definiteness of I + τE
is guaranteed by

0 < τ < min
eii<0

∣∣∣∣ 1

eii

∣∣∣∣ (14)

Hence 1 + τeii > 0 for all i = 1, . . . , p and therefore I + τE is a positive def-
inite matrix. Consequently ∆1 becomes a positive definite matrix, as well.
It is now evident that the estimator β̂(2)(η) has a smaller variance compared

with the estimator β̂(0) if and only if (14) is satisfied.

Next, we give necessary and sufficient conditions for the difference based
Liu type estimator β̂(2)(η) to be superior to β̂(0) in the mean squared error
matrix (MSEM) sense.

The proof of the next theorem requires the following

LEMMA 4.1 Farebrother (1976). Let A be a positive definite (p×p) matrix,
b a (p× 1) nonzero vector and δ is a positive scalar. Then δA− bb> is non-
negative if and only if b>A−1b ≤ δ.

Let us compare the performance of β̂(2)(η) with the differencing estimator

β̂(0) with respect to the MSEM criterion. In order to do that define ∆2 =

MSEM(β̂(0))−MSEM{β̂(2)(η)}. Observe that:

MSEM(β̂(0)) = Cov(β̂(0)) = σ2USU (15)

and

MSEM{β̂(2)(η)} = σ2FηUSUF
>
η + (1− η)2(U−1 + I)−1ββ>(U−1 + I)−1

(16)

Then from (15) and (16) one derives:

∆2 = σ2Fη{F−1η USU(F>η )−1 − USU}F>η
−(1− η)2(U−1 + I)−1ββ>(U−1 + I)−1,

= H
{
σ2(1− η2)(M + τN)− (1− η)2ββ>

}
H,

= (1− η)2H

{
σ2 1 + η

1− η
(M + τN)− ββ>

}
H.
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Applying Lemma 4.1 and assuming condition (14) to be satisfied, we see ∆2

is positive definite if and only if

β>(M + τN)−1β ≤ σ2 1 + η

1− η
, 0 < η < 1

Now we may state the following theorem.

THEOREM 4.1 Consider the two estimators β̂(2)(η) and β̂(0) of β. Let
W = 1+η

1−η (M + τN) be a positive definite matrix. Then the biased estimator

β̂(2)(η) is MSEM superior to β̂(0) if and only if

β>W−1β ≤ σ2.

5 MSEM Comparison of β̂(1)(k) and β̂(2)(η)

Let us now compare the MSEM performance of

β̂(1)(k) = (X̃>X̃ + kI)−1X̃>ỹ

= SkX̃
>Dy

= A1y (17)

with

β̂(2)(η) = (X̃>X̃ + I)−1(X̃>y + ηβ̂(0))

= (X̃>X̃)−1(X̃>X̃ + I)−1(X̃>X̃ + ηI)X̃>ỹ

= UFηX̃
>Dy

= A2y (18)

The MSEM of the difference based ridge regression estimator β̂(1)(k) is given
by

MSEM{β̂(1)(k)} = Cov{β̂(1)(k)}+ Bias{β̂(1)(k)}Bias{β̂(1)(k)}>

= Sk(σ
2S + k2ββ>)S>k

= σ2(A1A
>
1 ) + d1d

>
1 ,

where Sk = (X̃>X̃ + kI)−1 and d1 = Bias{β̂(1)(k)} = −kSkβ, see Tabakan
and Akdeniz (2010). The MSEM in (16) may be written as

MSEM{β̂(2)(η)} = σ2(A2A
>
2 ) + d2d

>
2 ,
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with d2 = Bias{β̂(2)(η)} = −(1− η)(U−1 + I)−1β.
Define

∆3 = MSEM{β̂(1)(k)}−MSEM{β̂(2)(η)} = σ2(A1A
>
1 −A2A

>
2 )+(d1d

>
1 −d2d>2 )

(19)
For the following proofs we employ:

LEMMA 5.1 (Trenkler and Toutenburg (1990)) Let β̃(j) = Ajy, j = 1, 2 be

the two linear estimators of β. Suppose the difference Cov(β̃(1))− Cov(β̃(2))

of the covariance matrices of the estimators β̃(1) and β̃(2) is positive definite.

