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Introduction 

Matroid theory is in the center of Combinatorics, Finite Geometry, Lattice 
theory and Combinatorial Optimization. During the last decades, extensive 
search was done in order to find a good degree of generality which still preserves 
the validity of deep results known for matroids. One of such generalizations is the 
concept of bouquet of matroids introduced in 1983 by Deza, Frank1 and Laurent 
and studied in a dozen papers (cf. [7, 11, 14, 171 and references mentioned 
there). The following matroidal features were extended in a satisfactory way till 

now: 
-classical axiomatizations and their equivalence (axiomatizations through 

flats, independent sets, circuits, rank function, closure operator) (cf. [ll, 171) 
-operations and extremal theorems for perfect matroid design case (cf. [ll, 

12, 61) 
-diagram representation and geometrical aspects (cf. [14, 171) 
-algorithmic and polyhedral aspects (cf. [S, 91) 
-orientation (cf. [13]). 
This paper is a follow-up work in the above series of articles on bouquets and it 

deals especially with the following features: other operations (contraction, 
restriction and cuts), strong maps and mapping cylinders, representability, 
topological aspects and, in particular, shellability of various simplicial complexes 
associated with bouquets and relation with connectivity properties. 

On the other hand, the starting point of this paper was the important paper of 
Wachs and Walker [23]. We realized that their principal concepts and results 
(strong map, mapping cylinder, realization theorem) stated for geometric 
semilattices could be naturally extended for the broader framework of bouquets. 

* This work was performed while the author was in CNET, Issy Les Moulineaux, France. 
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We also give new examples of geometric semilattices; actually, our transversal 
geometries include all examples of [23]. 

The paper is organized as follows. Sections 1 to 3 recall briefly generalities on 
bouquets of matroids: main axiomatizations (through flats in Section 1 and 
through independent sets and circuits in Section 3), central examples of 
transversal geometries and d-injection geometries in Section 2, structure of the 
semilattice Z(,$) of all bouquets with given independence system $5 in Section 4. 
In Section 5, we introduce bouquets of geometric lattices as the lattice 
representation of bouquets of matroids. In Section 6, we consider operations on 
bouquets: contraction, restriction and cuts and we study their effect on the 
independence system of the bouquet. In Section 7, we study strong maps on 
bouquets; we give two new examples of strong maps coming from the closure 
operator between comparable bouquets having the same independence system 
(Theorem 7.2) and from the projection map for transversal matroid designs 
(Theorem 7.6). Then, using the mapping cylinder construction, we prove a 
realization theorem (Corollary 7.20) which essentially says that every bouquet 
with M branches can be obtained from a “better” bouquet having only m 6 M 
branches by deleting one upper interval. In Section 8, we study the shellability of 
bouquets of matroids; we prove that the connectivity of the basis graph is a 
necessary condition for shellability and that this condition is, in fact, sufficient for 
the class of bouquets of matroids with the 2-union property, i.e. of bouquets 
whose independence system can be written as “union” of two matroids (Theorem 
8.19). We also show that the Hirsch conjecture holds for bouquets of matroids 
with the 2-union property if and only if they are shellable. 

1. Flat axioms for bouquets of matroids 

We first define bouquets of matroids through their flat axioms which are a 
direct relaxation of the matroidal axioms. 

Definition 1.1. Axiomatization through flats. 
LetXbeafinitesetandX,,..., X, be subsets of X forming a clutter, i.e. 
Xi+X,for all i#i. Let Y&, sl,. . . , Ss be pairwise disjoint families of subsets of 
Xand %=9&U*-- U $. Then, the family % is called a bouquet of matroids on X 
of rank s with roofs X1, . . . , X,,, if: 

(Fl) 3~ lJE1 2x and X1, . . . , X, E 3. 
(F2) 3 is stable under intersection, i.e. G fl G’ E % for all G, G’ E 3. 
(F3) if G E F$, G’ E Y$ and G s G’, then i < j 
(F4) if GE%~ for Ocrds-1, xeX-G and G~x~lJy=~2~, then there 

exists (a unique) G’ E Y&+i such that G Ux s G’. 

Elements of % are called flu& or closed sets, elements of 3,. are called r-flats or 
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flats of rank r, for 0 s r s s. The roofs of the geometry YI are the maximal (for set 
inclusion) flats. Clearly, for each i E [l, m], the interval J& = %II [O, Xi] is the set 
of flats of a matroid on Xi and 9 = J& U * * . U .A,,, is therefore the “bouquet” of 
the m matroids &, its rank s being the maximum value of the ranks of the 
matroids J&. We will sometimes refer to the matroids & composing the bouquet 
% as its branches or flowers. The above observation yields naturally the following 
equivalent definition for bouquets which essentially says that a union (in the set of 
theoretical sense) of matroids is a bouquet if and only if it is stable under 

intersection. 

Definition 1.2. Axiomatization through flats. 
Let X be a finite set and X1, . . . , X, be a clutter of subsets of X. A family % of 
subsets of X is the set of flats of a bouquet of matroids on X with roofs 
X1, . . . , X, if: 

(Fl) ~eU~n=12x,andX,,...,X,E~ 
(F2) 3 is stable under intersection 
(F3’) .& = %fl[O, Xi] is the set of flats of a matroid on Xi for each i E [l, m]. 

We recall some more definitions for bouquets. Let % be a bouquet of matroids 
of rank s on X with roofs X1, . . . , X,. When every subset of a roof is a flat, one 
says that % is free. 59 is called well-cut when all roofs have the same rank S, i.e. 
when the set of roofs coincides with the set SS of s-flats. Obviously, there is a 
unique flat of rank 0 and one can assume w.1.o.g. that it is 0. The bouquet % is 
called simple when all l-flats have cardinality 1. When, for each r E [0, s], all 
r-flats have the same cardinality I,, the bouquet is called a design with parameters 

(lo, . . . , 1,). An epimorphism between two bouquets of matroids Ce, %’ is a 
surjective mapping from % onto %’ which preserves rank and incidence; if, 
furthermore, it is one-to-one, then it is called an isomorphism. Given a matroid 
J& the bouquet Ce is called Al-unisupported if, for each i E [l, m], the matroids JZ? 
and & = %II [O, Xi] are isomorphic. Clearly, if % is unisupported, then $9 is 
well-cut and all roofs have same cardinality. As we shall see, transversal matroid 
designs represent an important class of unisupported bouquets. 

2. Examples of bouquets: Transversal and injection geometries 

Bouquets of matroids are, in fact, a special case of the more general concept of 
S-squashed geometries introduced by Deza and Frank1 in [l 1: 121. In brief, 9 
being a clutter of subsets of a finite set X, S-squashed geometries are a 
generalization of the matroidal structure in which the flats, in addition to 
satisfying some axioms similar to axioms (Fl)-(F4) from Definition 1.1, have to 
be contained in some element of 9; this amounts to replace in Definition 1.1 the 
clutter of the roofs by the “covering” clutter 9 (i.e. each roof Xi is contained in 
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some F E 9). By specifying the clutter 9, one obtains various classes of squashed 

geometries, such as transversal geometries, permutation geometries [6, 71, 

injection geometries [ll] and more generally, d-transversal geometries [14, 171. 

We recall now precisely the classes of transversal geometries and d-injection 

geometries that we will especially consider in this paper. 

Definition 2.1. Let N,, . . . , A$ be d (d 3 2) finite sets. For Q: E [l, d], a set A, 
AzN,x...xN,, is called injective by N, if, for all distinct elements a = 

(al, * . * , 4, b = h . . . , bd) of A, a, # b, holds. Then, a set A c NI x . . . x 

Nd is called d-injective if A is injective by N, for all (Y E [l, d] and a set 

A c NI x N2 is called transversal if A is injective by Ni. 

One denotes by .Y(N,, N,) the family of all transversal subsets of N1 x N2 and 

by $(N,, . . ., Nd) the family of all d-injective subsets of Ni x . . . x Nd. 

Definition 2.2. Let Sr,, . . . , 92’S be pairwise disjoint families of subsets of 

X=N,xN, (resp. X=N,X***XN,) and %=%U-.-U9$. Then Miscalled a 

transversal geometry (resp. d-injection geometry) on X of rank s if: 

(Gl) each set G E 3 is transversal (resp. d-injectif) 

(G2) % is stable under intersection 

(G3) if G E 3, G’ E Y$ and G 5 G’, then i <j 
(G4) if G E ST for 0 c r es- 1, x EX-G and GUx is transversal (resp. 

d-injectif), then there exists (a unique) G’ E %,+i such that G Ux c G’. 

When the geometry ‘9 is a design with parameters (lo, . . . , I,), then % is called 

a transversal matroid design (resp. d-injection design). In this case, one can easily 

compute the number of r-flats for 0~ r cs (cf. [12]); in particular, for a 

transversal matroid design % of rank s on [l, rr] x [l, m], one has: 1 Ssl = ms 
and for a d-injection design ‘S of rank s on nf=‘=, [l, nil, one has: lSS,l = 

lJT=, E’=, (ni - lj)l(& - lj). 

As noted in [12], transversal matroid designs arise as extremal intersecting 

families of transversal sets; more precisely, if & is a family of transversal subsets 

of [l, n] x [l, m] such that IA flA’( E {I,, . . . , IS} for A #A’ E ~2, then, for n big 

enough, I&l s mS and equality holds if and only if ~4 is the set of roofs of a 

transversal matroid design. This result can be rephrased in coding theory 

terminology; for this, see that any transversal subset of [l, n] x [l, m] of 

cardinality II can be represented as an n-tuple of [l, m]” and thus transversal 

matroid designs correspond to extremal.codes of length n over the alphabet with 

m letters and with a prescribed number of distances. 

Similarly, d-injection designs correspond to extremal intersecting families of 

d-injective sets. Notice that any d-injective subset of [l, rz]” of cardinality II can 

be written as {(i, a:, . . . , uh): i E [l, n]} and thus be viewed as a set (u2, . . . , ffd) 

of d - 1 permutations of [l, rz] with oj(i) = ui for i E [l, n], j E [2, d]. Hence the 

set of roofs of a d-injection design on [l, n]” with 1, = n can be seen as a subset of 
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the group (Yn)d-l, .Yn denoting the symmetric group of order n. The case when it 
is a subgroup is particularly interesting and we refer to [7] for the case d = 2 and 
to [17] for some results in general case. 

