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Abstract

In [7] Ghirardato, Macheroni and Marinacci (GMM) propose a method for distinguishing between per-

ceived ambiguity and the decision-maker's reaction to it. They study a general class of preferences

which they refer to as invariant biseparable. This class includes CEU and MEU. They axiomatize a

subclass of �-MEU preferences. If attention is restricted to �nite state spaces, we show that any �-MEU

preference relation, satis�es GMM's axioms if and only if � D 0 or 1, that is, the preferences must

be either maxmin or maxmax. We show by example that these axioms may be satis�ed when the state

space is [0,1].
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1 Introduction

Ghirardato, Macheroni and Marinacci [7] (henceforth GMM), axiomatize a class of preferences they

refer to as invariant biseparable, that encompasses both the Choquet expected utility (henceforth CEU)

model of Schmeidler [12] and the maxmin expected utility (also known as the multiple prior) model of

Gilboa & Schmeidler [8].1 They de�ne for a given preference relation < from this class, the (generally)

partial ordering<� that is the maximal sub-relation of< satisfying all the axioms of subjective expected

utility (SEU) except completeness.2 They refer to <� as the unambiguous preference relation and show

that it admits a representation in the style of Bewley [2]: in particular, there is a utility function u .�/

de�ned on the set of outcomes X and a non-empty, compact and convex set of probability measures D

de�ned on the state space S such that for any pair of acts f and g,

f <� g ()

Z

S

u . f .s// dP .s/ >

Z

S

u .g .s// dP .s/ , 8 P 2 D.

The relation <� is complete if and only if D is a singleton in which case < equals <� and has the SEU

form.

Furthermore, they establish the existence of a function � .�/ that maps each act f to a weight � . f /

in [0; 1], such that < can be represented by the functional:

V . f / D � . f /min
P2D

Z

S

u . f .s// dP .s/C .1� � . f //max
P2D

Z

S

u . f .s// dP .s/ : (1)

Typically V will have kinks at constant acts, (that is, acts which assign the same utility to every state).

Thus it is not possible to apply conventional notions of differentiation. Instead GMM use the Clarke

derivative.3 They also show that the set D admits a straightforward differential characterization. For our

purposes it is enough to note that for the functional I : RS ! R, in which I .u � f / D V . f /, for each

act f , the set D is precisely @ I .0/, the Clarke differential of I at 0.

GMM are careful to note the following feature of their representation. To generate preferences in

their class it is not enough to �x an arbitrary (non-empty, weak* compact and convex) set of probability

1See GMM [7], Axioms 1-5. The formal statements of these axioms appear in the appendix below.

2Note this is equivalent but not identical to the original de�nition, for details see [7]. Related research can be found in

Nehring [11].

3The Clarke derivative is one way to extend the concept of a derivative on Rn to functions which have some kinks. It can

also be seen as a generalization of the super-gradient to a function which is not necessarily concave. For further details see

Clarke [4].
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measures D and an arbitrary index � .�/ and substitute them into equation (1): Rather in order for ex-

pression (1) to generate an invariant biseparable preference relation for a given setD and index � .:/, we

need to check that the associated Clarke differential of I at 0 is indeed equal to D.

At �rst glance expression (1) appears closely related to the classic �-MEU model:

V . f / D �min
P2D

Z

S

u . f .s// dP .s/C .1� �/max
P2D

Z

S

u . f .s// dP .s/ . (2)

However there are two differences. First in the classic �-MEU model the weight � on the minimum

expected utility is constant, whereas in expression (1) the weight � . f / depends on the act f . Second in

the classic �-MEU model the set D can be any non-empty weak* compact set of probability measures,

whereas in expression (1), D must be equal to the Clarke differential at 0.

GMM provide an axiomatic characterization that combines the key features of the two models: the

ambiguity aversion index � .�/ is constant and equal to some �xed weight � in [0; 1], and the set of

probabilities is given by the Clarke differential at 0.4 That is, the preferences admit a representation

of the form given in expression (2) with the restriction that D D @ I .0/, where I .u � f / D V . f /.

Imposing the additional restriction that � . f / be constant implies GMM's representation must satisfy a

type of �xed point property. If one starts with a given set D and constructs a set of �-MEU preferences

with this set of priors; then it is necessary that the Clarke differential at 0 be equal toD. For a �nite state

space, however, we show that any relation that satis�es GMM's axiomatization (that is, their Axioms

1-5 and 7) the constant ambiguity aversion index � is equal either to 0 or to 1. That is, the preference

relation is either maxmax expected utility or maxmin expected utility.

