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Abstract

We analyze an overlapping generations model which explicitly in-
cludes a secondary asset market. The economy is affected by a one-
time shock which causes some of these assets to become toxic. As
a response the government may intervene by buying these assets at
market value and removing them from trade. When the shock is not
anticipated we find that government intervention cannot improve upon
the laissez-faire equilibrium. However, when agents anticipate that a
crisis may occur, removing the toxic assets dominates laissez-faire,
particularly when the toxic asset holders are financing the interven-
tion scheme. Finally, we show that curbing incentives which drive
investors to find high yield opportunities decreases the severity of a
crisis once it occurs, but also output.

.
JEL E44, E61
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1 Introduction

The recent crisis was a crisis of the financial sector. At some point assets
that were regarded as ”safe” turned out to be risky. More importantly, the
complicated financial structures that have developed over the last decade

∗Department of Economics, University of Haifa, Haifa, Israel and Department of
Governance and Economics, EBS University, Wiesbaden, Germany, e-mail: bben-
tal@econ.haifa.ac.il

†Department of Governance and Economics, EBS University, Wiesbaden, Germany and
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or so made it next to impossible to separate the ”good” assets from the
”toxic” ones. As a result, financial markets collapsed and the crisis has
quickly become ”real”.1 In response to these developments a plethora of
government programs have been developed.2 Some of these programs aimed
at removing ”troubled assets” from the market. The idea was to ”clean
up” the balance sheets of financial institutions and restore confidence in
the financial markets.3 The programs have all been financed through debt,
clearly implying shifting the burden to future generations.

The policy of buying toxic assets has encountered strong criticism claim-
ing that the money is being wasted.4 Moreover, there is a prevailing sense
that intervention induces moral hazard. In other words, while intervention
might have been justified due to the surprise nature of the current crisis, dy-
namic considerations suggest that it should not be used in the future to avoid
moral hazard. This sentiment is quite explicit in President Obama’s speech
at Wall Street on the first anniversary of the Lehman Brothers bankruptcy,
where he said: ”Those on Wall Street cannot resume taking risks without re-
gard for consequences, and expect that next time, American taxpayers will be
there to break their fall.”5 In addition, many countries have moved to limit
boni in the financial sector as an attempt to further reduce opportunistic
behavior.

The purpose of our paper is to address the above questions. We construct
a model in which secondary asset prices collapse due to a crisis. While the
occurrence of the crisis is taken to be exogenous, it is assumed to generate
toxic assets. We consider government programs removing these assets from
trade thereby restoring confidence in the market. We distinguish between two
scenarios and two financing schemes. In the first scenario the crisis comes as
a complete surprise while in the second it is stochastically anticipated. The

1There is an immense body of literature discussing the events leading to the crisis. For
a succinct overview see Blanchard (2009).

2The St. Louis Fed provides a chronological list of events and govern-
mental programs that have been implemented in the U.S. since 2007. See
http://timeline.stlouisfed.org/index.cfm?p=home. For an international survey of the
events see, e.g. Goddard et al (2009).

3The goals of the program may be found in
http://www.ustreas.gov/press/releases/hp1150.htm For details of the program, see
http://www.federalreserve.gov/bankinforeg/tarpinfo.htm

4The U.S. Congress has appointed an oversight panel to monitor the Troubled As-
set Releif Program (TARP). The February 2009 report of that panel pointed out that
”Treasury paid substantially more for the assets it purchased under the TARP than their
then-current market value.” See http://cop.senate.gov/documents/cop-020609-report.pdf

5http://www.huffingtonpost.com/2009/09/14/obama-wall-streetspeech
n 285841.html
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program is either financed by current asset holders or by future generations.
We find that in terms of the economy’s output, the usefulness of the program
depends on the combination of these features. When the crisis comes as a
complete surprise removing toxic assets is at best useless and may even be
harmful if financed by future generations. On the other hand, should the
crisis be stochastically anticipated, intervention financed by current asset
holders is beneficial while it is detrimental if financed by future generations.
Finally, considering policies aimed at reducing opportunistic behavior, we
find that they are associated with a tradeoff between the severity of the
crisis and the average level of output.

Formally, we use an overlapping generations model to focus on trade in
financial assets. Abstracting from the complexities of financial intermedi-
ation in our framework, financial assets are traded directly in competitive
markets. Within this setup, we consider an exogenous shock that wipes out
the underlying value of some of these assets, creating a ”lemons problem”.

To understand the modeling idea, consider an overlapping generations
environment which combines the basic structure proposed by Diamond (1965)
with renewable capital and a Lucas ”tree economy” (Lucas 1978). Moreover,
capital outlives agents thereby giving rise to secondary asset markets (see
Bencivenga, Smith and Starr 1996). Specifically, agents are two period-lived.
When young they are endowed with one unit of labor, but want to consume
in both periods of their lives. Output consists of ”apples” which grow on
”trees”. Apples may be either consumed or planted. Apples planted in the
current period turn into fruit-bearing trees in the following two periods and
die afterwards. Thus, investment in trees remains productive for a longer
duration than the life of the generation that has initially planted them.

The ”apple industry” consists of profit-maximizing ”firms” which operate
in a competitive environment. These firms operate one of two tree-growing
technologies; a low and a high yield technology where the latter is riskier.
At each period newly created firms issue shares to raise ”capital” which is
used to purchase apples (from the current young) and plant them. Shares
represent claims on the future profits generated by the respective firms. In
the following period these firms require labor supplied by the young to work
in the ”orchard”. The firms pay competitive wages and allocate dividends to
their current owners. These owners (the current old) sell their shares (i.e.,
claims on the profits to be generated by firms in the consecutive period) to
the current young. The current old consume the proceeds of these sales, and
the dividends they receive according to their share ownership. The current
young allocate their wage-income to consumption and saving both in shares
of existing firms through the secondary asset market and in newly issued
shares sold on the primary market. However, the latter market consists of
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firms with different yields and the young also invest resources in order to
search for the best investment opportunities.