Then MSEM(β̃(1))−MSEM(β̃(2)) is positive definite if and only if

d>2

{
Cov(β̃(1))− Cov(β̃(2)) + d1d

>
1

}−1
d2 < 1.

THEOREM 5.1 The sampling variance of β̂(2)(η) is smaller than that of

β̂(1)(k), if and only if λmin(G−12 G1) > 1, where λmin is the minimum eigen-
value of G−12 G1 and Gj = σ2AjA

>
j , j = 1, 2.

Proof. Consider the difference

∆∗ = Cov{β̂(1)(k)} − Cov{β̂(2)(η)}
= σ2(A1A

>
1 − A2A

>
2 ),

= G1 −G2

withG1 = (D>X̃WkU)> = V >V , Wk = I+kU andG2 = (X̃F>η U)>(X̃F>η U).
Since rank(V ) = p < n − m, G1 is a (p × p) positive definite matrix and
G2 is a symmetric matrix. Hence, a nonsingular matrix O exists such
that O>G1O = I and O>G2O = Λ, with Λ diagonal matrix with diag-
onal elements roots λ of the polynomial equation |G1 − λG2| = 0 (see
Haville (1997), p.563 or Schott (2005), p.160). Thus, we may write ∆∗ =
(O>)−1(O>G1O − O>G2O)O−1 = (O>)−1(Λ − I)O−1 or O>∆∗O = Λ − I.
If G1 − G2 is positive definite, then O>G1O − O>G2O = Ψ − I is positive
definite. Hence λi − 1 > 0, i = 1, 2, . . . , p so we get λmin(G−12 G1) > 1.

Let now λmin(G−12 G1) > 1 hold. Furthermore, with G2 positive definite

and G1 symmetric, we have λmin <
ν>G1ν
ν>G2ν

< λmax for all nonzero (p × 1)
vectors ν, so G1 −G2 is positive definite, see Rao (1973),p.74. It is obvious

that Cov{β̂(2)(η)} − Cov{β̂(1)(k)} is positive definite for 0 ≤ η ≤ 1, k ≥ 0 if
and only if λmin(G−12 G1) > 1. �
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THEOREM 5.2 Consider β̂(1)(k) = A1y and β̂(2)(η) = A2y of β. Suppose

that the difference Cov{β̂(1)(k)} − Cov{β̂(2)(η)} is positive definite. Then

∆3 = MSEM{β̂(1)(k)} −MSEM{β̂(2)(η)}
is positive definite if and only if

d>2
{
σ2(A1A

>
1 − A2A

>
2 ) + d1d

>
1 )
}−1

d2 < 1

with A1 = SkX̃
>D, A2 = UFηX̃

>D.

Proof. The difference between the MSEMs of β̂(2)(η) and β̂(1)(k) is given by

∆3 = MSEM{β̂(1)(k)} −MSEM{β̂(2)(η)}
= σ2(A1A

>
1 − A2A

>
2 ) + (d1d

>
1 − d2d>2 )

= Cov{β̂(1)(k)} − Cov{β̂(2)(η)}+ (d1d
>
1 − d2d>2 )

Applying Lemma 5.1 yields the desired result. �

It should be noted that all results reported above are based on the assump-
tion that k and η are non-stochastic. The theoretical results indicate that
the β̂(2)(η) is not always better than the β̂(1)(k), and vice versa. For practi-
cal purposes, we have to replace these unknown parameters by some suitable
estimators.

6 The Heteroscedasticity and Correlated Er-

ror Case

Up to this point independent errors with equal variance were assumed. The
error term might also exibit autocorrelation. To acccount for these effects
we extend the results in this section and consider the more general case of
heteroscedasticity and autocovariance in the error terms.

