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Abstract  

Oil price volatility harms economic growth. Diversifying into different fuel types 

can mitigate this effect by reducing volatility in fuel prices. Producing bio-fuels may 

thus have additional benefits in terms of avoided damage to macro-economic 

growth. In this study we investigate trends and patterns in the determinants of a 

volatility gain in order to provide an estimate of the tendency and the size of the 

volatility gain in the future. The accumulated avoided loss from blending gasoline 

with 20 percent ethanol-fuel estimated for the US economy amounts to 795 bn. USD 

between 2010 and 2019 with growing tendency. An amount that should be 

considered in cost-benefit analysis of bio-fuels. 

 
 

 

 



Introduction 

Establishing a bio-fuel industry is generally seen to come with eclectic  benefits.  Among them are

environmental  aspects  such  as  reduced  pollutant  emissions  (Puppán  2002),  energy  security

improvements, foreign exchange savings (Demirbas 2009), and direct employment effects. Another

benefit associated with renewable energies results from diversification and is known as the volatility

gain. The latter is the reduction in price fluctuations possibly achieved by mixing two energy sources

with  different  price behaviour.  Reducing fluctuations in fuel prices is  of  utmost  importance for the

economy.  Economists  have discovered  negative  effects  of  oil  price  volatility  on  economic output

growth  (Ferderer 1996). This can be explained by Bernankes (1983) finding that uncertainty delays

irreversible  business  investments.  Such  uncertainty  is  for  example  introduced  by  high  oil  price

volatility. Moreover, Uri (1996) discovers that oil price volatility has a delayed but negative effect on

employment  in  the  United  States.  The  sum of  the  costs  imposed  on  the  United  States  due  to

movements in oil prices add up to around 7 trillion US Dollar (present value 2000) over the period of

1970 to 2000 (Greene and Tishchishyna 2000). Awerbuch and Sauter (2006) argue that the costs

generated by the adoption of renewable energy strategies can be amortized simply by the reduction of

price  volatility  resulting  from  diversification.  Diversifying  into  bio-fuels  can  thus  be  an  important

strategy  to  assist  macro-economic  stability.  Furthremore,  this  severe  impacts  highlight  that  the

volatility  gain  can  be  regarded  as  an  additional  benefit  from  bio-fuel  production  that  should  be

encountered when assessing the macro-economic value of investing in a bio-fuel industry. 

The possibility of volatility reductions through diversification is a core finding from financial portfolio

theory  (Markovitz  1952)  which  has  been  repeatedly  applied  to  energy  economics.  For  example,

Humphreys et al.,  (1998) make use of portfolio theory to demonstrate how the energy mix in the

United States could be chosen to diminish price volatility in order to prevent the damaging effects on

the macro-economy resulting from high energy price volatility. Similarly, Huang and Wu (2007) apply

portfolio theory to conventional electricity planning using Taiwan as a case study1. An application of

this theory specifically to the realm of conventional and ethanol-fuel portfolios was presented by Zhang

and Wetzstein (2008) who calculate an efficient frontier of different mixing proportions of gasoline and

ethanol for the United States under different tariff and subsidy policies. Doing this, the combination of

ethanol from the US, ethanol from Brazil and gasoline exhibiting the lowest volatility for a given price

can be found. In another study Vedenov et al., (2005) extends the real option pricing approach in order

to include the value of volatility reduction into the price for fuels. Thereby they show that switching to

1 Further studies applying portfolio theory to energy economics are: Awerbuch and Berger (2003); Lesbirel (2004).
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blended fuels is rational even at a point where bio-fuels are more expensive than conventional fuels. 

From the literature on volatility reductions in the context of bio-fuel production it is clear that the the

possibility of reductions in price-fluctuations exists. However, non of this papers take into account that

diversification does not always lead to this result.  Under some conditions diversification can even

result in higher price volatility. Additionally, the determinants of diversification can change over time in

response to tightened forces between markets or as a result of economic events. The changes and

tendencies in the determinants can lead to changes and trends in the size and the sign of a volatility

gain,  which  have  not  been  investigated  in  the  prevailing  literature  so  far.  Therefore,  this  paper

attempts to investigate the historical tendencies and patterns of the determinants in order to provide

an answer to four main questions. First, did blending fuels (hypothetically) result in overall volatility

reductions in the past? Second, are the determinants (the correlation and the volatility of the two fuels)

of a volatility gain altered by such changes in market interactions? Third, what can we expect in terms

of volatility gains from mixing bio-fuels in the future? And finally, how much additional value can be

added to the option of bio-fuels in cost/ benefit evaluations. 

The route we take to investigate this starts with the measurement of volatility and correlation using a

generalized auto-regressive conditional heteroscedastic model (GARCH) and a multivariate extension

(MGARCH)  of  these  models.  These  models  provide  an  insight  into  the  behaviour  of  the  three

determinants over time. In a next step the values estimated for the determinants are examined in a

regression  analysis  in  order  to  detect  the  patterns  and  trends.  Based  on  these  tendencies  an

extrapolation into the future will  give a picture on the possible gains from bio-fuel production in the

future. In order to express the past and future gains in monetary values, we use a formula developed

by Awerbuch and Sauter  (2006) that  estimates the  avoided macroeconomic  losses from volatility

reductions in oil prices. 

