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Abstract

A minimal diversity game is an n player strategic form game in which each player has m

pure strategies at his disposal. The payoff to each player is always 1, unless all players

select the same pure strategy, in which case all players receive zero payoff. Such a game

has a unique isolated completely mixed Nash equilibrium in which each player plays each

strategy with equal probability, and a connected component of Nash equilibria consisting

of those strategy profiles in which each player receives payoff 1. The Pareto superior com-

ponent is shown to be asymptotically stable under a wide class of evolutionary dynamics,

while the isolated equilibrium is not. On the other hand, the isolated equilibrium is strate-

gically stable, while the strategic stability of the Pareto efficient component depends on

the dimension of the component, and hence on the number of players, and the number of

pure strategies.

JEL Codes. C72, D44.

Keywords. Strategic form games, strategic stability, evolutionary stability.

1 Introduction

Imagine a castle that is being guarded by n soldiers. The castle has two gates, east and west,

and the castle is currently under attack from enemy troops. If each gate is guarded by at least

one soldier, the guards can lock the gates and the enemies won’t enter. However, if one gate

is left unattended then the castle will be taken and all soldiers will perish 1. The question is:

∗Department of Economics, University of Exeter, Streatham Court, Exeter EX4 4PU, UK. Email:
d.g.balkenborg@exeter.ac.uk

†Department of Mathematics, University of Pavia, 27100 Pavia, Italy. sdm.golem@gmail.com
‡Corresponding author. Department of Quantitative Economics, University Maastricht, P.O. Box 616, 6200
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1This is an example of a binary minimal diversity game. In a binary minimal diversity game each player has

two (pure) strategies and all players win if there is a minimum of diversity in the players choices, i.e. at least
two players choose to do something different.
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How should the soldiers choose to defend the castle? Clearly, all that is needed is that not all

soldiers choose to defend the same gate.

The game thus defined has two types of Nash equilibria. In one there is complete lack of

coordination, and each soldier chooses to defend each gate with equal probability. Hence, in

this equilibrium there is a positive probability that all soldiers show up at the same gate, in

which case the castle is taken by the enemy. In the second type of equilibrium the coordination

problem is solved. Two soldiers choose different gates, one east and one west, while the

remaining soldiers can, and may, do whatever they like.

The two types of Nash equilibria are very different. Can one convincingly argue that one is more

reasonable than the other? In this paper we compare two approaches to answer this question.

We show that, from the evolutionary perspective, the equilibria where the coordination problem

is solved are most natural. We show that they form a set that is asymptotically stable under

a wide class of evolutionary dynamics, while the equilibrium where the coordination problem

is not solved is always unstable. We then take a look at the above choice problem from the

perspective of strategic stability, notably at the more demanding notions of strategic stability:

essentiality as defined by Wu Wen-Tsün and Jiang Jia-He ([13],[23]), best response stability

as defined by Hillas ([8],[9]), and strategic stability in the sense of Mertens ([16],[17]). Here it

turns out that the number of soldiers in the castle starts to matter. Surprisingly, the question

is not whether the number of soldiers is large or small, but whether it is even or odd. If the

number of players is even then the set of Nash equilibria where the coordination problem is

solved contains a strategically stable set, otherwise it does not. The Nash equilibrium where

the coordination problem is not solved is always strategically stable, in virtually any sense.

The main purpose of the paper is to substantiate these claims. We think these findings are

interesting for at least two reasons. First of all, there is a whole class of very simple games

where the two approaches of evolutionary stability and strategic stability make mutually ex-

clusive predictions, namely whenever the number of players is odd. This contrasts with earlier,

more positive findings, notably by Swinkels [20] and Demichelis and Ritzberger [3]. Secondly,

the alternating behavior for strategic stability solutions is puzzling. Although we show that

continuity arguments, based on behavior induced by inconsistent beliefs, do provide a basic

intuition for our findings, continuity is explicitly ruled out by Kohlberg and Mertens [14] as a

reasonable axiom for solution concepts. The question therefore remains what game theoretic

arguments would justify the alternating behavior we find for the more demanding notions of
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strategic stability.

Refinement theory became popular when, with the increased use of game theoretic methods in

Economics in the 1970’s and early 1980’s, it became clear that the notion of a Nash equilibrium

is too weak as a solution concept to analyze relevant economic models. Refinements such as

perfect, proper and sequential equilibrium were introduced and widely used. However, as it

turned out, also refinements of Nash equilibrium allowed for many possible solutions, including

very implausible ones. Moreover, refinements were often only motivated and introduced on an

ad-hoc, example-driven basis. This encouraged game theorists to try to find a more systematic

and consistent way to further refine among Nash equilibria. One attempt in this direction is

made in the book Harsanyi and Selten [6], which has the ambitious aim to select a unique Nash

equilibrium for every game.

Another influential approach is due to Kohlberg and Mertens [14]. In contrast to Harsanyi

and Selten, Kohlberg and Mertens [14], henceforth called K&M, argue that any satisfactory

selection criterion cannot select a single equilibrium, but forces us to select sets of closely

related equilibria. Their second major contribution to the ongoing discussion was to produce

a list of basic criteria such refined sets of equilibria should satisfy. K&M’s point of view was

that, while a full-fledged axiomatic approach may be out of reach, the search for a satisfactory

solution concept should be guided at least by a list of properties that are desirable from a

game theoretical perspective. Their own initial notion of strategically stable sets of equilibria

fails on some of these criteria. However, Mertens [16] proposes a notion of strategic stability

that satisfies all the requirements made by K&M and that passes several additional plausibility

tests.

On the other side of the spectrum experimental research, e.g. by Güth et al. [4] on the ulti-

matum game, made it clear that classical game theory, in particular Nash equilibrium, is not

always a good predictor of human behavior. These results inspired a new line of research in

game theory that focused on models of bounded rationality, in an attempt to avoid the tradi-

tional game-theoretic approach to take the assumption that players are rational to its ultimate

conclusions. One such attempt uses learning dynamics to model boundedly rational behavior,

in line with earlier work by evolutionary biologists on animal behavior.

In their seminal work Maynard Smith and Price [15] showed that under certain conditions

such learning dynamics converge to Nash equilibrium. Nash equilibria that are selected via

learning dynamics tend to be rather “refined” Nash equilibria. This raises the question whether
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the outcomes predicted by the learning approach assuming only bounded rationality 2 might

coincide with the outcomes given by the refinement approach, based on the extreme emphasis

on rationality.

Indeed, Demichelis and Ritzberger [3] (henceforth called D&R) showed that for a wide class

of evolutionary dynamics any asymptotically stable Nash equilibrium is automatically strate-

gically stable in the sense of Mertens. 3

However, as K&M emphasized, in general one should look for sets of Nash equilibria. Swinkels

[20] noted that the analysis for sets of Nash equilibria is complicated by the fact that topo-

logical properties of the sets start to matter. He showed for a wide class of dynamics that

asymptotically stable sets of the dynamics contain a strategically stable (even a hyper-stable)

set as defined by K&M, provided that the set is contractible. D&R considerably sharpen this

result. They show for a wide class of dynamics that sets that are asymptotically stable under

the dynamics contain a stable set of Nash equilibria in the sense of Mertens, provided the set

has non-zero Euler characteristic.

While these results show a strong connection between evolutionary and strategic stability

under certain topological restrictions on the solution set, it does not rule out the existence of

convincing examples where the two types of stability are not related. The aim of this paper is

precisely to provide such examples.

More concretely, we present a natural class of coordination games, called minimal diversity

games. Minimal diversity games are coordination games with a slight twist. In classical

coordination games, all players have to choose the same action in order to coordinate. Here the

task faced by the players is precisely to avoid choosing the same action. Each game within this

class has a set of Nash equilibria that consists of one isolated completely mixed Nash equilibrium

and one connected component of Pareto dominant Nash equilibria 4. For two families of

games within the class of minimal diversity games 5 we show that any sufficiently strong

notion of strategic stability exclusively selects the isolated completely mixed equilibrium, while

evolutionary stability exclusively selects the component of Pareto dominant Nash equilibria.

Thus, minimal diversity games provide such examples of games where the predictions made by

2In the literature on bounded rationality evolutionary models are re-interpreted as learning models.
3As Swinkels [20] pointed out, traditional game theory and evolutionary game theory cannot be compared

directly because of the additional symmetry assumptions made in the latter approach. The results in Ritzberger
and Demichelis [3] and related literature are obtained once the assumption of symmetry in evolutionary game
theory is dropped, and conflicts are considered to be inter-species rather than within the same species.

4The connected component is in fact a strict equilibrium set, as is shown in Balkenborg and Schlag [1].
5In one family there are two players with an odd number of strategies, and in the other there are two

strategies and an odd number of players.
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evolutionary stability and strategic stability are different, even in the strong sense that they

may be mutually exclusive.

We conjecture that our results are not merely “accidental”, but true in the following more

general sense. In section 3 we show for any minimal diversity game with n players and m actions

that the set of efficient Nash equilibria is a topological sphere of dimension d = (n−1)(m−1)−1.

Our results strongly indicate that strategic stability and evolutionary stability make mutually

exclusive predictions precisely when the dimension d of the set of efficient Nash equilibria is

odd. This would be entirely in line with the conjecture of Swinkels that the topology of the

component of Nash equilibria in question, specifically its Euler characteristic, is the decisive

factor in the connection (and the distinction!) between the two types of stability.

In relation to this last observation it is interesting to see that, in those cases where the efficient

set is not strategically stable, we can also show that it is not essential in the sense of Wu

Wen-Tsun and Jiang Jia-He [13], [23]. This implies that many evolutionary dynamics never

converge to any equilibrium 6. In this sense strategic stability matters for evolutionary stability

even when at first sight it seems to be irrelevant.

K&M already stressed the necessity to discard the focus on generic classes of strategic form

games, but rather study natural subclasses within the class of strategic form games. K&M made

this observation in the context of extensive form games, where the class of games considered

was defined by fixing the game tree of an extensive form game, and by varying the payoffs

of players at the terminal nodes of the game tree. In a similar vein our class of minimal

diversity games is a natural class of potential games, very much in the spirit of games such as

for example Colonel Blotto games 7. In the class of potential games minimal diversity games

are characterized only by the requirement that players, similar to the task of players in Colonel

Blotto games, need to “avoid coordination” in order to maximize their joint payoff.

The paper is organized as follows. After some preliminaries we introduce the class of minimal

diversity games. We show that the set of Nash equilibria of each minimal diversity game

consists of an isolated completely mixed equilibrium and a connected component G of efficient

equilibria. The latter is shown to be a topological sphere of dimension d = (n−1) · (m−1)−1,

where n is the number of players and m the number of actions. We then show for a wide class

of dynamics (including the replicator dynamics as well as the class of Nash dynamics defined by

6This finding strengthens the observation in D&M that these sets of Nash equilibria are not robustly evolu-
tionary stable. Notice, however, that there are still asymptotically stable attractors not containing fixed points
in the nearby games

7See among others Hart [7], and Monderer and Shapley [18] for motivation and explanation of these games.
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D&R) that the set G is asymptotically stable, while the completely mixed equilibrium is not.

Thereafter we turn to strategic stability where we first observe that all equilibrium components

of these games are strategically stable in the sense of Kohlberg and Mertens. We then derive

the results indicated above, first for games with two players and arbitrary number of players,

and next for games with two strategies and an arbitrary number of players. The Appendix is

entirely devoted to the proof of Theorem 7.2.

2 Preliminaries

This paper concerns the class of minimal diversity games. However, many concepts applied

here are defined for general normal form games. It will hence be useful to have some basic

notation and terminology available for these games.

A finite normal form game consists of a finite set of players N = {1, · · · , n}, and for each player

i ∈ N a finite pure strategy set Si and a payoff function ui: S → R on the set S :=
∏

i∈N Si of

pure strategy profiles. We denote the game by (N, u), where u = (ui)i∈N is the vector of payoff

functions. A mixed strategy σi of player i is a vector (σi(si))si∈Si
that assigns a probability

σi(si) ≥ 0 to each pure strategy si ∈ Si. We denote the set of mixed strategies of player i by

Σi. The set of all profiles σ = (σi)i∈N of mixed strategies is denoted by Σ. The support of a

mixed strategy σi is the set of all pure strategies si with σi(si) > 0. The multilinear extension

of the payoff function ui of player i to the set Σ of all strategy profiles is given by the formula

ui (σ) =
∑

s∈S

∏

j∈N

σj(sj)ui(s).

By ui(σ | si) we denote the payoff to player i when player i plays pure strategy si ∈ Si while

his opponents adhere to the mixed strategy profile σ. A strategy profile σ ∈ Σ is a Nash

equilibrium when ui(σ) ≥ ui(σ | si) holds for every player i and every pure strategy si of

player i.

MINIMAL DIVERSITY GAMES A minimal diversity game is a normal form game (N, u) such

that Si = M = {1, . . . , m} for every player i ∈ N , and

ui (s1, · · · , sn) =
{

0 if s1 = s2 = . . . = sn

1 else.

To simplify notation for minimal diversity games, for player i and pure strategy k, we denote

the probability σi(k) that player i assigns to pure strategy k in strategy profile σ by σik.