Consider now observations {yt, xt, tt}Tt=1 and the semiparametric partial lin-
ear model yt = x>t β + f(tt) + εt, t = 1, . . . , T . Let E(εε>|x, t) = Ω not
necessarily diagonal. To keep the structure of the errors for later inference
we define an (n× n) permutation matrix P as in Yatchew (2003). Consider
a permutation: 

1 t(1)
. . . . . .
i t(i)
. . . . . .
n t(n)
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where i = 1, . . . , n is the index of the ordered nonparametric variable and
t(i) = 1, . . . , T corresponding time index of the observations. Then P is
defined for i, j = 1, . . . , n:

Pij =

{
1, j = t(i)
0, otherwise

We can now rewrite the model after reordering and differencing:

DPy = DPXβ +DPf(x) +DPε, E(εε>|x, t) = Ω (20)

Then, with X̃ = DPX and ỹ = DPy from (20) β̂(0) is given:

β̂(0) = (X̃>X̃)−1X̃>ỹ (21)

with

Cov(β̂(0)) = (X̃>X̃)−1X̃>DPΩD>P>X̃(X̃>X̃)−1

= UX̃>DPΩD>P>X̃U. (22)

We will use a heteroscedasticity and autocovariance consistent estimator de-
scribed in Newey and West (1987) for the interior matrix of (22), which is in
our case:

̂DPΩD>P> = {D̂Pε(D̂Pε)>} �

{
L∑
`=0

(
1− `

L+ 1

)
H`

}
(23)

with D̂Pε = ỹ− X̃β̂(0), � denoting the elementwise matrix product, L max-
imum lag of non-zero autocorrelation in the errors and H0 identity matrix.
Let L` be a matrix with ones on the `th diagonal, then H`, ` = 1, . . .L are
such that:

H`
ij =

{
0, if {DP (L` + L>` )D>P>}ij = 0,
1, otherwise and i, j = 1, . . . , p.

Plugging (23) in (22) we obtain a consistent estimator for Cov(β̂(0)), see
Yatchew (1999) for details.

Denoting S̃ = X̃>DPΩD>P>X̃ we can write down Cov{β̂(1)(k)} and

Cov{β̂(2)(η)} in the model (20).

Cov{β̂(1)(k)} = SkS̃Sk (24)

Cov{β̂(2)(η)} = FηUS̃UFη (25)
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Using (22) and (25) the difference ∆1 = Cov(β̂(0)) − Cov{β̂(2)(η)} can be
expressed as

∆1 =
(
US̃U − FηUS̃UF>η

)
(26)

= Fη{F−1η US̃U(F>η )−1 − US̃U}F>η

= (1− η2)(U−1 + I)−1
{

1

1 + η
(US̃ + S̃U) + US̃U

}
(U−1 + I)−1,

with τ = 1
1+η

> 0, M̃ = US̃U , Ñ = US̃ + S̃U . Since M̃ is a (p× p) positive

definite matrix and Ñ is a symmetric matrix, a nonsingular matrix T exists
such that T>M̃T = I and T>ÑT = Ẽ, here Ẽ is a diagonal matrix and its
diagonal elements are the roots of the polynomial equation |M̃−1Ñ − ẽI| = 0
(see Graybill (1983), pp. 408 and Haville (1997), pp. 563) and we may write
(26) as

∆1 = (1− η2)H(M̃ + τÑ)H

= (1− η2)H(T>)−1(T>M̃T + τT>ÑT )T−1H

= (1− η2)H(T>)−1(I + τẼ)T−1H,

where I + τ̃ Ẽ = diag(1 + τ ẽ11, . . . , 1 + τ ẽpp) and H = (U−1 + I)−1. Since

Ñ = US̃+S̃U 6= 0 there is at least one diagonal element of Ẽ that is nonzero.
Let ẽii < 0 for at least one i, then positive definiteness of I+τẼ is guaranteed
by

0 < τ < min
ẽii<0

∣∣∣∣ 1

ẽii

∣∣∣∣ (27)

Hence 1 + τ ẽii > 0 for all i = 1, . . . , p and therefore I + τẼ is a positive def-
inite matrix. Consequently ∆1 becomes a positive definite matrix, as well.
It is now evident that the estimator β̂(2)(η) has a smaller variance compared

with the estimator β̂(0) if and only if (27) is satisfied.

With

∆′1 = Cov(β̂(0))− Cov{β̂(1)(k)}

= k2Sk

{
1

k
(US̃ + S̃U) + US̃U

}
Sk

= k2Sk

(
1

k
Ñ + M̃

)
Sk

12



and analogeous argumentation as above obtained for β̂(1)(k):

0 <
1

k
< min

ẽii<0

∣∣∣∣ 1

ẽii

∣∣∣∣ (28)

The next theorem extends the results of Theorem 3.1 in Tabakan and Akd-
eniz (2010) and Theorem 4.1 of Section 4 to the more general case of (20).