Our proof strategy is to �x a closed convex set,D, of probability distributions on S and an � in [0; 1],

and consider the preferences de�ned by expression (2) and de�ne I : Rn ! R by I .u � f / D V . f /.

If the preferences satisfy the GMM axioms, then @ I .0/ should yield the original set D. The analysis in

section 3 shows that when we take the Clarke derivative, we do not get back the original set D unless

the ambiguity index, �; is equal either to 1 or to 0.

The intuition is most clear in the case where D is a circle as shown in �gure 1. The �gure considers

a given act f . The expected value of f is maximised at q 2 D and minimised at q 0. The decision weight

on f is accordingly �q 0 C .1� �/ q . As f varies the decision weights trace out the boundary of the

4The axiomatization consists of their Axioms 1-5 and an additional axiom Axiom 7. The formal statement of this axiom

appears in the appendix below.
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inner circle. The Clarke differential, @ I .0/, is the convex hull of these points, which corresponds to the

shaded area in the diagram. As can be seen, it is a proper subset of the set of priors D.

A similar result does not hold for in�nite state spaces. We show that there exist examples of �-MEU

preferences satisfying GMM's axioms.

Organization of the paper The next section provides a review of some of the mathematical tech-

niques we shall be using. In section 3 we show that when the state space is �nite there is no �-MEU

preference, which satis�es the GMM axioms. However there are examples of such preferences over

in�nite state spaces as we shall demonstrate in section 4. Formal statements of GMM's axioms appear

in the appendix.

2 Mathematical Preliminaries

This section reviews some mathematical concepts which we need, in particular the Clarke derivative.

2.1 Lipschitz functions

The Clarke derivative is de�ned for functions which are locally Lipschitz. These are de�ned as follows.

De�nition 1 Let X be a subset of a Banach space. A function f : X ! R is said to be Lipschitz if there

3



exists L > 0 such that for all x; y 2 X; j f .x/� f .y/j < L kx � yk : A function g : X ! R; is said to

be locally Lipschitz if for all x 2 X; there is a neighbourhood of x on which g is Lipschitz.

Lemma 1 Let f and g be two real valued functions de�ned on an open subset U of Rn . Then if both f

and g are Lipschitz so is f � g.

Proof. Since f and g are Lipschitz, there exist L 0; L 00 > 0 such that j f .x/ � f .y/j < L 0 kx � yk

and jg .x/� g .y/j < L 00 kx � yk : Now let L D maxfL 0; L 00g and note that . f � g/.x/ D f .x/ �

g.x/; then we have j. f � g/.x/ � . f � g/.y/j D j f .x/� g.x/� f .y/C g.y/j 6 j f .x/� f .y/j C

jg .x/� g .y/j < L kx � yk C L kx � yk < .2L/ kx � yk :

Clarke [4] shows that any bounded convex function is Lipschitz.

Proposition 1 (Clarke [4], Proposition 2.2.6, p.34) Let U be an open subset of a Banach space X;

and let f : U ! R be convex and bounded above on a neighbourhood of some point of U. Then for any

x in U, f is Lipschitz near x.

2.2 Derivatives

The usual derivative on Rn is de�ned as follows.

De�nition 2 A function V : Rn ! R; is said to be differentiable at x if there exists a linear function

dVx : R
n ! R such that:

lim
h!0

V .x C h/� V .x/� dVx .h/

khk
D 0:

The limit is required to be independent of the direction from which h approaches 0. The linear

function dVx may be represented by the gradient, rV , of V in the sense that dVx .h/ D rV � h, for all

h 2 Rn .

Typically when there is ambiguity, preferences are represented by functions which are not differ-

entiable everywhere. To overcome this problem GMM use the Clarke derivative. Below we de�ne the

Clarke (directional) derivative which measures the slope of a function in a particular direction.

De�nition 3 Let V : Rn ! R be a locally Lipschitz function. The Clarke (lower) directional derivative

of V at x in direction d is de�ned by:

DV .x; d/ D lim inf
y!x;t#0

V .y C td/� V .y/

t
.
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At a point where V is differentiable DV .x; d/ is equal to the derivative dVx .d/. If V is not differ-

entiable at x , there is locally more than one normal vector to the indifference curves of V . The Clarke

differential is essentially the closure of the convex hull of these local normal vectors. It can be seen as

playing the role of the normal vector at points where the function is not differentiable.