Assuming a 20% blending ratio, the results show that, historically, a volatility gain would not always

have been the result of mixing gasoline with ethanol. In fact, a volatility increase was the outcome for

some periods in the past. Examining the time trends and the changes due to evolving market forces

between gasoline and ethanol, makes it possible to prophesy a positive and increasing volatility gain

in the future. As a result, the added value of diversification into bio-fuels for the US economy from a

macro-economic perspective is estimated to add up to 795 bn. USD over the period 2010 to 2019. 
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Theory and Methods 

The concept of volatility reductions 

The idea that  price  fluctuations  can be reduced when two prices,  which  do  not  move  in  perfect

synchrony,  are  mixed,  is  intuitively  plausible.  This  idea  is  captured  by  Portfolio  Theory  as  the

diversification effect, firstly recognized and documented by Markowitz (1952). The diversification effect

manifests itself as a volatility reduction that results from dividing a portfolio into different assets that

are not perfectly positively correlated. More precisely, Portfolio Theory shows that the variance of a

portfolio of two, not fully positively correlated assets, is less than the weighted average variance of the

two assets.2 Additionally, it is also possible to reduce the variance and hence the volatility of a portfolio

below the variance (volatility) of the respective single assets (Bodie et al., 2009). Applying this to the

case of fuel blends, it is possible to reduce price fluctuations in fuel prices by mixing two different

fuels.  The size  of  the volatility  reduction or volatility gain is determined by three variables. These

determinants are given by the formula for the portfolio variance provided by Modern Portfolio Theory: 

σ²blend = ω² σ²cf + (1-ω)² σ²bf + 2ρ ω (1-ω) σcf σbf (1) 

where ω < 1 and -1≤ ρ ≥ 1 

The square root of the above expression is the volatility of the portfolio or, here, the volatility of the

blended fuel, σblend. The determining factors of the portfolio volatility are hence the weights ω assigned

to the two assets or fuels, the respective volatility, σi, of the fuels (here σ²cf denotes the variance of the

conventional fuel and σ²bf denotes the variance of the bio-fuel), and most importantly, the correlation,

ρ, between the two assets (fuels). 

The price volatility reduction in fuel prices that can be achieved through the blending of bio-fuels is

then defined as: 

Variance Reduction = σ²cf - σ²blend (2a)

or Volatility Reduction (VR) = σcf - σblend (2b)

For the purpose of this study, the volatility of the fuel portfolio has to be compared to the status quo,

that is, the volatility of the conventional fuel. 

2 For a formal derivation see Bodie et al., (2009). 
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If the volatility of the blended fuel, σblend, is lower than the volatility of the conventional fuel, σcf, the term

on the right hand side is positive and a volatility reduction can be achieved. 

The table  below summarizes the possible  combinations of  the  values for  the  correlation  and the

volatility of each fuel. A volatility gain is not a guaranteed outcome from blending fuels. 

Volatility
Reduction 

ρ= 1 1< ρ ≥0 0< ρ≥ -1

σcf>σbf   

σcf=σbf 0  

σcf<σbf  / /

Table 1

In  case the  volatility  of  the  conventional fuel  is  larger than the volatility of  the biofuel (σcf>σbf),  a

volatility reduction is always achieved. In contrast, if the volatility of the bio-fuel is larger, an increase in

the price volatility of fuels is as well as a volatility reduction is possible.3 

Trends in the values for volatilities and correlation result in different effects for a volatilities reduction.

Increasing volatilities in gasoline prices always increases the volatilities reduction. Also, the volatilities

reduction is a declining function of correlations. Finally, changes in volatilities of ethanol pricers can

have adverse effects on the volatilities gain.4

GARCH Models – Measuring Time-Varying Volatility and Correlation 

Different  methods for  the  estimation  of  the  volatility  and correlation  of  the  fuels  can be used.  In

general,  price  volatility  is  commonly  measured  as  the  unconditional  standard  deviation  of  price-

changes (Regnier 2007). However, as demonstrated above, fuel prices are found to exhibit volatility

clustering5, just like many financial time-series. In order to model this time-series behaviour of financial

data, Engle (1982) proposed what is called the Auto-regressive Conditional Heteroscedastic (ARCH)

model. 

The GARCH methods are especially appealing, since they not only allow to investigate whether a

volatility gain could have been realized historically, but also allow to explore how the volatility of the

variables changes over time. 

3 For a formal treatment of the different options summarized in table two see APPENDIX I. 
4 For a more elaborate discussion of these effects see APPENDIX I.
5 Volatility clustering describes the phenomenon of serially correlated price-changes. That means high volatility is followed

by high volatility and low volatility is ensued by low price fluctuations. 
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The variance at time t measured with a GARCH(p,q) model is: 

σt²= α0+ α1 ε²t-1+...+ αp ε²t-q+ β1 σ²t-1+...+βq σ²t-q    (5)

Where ε²t-p is an innovation term, i.e. the returns of the past p periods and σ²t-q is the variance of the

past q periods. The long run volatility is incorporated into the model by the constant α0 which is really

the product of a weight and the long run volatility, α0 = γ VL. Because the weights sum up to unity (γ +

α + β = 1), the long run volatility is equal to VL= E(σt²) = α0/(1- α - β). Most financial data is found to be

fitted best as a GARCH(1,1) model where one past innovation term, ε²t-1, and one past variance term,

σ²t-1, is included. 