STRATEGIC STABILITY In this paper we use several different notions of strategic stability,

notably regularity, defined by Harsanyi [5], essentiality, defined by Wu Wen-Tsun and Jiang
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Jia-He [13], [23], KM stability, hyperstability and full stability, defined by K&M, strategic

stability in the sense of Mertens, defined by Mertens [16], and best response stability, defined

by Hillas [8]. KM stability was simply called stability in K&M, and the same holds for best

response stability in Hillas [8]. We use the terms KM stability and best response stability in

this paper to avoid confusion.

We do not define most of these notions, because we rely on the results of D&R and Hillas et al.

[9] for most of our conclusions. We explicitly use the definitions of essentiality and regularity

though, and for that reason we state here their formal definitions. For two games (N, u) and

(N, v) with the same player set, we write

‖u − v‖ = max {|ui(s) − vi(s)| | s ∈ S, i ∈ N} .

A closed set C ⊂ Σ of Nash equilibria of the game (N, u) is called essential when for every

open set U ⊂ Σ containing C there is a ε > 0 such that every game (N, v) with ‖u − v‖ < ε

has a Nash equilibrium in U .

A Nash equilibrium σ of (N, u) is called regular if there exist open sets U ∋ u and V ∋ σ and

a continuously differentiable function g: U → V such that for any v ∈ U and τ ∈ V we have

g(v) = τ precisely when τ is a Nash equilibrium of (N, v).

Notice that the definition automatically implies g(u) = σ. It is known that a regular equilibrium

is strategically stable in virtually any sense: it is perfect, proper, essential, best response stable,

and even strategically stable in the sense of Mertens.

Best response stability is, in an alternative formulation called CKM-stability, defined in the

Appendix. For information on the remaining notions of strategic stability we refer the interested

reader to the original papers.

3 The Nash equilibria of a minimal diversity game

In this section we show that the set of Nash equilibria of a minimal diversity game consists of two

components. One component consists of a single isolated completely mixed Nash equilibrium.

The other component consists of all strategy profiles in which at least two players play a

different pure strategy. We show that this second component is homeomorphic to a sphere of

dimension d = (n − 1) · (m − 1) − 1.

It is easy to verify that the completely mixed strategy profile in which each player randomizes

with equal probability 1
m

between all his pure strategies is a Nash equilibrium with an expected
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payoff of 1 −
(

1
m

)n−1
for each player. We denote this Nash equilibrium by ρ = (ρi)i∈N .

Secondly, every strategy profile where one (and hence every) player gets the maximal expected

payoff one is clearly a Nash equilibrium. We denote the set of all such Nash equilibria by G.

Note that G is in fact the set of all Pareto-efficient strategy profiles in the game.

To illustrate the set G we consider one of the simplest minimal diversity games, namely the

game with three players and two strategies each. In this case each player’s mixed strategy

space is a line segment, so that the set of strategy profiles can be identified with a cube, as in

the following graph.

ρ

(AAA)

(ABA)

(ABB)

(BAA)

(BBA)

(BBB)

(AAB) (BAB)

The pure strategy profiles are the corners of the cube. The Nash equilibrium ρ in completely

mixed strategies is in the center of the cube. The set G of Pareto efficient Nash equilibria is

the cycle on the boundary consisting of six line segments. Along each line segment each pure

strategy is not used by one of the players.

More generally, for each minimal diversity games the set G is a union of faces of Σ. The faces

of G that have maximal dimension d = (n− 1)× (m− 1)− 1 are characterized as follows. For

each pure strategy k, let J(k) be a player. This defines a map J : M → N . Write

GJ = {σ | σJ(k)(k) = 0 for all k ∈ M}.

The set GJ is a face of Σ of dimension d as soon as J−1(i) 6= M for each player i. Further, G

is the union of these faces GJ . We show the following two facts.

(1) Apart from ρ and the strategy profiles in G a minimal diversity game has no other Nash

equilibria.
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(2) G is a topological sphere of dimension d = (n − 1) × (m − 1) − 1. This means that G is

homeomorphic 8 to
{

x ∈ R
d+1 |

∑d+1

j=1
x2

j = 1

}

.

Consequently, ρ is an isolated Nash equilibrium and G is a connected component of Nash

equilibria 9.

Proposition 3.1 The Nash equilibria of a minimal diversity game are precisely the strategy

profiles in G, together with the completely mixed strategy profile ρ.

Proof. Let σ be a Nash equilibrium of the game in completely mixed strategies. For each

k ∈ M , write σk =
∏

i∈N σik. Since in a completely mixed equilibrium each player is indifferent

between all his strategies in M we have

1 −
σk

σik

= 1 −
σl

σil

for all players i ∈ N and pure strategies k, l ∈ M . Therefore, for two given players i and j we

have
σil

σik

=
σl

σk

=
σjl

σjk

.

Hence σik = σil

σjl
σjk for all k, l ∈ M . Summing over k we obtain 1 = σil

σjl
. Hence σil = σjl

for every l ∈ M , which shows that all players use the same strategy. Therefore (σik)n =
∏

j∈N σjk = σk for every i ∈ N and k ∈ M . Hence, since σl

σil
= σk

σik
, it follows that σil = σik for

every i ∈ N and k ∈ M . Thus each player uses each pure strategy in M with equal probability

and we conclude that σ = ρ.

Suppose next that σ is a Nash equilibrium, and that σik = 0 for some i ∈ N and k ∈ M .

Then every player j 6= i can ensure himself the maximal payoff 1 by playing pure strategy k.

So, since σ is Nash equilibrium, every player j 6= i, and then also i, receives payoff 1 under σ.

Hence σ ∈ G by definition.

3.1 G is a topological sphere

In this section we show that the connected component G of Pareto efficient Nash equilibria is

homeomorphic to a sphere of dimension d = (n − 1) · (m − 1) − 1.

We briefly sketch the outline of the proof. Let D be the “diagonal” consisting of all strategy

profiles where all players play the same strategy. Clearly, D is a simplex of dimension m − 1.

8Although not diffeomorphic.
9Except when m = n = 2. In this case G consists of two isolated Nash equilibria, and hence it is homeo-

morphic to the two endpoints of the unit interval.



Minimal diversity games 9

Within the affine hull of Σ, consider the affine space L through the center point ρ orthogonal

to D. So, L has dimension

n · (m − 1) − (m − 1) = (n − 1) · (m − 1).

Moreover, the orthogonal projection of Σ onto L is a convex polyhedron. We show that this

polyhedron is of full dimension, and that the set G of Pareto-efficient Nash equilibria is mapped

one-to-one onto the boundary of the polyhedron P . Hence, G is homeomorphic to a sphere of

dimension d = (n − 1) · (m − 1) − 1.

Proposition 3.2 For any minimal diversity game the set G of efficient Nash equilibria is

homeomorphic to a sphere of dimension d = (n − 1) · (m − 1) − 1.

Proof. It suffices to show that G is homeomorphic to the boundary of a compact and convex

set of dimension (n − 1) · (m − 1).

A mixed strategy profile σ = (σi(k))i∈N,k∈M of the minimal diversity game is a point in the

Euclidean vectorspace R
mn endowed with the usual scalar product 〈σ, τ〉 =

∑

i∈N

∑

k∈M σikτik

for σ, τ ∈ R
mn. For each k ∈ M , let dk be the strategy profile where each player plays pure

strategy k with probability one, and let δk = dk − ρ. For i ∈ N , let ei be the vector in R
mn

which assigns 1 to each coordinate corresponding to a pure strategy of player i and 0 to all

other coordinates.

Claim 1. The vectors δk together with the vectors ei span a linear subspace of dimension

m + n − 1.

Proof of Claim 1. Since
∑

k∈M δk = 0 this linear subspace has a dimension of at most

m + n − 1. It has at least this dimension since, for a given pure strategy l ∈ M , the vectors

δk for k 6= l together with the vectors ei are linearly independent. This can be seen as follows.

Take a fixed l ∈ M . Consider a linear combination

0 =
∑

k 6=l

αkδk +
∑

i∈N

βiei =
∑

k 6=l

αkdk −





∑

k 6=l

αk



 ρ +
∑

i∈N

βiei.

Since each coordinate (i, l) of this vector must be zero we obtain 1
m

∑

k 6=l αk = βi for each i.

Hence
∑

i∈N

βiei =





1

m

∑

k 6=l

αk





∑

i∈N

ei =





∑

k 6=l

αk



 ρ.

and the linear combination is equal to
∑

k 6=l αkdk. Since each coordinate (i, k) must be zero it

follows αk = 0 for all k 6= l and hence also βi = 0 for all i ∈ N .
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We conclude that the linear subspace L consisting of the vectors orthogonal to all vectors δk

and ei has dimension (m − 1) · (n − 1).

Claim 2. L is the image of R
mn under the orthogonal projection

P (σ) = σ −
1

n

∑

k∈M

〈σ, δk〉δk −
1

m

∑

i∈N

〈σ, ei〉ei with σ ∈ R
mn.

Proof of Claim 2. Clearly, P equals the identity map on L and hence L is contained in the

image space of P . Further, for all indices i, j and k, l, we have 〈δk, ei〉 = 0,

〈δk, δl〉 =

{

n − n
m

for k = l
− n

m
for k 6= l,

and 〈ei, ej〉 =

{

m for i = j
0 for i 6= j.

Therefore 〈P (σ), ej〉 = 0 holds for any j, and for l we also obtain

〈P (σ), δl〉 = 〈σ, δl〉 −
1

n

∑

k∈M

〈σ, δk〉〈δk, δl〉

= 〈σ, δl〉 − 〈σ, δl〉 +
1

m

∑

k∈M

〈σ, δk〉 =
1

m
〈σ,

∑

k∈M

δk〉 = 0.

Thus the projection maps into L, which proves the claim.

The mixed strategy space Σ of the game is a convex polyhedron which is mapped under the

projection P onto a convex polyhedron P (Σ).

Claim 3. The convex polyhedron P (Σ) spans the linear subspace L and is hence a compact

and convex set of dimension (m − 1) · (n − 1).

Proof of Claim 3. For each x ∈ L choose a sufficiently small scalar λ > 0 such that λx + ρ

has only non-negative coordinates. Since 〈λx + ρ, ei〉 = 1, λx + ρ is a strategy profile. Thus,

since P (ρ) = 0, we have P (λx + ρ) = λP (x) +P (ρ) = λx. It follows that P (Σ) spans L, which

proves claim 3.

We show next that the projection maps the set of Pareto efficient Nash equilibria G homeo-

morphically onto the boundary of P (Σ) in L. Let J : M → N be a map with J−1(i) 6= M for

all i ∈ N . The set

GJ =
{

σ ∈ Σ | σJ(k)(k) = 0 for all k ∈ M
}

is a face of G of maximal dimension. For any σ ∈ Σ we have by a straightforward calculation

that

P (σ) = σ −
1

n

∑

k∈M

〈σ, dk〉dk.
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Suppose that two strategy profiles σ, τ ∈ GJ satisfy P (σ) = P (τ). Then by the previous

observation

σ − τ =
1

n

∑

k∈M

〈σ − τ, dk〉dk.

Further, for any l we have σJ(l)(l) = τJ(l)(l) = 0. Hence, when we write ei,l for the vector in

R
mn that has a one in coordinate (i, l) and zeroes otherwise, we have

0 = 〈σ − τ, eJ(l),l〉 = 〈
1

n

∑

k∈M

〈σ − τ, dk〉dk, eJ(l),l〉 =
1

n
〈σ − τ, dl〉

Hence, 〈σ − τ, dl〉 = 0 for every l. It follows that σ = τ . Consequently, the projection is

one-to-one on each face GJ .

Note that the vectors eik in fact constitute the standard basis of R
mn. Let J be the collection

of all maps J : M → N with J−1(i) 6= M for all i ∈ N . Given J ∈ J , define the linear

functional l(J): Rmn → R by l(J)(ei,k) = 1 when i 6= J(k) and l(J)(eJ(k),k) = 0.

A mixed strategy σi of player i can be identified with the vector
∑

k∈M σi(k)eik ∈ R
mn. We

have l(J)(σi) =
∑

k:i6=J(k) σi(k) ≤ 1 whereby equality holds if and only if σi(k) = 0 whenever

i = J(k). For any strategy profile σ ∈ Σ we have hence l(J)(σ) =
∑

i∈N l(J)(σi) ≤ n whereby

equality holds if and only σ ∈ GJ . Furthermore we obtain

l(J)(P (σ)) = l(J)(σ)

for all σ ∈ Σ, from the observation that

l(J)(dk) =
∑

i∈N

l(J)(ei,k) = n − 1 =
1

m

∑

k∈M

l(J)(dk) = l(J)(ρ)

so that l(J)(δk) = l(J)(dk) − l(J)(ρ) = 0 and hence

l(J)(P (σ)) = l(J)(σ) −
1

n

∑

k∈M

〈σ, δk〉l(J)(δk) = l(J)(σ)

for all σ ∈ Σ. Hence l(J)(P (σ)) ≤ n for all σ ∈ Σ whereby equality holds if any only if σ ∈ GJ .