De�nition 4 Let V : Rn ! R be a locally Lipschitz function. The Clarke differential of V at x is

de�ned by:

@V .x/ D
�

z 2 Rn : z:d > DV .x; d/ ;8d 2 Rn
	

.

The Clarke differential is a generalization of the derivative on Rn . Recall that at a point where a

function is differentiable, the derivative may be represented by the gradient vector. The Clarke differ-

ential is equal to the gradient at points where the function is differentiable. A Lipschitz function on Rn

is differentiable almost everywhere. Let Oy be a point where V is not differentiable. Then there exists a

sequence of points, at which V is differentiable, which tends to Oy. One can then consider the limit of

the gradient of V at these points. In general, the limit will depend on the sequence chosen. Thus we get

a set of gradients at Oy, which is the union of the limits of the gradients taken over all sequences which

converge to Oy. The Clarke differential is the convex hull of this set of gradients. The following result

characterizes the Clarke differential in �nite dimensional spaces. Its proof can be found in Clarke [4].

Theorem 1 (Clarke [4], Theorem 2.5.1) Let V : Rn ! R be Lipschitz near x and suppose N is

any null set (i.e. a set of Lebesgue measure 0) in Rn: Then

@V .x/ D co flimrV .xi / : xi ! x; xi 2 0V ; xi =2 N g ;

where 0V denotes the set of points at which V is differentiable and co .A/ denotes the convex hull of A:

3 Finite State Spaces

The main result of this section is to show that when the state space is �nite, GMM's axioms 1-5 plus 7

imply that the weight � in expression (2) is equal either to 1 or to 0. First we shall present the proof,

then we shall discuss some examples which illustrate key points.

5



3.1 The Main Result

Throughout this section we assume that there is a �nite set, S, of n states of nature. Let 1.S/ denote

the set of probability distributions over S. For simplicity we shall also assume that acts pay-off in utility

terms, hence an act is a function from S to R. This is without any essential loss of generality, since our

analysis could also be conducted using a conventional utility function over outcomes, if desired. As a

result we may identify the functional I with the functional V in expression (2). This allows us to write

the Clarke differential at 0 as @V .0/. The set of all acts is denoted by A .S/, which can be identi�ed

with Rn .

The strategy of proof is as follows. As already noted, invariant biseparable preferences represented

by expression (1) must satisfy a �xed point property. Imposing the extra restriction that � . f / be a

constant function implies that this �xed point property cannot be satis�ed unless � . f / � 1 or � . f / � 0.

In particular, if � . f / D � for some � in .0; 1/, then the extreme points of the set of priors, D, are not

included in the Clarke differential.

Let D be a given closed convex set of probabilities on S and de�ne the functions �; : A .S/! R

by � . f / D minp2D Ep f and  . f / D maxp2D Ep f . That is, � and  represent maxmin and maxmax

expected utility preferences respectively. The functions � and  are clearly not differentiable at constant

acts. If D does not have full dimension (that is, n� 1) or there are kinks in the boundary of D, they may

have other points of non-differentiability as well. However, since � is concave and  is convex, these

functions are differentiable almost everywhere.

In order to apply the analysis from [4] we need to establish that V is Lipschitz, which is shown in

the next result.

Lemma 2 For all f 2 A .S/ ; V is locally Lipschitz at f:

Proof. Let B denote the closed ball radius � around f and let Nx D maxs2S f .s/ : Then for all g 2

B; � .g/ 6 Nx C � and  .g/ 6 Nx C �: Hence both  . f / and � . f / are bounded on a neighbourhood

of f . Both .1� a/  . f / and ��� . f / are convex functions and are therefore locally Lipschitz by

Proposition 1. Since V is the difference of these two functions, which are locally Lipschitz, V itself is

locally Lipschitz by Lemma 1.

The next result shows that at a point where � is differentiable, the derivative must be equal to the

minimising probability distribution. It also �nds an expression for the derivative of V at points where
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both � and  are differentiable. If f 2 A .S/ is a given act, we shall use the notation p f (resp. Np f ) to

denote an element of argminp2D p � f (resp. argmax p2D p � f ).

Lemma 3

1. Suppose that � (resp.  ) is differentiable at f then d� f .y/ D p f � y; (respectively, d f .y/ D

Np f � y) or equivalently p f D r� . f /, (respectively, Np f D r . f /).