A multivariate GARCH (MGARCH) model is used in order to estimate the covariance between the fuel

prices.  Using  the  covariance  estimates  from  the  MGARCH  model,  together  with  the  variance

estimates from the uni-variate models, the time-varying correlation will be calculated. The uni-variate

GARCH model, as explained above, has been extended to multivariate GARCH models in several

manners in order to investigate interactions between two or more financial markets (e.g. Bollerslev et

al. 1988). In general a MGARCH model has the mean equation of 

yt=c+ εt,  (6)

where     εt | Ω~ N(0,Ht) 
restricted to the bi-variate case the vectors are:

yt= [y1t y2t], εt,= [ε1t ε2t ], 
and 

Ht = h11t h12t 
h21t h22t 

Ht is the covariance matrix, where h11t is the variance of the variable y1t and h12t is the covariance

between  y1t and  y2t.  Depending  on the  specification  of  the  MGARCH, this  covariance matrix  is

designed in different ways. It cannot be estimated in a general specification as this would involve an

extremely complex estimation. One of the most parsimonious specifications is the so-called, diagonal

VECH MGARCH  model.  In  this  specification,  the  covariance  matrix  is  converted  to  a  vector  of

variance and covariance,  which is  possible  because  h21t =  h12t and hence the model  estimated

becomes: 
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vech(Ht) = vech(A0) + Σ Ai vech(εt-i εt-i')+ Σ Bj vech (Ht-j)  (7)

where A0 is a vector of the long run variance and long run covariance, A i is the matrix of coefficients on

the innovations εt-i  εt-i' and Bj is the matrix of coefficients on the past variances and covariance terms

Ht-j. The covariance estimations with this model depend only on the past covariance and the past

innovation term but not directly on the past variances of the variables (Wang 2009). 

Stationarity  conditions  for  GARCH  specifications  state  that  the  sum of  the  weights  for  the  past

innovations ε²t-1 and the past volatility σ²t-1 should be below one: α1+β1<1. If this is not given, then the

process is not covariance stationary. However, Nelson (1990) and Bougerol and Picard (1992) show

that  if  a  GARCH model  is  not  covariance stationary,  the  standard  asymptotically-based inference

procedures are generally valid because the model is still strictly stationary or ergodic6 (Wang 2009).

Moreover, the coefficients should be greater than zero as otherwise the model is unstable. 

Regression Analysis 

For a statistical assessment of the various cases of interest (explained in more depth later in the

paper), the estimated values for time-varying volatility and especially time-varying correlation will be

regressed on a time trend and dummy variables that indicate the times of economic crisis as well as

dummy variables that were created for the period of extraordinary high oil prices. Furthermore, the

amount of corn used for fuel production in the US will be included. The model is then estimated by

OLS, using the following specification: 

σt= β0 + β1t + β2 EthanolProd +β'DU+ ut  (8a)

ρt = β0 + β1t + β2 EthanolProd + β'DU + ut  (8b)

where σt is the estimated volatility and ρt is the estimated correlation. Furthermore, ut  is a white noise

process with zero mean, β1 is the coefficient on the time trend t, β2 is the coefficient on the variable

“Fuel” which denotes the fraction of corn used for ethanol production from total corn supply in the US.

The vector β consists of coefficients on the respective dummy variables DU. Two dummy variables are

used in the regression analysis. The first dummy variable is created for the oil price peak between

October 2007 and September 2008. Another dummy variable for the economic crisis is set to begin in

July 2008 as the GDP growth in the United States became substantially negative in the third quarter of

2008 as reported by the US Department of Commerce (BEA 2010). December 2009 was set  as the

6 A process is ergodic for the second moment, if its temporal covariance converges with probability 1 to the ensemble
covariance. 
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ending date for the for the economic crisis due to the fact that the GDP started rising slowly again at

this time. 

A time  trend clarifies  whether  one  of  the  main  determinants  of  the  volatility  gain  is  significantly

increasing  or  decreasing  over  time.  This  will  serve  as  an  indication  of  what  can  be  expected

concerning the future tendency of the determinants. Assuming that the causes underlying the trend

will continue in the future, an extrapolation of the trend into the future gives an estimate how the

reduction from mixing bio-fuel will develop. 

The percentage of the amount of corn used for fuel production in total US corn supply 7 is included in

order  to  investigate  whether there  is  a significant  relationship  between the  upsurge of  a  bio-fuel

industry and the behaviour of one of the determinants of the volatility gain.8 The rationale stems from

findings and claims in the prevailing literature about bio-fuel production. It is often claimed that energy

and agricultural markets are more integrated since bio-fuel production was established (Tyner 2009)

meaning  that  new  market  forces  are  created  between  oil,  gasoline  and  agricultural  markets

(Thompson et al., 2009).9 The argument is based on the fact that energy and agricultural markets will

interact more strongly when agricultural products are used for energy production. On the one hand,

this  can result  in  increased correlation  between them as price  links increase which  will  result  in

increasing correlations between ethanol and gasoline prices. On the other hand, volatility spillovers

between the markets may occur. Provided that volatility and correlation change when bio-fuels are

produced, important implications for the volatility gain are the result. For instance, if the volatility of

ethanol increases with higher production levels, the volatility gain decreases at the same time. Hence,

the expected benefits from establishing a bio-fuel industry will  diminish. Similarly, if  the price links

between gasoline and ethanol strengthen with growing ethanol use for transportation, the volatility

gain will decline. 