(i) P is one-to-one on G into the boundary of P (Σ). We already know that P is one-to-one

on GJ . Now consider strategy profiles σ, τ ∈ Σ with σ ∈ GJ and τ /∈ GJ . Then by the

previous observations, l(J)(P (σ)) = n while l(J)(P (τ)) < n. Hence, P (σ) 6= P (τ). Thus, P is

one-to-one on G.

ii) P (G) equals the relative boundary of P (Σ). P (Σ \ G) equals the relative interior of

P (Σ). Consider the linear map l: L → R
J defined by l(x) = (l(J)(x))j∈J . From the
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previous discussion we conclude that P (G) = l−1(B) and that P (Σ \ G) = l−1(U), where

B = {y ∈ R
J | yJ = n for some J ∈ J } and U = {y ∈ R

J | yJ < n for all J ∈ J }.

We have shown that the map P is a homeomorphism of G onto the boundary of the compact

convex set P (Σ), which has dimension (m − 1) · (n − 1). This proves our claim.

4 Evolutionary dynamics

In this section we show for the large class of evolutionary dymamics called strongly payoff

consistent selection dynamics that G is asymptotically stable, but ρ is not.

As in D&R we define a payoff consistent selection dynamics to be a Lipschitz continuous vector

field f = (fi)i∈N on Σ that does not point outwards on Σ and that satisfies for all players i

and all x ∈ Σ

〈fi(σ), ▽σi
Ui(σ)〉 ≥ 0. (1)

We call the selection dynamics strongly payoff consistent if, in addition, all Nash equilibria are

fixed points and if the above inequality is strict for every strategy profile σ and every player

i who has a pure strategy si in the support of σi with ui(σ) < ui(σ | si). The notion of a

strongly payoff consistent selection dynamics weakens the notion of a Nash dynamic in D&R

just enough so that the replicator dynamics is captured as well as a special case.

Proposition 4.1 Suppose we have a strongly payoff consistent selection dynamics in a mini-

mal diversity game. Then the only asymptotically stable set of restpoints is the set G of efficient

Nash equilibria. The completely mixed Nash equilibrium ρ is not asymptotically stable.

Proof. Since all players have the same utility function and the dynamic is strongly payoff

consistent, the chain rule implies that utility is non-decreasing along a trajectory and strictly

increasing in any point where there is a better reply in the support. Now consider a strategy

profile σ with u(σ) < 1 in which no player i has a better reply in the support of σi. Then all

players must play mixed strategies which have the same support, which we denote by T .

To see this, note that otherwise one player would have a pure strategy si in the support of his

strategy σi which is not in the support of the strategy σj of another player. By using only si

player i can then increase everybody’s payoff to 1. Contradiction.

Then the same argument as in the proof of Proposition 3.1, which showed that in a Nash

equilibrium in completely mixed strategies every player must play each pure strategy with

equal probability 1/m, establishes here that in the strategy profile σ each player must use
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each strategy in T with equal probability. It follows that the dynamics can only have a finite

number of points outside G for which (1) holds with equality for all i.

To see that no rest point σ with u(σ) < 1 is asymptotically stable under the dynamics, notice

that we can find strategy profiles τ with u(σ) < u(τ) arbitrarily near to σ. Because utility is

increasing on the trajectory starting in τ , the trajectory cannot move towards σ.

Now let c be such that u(σ) < c for all the rest points not in G and consider the neighborhood

U of G consisting of all τ with u(τ) ≥ c. Since utility is strictly increasing along any trajectory

starting in τ ∈ U \ G, Theorem 2.6.1 of Hofbauer and Sigmund [11] implies that any ω-limit

point σ of the trajectory must satisfy u̇(σ) = 0. So, inequality (1) holds for all i. Therefore, σ

is an element of G. Hence, G is asymptotically stable.

Somewhat lengthy calculations (available from the authors on request) show that the finitely

many rest points of the replicator dynamics outside G are unstable hyperbolic rest points. The

stable manifold of such a rest point σ with its common support T can be shown to consist

of the strategy profiles where all players use identical mixed strategies with support T . (It is

straightforward to verify that σ is the unique strategy profile maximizing utility within this

set, which is clearly forward invariant under the replicator dynamics. Dimensional arguments

then imply that it is indeed the stable manifold.) Thus the stable manifold of each of these

restpoints is of lower dimension than Σ. Hence there is an open and dense subset of Σ such that

all trajectories starting in it converge to G. In this sense G is “almost” globally asymptotically

stable. Since G is a strict equilibrium set in the sense of Balkenborg and Schlag [1], Theorem

6 of their paper implies that G is an asymptotically stable set of stable rest points of the

replicator dynamics.

5 Strategic stability

Strategic stability is concerned with sets of Nash equilibria that satisfy necessary conditions for

a solution to be acceptable for rational players. Most definitions of strategic stability require

robustness of a set of Nash equilibria with respect to certain perturbations of the original game.

In this section we are primarily concerned with essentiality (Wu Wen-Tsun and Jiang Jia-He

[13], [23]), KM stability and full stability (K&M) and strategic stability in the sense of Mertens

[16] and Hillas [8].

We study which of the Nash equilibrium components of a minimal diversity game, the set of

Pareto efficient Nash equilibria G or the set {ρ} consisting of the Nash equilibrium in completely
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mixed strategies, contains a strategically stable set of Nash equilibria according to any of the

notions mentioned.

From the perspective of strategic stability, the analysis for the completely mixed Nash equilib-

rium ρ is straightforward. According to the next Theorem, the Nash equilibrium ρ is regular,

and hence essential and stable in the sense of Mertens. Then it follows from K&M and Hillas

et al. [9] that ρ is also strategically stable according to any of the other notions mentioned

above.

Theorem 5.1 The equilibrium ρ is regular in the sense of Harsanyi. Consequently ρ is also

essential, and the set {ρ} is stable in the sense of Mertens.

Proof. Let (N, u) be a minimal diversity game, and let ρ be its completely mixed equilibrium.

We show that ρ is regular. For player i, define the function fi1: Σ → R by

fi1(σ) =
∑

k

σik − 1.

For player i and pure strategy k ≥ 2, define the function fik: Σ → R by

fik(σ) = u(σ | k) − u(σ | 1).

Since ρ is completely mixed, it is by the Implicit Function Theorem sufficient to show that the

Jacobian matrix ∂f
∂σ

(ρ) has non-zero determinant. Straightforward calculations show that, for

k ≥ 2,

fik(σ) =
∏

j 6=i

σj1 −
∏

j 6=i

σjk.

So, it is easy to check that

∂fik

∂σjl

(ρ) =























0 if k = 1 and j 6= i
1 if k = 1 and j = i
0 if k ≥ 2 and j = i

(

1
m

)n−2
if k ≥ 2, j 6= i and l = 1

−
(

1
m

)n−2
if k ≥ 2, j 6= i and l 6= 1.

It is now straightforward to show that the resulting Jacobian matrix ∂f
∂σ

(ρ) has full rank. Hence,

ρ is regular, and therefore also essential and stable in the sense of Mertens.

Note that the latter notion of strategic stability also implies many other types of strategic

stability such as full stability, KM stability, and best response stability.

Next we study the strategic stability of the set G of efficient Nash equilibria. Consider a

minimal diversity game, and let G be its set of efficient Nash equilibria. Any game equivalent
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to this game and any perturbation defined by restriction of the strategy space of it is a game

with identical interests, that is, all players have the same payoff function. Then there are Nash

equilibria nearby to strategy profiles equivalent to G in every perturbation close to an equivalent

game. These can be found among the strategy profiles maximizing the utility function. The

definitions of strategic stability in K&M hence imply the following 10.

Proposition 5.2 The set G of efficient Nash equilibria of a minimal diversity game contains

a fully stable set, and hence a KM-stable set.

Thus, G is strategically stable under the milder notions of strategic stability defined in K&M.

We proceed to show that the picture starts to change when we turn to the more demanding

notions of strategic stability such as essentiality, best response stability, and strategic stability

in the sense of Mertens.

Theorem 5.3 If both the number of players and the number of pure strategies is even, then G

is essential.

Proof. By Theorem 4.1, G is an asymptotically stable set of rest points under the replicator

dynamics. Consider the extension of this dynamics to a manifold with boundary containing Σ

in its interior as described in D&R. Because the replicator dynamics leaves faces invariant, it

can easily be shown that every trajectory σ(t) starting outside of Σ gets projected orthogonally

onto a trajectory v(t) of the replicator dynamics on a face of Σ 11. In particular it has the same

ω-limit points. It follows that G is an asymptotically stable set of rest points under the extended

dynamics. So, by Theorem 1 in D&R, the index of G is equal to its Euler characteristic, and

hence not zero. Theorem 4 in Ritzberger [19] then implies that G is essential.

Theorem 5.4 If both the number of players and the number of pure strategies is even, then G

contains a strategically stable set in the sense of Mertens.

Proof. We can apply the arguments as in the proof of Theorem 2 in D&R to the dynamics

constructed in the previous theorem. It is not important that the dynamics in question is not

a Nash dynamics, because the arguments in D&R are purely local, and G is a component of

rest points of the dynamics. Hence, G contains a stable set in the sense of Mertens.

10The result extends to the set of strategy profiles maximizing the potential in any weighted potential game
as defined in Monderer and Shapley [18].

11In a suitably chosen coordinate system, the differential equation for points outside σ can be rewritten as
(ẋ, ẏ) = g(x) − y where y = 0 corresponds to the face and ẋ = g(x) to the replicator dynamics on that face.
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Where strategic and evolutionary stability depart

We now come to the main results of the paper. We conjecture that for all minimal diversity

games the following result holds. Suppose that the set G of efficient Nash equilibria has odd

dimension. Then it does not contain a strategically stable set in the sense of Mertens or Hillas,

and it also does not contain an essential set.

A fairly intuitive proof 12, using a generalization of the rock-scissors-paper game, is given

for bimatrix games. For binary minimal diversity games (that is, minimal diversity games in

which players only have two pure actions) we have an elementary proof showing that G does

not contain an essential set. Further, specifically for binary minimal diversity games we develop

a technique to linearize the Nash equilibrium correspondence on the class of KM-perturbed

games. This then allows us to prove the above conjecture in that case.

Whether any of these techniques can be adapted to more general types of minimal diversity

games is not known to us. At least we have proofs for examples with an arbitrarily large

number of players, and an arbitrarily large number of pure actions. These results give us some

confidence that the conjecture might be true in its full generality.

6 Bimatrix games

In this section we give the proof of the conjecture for two-player games. Notice that if the

number of pure strategies is m in a two-player minimal diversity game, the dimension of the

sphere G is m − 2. So we obtain one example for each possible dimension of the sphere. Here

we are interested in the case where m is odd.

Consider then a two-player minimal diversity games with an odd number of strategies m ≥ 3.

We show in two steps that G does not contain a best response stable set. It does therefore also

not contain a strategically stable set in the sense of Mertens. Moreover, we show that G does

not contain an essential set.

First, we introduce a weak notion of strategic stability called independent t-stability. We show

that every best response stable set as well as every essential set must contain a t-stable set.

Secondly we show that G does not contain an independent t-stable set.

Definition An independent t-perturbation of size ε of a game (N, u) is a collection (ti)i∈N of

12Although the proof uses rather sophisticated tools from Hillas et al. [9].
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maps ti: Si → Σi such that ‖ti(si)− si‖ < ε for every pure strategy si ∈ Si. Each independent

t-perturbation of a game defines a t-perturbed game (N, ut) in normal form, with the same

strategy sets Si as the original game, but new utility functions ut
i: S → R given by

ut
i(s) = ui (t(s) | si) ,

where t(s) = t((si)i∈N ) = (ti(si))i∈N .

A t-perturbed game obviously defines a particular payoff-perturbed game. The t-perturbations

are, however, more general than trembling hand perturbations because the trembles of a player

are correlated with his intended pure strategy choice. Because of this correlation it matters

now for the choice of an optimal strategy (and hence for the Nash equilibria of the perturbed

game) whether a player ignores his own trembles or not. In our definition of a t-perturbed game

a player ignores his own trembles. As a consequence, a t-perturbation of a game with identical

payoff does not have to have identical interests and therefore arguments as in Proposition 5.2

do not apply.

Definition A non-empty connected closed set C of Nash equilibria is an independent t-set

if there is a Nash equilibrium close to C in every sufficiently small t-perturbation of the game.

Proposition 6.1 Let m ≥ 3 be odd. Then the set G of the two player minimal diversity game

with m pure strategies is not an independent t-set.

Proof. Let m ≥ 3 be odd. Let ε > 0. For the two-player minimal diversity game with m

strategies we construct an independent t-perturbation t of size ε such that the unique Nash

equilibrium of the t-perturbed game is ρ. Set

tik =

m
∑

l=1

ε(l−k) mod m

∑m−1
l=0 εl

· sil

where we denote by sil player i’s l-th pure strategy. If we multiply the payoffs by the common

factor f =
∑m−1

l=0 εl, the rescaled payoffs in the t-perturbed game are given by

f · ut
1(l, k) = f · ut

2(k, l) = f − ε(l−k) mod m.

Consider a Nash equilibrium σ of the t-perturbed game. Assume that σ 6= ρ. We derive a

contradiction. Assume without loss that σ2 6= ρ2. We first show the following claim.