To capture the idea of a ”crisis” we assume that the economy is initially
in steady-state. We introduce a commonly known one-time shock which may
come as a surprise (case I) or be stochastically anticipated (case II). When
occurring the shock reduces the productivity of all firms (for instance, due
to a disease that affects trees) and has an additional impact in the ensuing
period. Specifically, some orchards (firms) become sterile and do not bear
fruit in the following period (in keeping with the story, farmers of some
orchards cannot curb the disease of last period’s seedlings). Hence, these
orchards have become worthless. In contrast, trees in other orchards are
fully cured. While the market knows the fraction of affected orchards, it
cannot identify them, thereby creating a ”lemons” problem in the secondary
asset market. In particular, claims on sterile orchards are ”toxic” because
they depress the value of the entire secondary market. Furthermore, in order
to discuss incentive issues associated with policy, we assume that the mix of
technologies emerging from search is related to the severity of the crisis.

The occurrence of a crisis generates an adjustment path of investment,
output, consumption, wages and asset prices. We consider two different tax-
financed intervention schemes whereby the government offers to purchase
toxic assets at market prices in order to remove them from trade. The first
scheme taxes the current old (i.e., asset holders) while the second is financed
by the young. We ask whether such schemes can improve the economy’s
performance along that adjustment path distinguishing between the surprise
and anticipated crisis scenarios. In addition we investigate the tradeoffs
associated with attempts to affect the incentives to search by conditioning
taxes on the outcome of the latter.

Our paper is part of the growing literature discussing the recent crisis.
As is well known, what started in the relatively small sub-prime sector in
the U.S. has quickly affected the global economy (see e.g. Blanchard 2009,
Demyanyk and van Hemert 2008, and Reinhart and Rogoff 2008). Since
”toxic assets” could not be easily recognized, counter-party risk could not be
assessed and the credit market (particularly the inter-bank loan market) col-
lapsed (see Gorton and Metrick 2009). To alleviate this problem and restore
confidence, governments introduced programs aiming at cleansing the bal-
ance sheets of financial institutions (e.g., the Troubled Asset Relief Program,
in the U.S.). There exists evidence that these programs were quite effective
(see e.g. Veronesi and Zingales 2010 as well as Bayazitova and Shivdasani
2009). Our analysis is most closely related to the literature which examines
the impact of intervention in environments with informational asymmetries
(see, e.g., Dang, Gorton and Holmström 2009, Tirole 2010, Uhlig 2009 and
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the literature therein). While the focus of that literature is on liquidity
provision, we are mainly interested in the risk-related allocative role of the
financial market and the dynamics of the economy within a simple informa-
tional structure.6

The paper proceeds as follows. Next section introduces the model dis-
cussing technology and agents. Section 3 characterizes the dynamic equilib-
rium. Section 4 specifies an example used in the remainder of the paper.
Section 5 describes policies under surprise crisis and a numerical analysis of
this case is conducted in section 6. Section 7 considers an anticipated crisis
and provides a numerical analysis. The last section offers some concluding
remarks.

2 The Model

We consider a discrete-time, overlapping generations model. The economy
is populated by a measure 1-continuum of identical two-period lived agents
which appear every period. In addition, there is a continuum of firms pro-
ducing apples referred to below as ”orchards”. All markets to be described
below are perfectly competitive and prices are measured in apples of the
current period. To set the stage, we describe first the economy ignoring the
possibility of a crisis.

2.1 Technology

There are two technologies generating identical trees. Technology 1 turns an
”apple” planted at period t−1 into a ”new tree” at period t which becomes an
”old tree” in t+1. Technology γ only requires a fraction γ < 1 of an apple to
generate such a tree. Orchards are generated by one of the two tree-growing
technologies. Given an orchard, the production function of apples is orchard-
age dependent. For new orchards, it is a standard constant returns to scale
function given by Fs(q(t− 1), ℓ(t)), where ℓ(t) stands for labor employed by
the orchard, and q(t− 1) denotes the number of trees growing in it. Apples
grown by old orchards do not require labor. Output is proportional to the
number of trees in the orchard, but is also affected by the economy-wide
number of trees. Specifically, an old orchard generates Fσ(Q(t− 2))q(t− 2)
apples when employing q(t − 2) old trees and where Q(t − 2) denotes the

6In fact, based on a micro-study, Kahle and Stultz (2010) argue that the main effect
of the crisis was that of increased risk rather than credit contraction.
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aggregate number of old trees in the economy, with F ′σ < 0.7 Old trees fully
depreciate in the process of production.

A new orchard that has planted q(t − 1) trees last period generates at
period t profits of

Ds(t) = Fs(q(t− 1), ℓ(t))− w(t)ℓ(t) (1)

where w(t) denotes period-t wages. Profit maximization yields:

w(t) =
∂Fs(q(t− 1), ℓ(t))

∂ℓ
, (2)

Due to the CRS assumption, it implies that the orchard’s total dividends in
t are:

Ds(t) =
∂Fs(q(t− 1), ℓ(t))

∂q
q(t− 1) (3)

Since old orchards do not require labor, total dividends of orchards using
trees planted two periods ago are:

Dσ(t) = Fσ(Q(t− 2))q(t− 2) (4)

To finance the planting of new trees orchards issue shares. Without loss
of generality, we normalize a share to represent a claim on the future profits
generated by a single tree. Hence, per-share payout of profits becomes:

ds(t) =
∂Fs(q(t− 1), ℓ(t))

∂q
(5)

and
dσ(t) = Fσ(Q(t− 2)) (6)

To further simplify our presentation and due to the CRS assumption, we
impose that the ”number” of orchards equals the size of a generation, i.e.
measure 1.