2. If � (resp.  ) is differentiable at then argminp2D p: f (resp. argmaxp2D p: f ) is unique.

3. Let V be an �-MEU preference functional and suppose that � and  are differentiable at f , then

V is differentiable at f 2 A .S/ and rV . f / D � p f C .1� �/ Np f .

Proof. We shall prove part 1 by contradiction. If the result is false then there exists an act f such that

� is differentiable at f and d� f .y/ D z:y; where z =2 argminp2D p: f: If h D � f , where � 2 R; � > 0;

then � . f C h/ D p f : . f C h/ : Thus �. fCh/��. f /�z:h
khk

D
p f :. fC� f /�p f : f��z: f

�k f k
D

p f : f�z: f

k f k
< 0; since z =2

argminp2D p: f: Hence limh!0
�. fCh/��. f /�z:h

khk
6D 0; which contradicts the assumption that d� f .y/ D

z:y: This establishes that d� f .y/ D p f :y: By similar reasoning we may show that d f .y/ D Np f :y:

To prove part 2, assume � is differentiable at f then d� f D Oq 2 argminp2D p: f: Suppose if possible

there exists Qq 6D Oq such that Qq 2 argminp2D p: f: Consider h 2 R
n such that Qq:h D 0; and Oq:h > 0 and

let Nq 2 argminp2D p: . f C �h/ : Then Nq . f C �h/ 6 Qq . f C �h/ D Oq: f: Thus
�. fC�h/��. f /�d� f .�h/

k�hk
D

Nq. fC�h/:�Oq: f��h: Oq
�khk

6 Qq: fC� Qq:h�Oq: f
�khk

� h: Oq
khk

D � h: Oq
khk

< 0: Hence lim�!0
�. fC�h/��. f /�d� f .�h/

k�hk
< 0: However

this contradicts the assumption that � is differentiable at f:

Part 3 follows from part 1 and linearity of the derivative on Rn .

Let L denote the linear span of fp � q : p; q 2 Dg5 and denote by L? the orthogonal complement

of the vector space L . If D has full rank then L? will consist just of the constant vectors in A.S/ D Rn .

If the dimension of D is less than n � 1, then L will contain, in addition, non-constant acts with respect

to which argminp2D p � f D argmax p2D p � f D D holds. Recall that any f 2 A .S/ can be uniquely

written in the form f D g C h; where g 2 L and h 2 L?. The next result relates the Clarke differential

@V .0/ to L :

5We need to consider differences, since 1.S/ is an af�ne subspace not a linear subspace of Rn .
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Lemma 4 Let D � 1.S/ be a closed convex subset with cardinality greater than 1; let V : Rn ! R

be an �-MEU preference functional with set of priors D then,

@V .0/ � co
�

� argminp2D p � f C .1� �/ argmaxp2D p � f : f 2 Ln f0g
	

:

Proof. Since � is a concave function and  is a convex function, the set of points at which they are both

differentiable, 0� \ 0 ; is of full Lebesgue measure. Hence by Theorem 1 and Lemma 3,

@V .0/ D co
�

limrV . fn/ : fn ! 0; fn 2 0V \ 0� \ 0 
	

D co
n

lim
�

� p fn C .1� �/ Np fn
�

: fn ! 0; fn 2 0V \ 0� \ 0 

o

: If h 2 L? then � and  are not dif-

ferentiable at h, because for each h 2 L?, p � h D p0 � h for all p; p0 2 D. Hence argminp2D p � h and

argmaxp2D p � h are not singleton since D is not singleton.

Consider a particular sequence fn ! 0; fn 2 0V \ 0� \ 0 such that lim
�

� p fn C .1� �/ Np fn
�

exists. Fix an n. Write fn D gnChn , where gn 2 L and hn 2 L
?. De�ne Ogn D

gn
kgnk

: Since fn 2 0� \0 

we know that fn =2 L
? and hence gn 6D 0. Since p � hn D p0 � hn for all p; p

0 2 D, we have p fn D p Ogn

and Np fn D Np Ogn : Therefore � p fn C .1� �/ Np fn D � p Ogn C .1� �/ Np Ogn .

Returning to the sequence fn ! 0; fn 2 0V \ 0� \ 0 , consider the corresponding sequences of

Ogn's, p
Ogn 's and Np Ogn 's. By construction the Ogn's lie in a compact set (the unit ball). The p

Ogn 's and Np Ogn 's

also lie in a compact set (the simplex). Hence, by taking a subsequence if necessary, we may assume

that the three sequences Ogn , p
Ogn and Np Ogn all converge. Let Og; p and Np be the respective limit points. By

construction Og 6D 0. Furthermore Og 2 L because L is a �nite dimensional subspace and therefore closed.