THEOREM 6.1 Consider the estimators β̂(i)(x), i = {1, 2}; x = {k, η}
and β̂(0) of β. Let W1 = M̃ + τÑ , W2 = 1+η

1−η (M̃ + τÑ) be positive definite

(alternative: assume (27), (28) hold). Then the biased estimator β̂(i)(x) is

MSEM superior to β̂(0) if and only if

β>W−1
i β ≤ 1.

Proof. Consider the differences

∆2 = MSEM(β̂(0))−MSEM{β̂(2)(η)}
= Cov(β̂(0))− Cov{β̂(2)(η)} − Bias{β̂(2)(η)}Bias{β̂(2)(η)}>

= Fη{F−1η US̃U(F>η )−1 − US̃U}F>η
−(1− η)2(U−1 + I)−1ββ>(U−1 + I)−1

= (1− η)2H

{
1 + η

1− η
(M̃ + τÑ)− ββ>

}
H

= (1− η)2H
(
W2 − ββ>

)
H.

∆′2 = MSEM(β̂(0))−MSEM{β̂(1)(k)}
= Cov(β̂(0))− Cov{β̂(1)(k)} − Bias{β̂(1)(k)}Bias{β̂(1)(k)}>

= Sk{k(S̃U + US̃) + k2US̃U − k2ββ>}Sk

= k2Sk

(
1

k
Ñ + M̃ − ββ>

)
Sk

= k2Sk(W1 − ββ>)Sk.

With Lemma 4.1 the assertation follows. �

Theorem 6.1 gives conditions under which the biased estimator β̂(i)(x), i =

{1, 2}; x = {k, η} is superior to β̂(0) in presence of heteroscedasticity and
autocorrelation in the data.

13



Note, that for comparison of the biased estimators Theorem 5.1 can be ex-
tended straight forwardly to the general case by exchanging G1 and G2 by
G̃1 = Ã1ΩÃ

>
1 and G̃2 = Ã2ΩÃ

>
2 correspondingly, with Ã1 = SkX̃

>DP, Ã2 =

UFηX̃
>DP . Hence, the sampling variance of β̂(2)(η) is always smaller than

that of β̂(1)(k), if and only if λmin(G̃2

−1
G̃1) > 1, where λmin is the minimum

eigenvalue of G̃2

−1
G̃1.

Now, we give a generalised version of Theorem 5.2.

THEOREM 6.2 Consider β̂(1) = Ã1y and β̂(2) = Ã2y of β. Suppose that

the difference Cov{β̂(1)} − Cov{β̂(2)} is positive definite. Then

∆3 = MSEM(β̂(1))−MSEM(β̂(2))

is positive definite if and only if

d>2

(
Ã1ΩÃ

>
1 − Ã2ΩÃ

>
2 + d1d

>
1

)−1
d2 < 1

Proof. The difference between the MSEMs of β̂(2)(η) and β̂(1)(k) is given by

∆3 = MSEM(β̂(1))−MSEM(β̂(2))

= Ã1ΩÃ
>
1 − Ã2ΩÃ

>
2 + d1d

>
1 − d2d>2

= Cov(β̂(1))− Cov(β̂(2)) + d1d
>
1 − d2d>2

Applying Lemma 5.1 yields the desired result. �

We note that in order to use the criteria above one has to estimate the
parameters. The estimation of Ω is thereby the most challenging. How-
ever, as long as the estimator (23) is available, all considered criteria can be
evaluated on the real data and can be used for practical purposes.

7 Determinants of Electricity Demand

The empirical study example is motivated by the importance of explaining
variation in electricity consumption. Since electricity is a non-storable good,
electricity providers are interested in understanding and hedging demand
fluctuations.