7Notice that due the CRS assumption, output of the new tree orchards can be written
as Fs(1, ℓ(t)/q(t))q(t). At the aggregate, there is one unit of labor, and q(t) = Q(t)̇ (hence,
the equivalent of F ′σ < 0 holds also with respect to the new orchard production function
since Fsℓ > 0). The specification of the old orchard production function follows the same
logic. However, to develop an analytically tractable example we avoid labor allocation
issues between the two types of orchards, and assume that the individual producers take
the coefficient Fσ(·) as given. See footnote 9 for further discussion.
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2.2 Agents

Each agent is endowed with one unit of labor in the first period of his life. The
preferences of an agent born at period t are given by U(c1(t), c2(t), e(t)) =
u(c1(t))+βu(c2(t))− e(t), where ci(t) denotes the apple consumption by the
agent in the ith period of his life, i = 1, 2 and e(t) is search effort.

The young supply labor services perfectly inelastically. The labor income
is used for current consumption and for saving. The latter is allocated to pur-
chasing ownership shares in either new or old orchards. From the foregoing,
new orchards may be using either tree-growing technology 1, or γ. Young
agents need to invest effort, e, in order to search for high-yield orchards (those
using the γ technology). Given effort, λ(e) denotes the likelihood of finding
such an orchard, with λ′(·) ≥ 0, λ′′(·) ≤ 0. We assume that the outcome
of search is private information and is revealed before consumption decisions
are made.

Saving of an agent born in t is allocated between shares of new and old
orchards, s(t) and σ(t) respectively. The price of a newly issued share by
an orchard using the low-yield technology is 1. This follows from the above
assumption that each apple generates a single tree, and the normalization
that a share is a claim on future profits of a single tree. Obviously successful
searchers invest only in high-yield orchards. Hence successful agents pay γ
per share. The price difference between shares of the two orchard types is
maintained by the informational asymmetry.

Let ξj denote the share price faced by agents. Accordingly, ξus = 1 if
the agent’s search was unsuccessful and ξs = γ < 1 if search was successful.
Saving can be written as ξjs(t)+p(t)σj(t) where p(t) is the old orchard share
price and j = us, s.8 In the following period agents receive the respective
dividends and proceeds from selling assets in the secondary market. Contin-
gent on the outcome of search, an agent born in period t faces the following
budget constraints:

cj1(t) = w(t)− ξjsj(t)− p(t)σj(t) (7)

cj2(t) = [ds(t+ 1) + p(t+ 1)] sj(t) + dσ(t+ 1)σj(t). (8)

At the portfolio selection stage there are three assets; two in the primary
market (orchards using technology 1 and those using technology γ) and one
in the secondary market. Observe that by construction the rate of return on

8The expression for saving rules out an intra-generational loan market where the suc-
cessful searchers borrow from the unsuccessful ones in order to increase their investment in
the high-yield project. In other words, we assume that such a market involves sufficiently
high transactions costs. Observe that in the absence of such costs no equilibrium would
exist in our framework, see e.g. Grossman and Stiglitz (1980).
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γ-technology trees is higher than that of low-yield new trees. Since there are
just two types of investors (successful and unsuccessful searchers) all three
types of assets can only be held in equilibrium if returns are equalized be-
tween two of them. In the remaining we focus on the natural case where
successful agents solely invest in high-yield new trees, while the unsuccess-
ful hold a portfolio of both low-yield new trees and old trees. Anticipating
the equilibrium where λ also measures the fraction of successful searchers,
the foregoing restriction implicitly requires that the success rate is not too
big. Otherwise, the supply of secondary assets emanating from successful
searchers could be sufficiently large to absorb the entire savings of the un-
successful searchers. In that case, the economy would be in a corner solution
with only two assets. From the point of view of our analysis, this case is of
no interest since in equilibrium there would be no informational asymmetry.

Accordingly, we obtain the following first-order conditions for the unsuc-
cessful:

−uc(c
us
1 (t)) + β [ds(t+ 1) + p(t+ 1)]uc(c

us
2 (t)) = 0 (9)

−p(t)uc(c
us
1 (t)) + βdσ(t+ 1)uc(c

us
2 (t)) = 0, (10)

and for the successful:

−γuc(c
s
1(t)) + β [ds(t+ 1) + p(t+ 1)] uc(c

s
2(t)) = 0. (11)

Clearly, (9) and (10) imply the no-arbitrage condition which equalizes the
rates of return of low-yield new trees and old trees:

dσ(t+ 1)

p(t)
= ds(t+ 1) + p(t+ 1). (12)

Finally, the rate of return on high-yield new trees is [ds(t+ 1) + p(t+ 1)] /γ.
Prior to searching agents anticipate their post-search consumption stream.