Extraordinary high oil price periods are associated with higher production costs in energy intensive

industries.  Ethanol  production  costs  are  mainly  determined  by  the  cost  of  corn  production.  The

agricultural sector is such an energy intensive industry. If the oil prices increase strongly their share in

the production costs of ethanol increases. This can in turn lead to increasing correlations between

gasoline and ethanol prices. Also, volatility in oil prices will be transmitted more strongly to ethanol
7 Data for the two variables (corn used for ethanol production and total corn supply) was only available in quarterly terms.

Therefore, it is assumed that the values smoothly grow/decline from one month to the next. 
8 Corn is the most relevant feedstock used for ethanol production in the U.S. (Serra et al., 2008). 
9 Further studies supporting these claims and similar findings about the increasing links and volatility spillovers between

energy and crop prices as well as between conventional and alternative fuels are Hertel and Beckman (2010); Kanamura
(2008); Serra and Zilberman (2009); Zhang et al., (2009). 
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prices if its share in production costs increases. The dummy variable will therefore serve as a control

variable for the extreme peak in oil prices in 2007 and 2008 in order to separate this influence from the

effect of other variables such as the time trend. 

Finally, the inclusion of a dummy variable for the economic crisis will provide information about the

importance of a volatility gain for an economy. As fuel price volatility has negative effects on economic

growth (Ferderer 1996; Guo and Kliesen 2005; Awerbuch and Sauter 2006), the possibility of reducing

the price volatility in such times is very beneficial. Regressing the determinants on the dummy will

therefore reveal whether there is indeed an additional value from bio-fuel blending. 

Data and Descriptive Statistics
Monthly ethanol and gasoline wholesale prices stem from the US market. The U.S. produced over

50% of world ethanol output in 2008, (RFA 2010) and the proportion of ethanol consumed in the US of

overall gasoline consumption lies at roughly seven percent (CARD 2010). The main sources of the

data collected are the International Sugar Organization, the Energy Information Administration and the

International Monetary Fund.10 

Price  volatility  is  usually  measured  as  the  standard  deviation  of  the  price-changes.  Fuel  price-

changes, like most financial time-series, usually change over time and often are serially correlated.

That is,  high returns are followed by high returns and low returns are followed by low returns -  a

phenomenon Engle  (2001)  called  'volatility  clustering'.  An  indication  of  non-normality  and  serial

correlation of the price-changes are excess kurtosis and skewness. Kurtosis measures the magnitude

of the extremes. If the data has a normal distribution, the kurtosis should be three (Engle 2004). Table

2 summarizes the statistical properties of the data.11 The time-series of ethanol and gasoline prices

clearly exhibit large excess kurtosis as the value is above three. Furthermore, the variables exhibit

negative skewness, indicating the presence of a left skew. This suggests that there are few extremely

low values, whereas the mean is above the median as most of the values are agglomerated there.

The graphs one and two of  the fuel  price-changes indicates serial correlation as high returns are

followed by high returns. 

10 An exhaustive list of all sources can be found in the APPENDIX table 4.  
11 Test results for the statistical tests in table 2 are attached in APPENDIX II 
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Descriptive Statistics 

Statistics of level of prices Statistics of price-changes 

Obs. Mean Standard
Deviation

Min. Max. Standard
Deviation

Skewness Kurtosis Changing
Variance 
(Levine Test) 

ARCH Effects 
(LM-Test) Chisq

Gasoline USD
ct/gallon 

195 117 67 39 337 22 -2.17 14.71 19.51***
Df(3,190)

 47.404***
Df(1)

Ethanol USD
ct/gallon

103 185 54 95 379 14 -0.26 6.89 4.92***
Df(4,97)

13.379***
Df(1)

***, **, and *, indicate significance on 1%,5%, and 10% level. Df(*) denote the degrees of freedom for the Levene test statistic and the
Lagrage-multiplier test respectively. 

Table 2 

In order to test for changing variance over time, a Levene test was performed. For that purpose the

data was grouped into different time intervals. The null-hypothesis of equal variance is tested against

the alternative hypothesis of  changing variance. In both price  series of  the suspicion  of  changing

variance was confirmed. Furthermore, the Lagrange-Multiplier test as proposed by Engle (2004) was

employed in order to test for auto-regressive conditional heteroskedasticity. The null-hypothesis of no

ARCH-effect was tested against the alternative hypothesis of ARCH disturbances in the first lag of the

price-changes. The null-hypothesis of no ARCH-effects was rejected for gasoline and ethanol price-

changes. 

Empirical results
The best model to measure volatility in gasoline prices includes one arch and one garch term, as well

as the lagged value of crude oil prices. Robust standard errors are used as the data is not normally

distributed. All terms included in the maximum likelihood estimation are significant on a 1% level which

indicates that the model fits the data very well. Stability conditions are met as the weights assigned to

the terms included are positive and below one. Furthermore, tests on the residuals (see APPENDIX

III) provide evidence, that there is no (very small amounts of) auto-correlation left in the lags. Hence,
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Graph 1: Gasoline price-changes in cent per gallon 
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Graph 2: Ethanol price-changes in cent per gallon 
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the model exploits the available information in the data reasonably well. 