Claim. Let 1 ≤ k ≤ m be such that

σ2k = min
1≤l≤m

σ2l.
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Then σ1,k−1 = 0 (where σ1,k−1 = σ1,m if k = 1).

Proof of claim. We assume without loss that k = m. We compute that

f · ut
1(m, σ2) = f −

m
∑

l=1

εm−lσ2l = f −
m−1
∑

l=1

εm−lσ2l − σ2m,

while

f · ut
1(m − 1, σ2) = f −

m
∑

l=1

ε(m−1−l) mod mσ2l = f −
m−1
∑

l=1

εm−1−lσ2l − εm−1σ2m.

We obtain

f · ut
1(m, σ2) − f · ut

1(m − 1, σ2) =

m−1
∑

l=1

εm−1−l(1 − ε)σ2l − (1 − εm−1)σ2m

=

m−1
∑

l=1

εm−1−l(1 − ε)σ2l −
m−1
∑

l=1

εm−1−l(1 − ε)σ2m

=
m−1
∑

l=1

εm−1−l(1 − ε)(σ2l − σ2m) > 0.

Strict inequality holds because σ2m ≤ σ2l for all l and σ2m < σ2l for at least one l. This

concludes the proof of the claim.

Now we can proceed as follows. From the assumptions that σ2 6= ρ2 and σ2m = min1≤l≤m σ2l

we concluded that σ1,m−1 = 0. So, σ1 6= ρ1 and σ1,m−1 = min1≤l≤m σ1l. Thus the claim

implies that σ2,m−2 = 0. Iterating the argument yields σ1,m−3 = 0, then σ2,m−4 = 0 and so

on, with the player index alternating between 2 and 1.

Thus, since m is odd, we see that σ2l = 0 for l odd and σ1l = 0 for l even. We obtain in

particular after m − 1 steps that σ21 = 0. Now the claim yields σ1m = 0. Iteration of the

argument yields σ1l = 0 for l odd and σ2l = 0 for l even. We have shown that σ1l = σ2l = 0

for all l. Contradiction. This completes the proof.

Now we can show the main result of this section.

Theorem 6.2 Let m ≥ 3 be odd. Then the set G of the two player minimal diversity game

with m pure strategies is not essential. Also it does not contain a best response stable set.

Proof. Let (N, u) be a game. We argue that a closed set C of Nash equilibria of the game

(N, u) that is essential or best response stable stable necessarily contains an independent t-set.

The result then immediately follows from Proposition 6.1.
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For essentiality this follows from the observation that, when the size of a t-perturbation is

small, also ‖u − ut‖ is small by definition of ut and the continuity of the payoff function u.

Assume that C is best response stable. Then, according to Hillas et al. [9], the set C must

contain a so-called CT set 13. This means in particular that, for every sufficiently small

independent t-perturbation, the correspondence BRt defined by

BRt(σ) = convex hull {t(s) | s ∈ PB(σ)} ,

where PB is the pure best reply correspondence, has a fixed point close to C. Let σ ∈ BRt(σ)

be such a fixed point. Then, because t is an independent t-perturbation, each σi is in the

convex hull of the strategies ti(si) with si ∈ PBi(σ). Hence, for each player i there is a vector

φ(σ, t)i = (φ(σ, t)i(si))si∈Si
in Σi such that

σi =
∑

si∈Si

φ(σ, t)i(si) · ti(si),

while moreover φ(σ, t)i(si) > 0 implies that si ∈ PBi(σ). Write φ(σ, t) = (φ(σ, t)i)i∈N . Using

the definition of the payoff function ut
i and the multilinearity of the payoff function ui it is

straightforward to check that

ut
i(φ(σ, t) | si) = ui(σ | si)

for all pure strategies si of player i. Now suppose that φ(σ, t)i(si) > 0. Then, as noted before,

si ∈ PBi(σ). Thus, according to the above displayed equality, si is a pure best reply to φ(σ, t)

in the game (N, ut). Therefore φi is a best reply to φ in the t-perturbed game (N, ut) and

hence φ(σ, t) is a Nash equilibrium of the t-perturbed game (N, ut).

It remains to show that, for sufficiently small t, φ(σ, t) is close to C whenever σ is close to C.

This follows readily once we observe that, for small t, ti(si) is close to si for all si. Hence,

φ(σ, t)i(si) is close to σi(si) and φ(σ, t) is close to σ. This concludes the proof.

7 Binary minimal diversity games

The second class of minimal diversity games for which we prove the conjecture that evolutionary

and strategic stability make mutually exclusive choices is the class of binary minimal diversity

games. A binary minimal diversity game is a game in strategic form with player set N =

{1, . . . , n} in which each player has two pure strategies A and B at his disposal. We assume

that n is odd and n ≥ 3. Let S denote the set of pure strategy profiles s = (si)i∈N where

13See Subsection 5.1 of their paper for the definition.
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si ∈ {A, B} for all i ∈ N . Each player has the same payoff function ui = u, where u: S → R is

defined by

u(s) :=
{

0 when s1 = · · · = sn

1 else.

A typical mixed strategy is denoted by σ = (σiA, σiB)i∈N , where σiA (σiB) denotes the prob-

ability with which player i plays pure strategy A (B). Obviously σiA ≥ 0, σiB ≥ 0, and

σiA + σiB = 1. Alternatively we write σ = (σi, 1 − σi)i∈N for a generic strategy profile. The

space of mixed strategy profiles is denoted by Σ.

7.1 Essentiality

In this section we show, for odd n, that G is not essential in the sense of Wu Wen-Tsun and

Jiang Jia-He [13], [23]. Let (N, u) denote the binary minimal diversity game. It suffices to

construct a small perturbation of the game (N, u) that does not have Nash equilibria close to G.

Let (N, v) denote the strategic form game with player set N and payoff functions v = (vi)i∈N ,

where vi is defined by

vi(s) =

{

1 if si 6= si−1

0 else,

with the convention that player 0 equals player n. Take ε > 0. Consider the game v(ε) = u+εv.

We show that the strategy profile in which each player plays both his pure strategies with weight

1
2 is the unique Nash equilibrium of the game v(ε).

Theorem 7.1 The unique Nash equilibrium of the game v(ε) is the strategy profile
(

σi, 1 −

σi

)

i∈N
with σi = 1

2 for all i ∈ N .

Proof. The proof is in three steps.

A. First notice that the strategy profile in which each player plays both his pure strategies

with weight 1
2 is a Nash equilibrium of both the game u and the game v. Therefore it is also a

Nash equilibrium of the game v(ε). We show that v(ε) does not have any other Nash equilibria.

B. Let
(

σi, 1−σi

)

i∈N
be a Nash equilibrium of the game v(ε). Suppose that it is an element

of the boundary of the space of strategy profiles. Suppose w.l.o.g. that σ1 = 0. Then necessarily

σ2 = 1. Because n is odd, iterating this argument leads to σ1 = 1. Contradiction. Hence the

game v(ε) only has completely mixed Nash equilibria.

C. Suppose there exists a completely mixed Nash equilibrium
(

σi, 1 − σi

)

i∈N
of the game

v(ε) for which σi 6=
1
2 for at least one i ∈ N . Assume w.l.o.g. that σi > 1

2 . From the equilibrium
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condition

1 −
∏

j 6=i+1

σj + ε(1 − σi) = 1 −
∏

j 6=i+1

(1 − σj) + εσi

for player i + 1 we can deduce that

σi

1 − σi

=

∏

j 6=i,i+1(1 − σj) + ε
∏

j 6=i,i+1 σj + ε
.

Define αj =
σj

1−σj
for all j ∈ N . Note that αi > 1, because we assumed that σi > 1

2 . From

αi > 1 we obtain the strict inequality

αi =
σi

1 − σi

=

∏

j 6=i,i+1(1 − σj) + ε
∏

j 6=i,i+1 σj + ε
<

∏

j 6=i,i+1(1 − σj)
∏

j 6=i,i+1 σj

=
∏

j 6=i,i+1

1

αj

.

Then we know that αj < 1 for at least one j ∈ N . So, there must be a player k with αk > 1

and αk−1 ≤ 1. Write α =
∏

j∈N

αj . From the equilibrium equality for player k we deduce that

αk−1 ≥
∏

j 6=k−1,k

1

αj

which can be rewritten to α ≥ αk. Hence, α ≥ αk > 1. However, since there also exists a

player j for which αj < 1, the same line of reasoning yields α < 1. Contradiction.

The above construction has a very intriguing interpretation in terms of the illustrative story in

the introduction. Recall that in this story n soldiers are in charge of the defense of a castle with

two gates, east and west. Both gates need to be guarded by at least one soldier to ensure safety

of the soldiers. When n = 2, the defense tactics are evident: each soldier guards one gate, and

this is a strategically stable solution. However, consider the case where there are three soldiers,

let us say Edmund, Baldrick, and George. Suppose they agree that Edmund will guard the

east gate, while Baldrick is assigned to the west gate, and George is free. However, all three

of them are prone to make slight mistakes in the fulfilment of their duties. The assessments of

each of them regarding the probability of the others to make a mistake are as follows: George

trusts Baldrick more than Edmund, Baldrick trusts Edmund more than George, and Edmund

trusts George more than Baldrick. Since George trusts Baldrick more than Edmund, his best

option now is to help Edmund at the east gate. This relieves Edmund of his duties. Since

he trusts George more than Baldrick, he moves over to the west gate, thus relieving Baldrick

of his duties. Now, Baldrick trusts Edmund more than George, he in turn moves to the east

gate, setting free George. However, compared to the initial situation, Baldrick and Edmund

have now switched places. Hence, George will now move to the west gate. And as you can

see, our brave soldiers will run around for ever. This effect occurs exactly when the number
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of soldiers is odd. With an even number of soldiers the dynamics will eventually settle in a

situation where the number of soldiers present at each gate is equal. Notice it is crucial that

the assessments of the soldiers regarding each others’ reliability is not consistent.

In fact the perturbed games are generalized Shapley games as in Hofbauer and Swinkels [12].

This means that in these games any (sufficiently small) open neighborhood of G contains an

attractor of any strongly payoff consistent dynamics, while it (in the perturbed game!) does

not contain any Nash equilibria.

7.2 Strategic stability, definitions of Mertens and Hillas

In this section we argue that for odd n, G is not best response stable in the sense of Hillas [8].

The results of Hillas et al. [9] then imply that G is also not homotopy stable, and hence also

not stable in the sense of Mertens [16]. In fact, we argue that, when n is odd, G is not a CKM

set as it is defined in Hillas et al. [9]. The above claims are then implied by the results of that

paper.

Let Γ = (N, u) be a binary minimal diversity game. A KM perturbation of this game is a vector

η = (ηiA, ηiB)i∈N of non-negative numbers ηiA and ηiB . In the η-perturbed game player i is

forced to play pure strategy A (B) with a minimal probability of ηiA (ηiB). We denote the

η-perturbed game by Γ(η). The size of KM perturbation η is ‖η‖∞.

The set of KM perturbations is denoted by K. Let E be the set of pairs (η, σ) in K×Σ for which

the mixed strategy profile σ is a Nash equilibrium of the game Γ(η). A CKM perturbation is a

continuous function ε from the space Σ of strategy profiles to the space K of KM perturbations.

The size of CKM perturbation ε is

‖ε‖ = max{‖ε(σ)‖∞ | σ ∈ Σ}.

The graph of ε is the set of pairs (ε(σ), σ) for σ ∈ Σ. It is denoted by graph[ε].

Definition. A closed set S ⊂ Σ is called a CKM set if for every neighborhood U of S

there exists ζ > 0 such that for every CKM perturbation ε with ‖ε‖ < ζ there exists a point

(η, σ) ∈ graph[ε] ∩ E with σ ∈ U .

Theorem 7.2 Let n ≥ 3 be odd. Then the set G of the binary minimal diversity game with n

players does not contain a best response stable set.

The proof is deferred to the Appendix. Note that an immediate consequence of the above
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Theorem is that, for n odd, G is also neither homotopy stable, nor stable in the sense of

Mertens.

8 Discussion and conclusion

In this paper we presented the class of minimal diversity games, a subclass of the class of

potential games. The set of Nash equilibria of each minimal diversity game is shown to consist

of a symmetric isolated completely mixed equilibrium ρ and a connected component G of

strategy profiles that maximize the common payoff function.

The completely mixed equilibrium ρ is strategically stable in virtually any sense: it is perfect,

proper, regular, essential, best response stable, and stable in the sense of Mertens. However, ρ

is not asymptotically stable.

The connected component G of common payoff maximizers is shown to be asymptotically

stable. It also contains a stable set in the sense of Kohlberg and Mertens. Moreover, we show

that G is homeomorphic to a sphere of dimension d = (n − 1) · (m − 1) − 1, where n is the

number of players, and m is the number of pure strategies. Therefore, when d is even, the

Euler characteristic of G is +2, and zero when d is odd. Thus, by D&R, when d is even, G is

essential and stable in the sense of Mertens.

However, when d is odd, we show for the case where n = 2 and m is odd as well as the case

where m = 2 and n is odd, that G is not essential, not best best response stable, and hence

also not stable in the sense of Mertens. Thus, these cases provide examples of games where

evolutionary stability and strategic stability make mutually exclusive predictions.