Hence, we define post-search optimal utility

vj(t) = u(cj1(t)) + βu(cj2(t)), j = s, us. (13)

Therefore ex-ante agents equate their respective marginal benefit of search
to the marginal cost thereof. Letting e(λ) = λ−1(e) and omitting the time
index it yields:

e′(λ) = vs − vus. (14)

3 Equilibrium and Saddle Path

All young agents are ex-ante identical and arrive at the same search effort
choice, generating the same success likelihood. Due to the law of large num-
bers, λ(t) is, therefore, the fraction of successful young agents. Moreover the
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constant returns to scale assumption implies that the number of orchards
and their size does not matter.

Altogether, an equilibrium consists of sequences {λ(t), cj1(t), c
j
2(t−1), ℓ

j(t),
sj(t), σj(t), Sj(t), q(t), Q(t), ds(t), dσ(t), w(t), p(t)}t≥1 where S

j(t) denotes ag-
gregate primary investment for j = s, us, and such that, given initial period-1
amounts of aggregate old and new trees, Q(−1) and Q(0), the following hold:

1. All markets clear. Specifically:





λ(t)ss(t) + (1− λ(t))sus(t) = q(t) = Q(t)
sj(t) = Sj(t), j = s, us

(1− λ(t))σus(t) = q(t− 1)
σs(t) = 0

ℓs(t) = ℓus(t) = 1

(15)

2. All agents and firms optimize, taking market prices as given. Specifi-
cally, equations (2), (3), (4), (9), (10), (11) and (14) hold.

3. Perfect foresight prevails.

The first equation in (15) captures the market clearing requirement of
new trees. The LHS aggregates per-capita (in each generation) investment
of successful and unsuccessful agents. The RHS is the per-capita number
of trees in the apple production process, q, which is also the corresponding
aggregate number of trees, Q. The second equation identifies individual with
per-capita primary investments. The third and fourth equations result from
the observation that only the unsuccessful participate in the secondary asset
market. Finally the last equation follows from the assumption that leisure
has no value.

Applying the equilibrium conditions, we rewrite the wage equation (2),
as follows:

w(t) = ω(Q(t− 1)). (16)

It implies that the income of the young depends solely on aggregate amount
of new trees. In addition, we denote the equilibrium marginal product of
new trees (which is also the dividend per tree) by:

∂Fs(Q(t− 1), 1))

∂q
= µ(Q(t− 1)). (17)

Using the equilibrium conditions and applying (16) and (17) to (9), (11)
and (12) yields a dynamic system which can be reduced to a pair of first
order difference equations in Q(t− 1), Q(t), p(t) and p(t+ 1).
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As is usually the case in such environments, this system has only one
initial condition, Q(t − 1). Absent further restrictions, it is indeterminate.
In order to uniquely determine the equilibrium path we assume that the
dynamic system satisfies the saddle path property, which imples that the state
variable Q(t − 1) determines not only Q(t), but also p(t). Put differently,
under this condition, there exists a pricing function

p(t) = P (Q(t− 1)) (18)

so that the single initial condition becomes sufficient to generate a unique
equilibrium path.9

In general, however, the pricing function (if it exists) cannot be charac-
terized analytically. A standard approach requires linearizing the above sys-
tem and approximating the pricing function locally around the steady-state.
However, this approach is not capable of answering some of the questions we
ask below.10 Instead, in the remaining we turn to an analytical example and
explicitly solve for the pricing function.

4 A Specified Example

In the remaining of the paper we use a specified economy for which the
pricing function is analytically computable from the underlying preferences
and production functions. In particular, we use the following functional
forms:

• Preferences: u(c) = ln(c),

• Effort cost: e(λ) = κ0 + κ1λ+ 1
2
κ2λ

2,

• New-tree technology: Fs(q, ℓ) = Aqαℓ1−α, 0 < α < 1,

• Old-tree technology: Fσ(Q) = ΨQα
2−1.

9The restrictions on the technology generating apples from old trees reduce the dimen-
sionality of the state-space and enable us to provide an analytically tractable example.
A more general specification would have included labor in that technology as well, e.g.
Fσ(q(t−2), ℓσ(t)). This would require labor to be allocated between the two technologies,
and the equilibrium wage would depend on both Q(t− 2) and Q(t−1). Consequently the
pricing function would also depend on these state variables. Unfortunately, we could not
find a specification of this form generating an analytical solution for the pricing function.
10In particular, when the crisis is anticipated, the economy’s path prior to the crisis

differs from the post-crisis one. By construction, a linearization around the steady-state
cannot capture this difference.
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For this specification the dynamic system is characterized by the following
set of equations:






Sus(t) + p(t)Q(t−1)
1−λ(t)

= β

1+β
ω(Q(t− 1))

Ss(t) = β

γ(1+β)
ω(Q(t− 1))

Fσ(Q(t−1))
p(t)

= µ(Q(t)) + p(t+ 1)

λ(t)Ss(t) + (1− λ(t))Sus(t) = Q(t)

(19)

together with the appropriate condition for the choice of effort.

Lemma 1 For the above specification, search effort is a constant solving

e′(λ) = −β ln(γ) (20)

Proof. For above specification, (14) becomes:

e′(λ) = ln

(
cs1
cus1

)
+ β ln

(
cs2
cus2

)
. (21)

Since the logarithmic preferences imply that saving is a constant fraction
of income, cs1 = cus1 . Moreover, the rate of return for successful searchers is
higher than that of their unsuccessful counterpart by the factor of 1

γ
. Hence

cs
2

cus
2

= 1
γ
verifying the claim.