Transversal and d-injection geometries are highly structured objects; so, most 
of them are unisupported. For this, let pi denote the ith projection from the 
product set Ni X . * * x Nd onto Ni. Let 99 be a transversal geometry on N1 x N2 or 
a d-injection geometry on Ni x . . - X Nd; then, for each roof Xi of 9, the 

matroids Hi = % II [O, Xi] and pl(&i) are isomorphic and, if Ce is a design, then 
~~(4.) is a perfect matroid design (PMD) with the same parameters. In some 
cases, the matroid PI(&) does not depend on the choice of the roof Xi, i.e. the 
matroids Jti are pairwise isomorphic for all roofs Xi. 

Proposition 2.3 [ 161. Let 54 be a transversal matroid design on [ 1, n] x [ 1, m] with 
I, = n. Then, .A? = p,(h) is a fixed PMD on [l, n] for all roofs Xi of ‘3 and the 
projection p1 is an epimorphism from 99 onto Ju. 

Proposition 2.4 [ 171. Let ‘3 be a d-injection design of rank s on nf=‘=, [l, nil with 
1, = nl. Assume that one of the following conditions holds: 

(i) % is concentrated, i.e. for all G, G’ E 3, there exists G” E 92 such that 

p,(G) n PI(G’) =PI(G ” G”) 
(ii) n, = * * . = nd = n and the set of roofs of 3 forms a subgroup of (,)‘-‘. 

Then, JU = p In is a fixed PMD on [l, n] and the projection p1 is an 
epimorphism from 59 onto ~2. 

We will see in Section 7 that, in transversal case, the projection p1 is an 
example of strong map. 

We now survey some of the known examples of transversal geometries. 

Example 2.5. F(N,, N,) is a (full) transversal matroid design. Clearly, F(N,, N,) 

can also be defined as the set: L(N,, NJ = {(A, f) :A c NI and f :A+ N2 
mapping} (this example is due to Delsarte, [lo]). 

Example 2.6. Let V,, V, be finite dimension vector spaces over the finite field 
GF(q). The set Fv(V,, V,) = {W 6 VI X V,: dim(p,(W)) = dim W} is a (linear) 
transversal matroid design on VI X V,. It is easy to see that Yv(V,, V,) is 
isomorphic to the set: L,(V,, V,) = {(W, f) : W c VI and f E Lin(W, V2)} (this 
example was considered by Stanton [21] who calls it the semilattice of bilinear 
forms). One defines similarly the affine analogue of the above set. 

Example 2.7. A transversal matroid design on [l, n] X GF(m) with I, = n is said 
to be linear if its set of roofs-when viewed as a subset of GF(m)” -forms a 
vector subspace. We refer to [7] for many examples of linear transversal matroid 
designs and for the exposition of a sufficient and necessary condition for their 
existence (Prop. 4.4 in [7]). 
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Example 2.8. Let E be a set of mappings from [l, n] to [l, m] which is sharply 

t-transitive (i.e. for all distinct elements x1, . . . , x, E [l, n] and all elements 

Yl, . . * 9 y, E [l, m], there exists a unique f E E such that f(xi) =yi for i E [l, t]). 

Then, the meet semilattice generated by the sets {(x, f(x) :x E [l, n]} is a 

transversal matroid design with parameters (0, 1, 2, . . . , t - 1, n) (cf. Prop. 3.8 in 

[14]). Note that sharply t-transitive sets of mappings are well known objects; so 

they correspond, in fact, to transversal t-designs (from Hanani, [15]), or, 

equivalently, to orthogonal arrays of strength t (precisely to OA(m, n; 1) with 

order m, index 1 and degree n) and also, for m prime power, to MDS-codes (cf. 

P91). 

Example 2.9. Let V be a finite dimension vector space over GF((I), A(V) denote 

the family of affine subspaces of V and H GA(V) the family of affine 

hyperplanes. Any affine subspace S can be identified with the set H(S) of 

hyperplanes containing S. If one considers the partition of H into the parallelism 

classes, then the collection: d(V)* = {H(S):S St0 and S EA(V)} is a transversal 

matroid design on H (this example is taken from [23] where the poset 

A(V)* - {O} ordered by the reverse inclusion is considered instead). 

There are many examples of d-injection geometries (cf. [ll, 121); let us simply 

mention that examples 2.6, 2.7, 2.8 have analogues for the injective case and we 

recall the following: 

Example 2.10. $(A$, . . . , Nd) is a (full) d-injection design. 

3. Other axiomatizations for bouquets of matroids 

It is a well known fact that a matroid can be equivalently defined through the 

axioms of its flats, independent sets, circuits (or stigmes), rank function, closure 

operator (cf. [22]). The same holds for bouquets of matroids for which we recall 

the main axioms that we will need throughout the paper; we refer to [8, 171 for an 

extensive treatment of various axiomatizations of bouquets. 

Let % be the set of flats of a bouquet of matroids of rank s on X with roofs 

X1,-.., X, and, for i E [l, m], J& = Sfl [0, Xj] be the matroid determined on 

Xi. For each i E [l, m], let us denote by r,, a,, $i, Yj the rank function, the 

closure operator, the family of independent sets, the family of stigmes, 

respectively, of the matroid &. Then, one is naturally led to define the rank 

function r, the closure operator u, the family 2 of independent sets, the family 9 

of circuits of 9 as follows: 

-the family of independent sets is: 9 = 2, U . . . U $,,, 

-the family of circuits is the family 9 of all minimal dependent sets, i.e. D E 9 
ifandonlyifD$2andD-xE$forallxED. 
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At this point, let us note that the family ,_jj of independent sets is an 

independence system (IS, for short) on X, i:e. it satisfies: 

(IO) ifZE$and.ZcZ, thenJE$ 

and the family 9 is a clutter, i.e. it satisfies: 

(Dl) if D, D’ E 9 and D 5 D’, then D = D’. 
Furthermore, the family 9 can be partitioned into 9 = Y U % where Y= 9 n 

(UE, 2x1) and % = 9 - Y, with Yi = 9 f~ 2xi being the collection of stigmes of 

4. Elements of 9’ are called sfigmes - they correspond to the “matroidal” part of 

9 - and elements of % are called critical sets - they correspond to the “non 

matroidal” part of 9. In fact, the IS 9 is completely determined by the clutter $3 

of circuits and conversely. Actually, the additional information that the bouquet 

93 is providing, is, respectively, the decomposition of 9 as the union of the m 

matroidal IS: 9,, . . . , $,,, and the decomposition of 9 into the stigmes Y and the 

critical sets %. 

The rank function r and the closure operator o of the bouquet 3 are defined as 

follows: 

-for a set A E Xi for some i E [l, m], r(A) = rj(A) and a(A) = u,(A) 

-for a set A 4 IJEI 2x1, r(A) = CC and (T(A) =X U CC where a is an “infinity” 

point. 

In other words, one considers the rank and the closure only for sets that are 

contained in some roof of 53. Note, that, from the flat axioms, the above 

definition is consistent, i.e. r,(A) = q(A) and q(A) = q(A) for A E Xi nXj. 

Moreover, for A E IJEI 2x, one has: 

a(A)=AU{x$A: there exists SeY such that xeS and ScAUx} and 

r(A) = max(lZl : Z E &I and Z E A); i.e. r(.) coincides with the rank function of the 

IS 8; on subsets of roofs. We recall the axioms for circuits and independent sets 

since we will need them in the remaining of the paper. 

Definition 3.1. Axiomatization through circuits. 

A family 9 of subsets of X if the family of circuits of a bouquet of matroids on X 

if 9 can be partitioned into two subfamilies Y, % satisfying: 

(Dl) D #D’ for all distinct D, D’ E 9 
(02) if S, S’ E 9, S #S’ and x ES n S’, then there exists D E 9 such that 

DcSUS’--x 

(03) if SEY, CE% and xESnC, then there exists C’ E % such that 

C’cSUC-x. 

Then the roofs of the bouquet are the maximal subsets of X that do not contain 

any C E %. 

Definition 3.2. Axiomatization through independent sets. 

Given a clutter X,, . . , X, of subsets of X, a family 2 of subsets of X is the 

family of independent sets of a bouquet of matroids on X with roofs X,, . . . , X,,, 
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if: 
(II) $i = ,$ II 2z is the family of independent sets of a matroid on Xi, for all 

i E [l, m] 

(z2) B = UZ* 9i 
(13) ifZE$in$g;.andxEXi-Xj, thenZUxE$. 
Let 2 be an IS on X and 9 be its family of bases, i.e. 9 is formed by the 

maximal sets Z E 8. Recall that the IS 8; is the family of independent sets of a 
matroid on X (i.e. is a matroidal IS) if it satisfies the following augmentation 
axiom : 

(14) if I, .Z E $ and lZl< I.ZI, then there exists an element x E .Z - Z such that 
ZUXE$ 
or equivalently, if 93 satisfies the following basis exchange axiom: 

(B) for all B, B’E W and x E B - B’, there exists x’ E B’ - B such that 
B-x+x’E%. 

In application, we recall how to construct bouquets from a matroid ([13], 
example 3.1). Take a matroid & on X, a clutter X1, . . . , X, of subsets of X such 
that Xi n Xj is closed in .M; define Y as the family of stigmes of Jt that are 
contained in some Xi, % as the family of minimal sets that are not contained in 
any Xi and 9 = Y U %. Then 9 is the family of circuits of a bouquet of matroids 
% with roofs X1, . . . , X,,,; one says that 99 is induced from the matroid JU. 

We now mention the related notion of representability for bouquets. 

Definition 3.3. A bouquet of matroids % on X is called representable over the 
field F if there exists a vector space V over F and a mapping Q, from X to V which 
preserves the rank, i.e. r(cp(A)) = r(A) f or all sets A 5 X with r(A) #CC where 
r(A) denotes the rank of A in % and r(rp(A)) the vectorial rank of q(A). 

For instance, bouquets induced from a vectorial matroid and linear transversal 
matroid designs are representable. The above definition extends the notion of 
representability introduced in [13] for bouquets induced from matroids and 
coincides with it when the map cp is one-to-one. It also covers the definition of 
representability given in [ll] for injection geometries (we point out an error in 
the formulation in [ll] in Section 6: in the relation “r(A) = r(q(A)) for all 
A G X”, the condition r(A) # ~0 was omitted). 