One may wonder whether there are game theoretic considerations that conclusively explain

why G ought to be stable, or whether on the contrary there are arguments that explain why G

should not be stable. However, no matter what one’s stance is in these matters, what we want

to emphasize here in this conclusion is that it is hard to think of any conclusive purely game

theoretic argument why in the n even case the cycle should be stable, while in the n odd case

it should not be stable. This inconsistency in treatment of G (depending on the dimension of

G, and ultimately on its Euler characteristic) is exactly what the stronger versions of strategic

stability, in particular stability in homology, best response stability, and essentiality, advocate

in these examples.

The only reasonably convincing explanation we have found thus far is the allegorical story on
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the castle, where for odd dimensions the instability of G is due to inconsistent assessments of

the players regarding each others’ reliability. Still, such an explanation is yet far from any,

positive or normative, game theoretic argument that is free from such detailed descriptions of

players’ behavior as the formation of inconsistent beliefs.

A final interesting observation in this context follows from a known result that any stability

concept that satisfies the separate worlds axiom and that is at least as strong as homotopy

stability must necessarily be homology type. So, any concept that is at least as strong as

homotopy stability either violates the separate worlds axiom, or agrees with homotopy stability

on treatment of G: G is stable precisely when its dimension is even. This may indicate that

homotopy stability is too strong a requirement for strategic stability. The alternative in the

defense of the stronger notions of strategic stability would be to find convincing game theoretic

arguments for the relevance of dimensionality, and more specifically the relevance of topological

invariants such as the Euler characteristic, for strategic stability. The correct interpretation of

these results is still far from settled, and further research is definitely called for.

Appendix: Proof of Theorem 7.2

This Appendix is entirely devoted to the proof of Theorem 7.2. The proof of Theorem 7.2

consists of several intermediate steps, which we shall first briefly discuss.

In the next section, Section 9, we give a full description of the graph of the equilibrium corre-

spondence over KM perturbations. In order to facilitate computations, we do not work directly

with the original graph of the equilibrium correspondence. Rather, we apply a transformation

to the space K × Σ of perturbation-strategy profile pairs (η, σ) to obtain a completely linear

description of the graph.

In Section 10 we show that, for n ≥ 3 odd, the set G is not a CKM set. First we analyse what

this means in the linearized environment. Then we construct a CKM perturbation that does

not have fixed points close to G. This construction is again subdivided in several steps.

First we construct a KM perturbation, called the initial perturbation, having exactly 2n − 1

equilibria. One is the completely mixed equilibrium ρ. Then there are 2(n − 2) equilibria in

which the first k players play the same pure strategy, while the others play the same mixed

strategy 14. The exact probabilities used by the mixing players is precisely determined by the

14In a perturbed game it is not really possible to play a pure strategy due to the restrictions imposed by the
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perturbation. Finally, there are 2 equilibria where the first n−1 players all play the same pure

strategy, while the last player plays the other pure strategy. The completely mixed equilibrium

does not concern us, we focus on the 2n− 2 remaining equilibria.

For example, for n = 5, we have the following equilibria. First there is the completely mixed

equilibrium (Z, Z, Z, Z, Z). Then there are the 6 equilibria

(A, Z, Z, Z, Z)
(A, A, Z, Z, Z)
(A, A, A, Z, Z)

and
(B, Z, Z, Z, Z)
(B, B, Z, Z, Z)
(B, B, B, Z, Z)

and finally the two equilibria (A, A, A, B) and (B, B, B, B, A). In this notation an A (or a

B) in position i stands for “player i plays B (or A) with minimum probability”, while a Z in

position i means that player i plays a mixed strategy (in the sense that he plays both strategies

with strictly more than minimum probability). Only the latter 8 equilibria are of interest to

us because these are all close to the sphere G, while (Z, Z, Z, Z, Z) is not.

The next step in the construction is to show that these equilibria are pairwise linked via

paths in the space of perturbations. In the above example, (A, Z, Z, Z, Z) gets linked to

(A, A, Z, Z, Z), while, via another path, (A, A, A, Z, Z) gets linked to (A, A, A, A, B). In

the same way (B, Z, Z, Z, Z) gets linked to (B, B, Z, Z, Z), and (B, B, B, Z, Z) gets linked

to (B, B, B, B, A).

These paths are then used to construct a CKM perturbation that has no equilibria close to G.

The idea behind the construction is to create a CKM perturbation that avoids an intersection

with the paths connecting the equilibria of the initial perturbation.

9 Geometry of the equilibrium graph

In this section we give a description of the graph E of the equilibrium correspondence over KM

perturbations.

9.1 Perturbed equilibria

Let η = (ηiA, ηiB)i∈N be a KM perturbation of size at most ζ and let σ = (σiA, σiB)i∈N be

a strategy profile with σiA ≥ ηiA and σiB ≥ ηiB . Throughout this section we assume that

the perturbation is completely mixed. We derive the conditions under which σ is a Nash

equilibrium of the perturbed game Γ(η).

perturbations. When we write that a player plays a pure strategy, in this context we simply mean that he plays
the other strategy with minimum weight.
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Define the sets A, B, and Z by

A := {i ∈ N | σiB = ηiB}

B := {i ∈ N | σiA = ηiA}

Z := {i ∈ N | σiB > ηiB and σiA > ηiA}.

Players in A are those players that under σ play pure strategy A with maximal probability

given η. Similarly players in B are those players that under σ play pure strategy B with

maximal probability given η. The remaining players are in Z. Thus sets A, B and Z partition

the player set N . Dependence of sets A, B, and Z on σ and η is suppressed in the notation,

but should be kept in mind throughout.

First we derive the general conditions that state precisely when strategy profile σ is a Nash

equilibrium of the perturbed game Γ(η).

Lemma 9.1 Suppose that σ is a Nash equilibrium of Γ(η). Then there exists a real number

c ∈ (0, 1) such that σiA = c for all i ∈ Z.

Proof. Take two players i and j in Z. Since both players are indifferent between playing A

and B we have that

∏

k 6=i

σkA =
∏

k 6=i

σkB and
∏

k 6=j

σkA =
∏

k 6=j

σkB .

So,
σiA

1 − σiA

=
σiA

σiB

=

∏

k 6=i,j σkB
∏

k 6=i,j σkA

=
σjA

σjB

=
σjA

1 − σjA

.

Hence, since the function σ 7→ σ
1−σ

is strictly increasing on the open interval (0, 1), it follows

that σiA = σjA.

Write z = |Z|. The general equilibrium conditions are as follows. We already have the

feasibility conditions

(a) For all i ∈ A σiA ≥ ηiA and σiB = ηiB

(b) For all i ∈ B σiA = ηiA and σiB ≥ ηiB

(c) For all i ∈ Z σiA > ηiA and σiB > ηiB
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Furthermore, there is a c ∈ (0, 1) such that

(1) For all i ∈ Z σiA = c

(2) For all i ∈ Z
∏

j∈A

(1 − ηjB) · cz−1 ·
∏

j∈B

ηjA =
∏

j∈A

ηjB · (1 − c)z−1 ·
∏

j∈B

(1 − ηjA)

(3) For all i ∈ A
∏

j∈A
j 6=i

(1 − ηjB) · cz ·
∏

j∈B

ηjA ≤
∏

j∈A
j 6=i

ηjB · (1 − c)z ·
∏

j∈B

(1 − ηjA)

(4) For all i ∈ B
∏

j∈A

(1 − ηjB) · cz ·
∏

j∈B
j 6=i

ηjA ≥
∏

j∈A

ηjB · (1 − c)z ·
∏

j∈B
j 6=i

(1 − ηjA)

Throughout requirements (2), (3), and (4), the left-hand side of the (in)equalities represents the

probability that players not equal to i itself all play pure strategy A, the right-hand side being

the probability that they all play B. Due to the structure of a minimal diversity game, a player

plays optimally precisely when he selects the pure strategy that has the lowest probability.

We treat three exhaustive and non-overlapping cases in which the general conditions reduce to

a simpler system of (in)equalities.

CASE I. z = 0 In case z = 0, the conditions (1) and (2) are empty, and the system reduces to

(I.3) For all i ∈ A
∏

j∈B

ηjA

1 − ηjA

≤
∏

j∈A
j 6=i

ηjB

1 − ηjB

(I.4) For all i ∈ B
∏

j∈B
j 6=i

ηjA

1 − ηjA

≥
∏

j∈A

ηjB

1 − ηjB

CASE II. z = 1 We write Z = {k}. From equation (2) of the general equilibrium conditions

it follows that
∏

j∈B

ηjA

1 − ηjA

=
∏

j∈A

ηjB

1 − ηjB

This equality can be used to rewrite inequalities (3) and (4) to

For all i ∈ A
c

1 − c
≤

1 − ηiB

ηiB

For all i ∈ B
c

1 − c
≥

ηiA

1 − ηiA

Putting these observations together, and using the fact that the function x 7→ x
1−x

is strictly

increasing on the interval (0, 1) we obtain the system

(II.1) σkA = c
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(II.2)
∏

j∈B

ηjA

1 − ηjA

=
∏

j∈A

ηjB

1 − ηjB

(II.3) For all i ∈ A ηiB ≤ 1 − c

(II.4) For all i ∈ B ηiA ≤ c

CASE III. z ≥ 2 Using similar manipulations of the (in)equalities as in the previous case, one

can reduce the general system of equilibrium conditions to

(III.1) For all i ∈ Z σiA = c

(III.2) For all i ∈ Z
∏

j∈A

(1 − ηjB) · cz−1 ·
∏

j∈B

ηjA =
∏

j∈A

ηjB · (1 − c)z−1 ·
∏

j∈B

(1 − ηjA)

(III.3) For all i ∈ A ηiB ≤ 1 − c

(III.4) For all i ∈ B ηiA ≤ c

This enables us to describe the geometry of the equilibrium correspondence. For sufficiently

small size ζ we give a fully parameterized description of the graph N (ζ) of the perturbed

equilibrium correspondence.

TYPE I EQUILIBRIA Take a partition A and B of the player set N . For each perturbation η =

(ηiA, ηiB)i∈N that satisfies conditions (I.3) and (I.4) we have an equilibrium σ = (σiA, σiB)i∈N

defined by σiA = ηiA for all i ∈ B and σiA = 1 − ηiB for all i ∈ A. Automatically, both sets A

and B are not empty.

TYPE II EQUILIBRIA Take a partition A, B, and Z = {k} of the player set N . For each

perturbation η = (ηiA, ηiB)i∈N that satisfies condition (II.2) we have the following line segment

of equilibria. For any c with ηkA ≤ c ≤ 1 − ηkB ,

ηiA ≤ c for all i ∈ B and c ≤ 1 − ηiB for all i ∈ A

the strategy profile σ = (σiA, σiB)i∈N defined by σiA = ηiA for all i ∈ B, σiA = 1 − ηiB for all

i ∈ A, and σkA = c, is an equilibrium. Automatically, since n ≥ 3 and z = 1, the sets A and

B are not empty by (II.2).
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TYPE III EQUILIBRIA Take a partition A, B, and Z of the player set N , A or B possibly

empty. For a perturbation η = (ηiA, ηiB)i∈N , define

c :=






1 +





∏

j∈A

1 − ηjB

ηjB

·
∏

j∈B

ηjA

1 − ηjA





1

z−1







−1

Suppose that η satisfies

For all i ∈ A ∪Z ηiB ≤ 1 − c

For all i ∈ B ∪ Z ηiA ≤ c.

Then the strategy profile σ = (σiA, σiB)i∈N defined by σiA = ηiA for all i ∈ B, σiA = 1 − ηiB

for all i ∈ A, and σiA = c for all i ∈ Z is an equilibrium of the game Γ(η). Note that the

isolated equilibrium ρ is a type III equilibrium, corresponding to the choice A = B = φ and

Z = N .

9.2 Linearization of the equilibrium graph

We can simplify the previous description a bit further. We use the map h: (0, 1) → R defined

by

h(x) = log x − log(1 − x)

to linearize the graph of the equilibrium correspondence and to give a full account of the

combinatorial structure of the graph of the equilibrium correspondence.

Clearly h is strictly increasing, and a homeomorphism from the open interval (0, 1) to R. Also

note that h(1 − x) = −h(x) and that, for small values of x, the function value h(x) is a large

negative number. We use this map to give a piecewise linear description of the graph of the

equilibrium correspondence as follows. Write yiA = h(ηiA), yiB = h(ηiB), xiA = h(σiA) and

xiB = h(σiB). Notice that σiA + σiB = 1 holds precisely when xiA = −xiB .

TYPE I EQUILIBRIA Take a partition A and B of the player set N such that both sets A and

B are not empty. For a perturbation η = (ηiA, ηiB)i∈N , define the variables yiA and yiB by

yiA := h(ηiA) and yiB := h(ηiB). The conditions for η to have a type I equilibrium can now

be written as

(I.3∗) For all i ∈ A
∑

j∈B

yjA ≤
∑

j∈A
j 6=i

yjB
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(I.4∗) For all i ∈ B
∑

j∈B
j 6=i

yjA ≥
∑

j∈A

yjB .

In which case we have the linear equilibrium x = (xiA, xiB)i∈N of type I defined by xiA = yiA

for all i ∈ B, xiA = −yiB for all i ∈ A, and xiA = −xiB for all i ∈ N .