Notice that in (19) the first two equations follow from (9) and (11), the
third is the no-arbitrage condition (12) and the last one results from the
equilibrium requirement. Moreover, search effort is time independent. Ob-
serve that multiplying the first equation by (1 − λ), the second by λ and
adding them (using the equilibrium condition), the entire dynamics of the
above system can be captured by:






Q(t) + p(t)Q(t− 1) = Λω(Q(t− 1))

Fσ(Q(t−1))
p(t)

= µ(Q(t)) + p(t+ 1)
(22)

where Λ = β

1+β

[
λ
γ
+ (1− λ)

]
. The saddle path property implies p(t) =

P (Q(t− 1)) and p(t+1) = P (Q(t)). Accordingly the system (22) consists of
two first-order difference equations both in Q(t). Hence both equations must
be identical. This imposes restrictions on the pricing function which allow
us to solve for P (·).
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Proposition 2 For the above specification the equilibrium pricing function

is given by

P (X) = νXα−1, (23)

The resulting dynamic system satisfies:

Q(t) = ΩQ(t− 1)α (24)

where ν and Ω depend on the underlying parameters.

Proof. See Appendix.
Notice that the dynamic relationship obtained here is of the same shape as

that obtained in the basic Solow (1956) model with a Cobb-Douglas produc-
tion function, or the Diamond (1965) model with Cobb-Douglas production
and logarithmic preferences.

5 Surprise Crisis and Policies

We start by considering a surprise crisis and assuming that the system is
initially in its steady-state (where ”∗” denotes variable in steady-state). At
some point τ a one-period shock occurs that reduces the productivity of all

orchards by 0 < ζ < 1. In addition, at τ + 1 the orchards which originated
from the high-yield growing technology of period τ − 1 become sterile. In
contrast, the remaining orchards are unaffected in τ + 1, still generating
Fσ(Q

∗) apples per tree.11 12

The occurrence of the shock and its implications are common knowledge
at the beginning of period τ (i.e. before any period τ decisions are under-
taken). Moreover, at period τ shareholders know whether their orchard will
be sterile at τ + 1 since they know whether the high-yield technology has
been used to grow them. In contrast, buyers of secondary market assets can-
not identify the shares associated with sterile orchards (keep in mind that
the tree growing technology is private information). Due to the absence of

11Alternatively, we could specify that old trees generate Fσ((1 − ζ)Q(t − 1)) apples
without significantly affecting the conclusions. The chosen structure allows us to concen-
trate on the ”net-effect” of the shock on the secondary asset market ignoring additional
implications due to secondary productivity effects.
12The extreme asymmetric treatment of the two types of orchards is intended to cap-

ture a salient characterisitc of the recent financial crisis. The high yield instruments
developed by the financial industry all collapsed at the same time due to their instrinsic
interrelationship. Commenting on this feature of the financial sector, Cochrane (2009)
has expressed the idea succintly as follows : ”....: it turns a “smooth” risk, like equities,
which are repriced routinely, into “earthquake” risk that either pays a steady stream or
fails catastrophically and unpredictably.....”.
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other transactions costs, we assume they buy a ”market portfolio” carrying
the average payoff.

In the sequel we examine the dynamic repercussions of the shock on the
equilibrium path, considering two policy scenarios. In the first, we let the
market absorb the shock while in the second, we analyze public intervention
schemes.

The No Intervention Case: Due to the shock, period τ wages are reduced
to ω((1− ζ)Q∗). Moreover, the average output per old tree at period τ + 1
becomes (1 − λ̂)Fσ(Q

∗) where λ̂ is the fraction of high-yield trees given by
λSs∗/Q∗. These changes affect the secondary market price, p(τ), and invest-
ments in the primary market, Q(τ).13 Once the latter has been determined
the entire future path of the economy can be generated from the saddle path
property using (22). However, the value of Q(τ ) (and of p(τ)) cannot be de-
termined without knowledge of p(τ +1). This feedback requirement is closed
by the pricing function and the perfect foresight condition. It yields a system
analogous to (19) for the crisis period τ . Altogether, the system determining
Q(τ) and p(τ ) can be summarized by






Q(τ) + p(τ )Q∗ = Λω((1− ζ)Q∗)

(1−λ̂)Fσ(Q∗)
p(τ)

= µ(Q(τ)) + P (Q(τ)).

(25)

The Intervention Case: We now assume that a public authority intervenes
by offering to purchase shares of sterile orchards (hereafter toxic assets) re-
moving them from future trade. The public tender is made at market prices.
We assume that shareholders of toxic assets accept the public tender since
they have no disadvantage from doing so; from the foregoing, they have the
relevant information and they sell at market price.

The intervention scheme is financed by lump-sum taxes. The cost of the
program is T (τ ) = λ̂p(τ)Q∗. Letting φ denote the fraction of this cost paid
by the young, their tax amounts to T1(τ) = φT (τ). The equilibrium period-τ
saving and no-arbitrage conditions become:






Q(τ ) + p(τ)
[
(1− λ̂)Q∗

]
= Λ [ω((1− ζ)Q∗)− T1(τ )]

Fσ(Q∗)
p(τ)

= µ(Q(τ)) + P (Q(τ)).

(26)

As of period τ + 1 the equilibrium follows from the saddle path property.

13Observe that search effort remains unaffected for the same reasons as in Lemma 1.
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The equation systems (25) and (26) emphasize the three relevant as-
pects of intervention. First, by removing toxic assets, intervention reduces
the stock of old trees traded in the secondary market (LHS, first equa-
tion). Second, intervention involves taxation reducing disposable income of
the young (RHS, first equation). Finally, by removing toxic assets, inter-
vention increases the rate of return in the secondary market (LHS, second
equation).

Lemma 3 An intervention (INT ) fully taxing the old leads to the same

adjustment path as that of the no-intervention (NO) case except for a one-

time secondary market price difference at period τ , given by pINT (τ )(1− λ̂) =
pNO(τ).