We finally introduce some definitions concerning bouquets of matroids whose 
IS have specific matroidal properties. 

Definition 3.4. Let 9 be an IS on X and % be a bouquet of matroids on X with IS 
8. Let p 3 1 be an integer. 

(i) if the IS ,$J is matroidal, then the bouquet 3 is called a geometric 
semilattice (see Section 5 for more remarks concerning this terminology) 

(ii) the IS 9 is said to have the p-intersection property if p is the least integer 
such that 9 can be written as the intersection of p matroids; in this case, one also 
says that the bouquet 9I has the p-intersection property 
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(iii) the IS 2 is said to have the p-union property if p is the least integer such 
that 8, can be decomposed as the bouquet of m matroidal IS (i.e. as the union of 
m matroidal IS satisfying axioms (Zl)-(13)); in this case, one also says that the 
bouquet 92 has the m-union property. 

Theorem 3.5. Any well-cut (i.e. all roofs have the same rank) transversal 
geometry is a geometric semilattice. 

Proof. Let 99 be well-cut transversal geometry on [l, n] x [l, m] with IS 2. We 
prove that 2 is matroidal by showing that the basis exchange axiom (B) holds. 
For this, let B, B’ be two bases of 8; and (i, x) be an element of B - B’. We 
prove that there exists an element (i’, x’) of B’ - B such that the set B” = 
B - (i, X) + (i’, x’) is a base of 2; since % is well-cut, it is enough to verify that 
B” E 8;. We first suppose that i l pI(B’). Hence B’ contains an element (i, x’) 
with x Zx’. We prove that the set B” = B - (i, X) + (i, x’) is independent. For 
this, let F be the (s - 1)-flat of 59 containing B - (i, X) and G be the s-flat 
containing B; thus, F s G. Then the set F U (i, x’) is transversal, i.e. i @p,(F); 
else, there exists an element (i, z) E F and, since F c G, (i, z) and (i, x) are two 
elements of the transversal set G which implies that z =x and thus B E F, 
yielding a contradiction. From axiom (G4), there exists an s-flat G’ containing 
F U (i, x’). Now, if B” 4 6, there exists a circuit D such that (i, x’) ED and 
D G B”c G’; therefore, D is a stigme and (i, x’) belongs to the closure F of 
B - (i, x), yielding a contradiction. We now suppose that i 4pI(B’). Consider 

again the (s - 1)-flat F containing B - (i, x). For rank considerations, 

PI(B’) 4 PI(F); h ence, one can take elements i’ l p,(B’) -p,(F) and (i’, x’) E B’. 
Then (i’, x’) $ B; else, one would have (i, X) = (i’, x’), contradicting the fact that 
i $p,(B’). Hence the set F U (i’, x’) is transversal and thus contained in an s-flat 
which, similarly as before, implies that the set B” = B - (i, X) + (i’, x’) is 
independent. 0 

Corollary 3.6. The full injection geometry $(N,, . . . , Nd) has the d’-intersection 
property, for some d’ s d. 

Proof. For i E [l, d], denote by Yi the family of all subsets of N1 x . . . x Nd 
which are injective by Nj; then 3; is a full transversal geometry. Since 

$V$,..., N,) = nf=‘=, q and each of the geometries involved is free, i.e. 
coincides with the its own IS, one deduces that $(N,, . . . , N,) can be written as 
the intersection of d matroids. •i 

Problem 3.7. Is it the case that any well-cut d-injection geometry has the 
d’-intersection property for some d’ G d? 
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4. The semilattice Z’(g) 

Let ,$ be an IS on X and 9 be its family of circuits. In general, there exist 
several bouquets of matroids whose IS is 2 or, equivalently, whose family of 
circuits is 9; in other words, there exist several ways of decomposing $ as a 
union of matroids satisfying the independent set axioms (Zl)-(13). For instance, if 
.% denotes the set of bases (maximal independent sets) of 8, then, for B E B, the 
family $B = {I E 8: I E B} is obviously a matroidal IS and ,~8 = lJBcB $B always 
provides a decomposition of 9 as a (free) bouquet of matroids. 

Example 4.1. Let 8; be the IS on [l, 41 whose bases are: 12, 13, 23, 14. Then, 

9 = $i2 U ,A3 U $i3 U & and 9 = $t12,13,23) lJ& are two distinct ways of 
decomposing 8; as bouquet of matroids. 

Therefore, we are naturally led to consider the collection 9($?) of all bouquets of 
matroids on X whose IS is 2. The study of z(2) has been initiated in [8]; it was 
motivated by the fact that “best” bouquets in 9(‘) permit to find sharp 
estimations for the performance of the so-called greedy algorithm applied on 2 
for searching maximum weight independent sets. Here, by “best” bouquet, we 
mean a bouquet composed of as few matroids as possible and, as we will see, they 
are maximal for some order relation on z(2). Note also that saying that the IS 9 
has the p-union property amounts to saying that there exists a bouquet in .9($) 
composed of p matroids and all other bouquets are composed of at least p 

matroids. 
Any bouquet of matroids 59 of z(6) admits 9 as family of circuits and is 

characterized by the partition of 9 into Y U %‘; hence, one denotes ‘9 by %(9’, %) 
or simply by ‘??(Y’), 9’ being the set of stigmes, %’ the collection of critical sets and 
(9, %) satisfying axioms (D2)-(03). We define an order relation on 9(g) as 
follows: %(Y,) y ) =s 9?(92, (e,) ‘f 1 and only if 9, G Yz or, equivalently, Ce, G %$. 
We state some properties of the poset (9?(8;), =G). First, notice that axioms 
(D2)-(03) are trivially verified for the partition of 9 into Y = 0, % = 9, 
implying that the bouquet %(0, 9) = 2 is the least element of z(8). We consider 
the following family: 

%‘*={DE9:thereexistsD’E9,D’#DandxEDnD’ 

such that D U D’-x ~9’) (4.2) 

and define Y* = 9 - %*. It follows easily from (D2)-(03) that, for any bouquet 
% E Y(2), one has the inclusion %* G %‘. Therefore, if axiom (03) holds for the 
pair (Y*, %*) (note that axiom (02) is always satisfied), then %(Y*, %*) = %* is 
the greatest element of x(8). More precisely, one has the following result: 

Theorem 4.3 (cf. [8], Prop. 2.1, 2.3). The poset Z’(9) is a meet semilattice and the 
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meet of any cwo elements sI( .!YI, Ze,), 9$(Y;, Vi’..) is defined by : Sl A s = %( Yl I-I 

Y;, %I u %e,) 
-its least element is %(O, 9) = 2 

-its atoms are the bouquets %({S}, 9 - {S}) for all S E Y* 
-9 is atomic, i.e. every element %(.Y, %) is the join of atoms: 

-2 is a lattice if and only if %(Y*, %*) E Z(2), i.e. axiom (03) holds for the 
pair (Y*, Ye*), and, in this case, the greatest element of Z’(9) is %* = %(.Y*, %*). 

We now give some classes of IS for which the poset Y(8) is a lattice. 

Theorem 4.4 (Theorem 2.4, [S]). Suppose that the IS 3 is the family of stable sets 
of a graph, or, equivalently, that (DI = 2 for all D E 9. Then, the poset Z(9) is a 

lattice. 

When the IS 2 is matroidal with JU as family of flats, then %* = 0 and axiom 
(03) obviously holds for the pair (0, 9); the bouquet %* = %((o, 9) coincides in 
fact with the matroid .A and every bouquet % of Z’(9) is a geometric semilattice. 

Theorem 4.5. Suppose that ,$ is a matroidal IS with Al as family offlats. Then, the 
poset .Z’($) is a lattice with JU as greatest element. 

Proposition 4.6. Let % = %(Y, %‘) be a bouquet of 2 matroids of Z’(g) with roofs 
X1, X, and suppose that $ is not matroidal. Then, %= %*, i.e. Y= Y*, % = %* 

holds. 

Proof. It is enough to show that % = %* holds. For this, suppose for contradict- 
ion that there exists a circuit C E % - %*. It is easy to see that all critical sets are 
of the form {x, y} with x E Xi -X, and y E X, -Xi. Thus, we have that 
C = {x, y} with x, y as above. We prove that r(X1 -X,) = r(X2 -XI) = 1 holds. 
We can suppose that IX, - X11 2 2. Take z E X, - X1 with z # y, then C’ = 
{x, z} E %‘. From Definition 4.2 of %*, we deduce that C U C’ -x = {y, z} $3 
and thus {y, z} E 9’. Similarly, for all z’ E X,-X, with z’ fy, z, {y, z’} E Y 
which, together with axiom (D2), implies that {z, z’} E 9’. This implies therefore 
that r(X, - X,) = 1 and, similarly, r(X, -X,) = 1. If r denotes the rank of 3, one 
obtains that r(X,) = r(X2) = r and r(X, n X,) = r - 1. Consequently, for any base 
B of 8, if B E Xi, then (B n (X1 -X,)1 = 1 and the same for index 2. We now 
show that this implies that 9 is a matroidal IS, yielding therefore a contradiction. 
For this, we show that the basis exchange axiom (B) holds; i.e. for two distinct 
bases B, B’ of 9 with B c X1, B’ E X, and an element x E B - B’, there exists an 
elementyEB’--Bsuch that B-x+y~,$. WhenxEX,-X,, then B-XEX,; 
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from the augmentation axiom (14) applied to the independent sets B -x, B’ in 
matroid 2 rl 2x2, there exists an element y E B’ - B such that B -x + y E 9. 

When x E X1 tl X,, then x E B fl X, - B’ n X1; by applying again (Z4) to the 
independent sets (B -x) fl X, and B’ n X,, there exists an element y E B’ n 
X1 - B nX, such that the set B fl X, -x + y is independent. Let a denote the 
unique element of B - X,, then B n X, = B - a. Since the independent set 
B - {a, x} + y is contained in X, fl X, and a E X1 - X,, one deduces from axiom 
(13) that the set B -x + y is independent. 0 

Theorem 4.7. Let 9 be an IS with the 2-union property. Then the poset 9(,$) is a 

lattice whose greatest element %* is a bouquet of 2 matroids. 