By the upper hemi-continuity of argmax and argmin we know that Np 2 argmaxp2D p � Og and p 2

argminp2D p � Og. Putting the steps together we have lim
�

� p fn C .1� �/ Np fn
�

D � p C .1� �/ Np 2

� argminp2D p � Og C .1� �/ argmaxp2D p � Og; where Og 2 Ln0:
6

Preferences of the �-MEU form are not differentiable at constant acts. If these are the only points at

which V .�/ is not differentiable (as is the case for Hurwicz preferences, de�ned below) then the Clarke

differential is actually equal to

co
�

� argminp2D p � f C .1� �/ argmaxp2D p � f : f 2 Ln f0g
	

.

6We would like to thank the referee and associate editor for their helpful comments and suggestions in constructing the

proof of this result.
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If there are other points where V .�/ is not differentiable, it is possible that @V .0/ is a proper subset

of co
�

� argminp2D p � f C .1� �/ argmaxp2D p � f : f 2 Ln f0g
	

. Whether the set inclusion is strict

or not, the next result shows that extreme points of D are not contained in this set and hence, as an

immediate corollary to Lemma 4, are not included in @V .0/.

Lemma 5 Let D be a closed convex subset of1.S/ with cardinality greater than 1; let V : Rn ! R be

an �-MEU preference function with set of priors D and 0 < � < 1. If Op is an extreme point of D, then

Op =2 co
�

� argminp2D p � f C .1� �/ argmaxp2D p � f : f 2 Ln f0g
	

:

Proof. By construction, D has full rank within L . Thus if we view vectors in Ln f0g as functionals on

D none of them is constant on D, that is, for all f 2 Ln f0g, argminp2D p � f \ argmax p2D p � f D ?.

By de�nition, an extreme point of D cannot be written as a convex combination of two other distinct

elements of D. Therefore Op =2 co
n

� p f C .1� �/ Np f : f 2 Ln f0g
o

.

In �nite dimensions, a closed convex set always contains an extreme point Op.7 Thus in conjunction with

Lemmas 3, 4 and 5, we have established there exists a point Op in D such that Op =2 @V .0/. However this

constitutes a failure of the preferences to admit a representation of the form given in expression (2) with

the restriction that D D @V .0/. Hence we have established the following result.

Theorem 2 Let D � 1.S/ be a closed convex subset with cardinality greater than 1; let V : Rn ! R

be an �-MEU preference function with set of priors D and 0 < � < 1 and let < be a preference order

on Rn , which is represented by V : Then < cannot satisfy GMM axioms 1-5 and 7.

3.2 Examples

We illustrate our analysis by considering two examples, Hurwicz preferences and the case where the set

of priors consists of the convex combinations of two probability distributions.

3.2.1 Hurwicz Preferences

Hurwicz preferences are de�ned as follows.

7Indeed by the Krein Milman theorem ([5], p. 440) a closed convex set is the closure of the convex hull of its extreme

points.
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De�nition 5 The Hurwicz preference functional,8 H : A .S/! R is de�ned by

H . f / D � min
P21.S/

Z

S

f .s/ dP .s/C .1� �/ max
P21.S/

Z

S

f .s/ dP .s/

or equivalently H . f / D � f.n/ C .1� �/ f.1/. Here for a given vector f 2 R
n let f.k/ denotes the kth

highest component of f . Hence f.1/ > f.2/ > ::: > f.n/:

Figure 2 illustrates how our analysis applies to Hurwicz preferences when there are 3 states. In this

case the set of priors is 1.S/, which has full dimension. The space L? consists just of the constant

acts. Let f be a given non-constant act. The dashed lines connect points at which the expected value

of f is constant (in probability space). For any non-constant act, the maximum and minimum expected

utility occur at two distinct vertices of the simplex. For the given act f; the maximum and minimum

expected utility occurs at p1 D 1 and p3 D 1 respectively. The decision weight on f is therefore

h1� �; 0; �i : In general, the decision weight, � pgC.1� �/ Npg; on any non-constant act, g;must be one

of the following six vectors: h�; 1� �; 0i ; h�; 0; 1� �i ; h1� �; �; 0i ; h1� �; 0; �i ; h0; �; 1� �i

and h0; 1� �; �i : The Clarke differential @H .0/ is accordingly the convex hull of these six vectors,

which forms a hexagon inside the simplex. This set is clearly closed. The extreme points of 1.S/ are

the three vertices, p1 D 1; p2 D 1 and p3 D 1. As can be seen from �gure 1, for any �; 0 < � < 1;

these points are not contained in @H .0/. Moreover it is only the three vertices which are not contained

in @H .0/ for all � : 0 < � < 1; i.e. for any other point in 1.S/ there is a range of values of � for

which the given point is contained in @H .0/.9

8See Hurwicz [9] & [10]