TYPE II EQUILIBRIA Take a partition A, B, and Z = {k} of the player set N such that sets

A and B are not empty. Take a perturbation η = (ηiA, ηiB)i∈N that satisfies condition

(II.2∗)
∑

j∈B

yjA =
∑

j∈A

yjB .

We have the following line segment of linear equilibria. For any γ with

For all i ∈ A ∪ {k} yiB ≤ −γ

For all i ∈ B ∪ {k} yiA ≤ γ.

the strategy profile x = (xiA, xiB)i∈N defined by xiA = yiA for all i ∈ B, xiA = −yiB for all

i ∈ A, and xkA = γ, is a linear equilibrium of type II.

TYPE III EQUILIBRIUM Take a partition A, B, and Z of the player set N , A or B possibly

empty, and |Z| = z ≥ 2. For a perturbation η = (ηiA, ηiB)i∈N , let c be such that

(z − 1)h(c) =
∑

j∈A

yjB −
∑

j∈B

yjA.

Note that c is uniquely defined this way. Suppose that η satisfies

For all i ∈ A ∪Z ηiB ≤ 1 − c

For all i ∈ B ∪ Z ηiA ≤ c.

When we write

γ = h(c) =
1

z − 1





∑

j∈A

yjB −
∑

j∈B

yjA



 ,

these inequalities can be rewritten to

For all i ∈ A ∪Z yiB ≤ −γ

For all i ∈ B ∪ Z yiA ≤ γ.

Then the strategy profile x = (xiA, xiB)i∈N defined by xiA = yiA for all i ∈ B, xiA = −yiB for

all i ∈ A, and xiA = γ for all i ∈ Z is a linear equilibrium of type III. Note that the choice

xiA = xiB = 0 is a type III linear equilibrium, corresponding to to the Nash equilibrium ρ in

the perturbed game.
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10 The CKM perturbation

In this section we construct a CKM perturbation that does not intersect the equilibrium cor-

respondence.

10.1 Translation to the linearized equilibrium correspondence

Let Xi denote the space of vectors (xiA, xiB) with xiA = −xiB. Write X =
∏

i∈N Xi. Let Yi

denote the space of vectors (yiA, yiB) and write Y =
∏

i∈N Yi. A vector (xiA, xiB)i∈N in X is

said to be a linear equilibrium of the (linear) perturbation (yiA, yiB)i∈N when it satisfies the

conditions for type I, type II, or type III linear equilibrium of the previous section. We also

sometimes write that the tuple (xiA, xiB , yiA, yiB)i∈N is a linear equilibrium.

Lemma 10.1 Suppose for every K < 0 that there exists an L < 0, a point y∗ ∈ Y , and a

continuous function f : X → Y with the following four properties.

(i) f(x)iA ≤ K and f(x)iB ≤ K for all x ∈ X and all coordinates (i, A) and (i, B)

(ii) for every x ∈ X, when (x, y∗) is a linear equilibrium, then xiA > L and xiB > L for all

i ∈ N

(iii) for every x ∈ X with xiA ≤ L or xiB ≤ L for at least one i ∈ N , f(x) = y∗

(iv) for every x ∈ X with xiA > L and xiB > L for all i ∈ N , if (x, f(x)) is a linear equilibrium,

then x = 0.

Then the sphere G of Pareto efficient Nash equilibria of the binary minimal diversity game is

not a CKM set.

Proof. We want to show that G is not a CKM set. So, we have to construct a neighborhood

U of the sphere G such that for every ζ > 0 there is a CKM perturbation ε with ‖ε‖ ≤ ζ and

graph[ε] ∩ E ∩ U is empty.

Let U be the set of strategy profiles σ ∈ Σ with σiA < 1
4 or σiB < 1

4 for at least one player

i ∈ N . Clearly U is a neighborhood of G. Take ζ < 0. Take

K = h(ζ) = log(ζ) − log(1 − ζ).

Let L, y∗, and f satisfy the four conditions of the Lemma given this choice of K. For a vector

(ziA, ziB)i∈N with 0 < ziA < 1 and 0 < ziB < 1 for all i ∈ N we define

H : (ziA, ziB)i∈N 7→ (h(ziA), h(ziB))i∈N .
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It is easily checked that H is a homeomorphism from (0, 1)N to R
N . Therefore its inverse H−1

exists and is continuous. We define the CKM perturbation ε: Σ → K by, for every σ ∈ Σ,

ε(σ) =

{

(H−1 ◦ f ◦ H)(σ) when σ is completely mixed
H−1(y∗) otherwise.

First notice that this is indeed a sound definition because, for every completely mixed strategy

profile σ, H(σ) is indeed an element of X .

A. The function ε is continuous. Suppose that the sequence (σk)∞k=1 of strategy profiles

converges to the strategy profile σ. When σ is completely mixed, we have ε(σk) → ε(σ) by

the continuity of H , f , and H−1. Suppose that σ is not completely mixed. Without loss we

assume that there is a pair (i, A) with σiA = 0. So, σk
iA → 0 as k → ∞. Then h(σk

iA) → −∞

as k → ∞. So, h(σk
iA) ≤ L for large k. Therefore, by (iii), f(H(σk)) = y∗ for large k. Hence,

(H−1 ◦ f ◦ H)(σk) → H−1(y∗) as k → ∞.

B. We check that ‖ε(σ)‖∞ ≤ ζ for all σ ∈ Σ. Take σ ∈ Σ. Then H(σ) ∈ X . So, by

(i), f(H(σ))iA ≤ K and f(H(σ))iB ≤ K for all (i, A) and (i, B). Hence, by the definition of

K, h−1(f(H(σ))iA) ≤ ζ and h−1(f(H(σ))iB) ≤ ζ for all (i, A) and (i, B), which implies that

‖ε(σ)‖∞ ≤ ζ.

C. We check that graph[ε]∩ E ∩U is empty. Suppose that (η, σ) is an element of graph[ε]∩

E ∩ U . Then η = ε(σ). So, η is completely mixed by the definition of ε. Therefore, since

σ is an equilibrium of the η-perturbed game, also σ is completely mixed. So, again by the

definition of ε, η = (H−1 ◦ f ◦ H)(σ), which implies that H(η) = (f ◦ H)(σ). Consequently,

(H(σ), f(H(σ))) = (H(σ), H(η)) is a linear equilibrium.

If H(σ)iA > L and H(σ)iB > L for all i ∈ N , then H(σ) = 0 by (iv), which implies that

σ = ρ /∈ U . Therefore H(σ)iA ≤ L or H(σ)iB ≤ L for at least one i ∈ N . So, by (iii),

f(H(σ)) = y∗, and (H(σ), y∗) = (H(σ), f(H(σ))) is a linear equilibrium. Then, by (ii),

H(σ)iA > L and H(σ)iB > L for all i ∈ N . This contradicts the earlier conclusion that

H(σ)iA ≤ L or H(σ)iB ≤ L for at least one i ∈ N .

The remainder of this paper is devoted to the proof that, given K < 0, there do indeed exist

an L < 0, a point y∗ ∈ Y , and a continuous function f : X → Y that satisfy the four properties

of Lemma 10.1.
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10.2 The initial perturbation

Take K < 0 fixed. Define the initial perturbation y∗ by

y∗ = (yjA, yjB)j∈N = (K · nj · 4j , K · nj · 4j)j∈N .

Write yj = K ·nj ·4j . Note that yj = yjA = yjB = K ·nj ·4j . Moreover, for every k = 2, . . . , n,

yk < n ·
k−1
∑

j=1

yj (∗)

We show that the only linear equilibria of y∗ are the ones associated with the partitions

A = {1, . . . , k} and Z = {k + 1, . . . n}

for k ≤ n − 2, and

A = {1, . . . , n − 1} and B = {n}

together with their symmetric counterparts

B = {1, . . . , k} and Z = {k + 1, . . . n}

for k ≤ n − 2, and

B = {1, . . . , n − 1} and A = {n}.

It is straightforward to check that these partitions indeed generate linear equilibria for y∗. We

show that no other partitions generate linear equilibria for this particular perturbation.

First we show that there are no other linear equilibria of type I beyond the two mentioned

above. Assume w.l.o.g. that n ∈ B. Suppose that there is a k 6= n with k ∈ B. Then, by the

above inequality (∗),
∑

j∈B
j 6=k

yj ≤ yn <

n−1
∑

j=1

yj ≤
∑

j∈A

yj .

This violates inequality (I.4∗).

Next, we show that there are no linear equilibria of type II. Assume w.l.o.g. that there is a

k ∈ B with k > j for all j ∈ A. Then, by (∗),

∑

j∈B

yj ≤ yk <

k−1
∑

j=1

yj ≤
∑

j∈A

yj,

which violates equation (II.2∗).
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Finally we show that there are no linear equilibria of type III that have both A 6= φ and B 6= φ.

Suppose both A 6= φ and B 6= φ. Assume w.l.o.g. that there is a k ∈ B with k > j for all

j ∈ A. Then γ > 0. So, by inequality (∗), for every i ∈ A,

(n − 1) · γ ≥ (z − 1) · γ =
∑

j∈A

yj −
∑

j∈B

yj >
∑

j∈A

yj − yk >
∑

j∈A

yj − n ·
k−1
∑

j=1

yj

≥
∑

j∈A

yj − n ·
∑

j∈A

yj = −(n − 1) ·
∑

j∈A

yj

≥ −(n − 1)yi.

This violates the requirement yiB ≤ −γ for i ∈ A.

10.3 Linking linear equilibria

Suppose that k ≤ n − 4 (and hence necessarily n ≥ 5). We focus on the equilibrium that is

generated by the partition

A = {1, . . . , k} and Z = {k + 1, . . . n}.

We indicate this equilibrium by (A, Z, Z), the coordinates in positions (k, k + 1, k + 2). We

wish to construct a path in the linear equilibrium correspondence that connects this linear

equilibrium to linear equilibrium (A, A, Z) generated by partition

A = {1, . . . , k + 1} and Z = {k + 2, . . . n}

via the linear equilibria (A, Z, B) and (A, A, B) generated by the partitions

A = {1, . . . , k} and B = {k + 2} and Z = {k + 1} ∪ {k + 3, . . . n}

and

A = {1, . . . , k + 1} and B = {k + 2} and Z = {k + 3, . . . n}

respectively.

Take K < 0 fixed. Define R = 5n · K. Take λ ≥ 1. The parameter λ is our parametrization

for the line segment of perturbations above which we consider the equilibrium correspondence.

The constant R is chosen in such a way that the (1, B) coordinate of the resulting perturbation

is smaller (in the sense of “more negative”) than the (1, B) coordinate of y∗. We define the

perturbation

y∗(k, λ) = (yiA, yiB)i∈N
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by 15

yiA =



















λ · R when i = 1, . . . , k
3nR when i = k + 1
2nR when i = k + 2
4nR when i = k + 3, . . . , n − 1

(4n)nR when i = n

and yiB =



















λ · R when i = 1, . . . , k
R when i = k + 1
R when i = k + 2

4nR when i = k + 3, . . . , n − 1
(4n)nR when i = n

Notice that yiA = λ · R for i = 1, . . . , k. Thus, this value varies as λ changes. The other

values are fixed throughout the construction. We show that the equilibrium correspondence

over the path of perturbations for λ ≥ 1, when restricted to the equilibria (A, Z, Z), (A, Z, B),

(A, A, B), and (A, A, Z), looks as follows.
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k

FIGURE: the graph of the equilibrium correspondence for k ≤ n − 4

Notice that indeed

1 <
n + k + 2

k
<

2n(n − k − 2) − 1

k
<

2n(n − k − 1)

k
.

The second inequality follows from the assumption that k ≤ n − 4 (and hence n − k − 2 ≥ 2).

Claim 1. The (A, Z, Z) equilibrium exists precisely when λ ≤ 2n(n−k−1)
k

. Given the parti-

tion, we know that

γ =
1

z − 1

∑

j∈A

yjB =
kλR

n − k − 1
< 0.

15Formally yiA and yiB depend on both k and λ. For simplicity we suppress this dependence in the notation
though and simply keep the dependence in mind in the calculations.
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Thus, the equilibrium conditions reduce to yiA ≤ γ for all i ∈ Z. So, since yk+2,A > yiA for all

i ∈ Z, i 6= k + 2, the condition for this equilibrium to exist is

2nR ≤
kλR

n − k − 1
⇔ λ ≤

2n(n − k − 1)

k
.

Claim 2. The (A, A, Z) equilibrium exists precisely when λ ≤ 2n(n−k−2)−1
k

. Given the

partition, we know that

γ =
1

z − 1

∑

j∈A

yjB =
kλR + R

n − k − 2
< 0.

Thus, the equilibrium conditions reduce to yiA ≤ γ for all i ∈ Z. So, since yk+2,A > yiA for all

i ∈ Z, i 6= k + 2, the condition for this equilibrium to exist is

2nR ≤
kλR + R

n − k − 2
⇔ 2n ≥

kλ + 1

n − k − 2
⇔

2n(n − k − 2) − 1

k
≥ λ.