Proof. Since 2 has the 2-union property, there exists %E 5?(g) which is a 
bouquet of 2 matroids. One deduces from Proposition 4.6 that %= %* and, from 
Theorem 4.3, that 9($) is a lattice. q 

Theorem 4.7 does not extend to the case of IS having the m-union property for 
m L 3; we refer to [S] for an example of an IS 2 with the 3-union property for 
which z(2) is not a lattice. 

Given a bouquet of matroids 59 of 9(g), let m denote the number of roofs of 
%, i.e. the number of matroids composing the bouquet 59. One may ask which are 
the “best” bouquets in 5!?($), i.e. the bouquets composed by the least possible 
number of matroids. For instance, the least element 8; = %(0, 9) is the “worst” 
bouquet since it involves as many matroids as the number of bases of J?. On the 
other hand, when 9 is a matroidal IS, then the greatest element of Y(8) is the 
best possible since it is, in fact, a matroid. The following result shows that, 
generally, if %i < Y&;, then 5!& is better than sl, i.e. is composed by less matroids. 
Note that, if %I < Y&, then Ce, c %‘i and thus no flat G E ‘??i contains a critical set of 
%$ and the closure q(G) is well defined. 

Theorem 4.8 (Proposition 2.6, [S]). Let SI, %$ be two bouquets of matroids of 

T(9) whose respective numbers of roofs are ml, m2. Zf SI =G Y$ holds in P!(9), 

then the closure operator a, of Y& induces an epimorphism from SI onto Y& and 

m2 c m, holds. 

The above result can be rephrased as follows: if %I < &;, then the bouquet C$ is 
obtained from C& by aggregation of the branches of 3,; a branch of $& with roof 
X2 results from the aggregation of all branches of ??I whose roofs are contained in 
X2. The best bouquets, i.e. those having minimum number of branches, are 
among the maximal elements of 6p(9) and, when Y(9) is a lattice, then the 
greatest element %* of T(2) is the best bouquet. In fact, Theorem 4.8 can be 
strengthened; when %i =C %, the closure operator u2 induces an epimorphism 
from FL( %i) onto FL( $2) where, for a bouquet 3, FL(%) denotes its chain 
complex formed by the chains of flats: F1 s F2 5 . . .s F, of 3. 
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Proposition 4.9. Let SI < 5!& be two bouquets of 20. Let G, G’ be flats of Y& 
with G 5 G’ and F be a flat of s such that o,(F) = G. Then there exists a flat F’ of 

SI such that 02(F’) = G’ and F s F’. 

Proof. One can assume w.1.o.g. that r(G’) = r(G) + 1. Then, G’ = 02(G Ux) for 
some x E G’ - G. Since G = 02(F), x $ F and, in fact, F’ = a,(F Ux) exists. Else, 
if F’ does not exist, there exists a critical set C E %i such that x E C and 
CcFUx; since FUxsG’, then C $ %& and thus C E Y;, implying that 
x E u,(F) = G, which yields a contradiction. Observe now that F’ E G’ holds; 
take y E F’ = a,(F U x), then there exists S E Sp, such that y E S and S E F U x U 
y, but S E Y; since 9, c Y2, which implies therefore that y E a,(F U x) E G’. In 
fact, G’ = o,(F’) holds for rank considerations. •i 

Theorem 4.10. Zf C$ =S C$ in T(9), then the closure operator a2 of ?$ induces an 

epimorphism from FL( %i) onto FL( Y&) which, to a chain: FI 5 F2 5 . . as F, of 
flats of 5!II associates the chain: a,(F,) s a,(F,) 5 - . * 5 u,(4) of flats of &. 

The proof follows easily from Proposition 4.9. 0 

5. Bouquets of geometric lattices 

In this section, we look in more detail at the family of flats of a bouquet of 
matroids viewed as a poset with inclusion as order relation. For the case of 
matroids, this is a classical approach. It is well known that the poset of flats of a 
matroid is a geometric lattice and, more precisely, that finite geometric lattices 
correspond bijectively to simple matroids. Similarly, bouquets of matroids 
correspond to what we call bouquets of geometric lattices. 

Definition 5.1. A poset P is a bouquet of geometric lattices if P is a meet 
semilattice in which every intervalis a geometric lattice. 

Proposition 5.2. The poset of flats of a bouquet of matroids is a bouquet of 

geometric lattices. 

The above result can be easily seen to hold. Conversely and similarly to the 
matroidal case, a simple bouquet of matroids can be derived from every bouquet 
of geometric lattices. 

Let P be a bouquet of geometric lattices with maximal elements zi, . . . , z, and 
X as set of atoms; define X, as the set of atoms under zj, then X1, . . . , X,,, is a 
clutter of subsets of X. The following facts can be easily checked: 

-P has a minimum element 0 
-P is ranked with rank r(.), i.e. every unrefinable chain from 0 to x E P has 

the same length r(x) 
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-define a set I E X of atoms to be independent if v Z exists and I(V I) = ]Z( 

and let 2(P) be the family of independent sets of atoms 

-$(P)=$1U*. . U $m where ,$i = {I E B;(P) : v Z G zi} is in fact the collection 

of independent sets of atoms of the geometric lattice P n [0, zj] and thus $i is a 

matroidal IS on Xi 

-the above decomposition is in fact a bouquet of matroids. For this, it suffices 

to verify that axiom (13) holds. Take Z E 9(P) with v Z s Zi A z, and an atom x 

with x<zi but x+Zj. Hence, VZVX S zi and v I v x # v Z which implies that 

r( v Z v x) = 111 + 1 and thus Z +x E 2(P), stating axiom (13) 

-if x, y are distinct atoms such that x v y exists, then one has r(_~ v y) = 2. 

Therefore, the bouquet of matroids S(P) on X with roofs X,, . . . , X, whose IS 

is 9(P) is a simple bouquet of matroids. Hence, we have stated the following: 

Proposition 5.3. There is a bijective correspondence between bouquets of geo- 
metric lattices and simple bouquets of matroids. 

Similarly to what happens in the matroidal case, a bouquet of matroids is not 

completely specified by the bouquet of geometric lattices determined by its flat 

family. For instance, the bouquets 3, %’ whose flat structure is shown below are 

distinct bouquets that are associated to the same bouquet of geometric lattices. 

bouquet 9: 124 234 

bouquet %‘: 
1245 235 

Remark 5.4. The class of geometric semilattices which has been studied in [23] 

coincides with the class of bouquets of geometric lattices P for which B;(P) is a 

matroidal IS. At this point, let us mention that this terminology “geometric 

semilattice” had been also used by Zaslavsky in [24] for denoting in fact the 

broader class of bouquets of geometric lattices as defined here. We saw in 

Theorem 3.5 that all well-cut transversal geometries are geometric semilattices. 

Actually, it turns out that the examples of geometric semilattices considered in 

[23] are, in fact, transversal geometries; they correspond to Examples 2.5, 2.6, 

2.9. 
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6. Operations on bouquets of matroids 

There are many known operations on matroids that preserve, in a way, the 
matroidal properties. Some of them operate on the lattice of flats of the matroid 
and, as such, are specifically poset operations; this is the case, for instance, for 
interval taking, direct product, truncation, etc. Some other ones, as restriction or 
contraction, are more easily described as operations on the family of independent 
sets of the matroid. Here, we define poset analogues of these operations for 
bouquets of matroids and we show which properties of the bouquet and, in 
particular, which matroidal properties of its independence system are carried out 
through the operations. 

Let 3 be a bouquet of matroids on X of rank s with rank function r(.), closure 
operator a(.) and IS 8. Given a subset T of X and an integer k, 0 G k s s, there 
are several ways for constructing new bouquets from %. We consider the 
following families: 

(a) upper interval: [T, --+) = {G E % G 2 T} 

(b) T-deletion: %-T={G-T:GE~~~~G~TT) 
(c) T-contraction: % - T = {G E %I r(G U T) # 00 and r(G U T) = r(G) + r(T)} 

(d) T-restriction: % 1 T = {G fl T: G E %} 

(e) k-truncation: @ = {G E %I r(G) 6 k}. 

For the operations of interval, deletion and contraction, we obviously suppose 
that r(T) # ~0. The families [T, 4) and Ce- T are clearly isomorphic as posets; 
hence it is enough to study, for instance, the T-deletion operation. Before 
showing that the above families are all bouquets and studying their IS, we recall 
some preliminary results. 

Claim 6.1. Let % be a bouquet of matroids and 3’ c 9 be a lower order ideal of 
93, i.e. if F E 3, G E 3’ and FE G, then FE 3’. Then 3’ is a bouquet of 
matroids. 

Proof. We use Definition 1.2 for proving that $3’ is a bouquet. It is clear that 3 
is stable under intersection and every interval of %‘, being also an interval of ‘3, is 
a matroid. c7 

Given an IS 9 on X and a subset T of X, the following families are obviously 
IS: 

(a) T-contraction: 9 . T = {I E 8: Z U J E 9 for J maximal subset of X - T with 

J~91 
(b) T-restriction: 3 1 T = {I E 9: I c T} 

(c) k-truncation: 2’ = {I E 9: 111 c k} 

It will be clear from the context whether, in notation 2 . T, 9 is considered as IS 
or as flat family of a (free) bouquet. 
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Proposition 6.2 ([22], Chapter 4). Let At be the family of Jlats of a matroid on X 

with 2 as IS and T be a subset of X. Then, 

(a) the IS 2 - T is a matroidal IS on T (no nice characterization of its flats being 

known) 

(b) the T-restriction A 1 T is a matroid on T with IS 9 1 T 

(c) the k-truncation At’ is a matroid on X with IS gk. 

In the following we study respectively, restriction, deletion, contraction, 

truncation and general cuts of bouquets; we analyse what is the effect of each of 

these operations on a bouquet having specific matroidal properties and, in 

particular, on geometric semilattices and bouquets with the 2-union property. 

Theorem 6.3. Let % be a bouquet of matroids on X with IS 9 and T be a subset of 

X. Then 93 ) T is a bouquet of matroids on T with IS 2 ) T. Furthermore, if $3 is a 

bouquet of m matroids, then 3 1 T is a bouquet of m’ matroids for some m’, 

l<m’<m. 