The  graph  illustrates  the  conditional  volatility  in  gasoline  prices  over  time  where  gasoline  price

volatility clearly increased over the past decade. The minimum value of volatility in gasoline prices is

measured to be 3.8 cent per gallon while the maximum volatility is 54.4 cent per gallon. On average

gasoline prices fluctuate with a volatility of 11.6 cent per gallon. 

Ethanol price volatility is modelled as a GARCH(1,1) process. Again robust standard errors are used

and the coefficients on the arch and garch terms are significant on a 5% level. The weights are below

one and therefore  the  model  is  stationary.  The  portmanteau-test  on  the  residuals  is  furthermore

sufficiently low. 

Graph 4 above shows the behaviour of ethanol price volatility over the past decade. On average
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Graph 3: Volatility of gasoline prices in cent per gallon 

Graph 4: Volatility of ethanol prices in cent per gallon 
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volatility in ethanol prices is 21.6 cent per gallon while the lowest volatility is 13.7 and the largest value

for price  volatility  of  ethanol  is  72.3 cent per gallon.  Unlike  gasoline  price  volatility,  ethanol  price

volatility does not seem to follow a trend over time. 

The best model for the estimation of correlation between gasoline and ethanol prices turns out to be a

multivariate GARCH(1,1) process. Here, the covariance and variance equations includes one lag of

the innovation term and the second lag of the past covariance and variance term respectively. In order

to account for the fact that the lag of oil prices has explanatory power for the volatility of gasoline

prices, the latter where filtered by the former before correlation is estimated. This is done by using the

residuals  of  the  regression  of  gasoline  price-changes  on  the  lagged  value  of  oil  prices.12 The

correlation  is  then calculated by dividing  the monthly values measured for  the  covariance by the

product of the square-root of the simultaneously measured variances.  

The time-series of estimated correlation coefficients as illustrated in graph 5 above. According to these

estimations the correlation between gasoline and ethanol prices is on average 0.32. The lowest value

measured is close to zero with a value of 0.00149 and the maximum correlation in this time period

was 0.588.

The volatility  of  the  alternative  fuel  is  higher  on  average as well  as in  its  extremes.  Hence,  as

illustrated  in  table  1  above,  whether a  volatility  gain  could  have been achieved is  uncertain  but

possible as the correlation is never perfectly positive. The graph below illustrates the volatility gain

12 This method can result in a generated variable bias. This affects the standard errors and therefore the statistical
inference. In order to account for this, the estimated coefficient is only regarded as significant at least on the 5% level. 
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Graph 5: Correlation between gasoline and ethanol prices 
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possibly achieved in the past using a 20% blending ratio. As can be seen, historically, a volatility gain

would not always have been the result of diversification. 

Therefore, an investigation of the trends in order to predict the possibility of a volatility gain for the

future is quite important in  order to evaluate whether this benefit can de facto be achieved when

establishing a bio-fuel industry. 

Regression Analysis 

The results of the regression analysis13 and the implications are summarized in table 3 below. The

correlation does not change with the level of ethanol production. There is a U-shaped time trend found

in the regression results which implies that the correlation first decreased and is now on an increasing

path. However, dividing the observation into sub-samples shows that increasing correlation is followed

by decreasing correlation which in turn is followed by increasing correlation. This finding mirrors the

fact that there is a unit root in the time-series of correlations. Therefore, it cannot be inferred, that the

correlation will follow an increasing trend in the future, but is rather floating within the bounds of the

minimum and maximum values.  Furthermore, the correlation significantly deceases in times of  an

economic crisis. Ethanol price volatility does not show significant trends over time. Higher ethanol

production results in significant decreasing volatility in ethanol prices. There is no significant difference

in ethanol price volatility during an economic crises. In contrast to ethanol price volatility there is a

positive  upward  trend  in  the  volatility  of  gasoline  prices  but  no  change  as  a  result  of  growing

production of ethanol for fuel use. Besides that, the volatility in gasoline prices is significantly higher

during an economic crisis. Not surprisingly, the volatility in gasoline prices also increased during the

13 The regression-analysis output table is included in APPENDINX IV

13

Graph 6: Historical volatility reduction using a 20%
blending ratio 
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high oil price period.  

Time trend Bio-fuel
production

Economic crisis High oil prices Overall
tendency

Corr(pethanol;pgasoline)      

σethanol     

σgasoline     

Implication for the
volatility gain 

    

no change;  increase; decline;  effect unclear (values float within a range) 
Table 3

The overall effect on the volatility gain is clearly positive. The correlation strongly fluctuates around

0.32 but is always positive. Ethanol price volatility is decreasing with the level of ethanol production,

which increased on average by 0.06 percentage points per month.  Since the correlation is always

positive, the effect of  a decrease in  ethanol  price volatility  is unambiguously positive.  Finally, the

volatility in gasoline prices is increasing over time which also results in increasing gains from blending

gasoline with ethanol. 