Claim 3. The (A, Z, B) equilibrium exists precisely when n+k+2
k

≤ λ ≤ 2n(n−k−1)
k

. Given

the partition, we know that

γ =
1

z − 1





∑

j∈A

yjB −
∑

j∈B

yjA



 =
1

n − k − 2
[k · λ · R − 2nR]

while the equilibrium conditions reduce to yk+1,B ≤ −γ and yk+2,A ≤ γ. This yields

2nR ≤
kλR − 2nR

n − k − 2
≤ −R

which can be rewritten to

2n ≥
kλ − 2n

n − k − 2
≥ −1

and

2n + 2n(n − k − 2) ≥ kλ ≥ 2n− (n − k − 2)

and hence
n + k + 2

k
≤ λ ≤

2n(n− k − 1)

k
.

Claim 4. The (A, A, B) equilibrium exists precisely when n+k+2
k

≤ λ ≤ 2n(n−k−2)−1
k

. Given

the partition, we know that

γ =
1

z − 1





∑

j∈A

yjB −
∑

j∈B

yjA



 =
kλR + R − 2nR

n − k − 3

while the equilibrium conditions reduce to yk+1,B ≤ −γ and yk+2,A ≤ γ. This yields

2nR ≤
kλR + R − 2nR

n − k − 3
≤ −R
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which can be rewritten to

2n + 2n(n − k − 3) − 1 ≥ kλ ≥ 2n− (n − k − 3) − 1

and further to
n + k + 2

k
≤ λ ≤

2n(n − k − 2) − 1

k
.

Again the interval for λ is not degenerate because we assume that k ≤ n − 4.

Now suppose that k = n − 2, so that

A = {1, . . . , n − 2} and Z = {n − 1, . . . n}.

We connect the (A, Z, Z) equilibrium 16 generated by this partition to the (A, A, B) equilibrium

generated by the partition

A = {1, . . . , n − 1} and B = {n}.

In order to do this, again take R < 0 fixed. For λ ≥ 1 we define the perturbation

y∗(n − 2, λ) = (yiA, yiB)i∈N

by 17

yiA =

{

λ · R when i = 1, . . . , n − 2
3nR when i = n − 1
2nR when i = n

and yiB =

{

λ · R when i = 1, . . . , n − 2
R when i = n − 1
R when i = n

We show that the equilibrium correspondence over the path of perturbations for λ ≥ 1, when

restricted to the equilibria (A, Z, Z), (A, Z, B), and (A, A, B), looks as follows. Notice that

indeed 1 < 2n
n−2 .

16The letter coding here refers to the coordinates (n − 2, n − 1, n).
17For simplicity we again suppress the dependence of yiA and yiB on λ.
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FIGURE: the graph of the equilibrium correspondence for k = n − 2

Claim 1. The (A, Z, Z) equilibrium exists precisely when λ ≤ 2n
n−2 . Given the partition, we

know that

γ =
1

z − 1

∑

j∈A

yjB = (n − 2)λR < 0.

Thus, the equilibrium conditions reduce to yiA ≤ γ for i = n − 1, n. So, since yn,A = 2nR >

3nR = yn−1,A, the condition for this equilibrium to exist is

2nR ≤ (n − 2)λR ⇔ λ ≤
2n

n − 2
.

Claim 2. The (A, A, B) equilibrium exists precisely when λ ≤ 2n
n−2 . Given the partition, we

know that |B| = 1. So, since yn−1,B ≥ yjB for all j = 1, . . . , n − 2, the equilibrium conditions

reduce to

ynA ≤
n−2
∑

j=1

λyjB ⇔ 2nR ≤ (n − 2)λR ⇔ λ ≤
2n

n − 2
.

Claim 3. The (A, Z, B) equilibrium exists precisely when λ = 2n
n−2 . This type II equilibrium

exists precisely when
∑

j∈B

yjA =
∑

j∈A

yjB .

On the line segment of perturbations we consider this reduces to the equation

ynA =

n−2
∑

j=1

yjB ⇔ 2nR = (n − 2)λR ⇔ λ =
2n

n − 2
.
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For the perturbation where this equality holds we have the following line segment of linear

equilibria. For any γ with

for i = 1, . . . , n − 1 yiB ≤ −γ

for i = n − 1, n yiA ≤ γ

the vector x = (xiA, xiB)i∈N defined by xiA = yiA for all i ∈ B, xiA = −yiB for all i ∈ A, and

xkA = γ, is a linear equilibrium. For this particular perturbation these conditions reduce to

yn−1,B = y ≤ −γ and ynA = 2nR ≤ γ.

On the side of the line segment of linear equilibria where the inequality yn−1,B ≤ −γ becomes

binding, the line segment connects to the line segment of (A, A, B) equilibria. On the side

where the inequality ynA ≤ γ becomes binding it connects to the line segment of (A, Z, Z)

linear equilibria.

10.4 Construction of f

Take an arbitrary K < 0. In this final section we show that there exist an L < 0, a point

y∗ ∈ Y , and a continuous function f : X → Y that satisfy the four properties of Lemma 10.1.

Note that the constructions in the previous two sections only depend on K (and on R = 5nK).

Take k ≤ n − 2 and k odd. Further let 0 ≤ µ ≤ 1. Define

z(k, µ) =







(1 − 2µ)y∗ + 2µy∗(k, 1) when µ ≤ 1
2

y∗
(

k, 4n(n−k−1)
k

· µ + 1 − 2n(n−k−1)
k

)

when µ ≥ 1
2 .

Define

Zk = {z(k, µ) | 0 ≤ µ ≤ 1}.

For k odd, k ≤ n − 2, define sets Ek, Nk and Sk as follows. Let Ek be the set of pairs

(z(k, µ), x) for which z(k, µ) ∈ Zk and x is a linear equilibrium of z(k, µ). Let Nk be the set

of pairs (z(k, µ), x) for which z(k, µ) ∈ Zk and x is a linear equilibrium of z(k, µ) of one of

the forms (A, Z, Z), (A, Z, B), (A, A, B), or (A, A, Z). Let Sk ⊂ X be the collection of points

x ∈ X for which there is a z(k, µ) ∈ Zk such that x is a linear equilibrium of the perturbation

z(k, µ) of one of the forms (A, Z, Z), (A, Z, B), (A, A, B), or (A, A, Z). Note that, for k = n−2,

type (A, A, Z) equilibria do not occur.
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Before we proceed we first need to state and prove four claims concerning the sets Sk, Nk and

Ek. The proofs are at times somewhat lengthy, and can be skipped in a first reading of this

part of the paper.

Claim 1. Each Nk is compact. Hence, also each Sk is compact.

Proof of claim 1. The claim immediately follows from the observation that Sk is in fact the

projection of the closed and bounded set Nk.

Claim 2. Nk is isolated in Ek. So, there is an open neighborhood Uk of Nk such that for

every (z, x) ∈ Uk with (z, x) ∈ Ek we automatically have (z, x) ∈ Nk.

Proof of claim 2. Take sequences xt → x and µt → µ as t → ∞ such that (z(k, µt), xt) ∈ Ek

for all t and (z(k, µ), x) ∈ Nk. We show that (z(k, µt), xt) ∈ Nk for large t. We assume without

loss that all linear equilibria (z(k, µt), xt) have the same partition A, B, Z. Then we know that

A ⊂ A(µ), B ⊂ B(µ), and Z(µ) ⊂ Z. Moreover, i ∈ Z and i ∈ A(µ) can only happen when

γ(µ) = xiA > 0, and similarly i ∈ Z and i ∈ B(µ) can only happen when γ(µ) = xiA < 0.

A. Suppose x is of type (A, Z, Z) under z(k, µ). Then γ(µ) < 0. So, A = A(µ) = {1, . . . , k}.

Hence, since {k + 1, . . . , n} = Z(µ) ⊂ Z, xt is of type (A, Z, Z) under z(k, µt). The same

argument is valid when x is of type (A, A, Z) under z(k, µ).

Suppose x is of type (A, Z, B) under z(k, µ). Then µ > 1
2 . So, we may assume that µt > 1

2

for all t. If γ(µ) ≤ 0, then xt is either of type (A, Z, B) or of type (A, Z, Z) for large t,

because A = A(µ) = {1, . . . , k} and {k + 1} ∪ {k + 3, . . . , n} = Z(µ) ⊂ Z. In either case

(z(k, µt), xt) in Nk for large t. If γ(µ) > 0. Then B = {k + 2}. Moreover, since k + 1 ∈ Z(µ),

xk+1,A = γ(µ) < −R. Now suppose that i ∈ Z for some i ∈ {1, . . . , k}. Then xt
iA = γ(µt) for

all t. However, since i ≤ k, we know that i ∈ A(µ), so that xiA = −λR ≥ −R. Thus, since

xt
iA → xiA and γ(µt) → γ(µ), γ(µ) ≥ −R. Contradiction. Hence, i ∈ A for all i ∈ {1, . . . , k},

and A = A(µ).

Suppose x is of type (A, A, B) under z(k, µ). Then µ > 1
2 . So, we may assume that µt > 1

2 for

all t. If γ(µ) ≤ 0, then xt is either of type (A, A, B) or of type (A, A, Z) for large t. In either

case (z(k, µt), xt) in Nk for large t. If γ(µ) > 0. Then B = {k + 2}. Further, k + 1 ∈ A(µ),

so either k + 1 ∈ A or k + 1 ∈ Z. In either case, γ(µt) ≤ −R. Now take i ∈ {1, . . . , k}, and

assume that i ∈ Z. Then xt
iA = γ(µt) ≤ −R for all t. So, also xiA ≤ −R < −λR. This implies

that i /∈ A(µ). Contradiction. Hence, {1, . . . , k} ⊂ A, and xt is either of type (A, A, B) or of

type (A, Z, B). In either case, (z(k, µt), xt) ∈ Nk. This completes the proof of Claim 2.
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Claim 3. Nk only consists of the line segments indicated in the pictures in the previous

section. That is, for µ < 1
2 , linear equilibria of type (A, Z, B) do not exist, and for µ < 1

2 and

k ≤ n − 4, also linear equilibria of type (A, A, B) do not exist.

Proof of claim 3. Suppose that (z(k, µ), x) ∈ Ek and µ < 1
2 . We show that it is not of one

of the types (A, Z, B) or (A, A, B).

A. Suppose that (z(k, µ), x) is of type (A, Z, B). When k ≤ n − 4. Then |Z| ≥ 2. We show

that γ > −yk+1,B, which contradicts the assumption that k + 1 ∈ Z.

For µ = 0, writing yiA = yiB = yi, we know that

yk < n ·
k−1
∑

j=1

yj.

Thus,

γ =
1

z − 1





k
∑

j=1

yj − yk+2



 >
1

n − 1





k
∑

j=1

yj − n ·
k+1
∑

j=1

yj



 ≥
−n

n − 1
yk+1 > −yk+1.

For µ = 1
2 ,

γ =
1

z − 1





k
∑

j=1

yjB − yk+2,A



 =
1

z − 1
[kR − 2nR] >

−n

n − 1
R > −R = −yk+1,B.

Thus, the inequality γ > −yk+1,B holds for both µ = 0 and µ = 1
2 . Then by linearity it also

holds for all µ ∈ [0, 1
2 ].

For k = n − 2. In this case a type (A, Z, B) linear equilibrium can only exist when

∑

j∈A

yjB =
∑

j∈B

yjA ⇔
n−2
∑

j=1

yjB = ynA.

However, for both µ = 0 and µ = 1
2 it can easily be seen that

n−2
∑

j=1

yjB > ynA,

so that this strict inequality also holds for all µ ∈ [0, 1
2 ] by linearity.

B. Suppose that k ≤ n−4 and that (z(k, µ), x) is of type (A, A, B). We show that γ > −y1B,

which violates the assumption that 1 ∈ A. For µ = 0 we have

γ =
1

n − k − 3





k+1
∑

j=1

yj − yk+2



 >
−(n − 1)

n − k − 3
·

k+1
∑

j=1

yj > −y1.
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For µ = 1
2 we have

γ =
1

n − k − 3





k+1
∑

j=1

yjB − yk+2,A



 =
(k + 1) · R − 2nR

n − k − 3
>

−nR

n − k − 3
> −R = y1B.

Hence, by linearity we find that γ > −y1B for all µ ∈ [0, 1
2 ].

Claim 4. The sets S1, S3, . . . , Sn−2 are mutually disjoint.

Proof of claim 4. Take k ≤ n − 2, k odd, and l ≤ n − 2, l odd, with k 6= l. Without loss,

k < l. Then l ≥ k + 2. Take an x ∈ Sk. Then, since l ≥ k + 2, xlA < 0. However, for every

y ∈ Sl we have ylA > 0. Hence, x /∈ Sl, and Sk and Sl are disjoint.

These three claims already enable us to prove that G is not stable under the homotopy def-

inition. We however wish to prove a somewhat stronger statement, namely that G is not a

CKM-set. For this we need the following improvement on claim 2.

Claim 5. There is an open neighborhood Ok of Sk such that for every x ∈ Ok and every

z ∈ Zk with (z, x) ∈ Ek we automatically have (z, x) ∈ Nk.

Proof of claim 5. The proof is in several steps.