The result of this lemma is straightforward since under either policy the
old fully carry the loss and the young obtain the average output in the fol-
lowing period. However, Lemma 3 does not contain any information on the
relative merit of different tax schemes.

6 Numerical Analysis of a Surprise Crisis

This section uses a numerical example to provide an intuition on the econ-
omy’s adjustment path under two extreme tax schemes either levying the tax
solely on the old or on the young. For the purpose of this experiment, we
choose the following parameter values:

Table 1: Parameter Values
Variable Symbol Value
Second period weight in preferences β 0.75
Cost advantage of ”high yield” capital γ 0.8
Productivity of ”new” capital A 7.8
Output elasticity of ”new” capital α 0.3
Productivity of ”used” capital Ψ 2.7
Crisis probability π 0.2
Tax share of the young φ 0 or 1

At steady-state, these parameter values yield an investment rate of 0.14
(out of total output), and a rate of return for the unsuccessful searchers
of 2.34. The latter should be interpreted with caution, since the association
between a ”period” in this model and ”real” time is not straightforward. The
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value of Ψ was obtained by setting the steady-state value of ν (the coefficient
of the pricing function) to 1.14

While we make no claim of having ”calibrated” the model, we want to
emphasize that the chosen parameters are ”reasonable” if we choose to treat
a ”period” as representing ten years. To get some feeling, an accumulated
return of 2.34 is obtained by annualizing an interest rate of 8.8% over ten
years. Similarly, it takes about ten years to compound a yearly discount
factor of 0.97 (commonly used in RBC models) into 0.75. A crisis probability
of 0.2 per period is equivalent to a yearly crisis probability of 0.025 over ten
years.

The results depicted below focus on aggregate investment in new trees,
secondary asset prices, aggregate saving of the young and total output. The
no-intervention case is represented in Figure 1 as percentage deviations from
the corresponding steady-state values. As expected, total output decreases
when the shock hits, due to the negative impact on productivity. In the
following period the shock persists because some of the old trees are sterile.
The latter effect is mitigated due to the increased investment in the previous
period. At the crisis the productivity shock reduces wages and hence saving.
Next period wages and saving increase, due to the increased investment.

14The relationship between Ψ and ν is given in the Appendix.
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Figure 1: Surprise crisis with no intervention

The sharp decrease of secondary asset prices during the crisis reflects the
effect of the ”toxic orchards”. Finally, primary investment is influenced by a
saving and a rate of return effect. The saving effect has already been shown
to be negative. With respect to the second effect, the crisis implies a decline
in the return of secondary assets making primary assets more attractive. This
effect shifts the portfolio composition of the unsuccessful searchers in favor
of the latter. In addition, search incentives increase since the rate of return
for successful searchers remains unaffected. In our numerical example the
latter effects dominate thus raising investment.

Notice that the behavior of investment is driven also by the fact that in
our specification the information about the onslaught of a crisis and the end
of the crisis arrive at the same moment in time. Separating the two events
would generate a lasting investment depression, until that time when the
crisis is known to have come to an end.
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Figure 2: Intervention vs. No-Intervention: Surprise Crisis

The intervention regimes are shown in Figure 2 in terms of relative devia-
tions from the corresponding no-intervention values at the same period. The
solid line represents taxing the old (φ = 0) and the dashed one corresponds
to taxing the young (φ = 1). In accordance with Lemma 3, in the former case
all real variable follow an identical path as under no-intervention while the
secondary asset price adjusts upwards, reflecting the removal of the ”toxic
orchards”.

In contrast, taxing the young adversely affects the real variables. Intu-
itively, the young’s disposable income decreases, thereby decreasing saving.
Moreover the return on the secondary asset is increased since the sterile old
orchards have been removed. Both effects decrease the demand for primary
assets thereby reducing investment in new orchards. This in turn causes next
period’s output to decrease compared to the no-intervention case. Conse-
quently, adjustment back to the steady-state is slower. The impact of taxing
the young on the price in the secondary market at period τ + 1 is positive,
albeit smaller than that obtained when taxing the old. This follows directly
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from reducing the young’s disposable income. However, in the ensuing peri-
ods prices are higher because the marginal return to capital remains higher
throughout the adjustment path relative to the no-intervention case.

7 Anticipated Crisis, Policies and Numerical

Analysis

In this section we assume that the crisis is probabilistically anticipated.
Specifically, young agents expect a crisis to occur next period with prob-
ability π. Furthermore, they already know which corresponding policy will
be enacted. To simplify the analysis, we maintain the assumption that the
crisis is a one-time shock. This assumption allows us to invoke the saddle-
path property for the post-crisis dynamics and obtain the exact same pricing
function as in the foregoing analysis, see equation (23).15 In particular, the
economy’s behavior as of period τ and onwards is solely determined by the
initial condition, Q(τ − 1) and the policy regime.

We also maintain the assumption that prior to the crisis, the economy is
on a stationary path. However, in contrast to the surprise case, the antici-
pation of the crisis and the corresponding policy affect the initial stationary
state of the economy including Q(τ −1) = Q∗∗ (where ”∗∗” characterize vari-
able in the pre-crisis stationary path). Due to the anticipation of the crisis,
the decision problem of agents prior to the crisis takes into account the pos-
sibility of the crisis and its ramifications. Hence, the model implies that the
pre-crisis stationary state and the post-crisis dynamic path are co-determined
and depend on the policies.