Assuming a 20 percent blending ratio and an on average constant correlation between the two prices,

the volatility gain increases from  14.56 percent in 2009 to 16.99 percent  in 2019. Using the 95%

confidence interval of the trending coefficients measured in the regression analysis, the lower bound

of the volatility gain will increase from 14.55 percent in 2009 to 16.12 percent in 2019, while the upper

bound will be an increase in the volatility gain from 14.58 percent in 2009 to 17.68 percent in 2019. 
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Taking into account that the correlation fluctuates around its mean within the measured extremes of

0.14  percent  and 58.82 percent  in  an  interval  of  approximately  30  month,  the  volatility  gain  will

fluctuate roughly between 12 and 19 percent with a general upward trend. 

In addition to the trending behaviour, a positive increase in the volatility gain is also found in times of

an  economic  crisis.  Gasoline  price  volatility  appears  to  be  higher  compared  to  the  rest  of  the

observation period during a crisis. At the same time, the correlation between gasoline and ethanol

prices is lower than usually. The net effect of these two changes on the size of the volatility reduction

will be positive. Therefore, blending is especially valuable as it diminishes the increasingly negative

15

Graph 7: Volatility gain projection assuming constant
correlation. 

Graph 8: Volatility gain projection with up and downward
trends in correlation.
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effects  of  gasoline  price  volatility  under  such  circumstances  and  may  thus  contribute  to  faster

recovery. 

How valuable would such a volatility gain be? In order to give an estimation about this, we make use

of a formula developed by Awerbuch and Sauter (2006)14. The formula is constructed from several

GDP-oil-price elasticities which puts the percentage change in oil prices in relation to the resulting

percentage change in GDP. Taking the average of sixteen studies conducted on this relationship gives

an average oil-GDP elasticity of 7.3% (Awerbuch and Sauter 2006: 2814). The avoided loss is then

calculated as 

% oil price change x GDP-elasticity x GDP 

Since the data used in this paper, stems from the US market, the projection will be calculated for the

US  economy.  In  2010  the  US  GDP amounted  to  $13,220.502  bn.  (constant  USD)  (IMF  2011).

Gasoline consumption accounts for around 45 percent of total oil use in the US (EIA 2011). Thus, 45%

of the oil-GDP effect can be mitigated by using ethanol fuel blends. The prevented loss from using a

20% blending ratio in gasoline is then calculated as 0.45 x VR % x GDP-elasticity x GDP: For 2010

this would have been on average 0.45 x 0.1491 x 0.073 x 13,220.502 = 64.73 bn. USD. Assuming an

annual growth rate of 2.8% per year15 the accumulated prevented loss from mixing between 2010 and

2019 amounts to 795 bn. USD in the mean scenario assuming constant correlations. 

Conclusion 

This paper investigated the possibility, historical patterns and future tendencies of a volatility gain from

blending ethanol with conventional gasoline on the basis of US market data. Although the average and

extreme values of the bio-fuel volatility are larger than the volatility in the conventional fuel, a volatility

gain can be achieved. This is a result of the underlying trends in the volatility of ethanol and gasoline

prices which were detected in this study. Gasoline price volatility increased over time, while ethanol

price volatility decreased with increasing production of ethanol. As a result volatility in gasoline prices

became larger than the volatility in ethanol prices which in turn always results in a diversification gain.

According to the underlying trends detected via the regression analysis, diversifying into ethanol fuels,

will  become increasingly beneficial in the future. Furthermore, additional value from blending fuels

results from the fact that increasing volatility reductions and thus high benefits from ethanol blending,

14 It is recognized that the formula given by Awerbuch and Sauter (2006) is supposed to measure the effect of oil price
changes on GDP. In this paper the effect of reduced volatility in gasoline prices is measured. However, the formula still
gives a reasonable approximation of the value as higher price changes also increase volatility. Furthermore, Ferderer
(1996) finds that volatility in oil prices may be more important in explaining fluctuations in industrial production than the
level of oil prices. Thus, the calculated losses are rather underestimated. 

15 As assumed by the US bureau of Labor Statistics for the period of 2006-2016.
http://www.bls.gov/opub/ooq/2007/fall/art05.pdf
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will also appear in times of an economic crisis. From the projections drawn in this study it can be

estimated, that the cumulated benefits from ethanol blending in the future amount on average to 795

bn. USD for the US market. Hence, the volatility gain from blending fuels is another benefit that should

be accounted for in cost benefit analysis that are conducted in order to assess the an investment in

the establishment of a bio-fuel industry form a macro-economic point of view. 

Further research should focus on shedding more light into the driving forces behind the trends in the

volatility of gasoline prices as well as the driving forces behind the changes in the correlation between

gasoline and ethanol prices. This is important to determine with higher certainty whether a volatility

gain will be the outcome of blending fuels in the future. Also, the cause of the immense increase in the

volatility of ethanol prices around 2007 should be investigated. Such an extreme increase of ethanol

price volatility,  above the level of gasoline price volatility,  makes a volatility increase from blending

fuels very likely. Thus, it is important to find out, by what this increase is caused an how likely it is that

it will occur again. Finally, the findings in this studies are based on the US market. The ethanol fuel

market in the US is regulated by different policies. These policies may result  in distortions of the

market links between ethanol and gasoline prices that may establish in their absence. Therefore, it

should also be explored, whether the implications for blending fuels may also result in less regulated

markets. 
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Data Sources

Variable Source 

Crude Oil Prices WTI International Monetary Fund (2010)
www.imf.org/external/np/res/commod/externaldata.csv 

Gasoline Prices U.S.
U.S. Energy Information Administration (2010) 
http://tonto.eia.doe.gov/dnav/pet/hist/LeafHandler.ashx?
n=PET&s=RRUNYH&f=M

Ethanol Prices U.S. International Sugar Organization. (2009). "Ethanol Supplement to the Sugar
Year Book: 2009." www.isosugar.org.