Electricity consumption is known to be influenced negatively by the price
of electricity and positively by the income of the consumers. As electricity

14



is frequently used for heating and cooling the effect of the air temperature
must also be present. Both heating by low temperatures and cooling by high
temperatures result in higher electricity consumption and motivate the use
of a nonparametric specification for the temperature effect. Thus we consider
the semiparametric regression model defined in (1)

y = f(t) + β1x1 + β2x2 + β3x3 + . . .+ β13x13 + ε (29)

where y is the log monthly electricity consumption per person (aggregated
electricity consumption was devided by population interpolated linearly from
quaterly data), t is cumulated average temperature index for the correspond-
ing month taken as average of 20 German cities computed from the data of
German weather service (Deutscher Wetterdienst), x1 is the log GDP per per-
son interpolated linearly from quaterly data, detrended and deseasonalised
and x2 is the log rate of electricity price to the gas price, detrended. The
data for 199601-201009 comes from EUROSTAT. Reference prices for elec-
tricity were computed as an average of electricity tarifs for consumer groups
IND-Ie and HH-Dc, for gas – IND-I3-2 and HH-D3 with reference period
2005S1. Time series of prices were obtained by scaling with electricity price
or correspondingly gas price indices. x3, x4, . . . , x13 are dummy variables for
the monthly effects.

The model in (29) includes both parametric effects and a nonparametric
effect. The only nonparametric effect is implied by the temperature variable.
From Figure 1 we can see that the effect of t on y is likely to be nonlinear,
while the effects of other variables are roughly linear. The dummy variables
enter into the linear part in the specification of the semiparametric regression
as well.

We note that the condition number of X>X of these explanatory variables
is 20.5, which justifies the use of β̂(1)(k) and β̂(2)(η), see Belsley et al. (1980).

Throughout the paper we use fifth-order differencing (m = 5). Results for
other orders of differencing were similar. The admissible regions for the bias-
ing parameters η and k for MSEM superiority were η ≥ 0.923 and k ≤ 0.0085
determined using estimated values and Theorem 4.1 and Theorem 3.1 in
Tabakan and Akdeniz (2010) respectively. Under more general assumptions
on Ω and resulting heteroscedasticity and autocovariance consistent Newey-
West covariance estimator, the admissible region for η (Theorem 6.1 and

restriction (27)) was shrinked to η ≥ 0.927. For β̂(1)(k) no admissible values
of k were found, since admissible k ≥ 1.57 of (28) do not satisfy the condi-
tion of Theorem 6.1. Though scalar mean squared error (SMSE) superiority
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Figure 1: Plots of individual exp. variables vs. dependent variable, linear fit
(green), local polynomial fit (red), 95 % confidence bands (black).

of β̂(1)(k) and β̂(1)(η) over β̂(0) under general Ω is given for k ≤ 0.0267 and
η ≥ 0.384 compared to k ≤ 0.0123 and η ≥ 0.708 by standard assumptions,
see Figure 2 which depicts SMSE of the estimators computed as a trace of
the MSEM and the corresponding η and k under standard and general as-
sumptions. Thus the SMSE superiority intervals for η and k become even
larger in the case of the general form of Ω.

Our computations here are performed with R 2.10.1 and the codes are avail-
able on www.quantlet.org.
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Figure 2: SMSE of β̂(2)(η) in dependence of η (left) and β̂(1)(k) in dependence

of k (right) against that of β̂(0) (dashed) under standard assumptions (black)
and under generalized assumptions (red).

Results of different estimation procedures can be found in Table 1. We
note that regardless of the estimator type, the effect of income is positive
and the effect of relative price is negative as expected from an economic per-
spective, as in Engle et al. (1986). However, the R2 obtained by difference
based methods is higher and SMSE lower for Liu type and ridge difference
based estimator. The values of biasing parameters for which conditions of
Theorem 5.1 and 5.2 are satisfied are given in Table 3. The superiority of
β̂(2)(η) over β̂(1)(k) is assured for the zone of values marked by plus.

Returning to our semiparametric specification, we may now remove the es-
timated parametric effect from the dependent variable and analyse the non-
parametric effect. We use a local linear estimator of f to model the non-
parametric effect of temperature. The resulting plots are presented in figure
3 where we also include the linear effect. We notice that all differencing
procedures result in similar estimators of f , regardless of notable differences
in the coefficients of the linear part. The estimator of f is consistent with
findings e.g. of Engle et al. (1986) for US electricity data.