Proof. We suppose that % is a bouquet of m matroids with roofs X1, . . . , X, and 

with IS 9. For i E [l, m], $i = {I E 8: Z E X,} is the IS of the matroid J& = 59 fl 

[0, Xi]. We denote by m’ the number of maximal elements of the collection 

{X,nT,...,x,nT); we can assume that these maximal sets are Xi II T for 

iE{l,...,m’}. Using Definition 1.2, we prove that 3) T is a bouquet of 

matroids with roofs Xi rl T for i E [l, m’]. Observe that axioms (Fl), (F2) hold 

trivially. For i E [l, m’], consider the interval % 1 T n [O, Xi] = {G n T: G E .A&}. 

This interval is therefore the restriction of the matroid Ati to the set Xi fl T; 

hence, from Proposition 6.2, it is a matroid on Xi fl T whose IS is 8: 1 Xi n T. 

Thus, axiom (F3’) holds and the IS of % I T is given by: lJz, $i ) Xi n T = 

$]T. q 

Corollary 6.4. Let 59 be a bouquet of matroids on X and T be a subset of X. Zf 

$3 has the m-union property, then 93 I T has the m’union property for some 

m’, 0 s m’ sm. In particular, if 3 is a geometric semilattice, then so is 59 I T. 

Proof. Since % has the m-union property, there exists a bouquet 9’ E Tip($) 

which is composed by exactly m matroids. Since % ) T and 3’ ( T have the same IS 

9 1 T, the proof follows from Theorem 6.3 applied to the bouquet 97. 0 

Theorem 6.5. Let C-9 be a bouquet of matroids on X with IS ,$ and T be a subset of 

X of finite rank. Then, %- T is a bouquet of matroids on X - T with IS 

$ . (X - T). Furthermore, if % is a bouquet of m matroids, then %- T is a 

bouquet of m’ matroids for some m’, 0 < m’ s m. 

Proof. We suppose that 99 is a bouquet of m matroids with roofs X1, . . . , X,. 
For i E [l, m], $ = {I E 9: Z G Xi} is the IS of the matroid Ati = % n [0, Xi]. We 
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denote by m’ the number of roofs containing T, we can suppose that 
T~X,n...flx,.. One can easily verify that Ce- T is a bouquet with roofs 
X1 - T, . . . , X,, - T and that its rank function p(.) is given by: p(A) = r(A U 
T) - r(T) for all A E UC1 2x1-T. We now prove that the IS of %- T is 8. 
(X - T). Take first a set I which is independent for Ce - T; hence, Z c Xi - T with 
i E [l, m’] and 1Z1 = p(Z) = I(Z U T) - r(T), i.e. r(Z U T) = ]I) + r(T). By applying 
the augmentation axiom (14) in matroid Ai, one can find a set J c T such that 
Z UJ is an independent subset of Z U T of cardinality r(Z U T); therefore, 
I.Z] = r(T), implying that Z E 2 . (X - T). C onversely, if Z E 9 . (X - T), let J c T 

such that Z U J E ,$ and r(T) = IJI. Then, Z U J is an independent subset of Z U T of 
size 111 + r(T), implying that p(Z) = 111, i.e. Z is an independent set for $9 - T. 0 

Corollary 6.6. Let 9 be a bouquet of matroids on X with IS 9 and T be a subset of 

X of finite rank. Then 

(i) assume that 3(,$) is a lattice and 3 has the m-union property, then $9 - T 

has the m’union property for some m ‘, 0 s m ’ s m 

(ii) if 3 is a geometric semilattice, then so is 93 - T 

(iii) if 3 has the 2- union property, then 53 - T has the 2-union property or is a 

geometric semilattice. 

Proof. The assertions (ii), (iii) follow from (i) and Theorems 4.5, 4.7. We now 
prove (i). By assumption, the greatest element (e* of L!?(g) is a bouquet of m 

matroids. Since %< %*, it follows that the set T has also finite rank in %* and, 
thus, we can apply Theorem 6.5 to the bouquet %* and deduce that %* - T is a 
bouquet of m’ matroids for m ’ C m. Since %* - T and % - T have the same IS, 
we deduce that 59 - T has the m”-union property for some m” < m’ s m. Cl 

Note that the assertion (ii) of Corollary 6.6 is a restatement of Theroem 4.1 [23]. 

Theorem 6.7. Let 3 be a bouquet of matroids on X with IS 2 and T be a subset of 

X of finite rank. Then, % * T is a bouquet of matroids on X - T with IS 
$.(X-T). 

Proof. We suppose that % is a bouquet of m matroids with roofs Xi, . . . , X,,, and 
with rank function r(.). For i E [l, m], 9i denotes the IS of the matroid 
~=~n[O,Xi]. W e d enote by m’ the number of roofs containing T and we 
suppose that T 5 X1 II . . . n X,,. 

Using Claim 6.1, we prove that Ce * T is a bouquet of matroids on X - T by 
showing that 3. T is a lower ideal of 3. For this, take %E %. T, F E $3 with 
F E G; thus, G U T E Xi for some i E [l, m’], r(G U T) = r(G) + r(T) and we can 
suppose w.1.o.g. that r(G) = r(F) + 1. Take x E G - F; then, we have the 
relation: r(G)+r(T)=r(GUT)=r(FUTUx)cr(FUT)+l and, since 
r(G) = r(F) + 1, we deduce that: r(F) + r(T) Sr(F U T). In matroid A&, the 
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reverse inequality holds, implying therefore the equality: r(F U T) = r(F) + r(T), 
i.e. F E ‘3 - T. Therefore, % - T is a bouquet of matroids whose roofs are the 
maximal flats of 3. T; one denotes them by Yr, . . . , Y,.. Obviously, the rank 
function p(.) of % * T is given by: p(A) = r(A) for all sets A contained in some 
roof x for j E [l, m”]. 

We verify now that the IS of % * T is 9 . (X - T). For this, take an independent 
set Z of Ce + T. Hence, Z 5 Y$ for some j E [l, m”] and its closure G in 3. T satisfies 

r(G) = r(Z) = ]Z] and r(G U T) = r(G) + r(T) = )I( + r(T). By applying axiom 
(14) one finds a set J such that Z G T, Z UJ E 9 and II UJJ = r(G U T), i.e. 
].ZI = r(T), implying that Z E 9 . (X - T). Conversely, take Z E 2 . (X - T) and let 
.Z c T such that Z U J E 2, IJI = r(T). Define the closure G of Z in 99; then Z U .I is 
an independent subset of G U T of size 111 + I.ZI = r(G) + r(T), implying the 
relation: r(G U T) = r(G) + r(T) and thus that Z is an independent set for 
3-T. Cl 

We observe that T-contraction and T-deletion are two operations that yield 
distinct bouquets %. T and % - T which have the same IS 2 * (X - T). Hence, 
Corollary 6.6 remains valid when replacing % - T by 99. T and we do not repeat 
it; note that the assertion (ii) is then a restatement of Theorem 4.3 [23]. In fact, in 
the poset 9(,$ . (X - T)), the bouquet % - T is better than the bouquet 3. T, 

i.e. ?I. T < %- T, or, in other words, se- T is obtained from 3. T by 
aggregation of its flowers. 

Proposition 6.8. Let 92 be a bouquet of matroids on X with IS 2, closure operator 

a(.) and let T be a subset of X of finite rank. Then, 22 - T < 53 - T holds in the 

poset .9($ . (X - T)). Furthermore, the mapping 0 : 92. T--D 93 - T that, to each 

flat G E 53. T associates the flat O(G) = a(G U T) - T of %- T, is an epimorph- 

ism from 23. T onto %- T. 

Proof. In order to show that 99 - T 4 93 - T holds, we have to verify that all 
stigmes of 3. T are stigmes of % - T. Let S be a stigme of 3. T, i.e. S is a circuit 
of the IS $.(X-T) and S is contained in a flat G of % - T. Then, the set 
a(G U T) - T is a flat of % - T containing S, which implies that S is a stigme of 
% - T. We observe that the mapping 0 coincides with the closure operator of the 
bouquet %- T and, therefore, Theorem 4.8 implies that 0 is an epimorphism 
from %.Tonto 3-T. 0 

Example 6.9. Let 99 be the bouquet of matroids on [l, 61 whose flat configuration 
is shown below; its IS 9 has bases: 123, 124, 134, 234, 345, 346, 356, 456. For the 
set T = 34, one defines the T-deletion 3 - T and the T-contraction 3. T whose 
flat configurations are shown below. Observe that their common IS is 2 * (X - T) 

with bases: 1, 2, 5, 6. Observe also that ‘??- T is a bouquet of 2 matroids while 
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3. T is a bouquet of 4 matroids 

bouquet 3: 
1234 3456 

bouquet $- T: 

bouquet 99 - T: 

We now consider the operation of deletion of intervals on bouquets. For a 

bouquet % and a set T, one defines the family: % - [T, 4) = {G E $9 G + T} 
obtained by deleting the upper interval [T, -+) from 59. One can obviously 

suppose that T is a flat of 3 and the following holds easily: 

Proposition 6.10. Let 3 be a bouquet of matroids on X with IS 9 and closure 
operator a(.) and let T E 3. Then, the family 23 - [T, -B) is a bouquet of matroids 
whose IS is given by: {I E dp: o(Z) $I T}. 

An atom (l-flat) T of % is called universal if T is contained in all roofs of 9% 

Note that, for T E 3, one has always the inclusion: % * T G 93 - [T, -o) and that 

equality holds if and only if T is a universal atom of 99. Hence, if T is a universal 

atom of 9, then % - [T, 4) has an IS the family 9 * (X - T); therefore, 

Corollary 6.6 remains valid when replacing % - T by 99 - [T, -D) and the 

assertion (ii) then implies Corollary 4.5 [23]. 

For matroids, one has the following result: 

Proposition 6.11 (Corollary 4.7, [23]). Let JU be a matroid and T be a flat of .,U, 
then AI - [T, . -0) IS a geometric semilattice. 