9For further details of how the GMM representation applies to Hurwicz preferences see [6].
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.�; 0; 1� �/

.1� �; �; 0/ .1� �; 0; �/

.0; �; 1� �/.0; 1� �; �/

.�; 1� �; 0/

@ I .0/

p2 D 1 p3 D 1

p1 D 1

AAK

AAK

AAK

AAK

s

s

f1 > f2 > f3

p1 f1 C p2 f2 C p3 f3 D Nu

s

p1 f1 C p2 f2 C p3 f3 D Numax

p1 f1 C p2 f2 C p3 f3 D Numin

p1 f1 C p2 f2 C p3 f3 D Nu0

Numax > Nu > Nu0 > Numin

D D 1.S/

Figure 1: D has full rank

s

p2 D 1 p3 D 1

p1 D 1

� p� f C .1� �/ Np� f

s

B
BBM

@ I .0/ D [� p� f C .1� �/ Np� f ; � p f C .1� �/ Np f ]

f1 > f2 > f3

p1 f1 C p2 f2 C p3 f3 D Numax

p f D Qq D .b; 1� b; 0/

Np f D Oq D .a; 0; 1� a/
s

� p f C .1� �/ Np f

s

D D [.b; 1� b; 0/; .a; 0; 1� a/]

p1 f1 C p2 f2 C p3 f3 D Numin

Figure 2: D has less than full rank
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3.2.2 One-dimensional set of priors

In �gure 3, the set of priors consists of all convex combinations of two probability distributions Oq D

ha; 0; 1� ai and Qq D hb; 1� b; 0i. The set of priors is a one-dimensional subset of the simplex and

hence does not have full dimension. In this case L? D
�

f 2 A .S/ : Oq � f D Qq � f
	

. This is a two

dimensional subspace of R3, which contains the constant acts. Graphically it consists of acts whose

indifference surfaces are parallel to the line connecting Oq and Qq . The given act f , attains its maximum

at Oq and its minimum at Qq: Accordingly it gets decision weight � Qq C .1� �/ Oq . The Clarke differential,

@V .0/, is equal to the shorter line shown in bold. In this case the extreme points are just Oq and Qq . As

in the previous case, the extreme points are not contained in the Clarke differential for any value of

� : 0 < � < 1. All other members of the set of priors are contained in the Clarke differential for some

range of �'s.

4 In�nite State Spaces

In this section we show by example that when the state space is in�nite Axioms 1 - 5 and 7 can be

satis�ed.10 That is, we �nd a set of preferences with a representation of the form given in expression

(2) with an � in .0; 1/ that also satis�es the constraint D D @V .0/. Indeed, our example shows it is

possible to construct a set D which is independent of �.11

Let the set of states of nature be S D [0; 1] and let 6 denote the � -algebra of Borel sets of [0; 1].

Assume that acts lie in C .S/ ; the space of continuous functions on S with the sup norm. The topological

dual of C .S/ may be identi�ed with ca [0; 1] the set of all countably additive, bounded and Borel-

measurable set-functions, where the topology on ca [0; 1] is given by the total variation norm. If s 2 S;

let �s denote the Dirac measure on S; i.e. �s .A/ D 1; if s 2 AI D 0; otherwise. Let H denote the

set of all countably additive probability distributions on [0; 1] and consider the following preference

functional.

10In private correspondence, Klaus Nehring has informed us of an example satisfying the GMM axioms in which the set

of priors is the set of all �nitely additive measures on [0; 1] ; which assign zero probability to all events of Lebesgue measure

zero.