In both specifications f is different from the linear effect and therefore in-
cluding temperature as a linear effect is misleading.
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β̂OLS β̂(0) β̂(1)(10−3) β̂(2)(0.95)
x1 0.634 0.578∗ 0.550∗ 0.562∗

x2 −0.152∗∗∗ −0.160∗∗∗ −0.158∗∗∗ −0.161∗∗∗

x3 0.030∗∗∗ 0.030∗ 0.030∗ 0.030∗

x4 −0.043∗∗∗ −0.040∗∗ −0.040∗∗ −0.040∗∗

x5 0.011 0.031 0.031 0.031
x6 −0.051∗∗ −0.014 −0.013 −0.014
x7 −0.054∗ −0.014 −0.013 −0.014
x8 −0.079∗∗ −0.065 −0.064 −0.065
x9 −0.036 −0.037 −0.036 −0.037
x10 −0.052 −0.044 −0.043 −0.044
x11 −0.049 −0.013 −0.012 −0.013
x12 −0.000 0.040 0.040 0.040
x13 −0.001 0.016 0.016 0.016
t −13 · 10−5∗∗∗ − − −

R2 0.729 0.749 0.749 0.749

Table 1: Results of OLS, difference based and Liu type difference based
estimations. ∗∗∗ indicates significance on 1%, ∗∗ on 5 % and ∗ on 10 %.

β̂(0) β̂(1)(10−3) β̂(2)(0.95)

Ω̂ σ̂2I Ω̂NW σ̂2I Ω̂NW σ̂2I Ω̂NW

x1 0.215 0.347 0.209 0.337 0.205 0.215
x2 0.034 0.047 0.034 0.047 0.034 0.034

SMSE 0.058 0.148 0.056 0.141 0.054 0.058

Table 2: Standard errors of the estimators in comparison to Newey-west
standard errors for the effects of x1 (income) and x2 (relative price).

8 Conclusion

We proposed a difference based Liu type estimator and a difference based
ridge regression estimator for the partial linear semiparametric regression
model.

The results show that in case of multicollinearity the proposed estimator,
β̂(2)(η) is superior to the difference based estimator β̂(0). We gave bounds on
the value of η which ensure the superiority of the proposed estimator. The
two biased estimators β̂(2)(η) and β̂(1)(k) for different values of η and k can
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k · 104

η · 102 1 2 3 4 5 6 7 8 9 10 11 12 13
9.23–9.23 – – – – – – – – – – – – –
9.24–9.24 + – – – – – – – – – – – –
9.25–9.25 + + – – – – – – – – – – –
9.26–9.26 + + + – – – – – – – – – –
9.27–9.27 + + + + – – – – – – – – –
9.28–9.28 + + + + + – – – – – – – –
9.29–9.30 + + + + + + – – – – – – –
9.31–9.31 + + + + + + + – – – – – –
9.32–9.32 + + + + + + + + – – – – –
9.34–9.35 + + + + + + + + + – – – –
9.36–9.37 + + + + + + + + + + – – –
9.38–9.39 + + + + + + + + + + + – –
9.40–9.43 + + + + + + + + + + + + –
9.44–9.56 + + + + + + + + + + + + +
9.57–9.61 + + + + + + + + + + + + –
9.62–9.65 + + + + + + + + + + + – –
9.66–9.69 + + + + + + + + + + – – –
9.70–9.72 + + + + + + + + + – – – –
9.73–9.76 + + + + + + + + – – – – –
9.77–9.79 + + + + + + + – – – – – –
9.80–9.82 + + + + + + – – – – – – –
9.83–9.85 + + + + + – – – – – – – –
9.86–9.88 + + + + – – – – – – – – –
9.89–9.91 + + + – – – – – – – – – –
9.92–9.94 + + – – – – – – – – – – –
9.95–9.97 + – – – – – – – – – – – –
9.98–9.99 – – – – – – – – – – – –

Table 3: Admissible biasing parameters ν and k marked by plus if they satisfy
conditions of Theorems 5.1 and 5.2, i.e. β̂(2)(η) is superior to β̂(1)(k).

be compared in terms of MSEM with the theoretical results above.

Finally, an application to electricity consumption has been provided to show
properties of the proposed estimator based on the mean square error crite-
rion. We could estimate the linear effects of the linear determinants as well
as the nonparametric effect f of a cumulated average temperature index.
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Figure 3: Estimated f nonlinear effect of t on y via differenced based (left),
Liu-type differenced based (right) and difference-based ridge (center) ap-
proaches.

References
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