A. First take x ∈ Sk and z(k, µ) ∈ Zk with (z(k, µ), x) ∈ Ek. We show that (z(k, µ), x) ∈ Nk.

Since x ∈ Sk there exists a z(k, ν) ∈ Zk such that (z(k, ν), x) ∈ Nk. If both µ ≥ 1
2 and ν ≥ 1

2 ,

or if both µ ≤ 1
2 and ν ≤ 1

2 , then by linearity of the linear equilibrium correspondence, the line

segment between (z(k, µ), x) and (z(k, ν), x) is a subset of Ek. Hence, since (z(k, ν), x) ∈ Nk,

also (z(k, µ), x) ∈ Nk in these two cases in view of claims 2 and 3.

Thus, we only need to consider the other two cases, namely (1) µ > 1
2 and ν < 1

2 , and (2)

µ < 1
2 and ν > 1

2 . Notice that x1A > 0, since x ∈ Sk. So, either 1 ∈ A(µ) or 1 ∈ Z(µ).

Suppose that 1 ∈ Z(µ). We derive a contradiction.

A1a. For k ≤ n − 4, k odd. Suppose the linear equilibrium x is of type (A, Z, Z) under

z(k, ν). So, A(ν) = {1, . . . , k} and Z(ν) = {k + 1, . . . , n}. Then x1A > 0 > xnA. So, since

1 ∈ Z(µ), we necessarily have n ∈ B(µ). Now notice that, for both z = y∗ and z = y∗(k, 1) we

have the strict inequality

znA = znB < n ·
n−1
∑

j=1

zjB .

Therefore this strict inequality also holds for every z(k, µ). So, writing z = z(k, µ), and taking
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into account that γ(µ) = x1A > 0, we get

−γ(µ) =
1

z − 1





∑

j∈B

zjA −
∑

j∈A

zjB





≤
1

n − 1





∑

j∈B

zjA −
∑

j∈A

zjB





≤
1

n − 1



znA −
n−1
∑

j=1

zjB





<

n−1
∑

j=1

zjB ≤ z1B.

The conclusion −γ(µ) < z1B contradicts the equilibrium condition when 1 ∈ Z(µ). The

analogous suitably adjusted argument (using k + 1 instead of k) can be used for the (A, A, Z)

equilibrium.

A1b. For k ≤ n − 4 and k odd. Suppose the linear equilibrium x is of type (A, Z, B) or of

type (A, A, B) under z(k, ν). So, 1 ∈ A(ν) and k + 2 ∈ B(ν). Then x1A > 0 and xk+2,A < 0.

Thus, because we assumed that 1 ∈ Z(µ), necessarily k +2 ∈ B(µ). We derive a contradiction.

Note that, by A1, ν ≥ 1
2 , so that z(k, ν) = y∗(k, λ) for

λ =
4n(n − k − 1)

k
· ν + 1 −

2n(n− k − 1)

k
.

Hence, xk+2,A = y∗(k, λ)k+2,A = 2nR. We only need to consider the case where µ < 1
2 . Then

z(k, µ)k+2,A = (1 − 2µ)y∗
k+2,A + 2µy∗(k, 1)k+2,A

= (1 − 2µ)(4n)k+2K + 2µ2nR

≤ (1 − 2µ)(4n)3K + 2µ10n2K

< 10n2K = 2nR = xk+2,A,

which implies that k + 2 /∈ B(µ). Contradiction.

A2. When k = n − 2. Then x is of one of three types (A, Z, Z), (A, Z, B), or (A, A, B)

under z(n − 2, ν).

A2a. When x is of type (A, Z, Z) under z(n − 2, ν), and ν > 1
2 . Then xiA = −λR > 0 for

all i ≤ n−2, and xiA = λ(n−2)R < 0 for i = n−1, n. So, by the assumptions that µ < 1
2 and

1 ∈ Z(µ), we necessarily have Z(µ) = {1, . . . , n − 2} and B(µ) = {n − 1, n}. Then however,

xnA = z(n− 2, µ)nA. This, because µ < 1
2 , yields

λ(n − 2)R = 2µ2nR + (1 − 2µ)(4n)nR
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which, substituting t = 2µ, can be rewritten to

(n − 2)λ = 2nt + (1 − t)(4n)n.

Then however

λ =
2nt + (1 − t)(4n)n

n − 2
>

2n

n − 2

because t = 2µ < 1. This contradicts the assumption that x is a linear equilibrium of type

(A, Z, Z) under z(n − 2, ν).

A2b. When x is of type (A, Z, Z) under z(n − 2, ν) and ν < 1
2 . Then xiA > xi−1,A > 0

for all 2 ≤ i ≤ n − 2, and xn−1,A = xnA < 0 for i = n − 1, n. So, when 1 ∈ Z(µ), then

necessarily A(µ) = {2, . . . , n − 2} B(µ) = {n − 1, n}, and Z(µ) = {1}. Thus, x is a type II

linear equilibrium under z(n − 2, µ), and the equality

∑

j∈B(µ)

z(n − 2, µ)jA =
∑

j∈A(µ)

z(n − 2, µ)jB

should hold. Now notice that for both z = y∗ and z = y∗(n − 2, λ) with λ ≤ 2n
n−2 + 1 we have

zn−1,A + znA <

n−2
∑

j=2

zjB

so that

z(n − 2, µ)n−1,A + z(n − 2, µ)nA <

n−2
∑

j=2

z(n − 2, µ)jB

holds for every 0 ≤ µ ≤ 1. Contradiction.

A2c. When x is of type (A, Z, B) under z(n − 2, ν). Then automatically ν > 1
2 . So, we

may assume that µ < 1
2 . Since ν > 1

2 , we know that xiA = −λR > 0 for all i ≤ n − 2, and

xnA = 2nR < 0. So, since µ < 1
2 and 1 ∈ Z(µ), necessarily {2, . . . , n − 2} ⊂ Z(µ). Further,

since n − 1 ∈ Z(ν), we have

xn−1,A < −z(n− 1, ν)n−1,B ≤ −z(n− 1, ν)1B = x1A.

Thus, xn−1,A < x1A, and then necessarily n − 1 ∈ B(µ). If xn−1,A < 0. So, {1, . . . , n − 2} =

Z(µ) and {n − 1, n} = B(µ). This however means that

−λR = x1A = γ(µ) = −
z(n − 2, µ)n−1,A + z(n − 2, µ)nA

n − 3
.

However, since µ < 1
2 , we can deduce that z(n−2, µ)n−1,A < 3nR and z(n−2, µ)n−1,A < 2nR.

Then, since λ ≤ 2n
n−2 , the above equality implies that

2n(n − 3)

n − 2
≥ 5n
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which contradicts the assumption that n ≥ 3.

A2d. When x is of type (A, A, B) under z(k, ν), ν < 1
2 and µ > 1

2 . Then, since ν < 1
2 , we

have

xn−1,B < xn−2,B < · · · < x1B < 0.

Then the assumption 1 ∈ Z(µ) implies that Z(µ) = {1}, A(µ) = {2, . . . , n−1} and B(µ) = {n}.

However, since z(n− 2, µ)iB = λ ·R for all i = 2, . . . , n− 2, A(µ) = {2, . . . , n− 1} implies that

n ≥ 5 is not possible. Therefore necessarily n = 3. In this case, Z(µ) = {1}, A(µ) = {2} and

B(µ) = {3}. So, x is a type II linear equilibrium under z(n− 2, µ). Type II equilibria however

only occur when we have the equality

∑

j∈B(µ)

z(n − 2, µ)jA =
∑

j∈A(µ)

z(n − 2, µ)jB

which for n = 3 reduces to the requirement z(n − 2, µ)3A = z(n − 2, µ)2B. However, since

µ > 1
2 , we have z(n− 2, µ)3A = 2nR = 6R and z(n − 2, µ)2B = R. Contradiction.

A2e. When x is of type (A, A, B) under z(k, ν), ν > 1
2 and µ < 1

2 . Since ν > 1
2 , and x is of

type (A, A, B) under z(n − 2, ν), it follows that x1B = λ · R and xn−1,B = R. Hence

x1B < xn−1,B < 0

which immediately contradicts the assumption 1 ∈ Z(µ).

So, the assumption 1 ∈ Z(µ) led to a contradiction in all cases. Hence, 1 ∈ A(µ). This implies

that x1A = −z(k, µ)1B. We continue the proof that z(k, µ), x) ∈ Nk.

A3. First we show that the function µ 7→ z(k, µ)1B is strictly decreasing, so that the value

of x1A uniquely determines the value of µ. For µ ≥ 1
2 , z(k, µ)1B = y∗(k, λ)1B = λ · K, where

λ =
4n(n − k − 1)

k
· µ + 1 −

2n(n − k − 1)

k
.

Obviously λ is strictly increasing in µ. Hence, because K < 0, λ ·K is strictly decreasing in µ.

For µ ≤ 1
2 ,

z(k, µ)1B = (1 − 2µ)y∗
1B + 2µy∗(k, 1)1B = (1 − 2µ) · 4nK + 2µ · R.

Since R = 5n · K < 4nK, this expression is indeed strictly decreasing in µ.

Now we can finish the proof of A. Since, µ 7→ z(k, µ)1B is strictly decreasing, and both 1 ∈ A(ν)

and 1 ∈ A(µ), we find that µ = ν. Then however also z(k, µ) = z(k, ν). Hence, z(k, µ), x) =

z(k, ν) ∈ Nk. This completes the proof of part A.
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B. Now take x ∈ Sk and z ∈ Zk with (z, x) /∈ Nk. Then in view of A also (z, x) /∈ Ek. So,

there exists a neighborhood U(z,x) of (z, x) such that U(z,x) ∩ Ek is empty. Now let Vk be the

union of sets Uk and U(z,x), where Uk is chosen as in claim 2. Then Vk is a neighborhood of

the compact set Sk × Zk such that Vk ∩ Ek = Nk. By compactness of Sk × Zk there are open

neighborhoods Ok of Sk and Wk of Zk such that Ok × Wk is a subset of Vk. This concludes

the proof of claim 4.

We continue with the construction of y∗, L, and f as specified in Lemma 10.1. Let y∗ be

the initial perturbation defined in Section 10.2. Further, due to Claims 1 and 4 we can find

bounded and open sets Vk in X such that Sk ⊂ Vk ⊂ Ok for each k, and such that the respective

closures V1, V3, . . . , V2n−3 are mutually disjoint 18. Since each Vk is bounded, we can choose

an L < 0 such that for each Vk and each x ∈ Vk we have xiA > L and xiB > L.

Next, by the Lemma of Urysohn, for each k there exists a continuous function

gk: X → [0, 1]

such that gk = 1 on Sk and gk = 0 outside Vk. Define the function f : X → Y by

f(x) =

{

z(k, gk(x)) if x ∈ Vk for some k = 1, . . . , n − 2, k odd
y∗ else

We show that y∗, L, and f satisfy the conditions of Lemma 10.1.

A. We show that f is continuous.

Proof of A. Take a sequence (xt)∞t=1 converging to x. We show that f(xt) → f(x) as t → ∞.

The only slightly non-trivial case is where xt ∈ Vk for some k, and x /∈ Vk. In that case

f(x) = y∗, while by the continuity of gk we have gk(xt) → 0 as t → ∞. Hence,

f(xt) = z(k, gk(xt)) → z(k, 0) = y∗ = f(x)

as t → ∞.

B. We show that f(x)iA ≤ K and f(x)iB ≤ K for all x ∈ X and all coordinates (i, A) and

(i, B).

Proof of B. Trivial once we observe that this holds for y∗ as well as for all y∗(k, λ).

C. Suppose that (x, y∗) is a linear equilibrium. We show that xiA > L and xiB > L for all

i ∈ N .

18Recall that we also need to take care of the equilibria of type (B, Z, Z), (B, B, Z), and (B, B, A). The
corresponding n−1

2
sets are indexed by indices n, n + 2, . . . , 2n − 3.



Minimal diversity games 47

Proof of C. Also easy once we observe that, according to Section 10.2, the only linear

equilibrium of the form (x, y∗) for which x is not an element of some Sk is when xiA = xiB = 0

for all i, in which case the inequalities also hold.

D. For every x ∈ X with xiA ≤ L or xiB ≤ L for at least one i ∈ N we have f(x) = y∗.

Proof of D. Immediate from the definition of f , once we observe that the condition xiA ≤ L

or xiB ≤ L for at least one i ∈ N implies that x is not an element of any Vk.

E. Suppose x ∈ X with xiA > L and xiB > L for all i ∈ N . Suppose that (x, f(x)) is a

linear equilibrium. Then x = 0.

Proof of E. Suppose that x ∈ Vk for some k. Then, since (x, f(x)) ∈ Ek by construction,

we know from Claim 4 that (x, f(x)) ∈ Nk. This implies that x ∈ Sk. So, gk(x) = 1 by

construction. Hence,

f(x) = z(k, 1) = y∗

(

k,
2n(n − k − 1)

k
+ 1

)

.

However, from Section 10.3 we know that for λ > 2n(n−k−1)
k

the perturbation y∗(k, λ) does

not have any linear equilibria in Sk. Thus, x /∈ Vk for all k. Then f(x) = y∗. According to

Section 10.2, x = 0 is the only linear equilibrium of y∗ outside the sets Sk ⊂ Vk.
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