Applying backward induction to the optimization problem of the young,
consider the consumption and saving decisions after the realization of the
search outcome. Generically agents maximize expected utility given by v∗∗ =
ln c∗∗1 + β[(1 − π) ln c∗∗2 + π ln c2(τ)] subject to success-related budget con-
straints: 





cj∗∗1 = w∗∗ − ξjsj∗∗ − p∗∗σj∗∗

cj∗∗2 = [d∗∗s + p∗∗] sj∗∗ + d∗∗σ σ
j∗∗

cj2(τ) = (ds(τ) + p(τ ))sj∗∗ + d∗∗σ σ
j∗∗ − T j2 (τ )

(27)

where j = s, us, σj∗∗ ≥ 0 and T2(τ) = (1 − φ)T (τ). Moving back in the
induction process, prior to searching agents anticipate their consumption

15An alternative would be to model the shock as a stochastically repeated event and
find a corresponding state-dependent pricing function. For a similar approach, see for
instance Bental and Eden (1993). As shown above, the simplification allows us to use an
analytically derived pricing function thereby avoiding numerical methods to compute the
latter.
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stream conditioned on the search outcome and the occurrence of a crisis.
Accordingly, effort is determined by

e′(λ∗∗) = vs∗∗ − vus∗∗. (28)

Given a policy, i.e. no intervention or intervention with a corresponding
financing scheme, the economy’s pre-crisis stationary path is given by a tu-
ple E1 = {λ∗∗, cj∗∗1 , cj∗∗2 , ℓj∗∗, sj∗∗, Sj∗∗, σj∗∗,Σj∗∗, ϑj, q∗∗, Q∗∗, d∗∗s , d

∗∗
σ , w

∗∗, p∗∗}
where Σj∗∗ denotes the aggregate type dependent secondary asset holding and
the multipliers ϑj are type dependent to be further defined below. This tuple
and the post-crisis path E2 = {λ(t), cj1(t), c

j
2(t−1), ℓ

j(t), sj(t), Sj(t), σj(t), q(t),
Q(t), ds(t), dσ(t), w(t), p(t)}t≥τ define an equilibrium of the economy. These
two tuples are interdependent; the post-crisis path depends on the economy’s
state at period τ , i.e. Q∗∗. The latter is part of the pre-crisis stationary
path, which in turn depends on expectations concerning, in particular, the
secondary assets price at the crisis, p(τ ).

This complex system can be reduced, in the final analysis, to two vari-
ables: Q∗∗ and p(τ ). Depending on the policy, either system (25) or (26) can
be used to determine p(τ) given an initial state Q∗∗.16 On the other hand,
given p(τ), the budget constraints (27) evaluated at market equilibrium, to-
gether with the first-order conditions which emerge from the pre-crisis opti-
mization problems, result in a system that determines E1, including Q∗∗. To
see this, use the fact that ℓj∗∗ = 1 and the definitions of d∗∗s , d

∗∗
σ , w

∗∗, and for
j = s, us write the remaining system as:

−
ξj

cj∗∗1
+ β

[
(1− π)

µ(Q∗∗) + p∗∗

cj∗∗2
+ π

µ((1− ζ)Q∗∗) + p(τ )

cj2(τ)

]
= 0 (29)

−
p∗∗

cj∗∗1
+ βFσ(Q

∗∗)

[
(1− π)

1

cj∗∗2
+ π

1

cj2(τ)

]
+ ϑj = 0 (30)

λ∗∗Ss∗∗ + (1− λ∗∗)Sus∗∗ = Q∗∗ (31)

λ∗∗Σs∗∗ + (1− λ∗∗)Σus∗∗ = Q∗∗ (32)

where the multipliers ϑj are associated with σj∗∗ ≥ 0, so that ϑj ≥ 0 and
ϑjσj∗∗ = 0. The variable λ∗∗ is given by the solution of (28). While at
the micro level λ∗∗ captures the individual search effort, at the aggregate it
measures the fraction of the young who found the high-yield tree-growing
technology. As discussed above, we assume that at the moment of the crisis
all high-yield trees are destroyed (see Footnote 12). This captures a much

16Notice that in Section 3 the initial state was taken to be the economy’s steady-state,
Q∗ whereas here it is Q∗∗.

19



discussed feature of the crisis; while investments in complex financial assets
were yielding high return, these were highly correlated.

Equation (29) refers to the FONC with respect to investments in new
trees (primary asset), whereas (30) to the FONC with respect old trees
(secondary asset). As we know from the post-crisis path, the successful
searchers do not invest in the secondary market. Unless the risk involved in
the potential crisis is sufficiently significant, this feature will carry over also
into the pre-crisis periods, resulting in ϑs > 0 and ϑus = 0. Finally, equations
(31) and (32) are the respective market clearing conditions for primary and
secondary assets. These equation are used to relate Q∗∗ to the individual
optimal investment decisions.

Since the crisis is a one-time event, after the crisis has occurred the econ-
omy converges to its steady-state. Figure 3 describes the evolution of the
relevant variables without intervention as percentage deviations from the
steady-state. It illustrates that the pre-crisis stationary path differs from the
long-run steady-state. That difference is mainly due to the riskiness associ-
ated with the primary asset as next period its price in the secondary asset
market may decline, should a crisis take place. This feature generates two
effects: it reduces saving and shifts the composition of the portfolio towards
the safe asset, namely old trees. Accordingly, while primary investment and
output are lower than in the steady-state, secondary assets are priced higher.
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Figure 3: Anticipated Crisis with No Intervention

Figure 4 compares paths of the economy under various intervention schemes
to the corresponding no-intervention values (in terms of percentage devia-
tions). We consider three taxation policies that finance the removal of toxic
assets from trade; a scheme which only taxes the young (dashed curves), a
scheme which taxes the old in a uniform fashion (solid curves) and a scheme
which taxes the old differentially, depending upon whether or not they have
been successful searchers (solid with inverted triangles).17 The third scheme
is intended to ”privatise the loss” by making those ”responsible” for the crisis
pay for its consequences.