11It is not immediately clear from the representation in equation (3) (see page 14) that such a D would exist.
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De�nition 6 De�ne a preference functional W : C .S/! R by

W . f / D �min
p2H

Z

f dp C .1� �/max
p2H

Z

f dp:

Let <0 denote the preference relation on C .S/ de�ned by f <0 g , W . f / > W .g/ :

These preferences may be seen as the in�nite dimensional analogue of the Hurwicz preferences

discussed in section 3.12 We shall show that W .�/ satis�es the �xed point property, H D @W .0/, hence

the preferences generated by W .:/ satisfy GMM's axiomatization.

Proposition 2 The preference relation <0 satis�es GMM's axioms 1-5 plus 7.

In order to prove this result we use Lemma 6 and the following two results which describe properties

of the Clarke differential of a real-valued function on an arbitrary Banach space, (not necessarily Rn).

Proposition 3 (Clarke [4], Corollary 2, p.39) Let X be a Banach space and let V and W be real-

valued functions on X. For any �; � 2 R, @ .�V C �W / .x/ � �@V .x/C �@W .x/ :

Proposition 4 (Clarke [4], Proposition 2.2.7) Let U be an open convex subset of a Banach space

X: If V is convex (resp. concave) on U and Lipschitz near x, then @V .x/ coincides with the sub-gradient

(resp. super-gradient) at x in the sense of convex analysis:

De�ne functionals � (resp. � ): A .S/! R by � . f / D minp2H Ep f; (resp. � . f / D maxp2H Ep f ).

Lemma 6 shows that Dirac measures are sub-gradients of � and therefore are in the Clarke differential

@� . f / :

Lemma 6 Let f 2 C [0; 1] be such that Os 2 argmin s2[0;1] f .s/ ; (resp. Os 2 argmaxs2[0;1] f .s/) then

� Os 2 @� . f / (resp. � Os 2 @� . f /).

Proof. By Proposition 4, it is suf�cient to show that the linear functional � : C [0; 1] ! R; de�ned

by � .h/ D
R

h� Os is a super-gradient of � at f: Let g 2 C [0; 1] : Then � . f / D f
�

Os
�

D
R

f d� Os and

� .g/ 6 g
�

Os
�

D f
�

Os
�

C
�

g
�

Os
�

� f
�

Os
��

D � . f / C
R

. f � g/ � Os : This establishes that � is a super-

gradient of � at f: The other case is similar.

12We would like to thank an associate editor for suggesting this argument.
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Proof of Proposition 2 As explained earlier, GMM's axioms 1-5 plus 7 are equivalent to the fol-

lowing representation:

V . f / D � min
P2D

Z

S

x .s/ dP .s/C .1� �/max
P2D

Z

S

x .s/ dP .s/ and @V .0/ D D; (3)

for some constant � in [0; 1] :We shall demonstrate that @W .0/ D H: The rest of the representation is

clearly satis�ed.

Let Os be a given point in .0; 1/ : Then there is a piecewise-linear function fn 2 C .S/ such that

fn .0/ D 0; fn
�

Os � 1
n
� 1

n2

�

D 0; fn
�

Os � 1
n

�

D � 1
n
; fn

�

Os � 1
n
C 1

n2

�

D 0; fn
�

Os C 1
n
� 1

n2

�

D 0; fn
�

Os C 1
n

�

D

1
n
; fn

�

Os C 1
n
C 1

n2

�

D 0; fn .1/ D 0: (Thus fn is a function which has a unique maximum at Os C
1
n
and

a unique minimum at Os � 1
n
.) The function fn is illustrated in �gure 4. The sequence of functions fn

converges to 0, (in the sup norm).

It is clear that � OsC 1
n
D argmaxq2H

R

fndq and � Os� 1
n
D argmin q2H

R

fndq . Thus by Lemma 6 and

Proposition 3, wn D �� Os� 1
n
C .1� �/ � OsC 1

n
2 @W . fn/ : Since W is positively homogenous by [7]

Proposition A.3, @W . fn/ � @W .0/ : Hence wn 2 @W .0/ : De�ne

J D co

�

�� Os� 1
n
C .1� �/ � OsC 1

n
: Os 2 .0; 1/ ; 1 6 n 61; Os �

1

n
2 .0; 1/ ; Os C

1

n
2 .0; 1/

�

;

where the bar denotes closure in the weak* topology. Clearly J � H:
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Since for any g 2 C .S/ ;
R

gdwn ! g
�

Os
�

D
R

gd� Os; the sequence wn weak* converges to � Os : This

establishes that the Dirac measures are in J : The convex hull of the Dirac measures is the set of discrete

measures on [0; 1] : By Bauer [1] (Corollary 7.7.4, p. 230) the weak* closure of the discrete measures is

the set of all countably additive measures on [0; 1] : In other words the �xed point property,H D @W .0/

holds.