More generally, one can delete several intervals from a bouquet 9, so, if 

T,, . . . , Tp are distinct flats of 3, then the family 59 - lJbl [z, -D) is still a 

bouquet of matroids, also called wounded bouquet. Particularly interesting is the 

study of wounded matroids. So, we saw above that, when deleting one interval 
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from a matroid, one obtains a geometric semilattice. A beautiful result from (231 
shows that, conversely, any geometric semilattice can be realized as a matroid 
with one less interval. We will see in Section 7 that, more generally, any bouquet 
with the m-union property can be realized as a bouquet of m matroids with one 
less interval (under the condition that .9($) be a lattice). When one deletes 
several intervals from a matroid, one has the following result: 

Propositon 6.12. Let A be a matroid and T,, . . . , TP be p distinct flats of A. 

Then, the family .A? - IJfEI [T, -) is a bouquet of matroids having the 

p’-intersection property for some p ’ G p. 

Proof. Proposition 6.10 implies that JU’ = JX - &I [z, 4) is a bouquet with 
IS: 9’ = {I E 8: a(Z) $ T for i = 1, . . .,p}; hence $‘=njLi{ZE$:u(Z)$~}, 
each of the families in the latter intersection being a matroidal IS from 
Proposition 6.11. 0 

The following question is of interest, at least for small values of p, for instance 
p = 2. 

Problem 6.13. If % is a bouquet of matroids having the p-intersection property, 
can % be realized as a matroid with p deleted intervals? 

We conclude this section by mentioning the related operation of cuts on 
bouquets of matroids. Following [13], an elementary cut consists of deleting 
exactly one roof from the bouquet and a cut is any sequence of elementary cuts. 
A cut is uniform when it consists of removing all roofs at once. For instance, 
deletion of intervals is a particular cut and iterated uniform cuts produce the 
truncation of bouquets. 

Proposition 6.14. Let 3 be a bouquet of matroids on X of rank s with IS 2. For k, 

0 G k c s, the k-truncation @ is a bouquet of rank k on X with IS 9”. 

Proof. Easy. 0 

Corollary 6.15 (Prop. 4.2, [23]). Zf 3 is a geometric semilattice, then so is any 

truncation of 3. 

Proof. It follows from Proposition 6.2, 6.14. 0 

7. Strong maps and mapping cylinder operation 

The notion of strong map on a geometric lattice is an important tool in matroid 
theory. It can be extended to bouquets of geometric lattices and, actually, the 
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definition of strong map adopted by Wachs-Walker ([23]) for geometric 
semilattices turns out to be well adapted for the general class of bouquets, so we 
will consider the same notion. We refer to [18] for a further study of strong maps 

on bouquets. 

Definition 7.1. Let Pr, P2 be two bouquets of geometric lattices. A function 
f: PI--+ Pz is called a strong map if: 

(Sl) f is rank reducing, i.e. r2(f (x)) s r,(x) for x E PI 
(S2) for each atom a E PI and x E PI, if a v x exists in PI, then f(a) v f (x) 

exists in P2 and f(a) v f (x) = f (a v x) 
(S3) for each atom a E PI and x E PI, if f (a) v f (x) exists in P2 and f (a) + f (x), 

then a v x exists in PI. 

Note that this definition reduces to the usual definition of strong maps on 
geometric lattices when PI, P2 are geometric lattices ([22], chap. 17). It can be 
verified that a strong map is order preserving, i.e. if y covers x in PI, then f(y) 
covers or is equal to f (x) in P2. Also, (S2) remains valid if one replaces the atom 
a by any element y E PI. 

Most examples of strong maps on geometric lattices from [22] and all examples 
of strong maps on geometric semilattices from [23] extend easily to the case of 
general bouquets; we do not repeat them. We introduce two new examples of 
strong maps: the first one is coming from the closure operator between two 
comparable bouquets of .JZ($), the second one from the projection map for 
transversal matroid designs. 

Theorem 7.2. Let 9 be an IS on X and %,, 9& be two bouquets of matroids of 

T(g) such that SI < $. Then, the map from 9& onto ‘& induced by the closure 
operator o2 of 5$ is a surjective rank preserving strong map. 

Proof. We know from Theorem 4.8 that a, induces an epimorphism from %r 
onto $, i.e. a surjective and rank preserving map. We show that a2 is a strong 
map, i.e. satisfies (S2),(S3). Take a l-flat F = al(a) of %i and G E YJI such that 
a,(F U G) = H E %i exists; we can suppose that a $ G, else (S2) trivially holds. 
We have that a,(F) U a,(G) E az(H); if a $ az(G), then, for rank considerat- 

ions, o,(H) = o~(o*(F) U o*(G)), which states (S2). Suppose for contradiction 
that a E a,(G); then a,(G) = u,(G U a) which, since u, is a rank preserving map 
from %r onto $, implies that r,(G) = r,(G U a), yielding a contradiction with the 
fact that a $ G. We now verify that (S3) holds. Take a l-flat F = al(a) of +&, 
G E 3, such that u,(F) $ u2(G) and u,(u,(F) U u,(G)) exists. Suppose for 
contradiction that ol(F U G) does not exist, hence u,(G U a) does not exist. 
Thus, there exists a critical set C of 3, such that a E C and C E G U a. Then C is 

also contained in the flat u,(u,(F) U u,(G)) which implies that C is a stigme of 

Y& We therefore deduce that a E u,(G), yielding a contradiction with the fact 
that u,(F) $ u2(G). 0 
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In application of Theorem 7.2, we have the following examples of surjective 

rank preserving strong maps; they correspond, for the case of geometric 

semilattices, to examples 4, 5, 6 from [23]. 

Example 7.3. Given an IS 2 and a bouquet % E 9(g) with closure operator a(.), 

the function: $4 % 

I- a(Z). 

Example 7.4. Given a matroidal IS 8, At the associated matroid with closure 

operator a(.) and a bouquet 9 E Z(2), the function: 99-0 .A 

G-u(G). 

Example 7.5. Given a bouquet of matroids % with closure operator a(.) and T a 

set of finite rank, the function: % - T--D 93 - T 
Geu(GUT)-T. 

Recall that, if % is a transversal matroid design on [l, n] x [l, m] with 

parameters (I,, . . . , ls_l, 1, = n), then Ce is .A-unisupported where A is a PMD on 

[l, n] with the same parameters, i.e. pi(A,) = JU with pi = %n [O, Xi] for all 

roofs Xi of $9, p1 denoting the first projection from [l, m] x [l, n] onto [l, n]. 

Theorem 7.6. Let 3 be a transversal matroid design on [l, n] x [l, n] with 1, = n 
and & be its PMD support. Then the map induced from Ce onto At by the 
projection p, is a surjective rank preserving strong map. 

Proof. We already know from Proposition 2.3 that p1 induces an epimorphism 

from % onto JU. We show that it is a strong map. It is easy to see that axiom (S2) 

holds. We now verify (S3). Consider a l-flat F E 3, G E 3 such that 

PI(F) $ PI(G). S ince p,(F) has rank 1, one deduces that p,(F) rIpI = 0 and 

thus that F U G is a transversal set. Therefore, from axiom (G4), there exists a 

flat G’ E % such that G U F E G’, which states (S3). Cl 

Remark 7.7. This result does not extend to unisupported d-injection designs for 

d ~2, i.e. the projection p1 is not a strong map from % onto At =pI(%). The 

reason for this being that, for F, G E 3, the condition pi(F) npI(G) = 0 does not 

imply that F U G is a d-injective set and thus (S3) does not hold. 

In the following, we show how to relate strong maps between bouquets of 

matroids to strong maps between their IS or other related bouquets. We first state 

a preliminary result. 

Claim 7.8. Let gi be a simple bouquet of matroids on Xi with IS $i and family of 

circuits gj, for i = 1, 2. Suppose that & has the m,-union property, for i = 1, 2, 
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and let f : %i --D % be a rank preserving strong map. Given a subset A = 

{% . . . , a,} of Xi, we denote by f(A) the subset {f(a,), . . . ,f(a,)}. The 
following assertions hold: 

(i) A E $I if and only if f(A) E ,$* and If{A}I = t 
(ii) if A E Sa, then, either f(A) E ?2& and If(A)1 = t; conversely, if f(A) E ~22~ 

and If{A}I = t, then A E 9J 
(iii) Suppose that f is surjective and let %F, C: be the families defined by 

relation (4.2); if f(A) E C,* and If(A)1 = t, then A E %e,* 
(iv) if f is surjective, then m, c m2 holds. 

Proof. (i), (ii) are easy to verify. We state (iii). If f(A) E C,*, then, by definition 
of C:, there exists a set D E g2, D #f(A), an element x ED rlf{A} such that 
f(A) U D --x E&. Since fis surjective, we can find B E ga, such that D =f{B}, 
x =f(u) with a EA n B and f{A n B} =f{A} nf{B}; therefore A U B -a E 2, 
from (i), thus implying that A E UT. For proving (iv), consider a decomposition of 
& as a bouquet of matroids with m2 roofs: Y1, . . . , Y,, and define the sets: 
Zj = {x E X, :f(x) E Y} for 1 < i =z m2; then it is a routine to verify that ,$$ can be 
decomposed as bouquet of m 2 matroids with roofs the sets Z;‘s, therefore 
implying: ml Gm2. Cl 

Theorem 7.9. Let pi be a simple bouquet of mutroids with IS $j and closure 
operator oi, for i = 1, 2, and f : 3, -t- %$ be u rank preserving strong map. Then, 
there exists a unique strong map f 19, +& such that the diagram below 
commutes. Furthermore, if f is surjective, then so is f. 

31 AS 

Proof. It can be easily verified, using Claim 7.8(i), that the map f defined by: 

01) = {f(u,), . . . ,f(u,)> for I = (4, . . . , a,} E &, is the unique strong map 
satisfying Theorem 7.9. Cl 

Theorem 7.10. Let Si be a simple bouquet of mutroids with IS ,$ and assume that 
2’@) z’s a lattice with greatest element Sz* whose closure operator is denoted by a,*, 
for i = 1, 2. Let f: 3, -+ $ be a surjective rank preserving strong map. Then, there 
exists a unique map f * : 3: 4 23; such that the diagram below commutes; 
furthermore f * is rank preserving and surjective strong map. 