17Figure 3 is drawn for the case in which the tax burden of the successful searchers
exceeds their share in the population by a factor of 2.5.
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Figure 4: Intervention vs. No Intervention: Anticipated Crisis

First consider the policy which taxes the old uniformly. Since the tax rev-
enue is used to finance the removal of toxic assets, at the crisis the secondary
asset price remains high. Hence, prior to the crisis the expected return on
investment in primary assets is larger than in the no-intervention case. This
boosts the initial stationary path of primary investment, output and savings.
It also implies that at the crisis primary investment is higher than in the
no-intervention case. In contrast, secondary asset prices are initially lower,
reflecting that prior to the crisis the demand for such assets is reduced and
the supply increased.

Next, let the tax be imposed on the young. Such a policy reduces their
disposable income, lowers saving and hence investment. Secondary asset
prices are still higher than in the no-intervention case, but to a lesser extent.
Consequently, the impact on pre-crisis primary investment is smaller. In fact,
taxing the young in order to finance the intervention, results in an output
path that is dominated by the one obtained by the alternative scheme.

The last policy imposes the cost of the intervention mainly on the suc-
cessful searchers (i.e., those who have invested in assets which became toxic
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at the crisis). Naturally, prior to the crisis this policy reduces the incentive
to engage in search (by more than one half relative to equal taxation). Since
fewer trees are generated by the high-return technology, the average return
on primary investment is reduced. As a result, initial primary investment is
the lowest under this policy, and falls even short of the no-intervention case.
This effect is also reflected in the lower pre-crisis output level, which in turn
is responsible for the lower saving at period τ . In contrast, the lower fraction
of trees generated by the high-return technology at the initial path reduces
the impact of the crisis on output at period τ+1. This result obtains because
fewer orchards are destroyed by the crisis.

8 Concluding Remarks

Should we have, or should we have not, and who should have paid? Many
think we should have not. Former President Bush has recognized the objec-
tion: ”a lot of people” became distressed about ”spending taxpayer money
to give to Wall Street banks to save them” since ”they created the crisis in
the first place”. Nevertheless, Bush believes we should have because ”TARP
saved the economy”.18

We find that the answer to the above question is context dependent and,
in particular, hinges on the financing scheme of the intervention program.
For instance, if we believe that the crisis came as a complete surprise, we
conclude that removing toxic assets was at best ineffective and could even
be harmful. Specifically, in our numerical example financing the purchase
of toxic assets by taxing future generations significantly exacerbates the cri-
sis. In contrast, if the crisis is stochastically anticipated, we find that a
government commitment to remove toxic assets should a crisis occur can be
beneficial from the point of view of output, in particular, if the program is
financed by taxing the assets holder (the ”old”). In this sense we find our-
selves at some odds with President Obama’s statement that ”those on Wall
Street” should not ”expect that next time, American taxpayers will be there
to break their fall.”

Finally, we address the popular sentiment to make those who ”created
the crisis in the first place” pay for its consequences. To do so in the model,
we impose the bulk of the tax burden associated with the government inter-
vention on the successful searchers. Quite naturally, we find that this policy
reduces toxicity in the economy and, thus, mitigates the crisis. However,
this comes at the cost of reducing output both prior and after the crisis.

18NBC News interview with Fromer President Bush,
http://www.cnbc.com/id/40028600.
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While the model is not designed to address other policies like limiting boni,
the conclusion suggests that responding to the current episode by policies
intended to limit the magnitude of a potential crisis may come at a cost of
lowering average output. One should notice that this conclusion, as well as
those related to other policies, have been drawn by examining the policy
impact on output solely. In particular, it ignores distributional issues and
”social justice” which may be at the core of the above sentiment.
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APPENDIX I: Proof of Proposition 2

Given our Cobb-Douglas specification of the production function of new
trees, the wage and the marginal product of capital are given by:

ω(Q(t)) = (1− α)AQ(t)α A1

µ(Q(t)) = αAQ(t)α−1 A2

Using the specification for the old-tree production Fσ(·), system (22) be-
comes: 





Q(t) + p(t)Q(t− 1) = Λ(1− α)AQ(t− 1)α

ΨQ(t−1)α
2
−1

p(t)
= αAQ(t)α−1 + p(t+ 1)

A3

with Λ = β

1+β

[
λ
γ
+ (1− λ)

]
.

Let p(t) = νQ(t− 1)α−1. Then we obtain:






Q(t) + νQ(t− 1)α = Λ(1− α)AQ(t− 1)α

ΨQ(t−1)α
2
−1

νQ(t−1)α−1
= [αA+ ν]Q(t)α−1

A4

Substituting Q(t) from the first line into the second yields:

ΨQ(t− 1)α
2−1

νQ(t− 1)α−1
= [αA+ ν] [Λ(1− α)A− ν]α−1Q(t− 1)α(α−1) A5

It is easy to verify thatQ(t−1) cancels, so that the above expression implicitly
defines ν in (23) to satisfy:

Ψ = ν [αA+ ν] [Λ(1− α)A− ν]α−1 A6

Finally, Ω in (24) is given by:

Ω = Λ(1− α)A− ν. A7
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