As argued above, these preferences may be seen as the in�nite dimensional analogue of the Hurwicz

preferences. In both cases the set of beliefs is the closed convex hull of the Dirac measures on the

relevant state space. It is clear that the Dirac measures are extreme points of the set H. For a �nite

state space, the set of priors is the set of all convex combinations of those probability distributions which

assign probability one to a given state, that is, the Dirac measures. If there are a �nite number, n say, of

states, then there are n Dirac measures. In this case, the topology on the state space is discrete. Hence

each state is topologically isolated. No state is a limit of a sequence of other states and hence the Dirac

measures are not the limit of a sequence of other Dirac measures.

For the preferences studied in this section, the state space is [0; 1] with the usual topology. In this

case any state may be approximated by a sequence of other states and consequently any of the Dirac

measures may be approximated by a sequence of other Dirac measures. If the set of priors had one or

more isolated exposed points then a similar problem would arise as in �nite dimensions and the GMM

axioms would not be satis�ed.

In in�nite dimensions it is possible to construct a sequence fn such that the distance between the

maximizer of E fn and the minimizer of E fn tends to zero as n tends to in�nity. This is not possible in

�nite dimensions, even if the set D has an in�nite number of extreme points, since the maximizer and

minimizer of E fn will lie on opposite sides of the set D as illustrated in �gure 1.

There are a number of ways in which we could extend this example. For instance assume that the

state space, S; is any given closed convex subset of Rn; and the space of acts is the set of continuous

real valued functions on S: Then ifD consists of all countably additive measures over any closed convex

subset of S; one can show using a similar argument that the GMM axioms will be satis�ed. Another

interesting case is where the set of beliefs consists of convex combinations of a given prior, q; and an

arbitrary countably additive measure, p; on [0; 1] ; i.e. D D f.1�  / q C  p : p 2 Hg : This can be

recognized as a version of the neo-additive preferences axiomatized in Chateauneuf et al. [3]. Both of
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these cases can be shown to satisfy the GMM axioms by similar reasoning to that used in the proof of

Proposition 2.

However even with an in�nite state space, the need to satisfy a �xed-point property limits the mem-

bership of the family of preference relations which can admit a representation V .�/ of the form in

expression (2) with � in .0; 1/ and satisfying D D @V .0/. By similar reasoning to that used in section

3, the set of priors D cannot be �nitely generated.13 That is, D cannot be the set of all convex com-

binations of a given �nite set of probability distributions. More generally these constraints cannot be

satis�ed when the set D lies in a �nite dimensional (af�ne) subspace of ca .S/. Another case where the

GMM axioms cannot be satis�ed for an � in .0; 1/ is whereD contains an isolated extreme point. (Since

the isolated extreme point will not be in the Clarke differential @V .0/.)

An open problem is to �nd a characterization of those sets of priors over in�nite states spaces which

satisfy the GMM axioms. As explained above, expression (3) imposes constraints, which imply that not

any set of priors can satisfy these axioms. The precise implications of these constraints are not clear.

Appendix: GMM Axioms 1-5 and 7.

As a reference for the reader, we list here GMM's axioms 1-5 and 7.

Axiom 1 (Weak order) For all f , g, h 2 A .S/ : .1/ either f % g or g % f , .2/ if f % g and g % h,

then f % h.

Axiom 2 (Certainty Independence) For all f , g 2 A .S/, all x 2 X, and all � 2 .0; 1] :

f % g , � f C .1� �/ x % �g C .1� �/ x.

Axiom 3 (Archimedean Axiom) For all f , g, h 2 A .S/, if f � g and g � h, then there exist �, � 2

.0; 1/ such that

� f C .1� �/ h � g and g � � f C .1� �/ h.

Axiom 4 (Monotonicity) For all f , g 2 A .S/, if f .s/ % g .s/ for all s 2 S, then f % g.

Axiom 5 (Nondegeneracy) There are f , g 2 A .S/ such that f � g.

13This result has been independently proved in Siniscalchi [13].
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In order to state the last axiom, recall that %� is the maximal sub-relation of % that satis�es all the

axioms of subjective expected utility except completeness.

Axiom 7 For all f , g 2 A .S/, if f %� x , g %� x and x %� f , x %� g for all x 2 X ; then

f � g.
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