9, A% 

Proof. We denote by L3i the circuit family of $;, by pi (resp. P’p’) the stigmes of 
3 (resp. 3:) and by %; (resp. %r) the critical sets of +Ji (resp. 3:). Since L$?($;) is 



302 M. Laurent, M. Deza 

a lattice, the family zEF is given by relation (4.2), for i = 1, 2. We first recall two 
relations that we will use in the proof: for all Z E $i, a’(Z) = a’(ui(Z) for i = 1, 2 
and for ZE$$, f(al(Z)) = a2(f{Z}). Let F* E 59; and Z ~9~ be a basis of F*; 
necessarily, the map f* must satisfy: f*(F*) =f*(aT(u,(Z))) = u~(f(uI(Z))) = 

o:(oz(f{ZI)) = o:(f{ZI). H ence, we are led to define f* by: f*(F*) = u:(f{Z}) 
where Z is a basis of F* E 3;. We first verify that f* is well defined, i.e. if 
u:(Z) = ur(Z’), then u,*(f{Z}) = u:(f{Z’}). It is enough to prove that f(a) E 
uz(f{Z’}) for all a E I. If a E I, then there exists D E YP: such that a E D E I’ U a; 
hence f(u) l f{D} cf{Z’} Uf(u). From Claim 7.8(ii), we deduce that f{D} E 
$. Also, from Claim 7.8(iii), we have that f(D) E 9’:, implying that f(u) E 

o,*(f{Z’]). 
Obviously f* is rank preserving surjective and we leave it to the reader to 

verify that f* is a strong map. Cl 

In the case when Si, s are geometric semilattices, then Theorem 7.10 remains 
valid without the assumption that f be surjective and rank preserving, as stated in 
[23] (Theorem 5.1); actually, a slight modification of our proof also shows it. 

Corollary 7.11. With the notations of Theorem 7.10, suppose that $$ has the mi 
union property for i = 1, 2, then m, = m2 holds. 

Proof. From Theorem 7.10, f * is a surjective rank preserving map from the 
bouquet 3: on the bouquet %z, hence f * maps the ml roofs of 99: onto the m2 
roofs of 3; and thus m 2 G m, holds. The reverse inequality follows from Claim 
7.8 (iv), hence implying that ml = m2. Cl 

We now present a poset operation on bouquets of geometric lattices that uses 
strong maps as essential tool; this is the operation of mapping cylinder which has 
been introduced in [23] for geometric semilattices. Again it turns out that 
bouquets of geometric lattices seem to offer the correct level of generality at 
which the mapping cylinder construction applies nicely. 

Definition 7.12. Let Pi, P2 be two bouquets of geometric lattices and f : PI --D P2 
be a strong map. The mapping cylinder C(P,, P2, f) is the poset whose element 
set is Pi U P2 and whose order relation cc is defined as follows: for X, y E PI U P2, 
x <, y if one of the following holds: 

(i) x<yinP,whenx,yePi 
(ii) x<yinP2whenx,yEP2 

(iii) f(x) my when x E PI, y E P2. 

Theorem 7.13. Let PI, P2 be two bouquets of geometric lattices and f : P, ----D P2 be a 
surjective rank preserving strong map. Then, the mapping cylinder C(PI, P2, f) is 
a bouquet of geometric lattices. 
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Remark 7.14. This theorem is a companion to Theorem 6.1 from [23] which 
states that, when Pi, P2 are geometric semilattices, then C(Pl, P2, f) is a 
geometric semilattice. If one looks carefully at the proof of Theorem 6.1 ([23]), 
one can notice that, in the first part of it, it is shown that C(Pl, P2, f) is a bouquet 
of geometric lattices, using only the assumption that PI, P2 are bouquets; this part 
therefore includes the proof of Theorem 7.13 and we do not repeat it. In the last 
part of the proof of Theorem 6.1 ([23]), using the additional information that the 
bouquets PI, P2 are geometric semilattices, it is deduced that the bouquet 
C(P,, P2, f) too is a geometric semilattice; this result will also follow from the 
more general statement in Corollary 7.16. 

Theorem 7.15. With the notations of Theorem 7.10, the map q, q: C(Sl,, ‘&, f)---o 
C(Y$, ?I;, f *) defined by q(F) = o:(F) for G E 3, i = 1,2 is a surjective rank 
preserving strong map. 

Proof. Q, is obviously surjective and rank preserving. From Corollary 7.11 and 
the proof of Claim 7.8(iv), if 3; has roofs Y1, . . . , Y,, then 3: has for roofs the 
sets Zi = {a E Xi :f (a) E yi} for i = 1, . . . , m; this implies the relations: 

(a) if S E SF, then either S = {a, b} with f (a) = f (b), or f {S} E 9’; 

(b) if f {S} E 9; and If {S}l = ISI, then S E 9’:. 
Set P = C(Sl, 9&f) and P* = C(Y?F, $, f *). We show that 47 is a strong map. 
We first prove that (S2) holds. For this, take an atom F E P, G E P such that 
F+G and FvG exists in P. If F=0E?& and GE%~, then FvG=f(G) and 
thus q(f(G)) = f *(q(G)) dominates q(F), q(G) and, in fact, f *(q(G)) = 

q(F) v V(G)+ N ow suppose (the other cases are easy) that F = a,(a), G = 
al(Z) E Sl and F v G exists in %&;, i.e. a,(Z U a) does not exist; then F v G = 

o,(f {Zl Uf (a)) and Q~(F v G) = &(f {Zl Uf (a)) dominates f *(q(F)), f *(q(G)) 
and thus q(F), q(G), implying that q(F) v q(G) Sf *(q(F)) v f *(q(G)) s 
q(F v G). Equality holds for rank considerations, after noticing that 
q(F) # q(G); else, a E a:(Z) which, from (a), implies that f(a) E az(f {I}), 
contradicting the fact that F # G. 

We now prove that (S3) holds. For this, take an atom F E P, G E P such that 
q(F) v q(G) exists in P* and q(F) #S q(G). When q(F) v q(G) E 337, then 
F = q(a), G = q(Z) and Z U a E $l, so F v G exists in sl. Suppose now that 
q(F) v q(G) E 3;. If F = 0 E $, G E ‘3$ then f(G) dominates F, G and F v G 

exists. If F = q(a) E Sl, G = oz(Z) E 9$, then q(F) v q(G) = a,*(Z U f (a)), 
implying that Z U f (a) E ,J$; hence o,(Z U f (a)) dominates F, G and F v G exists. 
Suppose now that F = a,(a), G = al(Z) E Sl and aF(Z U a) does not exist. Then 
q(F) v q(G) = az(f {I} U f (a)) and, by computing the rank of both sides in P*, 
we deduce that f(a) E a;(f({Z}). If f(a) 4 f {I}, then there exists D E .9’,* such 
that f(a) E D E f {I} U f (a); from (b), D = f {S} with S E 9’: and a E S E Z U a, 
contradicting the fact that af(Z U a) does not exist. Therefore f(a) E f {I}; hence 
s(f {I}) dominates f (F), f(G) and thus F, G, i.e. F v G exists. 0 
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Corollary 7.16. With the notations of Theorem 7.10, and, following Corollary 
7.11, let m be the integer such that gI;, S2 have the m-union property. Then, the 
bouquet C(SI, S2, f) has the ml-union property for some m’, 1 c m’ sm. 

Proof. It follows from Claim 7.8(iv) applied to the strong map Q, defined in 
Theorem 7.15 after noticing that C(%F, %z, f *) is a bouquet of m matroids. Cl 

Let us describe in more detail the mapping cylinder operation. Let P = 
C(PI, P2, f) be the mapping cylinder obtained from PI, P2, f as in Theorem 7.13. 
Suppose that P2 is a bouquet of m geometric lattices of rank r, with maximal 
elements zi, . . . , z,,, and with least element OZ. From the definition of the order 
relation cc, P is also a bouquet of m geometric lattices with maximal elements 

21,. . . , %I; its rank is r + 1, its atoms are O2 (which is in fact a universal atom of 
P) together with the atoms of PI and its least element is the least element Oi of PI. 
Furthermore, if one deletes the upper interval [O,, 4) from P, one obtains 
exactly the poset PI, i.e. PI = P - [O,, *) can be realized as the bouquet P with 
one interval deleted. As a consequence, we have results 7.19, 7.20, 7.21. Next, 
we give some precisions on how to define the mapping cylinder as a bouquet of 
matroids, i.e. in set theoretical terminology. 

Remark 7.17. Let J? be an IS on X and sl, %* E .Z($) such that %I < $. From 
Theorems 7.2, 7.13, the poset P = C( %,, &, 02) is a bouquet of geometric 
lattices. Let w be an arbitrary element that does not belong to X. Then one can 
define P as a bouquet of matroids on X U w whose flats are exactly the sets 
G E %‘r or G U w for G E %JZ. Hence, assuming that the O-flat of +YZ is 0, the set 
F, = {w} is a universal l-flat of C(%i, Y&, o*); we keep these notations in the 
remaining of the section. Notice that this amounts to the embedding of the 
bouquet +J1 of rank r on X in the bouquet C($, Y&, uZ) of rank r + 1 on X U w. 

Hence, the mapping cylinder operation is closely related to the notion of 
embedding of geometries and, also, as noted in [23], to the notion of single 
element extensions of matroids. We give for illustration an example. 

Example 7.18. Let sl, 5!&_ be the bouquets of matroids on [l, 61 whose flat 
configurations are shown below. They have the same IS and YJ1 < Y& holds. We 
picture below the bouquet of matroids C(%i, ‘$, oZ). 

Bouquet %, : 
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Bouquet $2: 
123 3456 

IO\/\ 

Bouquet C(%r, &, 0~2): 
123~ 3456~ 

Proposition 7.19. Let 8; be an IS 012 X and 5% < Y& E T(9) be two bouquets of, 

respectively, m,, rn2 matroids; hence m2 s m,. Then C(q, S2, u2) is a bouquet of 

m2 matroids and 9% = C(Ce,, S2, 02) - [F,, 4). 

Corollary 7.20. Let 8, be an IS having the m-union property and assume that 

T(2) is a lattice with greatest element %*. Then, for all 54 E Z(8), C(%, (e*, a*) is 

a bouquet of m matroids and %= C(%, %*, a*) - (F,, --o); i.e. any bouquet with 

the m-union property can be realized as a bouquet of m matroids with one upper 

interval deleted. 

We deduce in particular from Corollary 7.20 that any bouquet with the a-union 
property can be realized as a bouquet of 2 matroids with one less upper interval. 
We also deduce that any geometric semilattice can be realized as a matroid with 
one interval deleted, thus restating the “realization” part of Theorem 3.2 [23]. 