Corn used for ethanol
production in US 

United States Department of Agriculture (2011)
http://www.ers.usda.gov/Data/FeedGrains/CustomQuery/Default.aspx

Total US Corn supply United States Department of Agriculture (2011) 
http://www.ers.usda.gov/Data/FeedGrains/CustomQuery/Default.aspx

Table 4

APPENDIX I The possibility of a volatility reduction from mixing bio-fuels 

Volatility
Reduction 

ρ= 1 1< ρ ≥0 0< ρ≥ -1

σcf>σbf   

σcf=σbf 0  

σcf<σbf  / /
Table 2

In the first case, (referring to the first row) when the volatility of the conventional fuel is higher than the

volatility of the bio-fuel (σcf>σbf), there will always be a volatility reduction. The size will vary with the

degree of correlation and the mixing proportions. This can be derived as follows. The highest possible

value for the volatility of the fuel portfolio is reached when the prices are perfectly positively correlated,

i.e. if the correlation equals one, ρ=1. Then the expression in (1) reduces to 

σ²blend = [ω σcf + (1-ω) σbf]²  (3a)

or σblend = [ω σcf + (1-ω) σbf]  (3b)

which is the weighted average variance or weighted average volatility of the two assets. Inserting (3b)

in (2a) yields for the volatility reduction

VR = σcf - [ω σcf + (1-ω) σbf] (4)

which is always positive under the condition of σcf>σbf  as adding an asset with a lower volatility will

reduce the average volatility below the volatility of the first asset, σcf. Expressed formally: because the
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correlation is equal to one, the volatility of the fuel blend is the weighted average of the fuels [ω σcf +

(1-ω) σbf] then if σcf>σbf, the average volatility of the fuel mix will be lower σcf > [ω σcf + (1-ω) σbf] than

the volatility of the conventional fuel and hence, the volatility reduction will be positive VR>0. Under

this circumstances of σcf>σbf  in conjunction with a price correlation in the interval of ]1,-1], the volatility

of the blend is always even lower than the weighted average volatility of the two assets and therefore

always lower than the volatility of the conventional fuel. Hence, in case the conventional fuels volatility

is higher than the volatility in the bio-fuel, the outcome is always a volatility reduction.

Under the condition of equal volatility σcf=σbf  , (second row in table 2) there is no volatility reduction if

the prices are perfectly correlated, ρ=1. This is because the volatility of the blend is then just equal to

the volatility of the conventional fuel, σcf = σblend  ↔ σcf = [ω σcf + (1-ω) σbf], and then the expression in

(4)  becomes exactly  zero.  In  contrast,  there  is  always a  volatility  reduction  achieved  under  this

condition for fuel prices with a correlation below one, ρ<1. A correlation below one indicates that the

price  fluctuations  of  the  two  prices  cancel  each  other  out  to  the  degree  to  which  they  are  not

correlated. The smaller the price correlation, the higher the amount of the changes that cancel out in

the mix. If  some of the price changes cancel out, the volatility of the blend will  be lower than the

weighed average volatility of the two assets. Under the condition of σcf=σbf  the blended fuel will always

be less volatile than one single fuel. Therefore, equation (4) is positive for all correlations below one. 

The last row summarizes the case where the volatility of the bio-fuel is higher than the volatility of the

conventional fuel, σcf<σbf, with respect to different correlation intervals. Here, no volatility reduction can

be achieved if the two prices are perfectly positively correlated, ρ= 1. In fact, it will  always be negative

i.e. a volatility increase will be the effect of blending. This can be seen if we consider that the volatility

of the blend will be the weighted average of the volatility of the two prices. Mixing the conventional fuel

with  a  fuel  that  has higher volatility  will  increase the average volatility  above the  volatility  of  the

conventional fuel. Hence, the expression in (4) will always be negative. 

If the correlation is less than one, both a volatility reduction and a negative volatility effect can be the

result under the condition of higher bio-fuel volatility, σcf<σbf,. The outcome in this case depends on the

difference between the volatility of the two fuels (σcf - σbf), on the degree of correlation, and the mixing

proportions  can  also  tip  the  balance  between  a  positive  and  a  negative  value  for  the  volatility

reduction. If the difference between the conventional and bio-fuel volatility is too high, i.e. if σbf -σcf   is

very large, there will never be a volatility reduction even if there is a perfect anti-correlation between

the prices. 
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A quick look at the behaviour of function (2c), which

expresses the volatility reduction, may be very useful

for the understanding of the effects of the changes in

the  determinants  of  the  volatility  gain  due to  their

time-varying behavior. 

v The  graph  on  the  left  illustrates  the  volatility

reduction as a function of correlation. The former is,

ceteris  pariubus,  always  larger  the  lower  the

correlation  between  the  fuels.  Furthermore,  as

shown in graph 10, the volatility reduction always increases with increasing values of the volatility of

the conventional fuel, holding all other factors fixed. 

Finally, increasing values of the volatility of the bio-fuel have diverse effects within different correlation

intervals. If  the correlation is within the interval of [1,0], the volatility gain declines (increases) with

increasing (decreasing) values of the volatility of the bio-fuel,  σbf. This can be seen in graph 11. A

negative correlation, in contrast yields ambiguous outcomes for the volatility gain when the volatility of

the bio-fuel changes. First, the volatility gain increases with increasing values of the bio-fuel volatility

and at a certain point, the volatility gain decreases with further growing volatility of bio-fuel prices. The

inflection point  varies with  the weights  assigned to the  two assets and the  difference in volatility

between both fuels. In graph 6 the inflection point is reached at a volatility in bio-fuel prices of 20%. 
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Graph 9: Volatility reduction as a function of
correlation 
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Graph 10: Volatility reduction as a
function of the volatility of the
conventional fuel 
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Graph 11: Volatility reduction as a
function of the volatility of the bio-
fuel in conjunction with a positive
correlation
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Graph 12: Volatility gain as a
function of the bio-fuel volatility in
conjunction with a negative
correlation 
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APPENDIX II Test results for descriptive statistics 

 

Augmented Dickey-Fuller test for unit root and test for presence of
ARCH effects 

Variable Dicky-Fuller-test Variable Test for ARCH effects 

Gasoline -4.220*** Δ Gasoline 47.404***

Ethanol -2.073 Δ Ethanol 13.379***

Volatility Ethanol -7.315***

Volatility
Gasoline 

-3.394*

Correlation
between corn
and ethanol 

-2.575

% of corn used
for fuel

production 

 -6.363 ***

*,**  and  ***  denote  significance  on  10%,5% and  1% level  respectively.  A variable  is
considered to be integrated of order zero if the null-hypothesis was rejected at least on a
5% percent level. 

Table 6 

Test for seasonal effects 

Before measuring price volatility of the series, it is also of relevance to test whether the price series

show significant seasonal effects. The rationale behind this is that volatility is supposed to measure

risk and as seasonal patterns are observed on a very regular basis, they are sufficiently predictable

such that they should not be considered as imposing risk. Therefore, the prices will  be seasonally

adjusted in case they exhibit significant seasonal patterns.  The test results indicate that there is no

evidence of seasonal patterns in all the price series examined in this part, and therefore there is no

need to filter out seasonal effects. 
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APPENDIX III 
 

GARCH estimations and test results 

Volatility estimation ethanol
GARCH(1,1)

Volatility estimation gasoline
GARCH(1,1)

Exogenous variables 
 - l.oil_wti 

- 0.0476
(0.0059)***

ARCH 0.462
(0.217)***

0.1985
(0.0673)***

GARCH 0.2995
(0.127)***

0.62
(0.092)***

Constant 122 
(41.8)***

0.822
(0.659)

Portmanteau-test statistic Lag(20) 30.09* Lag(27) 32.6 

Observations 102 194
*,** and *** denote significance on 10%, 5% and 1% level respectively. Newy-West robust standard errors are used. 

Table 7

Diagonal vech multivariate GARCH model

MGARCH D-VECH of gasoline and ethanol price-changes
Sigma

Gasoline 
3.98 
(8.31)

Covariance 1.75
(3.39) 

Ethanol 164.9 
(50.6)***

ARCH
Gasoline 

0.196
(0.06)***

Covariance 0.068
(0.034)**

Ethanol 0.533
(0.231)**

GARCH
Gasoline 

0.835
(0.074)***

Covariance 0.9197
(0.0444)***

Ethanol 0.202 
(0.147)

*,** and *** denote significance on 10%,5% and 1% level respectively. Newy-West robust standard errors are used. 
It is recognized that the coefficients in equation for gasoline prices, are slightly above 1 which would indicate, that the
stationarity conditions are not met. However, a standard t-test on the sum of the coefficients was not able to reject the null-
hypothesis that the sum of the coefficients is equal to one. 
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Table 8 
APPENDIX IV 

Regression analysis 

Output regression-analysis 

Volatility ethanol Volatility gasoline Correlation gasoline –
ethanol prices-changes

Time trend 0.022759 
(0.0162429)

.0794637 
(0.0118453)***

-0.072586 
(0.0122445)***

Squared time trend  - - 0.0001609 
(0.0000276)***

% of corn used for fuel
production 

-0.305131 
(0.1269276)**

 0.0019573 
(0.2200341)

0.00011257
(0.0035225)

Crisis  -2.701671 
(1.591828)

 14.77269
(3.413754)***

-0.2559655 
(0.0721607)***

Oil peak  -1.96827 
(1.424858)

12.95749 
(2.459619)***

0.0160884 
(0.0468173)

 Prob > F   0.0000 0.0000 0.0000
** and *** denote significance on 5% and 1% level respectively. Newy-West robust standard errors are used. 

A generated variable is subject to measurement error. As described in Wooldridge (2006), if there is a measurement error in
the dependent variable and the measurement error has not zero mean then the intercept will be biased, which is not a
problem for the inferences drawn in this paper. However, as standard errors are likely to be biased downwards, the 10%
level will not be accepted as a level of significance. 

Table 9 
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