Remark 7.21. We obtain an alternative proof for Theorem 3.5 in the design case: 
if % is a transversal matroid design with PMD support At, then, since the 
projection p, is a surjective rank preserving strong map (Theorem 7.6), 
C(%, A, pr) is a matroid and, from Proposition 6.11, % = C(%, .A, pr) - [F,, -D) 
is therefore a geometric semilattice. 

8. On the shellability of bouquets of matroids 

To any poset P, one can associate a simplicial complex A(P), called its order 

complex, whose simplices are the maximal chains x1 <x2 < - - - <x, of elements 
of P. Recall that a simplicial complex is exactly an IS in which all singletons are 
independent sets, the simplices correspond then to the independent sets of the IS; 
the notation of simplicial complex being more specifically used in topological or 
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geometrical context. For any simplex m of a simplicial complex A, one denotes by 
fi the subcomplex of A formed by all subsets of m; its dimension is one less than 
its cardinality. The dimension of A is the maximum dimension of its simplices, A 
is called pure when all maximum simplices have the same dimension. Similarly, 
an IS is pure when all its bases have the same cardinality which is then called the 
rank of the IS. 

Let A be a pure d-dimensional simplicial complex with vertex set X, 1x1 = n. A 
shelling of A is a special ordering of the maximal simplices of A which is 
favourable for induction arguments. Then, A is said to be shellable if it admits a 
shelling order. The ordering: ml, m2, . . . , m, of the maximum simplices of A is a 
shelling order if: 

for all i, j, 1 G i <j s s, there exists k, 16 k <j, and x E mj such 
that: minmjzmjnmk=mj-{X} V-1) 

This amounts to saying that the subcomplex ~j II l_l<~: 6ii is a pure complex of 
dimension d - 1. The distance between two maximum simplices m, m’ is the 
length k of a shortest simplicial path m = m,, ml, . . . , mk = m’ where the m,‘s 
are maximum simplices such that mi n mi_l is a (d - 1)-simplex for i = 1, . . . , k; 
if no such path exists, then the distance between m, m’ is 00. The diameter of A, 
diam A, is the maximum distance between any two maximal simplices of A. One 
says that A satisfies the Hirsch conjecture if diam A G n - d + 1 holds. 

It is well known that shellable complexes share many combinatorial and 
topological properties. For instance, an r-dimensional shellable complex has the 
homotopy type of a wedge of r-spheres (Theorem 1.3, [4]), its reduced homology 
is known: it vanishes in all dimensions other than r (Proposition 3.10, [2]) and 
some naturally associated commutative ring is Cohen-Macaulay (for more 
details, see [3, 41 and references mentioned there). 

To any bouquet of geometric lattices P are naturally associated two simplicial 
complexes: its order complex A(P) and the complex 9(P) of its independent sets 
of atoms. Similarly, for a bouquet of matroids 9, one considers respectively the 
complex of chains of flats of Ce, also called its flat complex and denoted by FL(%); 
and its independence system 8, also called independence complex. When FL(%) is 
shellable, we also say that 59 is shellable. Note that, as was done by Bjorner for 
matroids ([2]), one may associate other complexes to a bouquet such as its broken 
circuit complex; this will be the object of further study in [18]. It is known that 
when P is a geometric lattice, then both A(P) and 9(P) are shellable ([2, 201); 
this result was extended to geometric semilattices in [23]. Therefore, it follows 
from Theorem 3.5 that all well cut transversal geometries are shellable. We now 
study the shellability of general bouquets. The results presented here come from 
[18] which will also contain other results of topological nature. Let us mention an 
application of shellable IS to the study of tight bounds for their reliability 
polynomials ([5]). 

It is obviously not true that any bouquet of matroids is shellable; for a 
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counterexample, consider a bouquet whose branches are matroids on disjoint 
groundsets. In fact, a shellable bouquet must satisfy strong connectivity prop- 
erties; so, its basis graph must be connected. We will see that, for the case of 
bouquets of matroids with the 2-union property, this condition is indeed a 
sufficient condition for shellability. Note that a shellable bouquet must be well 
cut, which amounts to saying that its IS must be pure. 

Proposition 8.2. Let B be a well cut bouquet of m matroids of rank r with roofs 

X1,X*,..., X,,,. Zf its flat complex FL(%) is shellable, then there exists an 
ordering of the roofs, say X1, X,, . . . , X,,,, such that: 

for all j 3 2, there exists k, 1 s k <j, such that r(Xk n X,) = r - 1 (8.3) 

Recall that a maximal chain m of FL( 9) is of the form: 0 5 FI 5 *.. 5 F, with fi 
being an i-flat and F, is some roof Xi of 59, also called the roof of the chain m; the 
length of the chain is: ]mJ = r. The following can be easily verified. 

Claim 8.4. Let m, m’ be two maximal chains of flats of % with distinct roofs 
Xi, Xi. Then, ]m fl m’] = r - 1 holds if and only if m, m’ differ only by their roofs 
and, then, r(X; r) Xj) = r - 1 holds. 

Proof of Proposition 8.2. Consider a shelling order of the maximal chains of 

FL(%): ml, . . . , m,. We deduce from (8.1): 

for j 2 2, there exists k, 1 c k <j, such that (mk f~ mj] = ]mj] - 1 = r - 1 (8.5) 

Suppose, for instance, that the first chain ml has roof X1. Let i 3 2 be the first 
index such that mj has a roof distinct from X1, say mi has roof X,. Then, one 
deduces from (8.5) and Claim 8.4 that r(X1 n Xz) = r - 1. Let j 3 i + 1 be the first 
index such that mi has neither roof X1 or X,, say mj has roof X,. One deduces 
again from (8.5) and Claim 8.4 that r(X1 nX,) = r - 1 or r(X, n X,) = r - 1. 
Clearly, after iteration of this process, one obtains an ordering of the roofs 
satisfying (8.3). 0 

Definition 8.6. Let % be a well cut bouquet of m matroids of rank r with roofs 

X1,..., X,,,. Its roof graph CR is the graph with vertex set [l, m] and whose 
edges are defined as follows: two vertices i, j E [l, m] are adjacent if and only if 
r(XiflXj)=r- 1. 

Definition 8.7. Let 3 be a pure IS of rank r and 3 its family of bases. Its basis 
graph Gs is the graph with vertex set 93 and whose edges are defined as follows: 
two bases B, B’ are adjacent if and only if ]B fl B’] = r - 1. 

Two bases B, B’ are adjacent in G, if and only if B’ is obtained from B by 
pivoting (or shifting), i.e. by exchanging exactly one element of B by an element 



308 M. Laurent, M. Deza 

of B’. Hence, the basis graph is connected if and only if any basis can be obtained 

from any other by a finite sequence of pivots; let us simply recall that pivoting is a 

fundamental tool in the simplex algorithm for linear programming. For instance, 

GB is connected when 2 is a matroidal IS. Observe that, for a bouquet 59~ .9(,$), 

its roof graph and its basis graph are closely related; so, for the free bouquet 

?J=$r, both graphs coincide and, in general, they are simultaneously connected, 

as shows Proposition 8.8. Observe also that the diameter of the IS 9 (as simplicial 

complex) coincides with the diameter, diam Gs, of its basis graph; therefore, for 

a pure IS of rank r on X, 1x1 = n, saying that it satisfies the Hirsch conjecture 

amounts to saying that diam G, <II - r holds. It is proven in [20] that the Hirsch 

conjecture holds for matroidal IS; we extend this result to IS with the 2-union 

property and with connected basis graph in Proposition 8.16. 

Proposition 8.8. Let 9 be a pure IS. The following assertions are equivalent: 
(i) the basis graph Gs is connected 

(ii) the roof graph CR of any bouquet 3 E z(8) is connected. 

Proof. The implication (i)+ (ii) follows from the fact that, if two bases B, B’ 
contained in distinct roofs Xi, Xj are adjacent in G,, then i, j are adjacent in CR. 

Conversely, the implication (ii)+(i) follows from the fact that any two bases 

B, B’ contained in roofs Xiui, Xi with r(Xi fl XJ = r - 1 are connected; for this, take 

a maximal independent subset Z of Xi II X,, 111 = r - 1, x E Xi - Xj and y E Xj - 

Xi. Then, from axiom (Z3), the sets Bi = Z + x and Bj = Z +y are bases of 8; 

respectively contained in Xi, Xj and they are adjacent in GB; now one can 

connect B to Bi in the matroid on Xi and, similarly, B’ to Bj and thus B to 

B’. q 

Proposition 8.9. Let % be a well cut bouquet of matroids. Zf its flat complex FL( 59) 

is shellable, then its roof graph is connected or, equivalently, its basis graph is 
connected. 

Proof. Let X1, . . . , X, be an ordering of the roofs of 3 satisfying (8.3); one 

verifies by induction on i 2 2 that i is connected to 1 in GR, henceforth implying 

that CR is connected. 0 

Corollary 8.10. The full d-injection geometry $(N,, . . . , Nd) with INil = . . . = 

]Nd] = n 2 2 is not shellable for all d 3 2. 

Proof. Observe that any two distinct bases B, B’ of 2(N,, . . . , Nd) are d- 
injective sets of size n satisfying IB n B’I s n - 2. Therefore the basis graph is 

totally disconnected. Cl 
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This fact was observed in [l], Fig. 7.1(b), for the case d = 2. 
It turns out that, for bouquets of matroids having the 2-union property, the 

connectivity of the basis graph (or of the roof graph) is enough for ensuring 
shellability, i.e. the converse of Proposition 8.9 is true. For stating this result, we 
need another type of poset shellability, introduced in [l], which is favourable for 
induction proofs. Recall that the length of a poset is the maximum length of the 
chains of A(P). 

Definition 8.11. Let P be a finite ranked poset. A recursive atom ordering of P is 
defined by induction on the length of P as follows: 

-if P has length 1, then any atom ordering is a recursive atom ordering 
-if P has length greater than 1, a recursive atom ordering of P is an ordering 

al, a2,. . . , a, of the atoms of P satisfying: 

for j E [l, t], the poset [ai, 4) admits a recursive atom ordering 
which begins with the atoms that cover some aj for j < i (8.33 

for j E [2, t], there exists i, 1 s i <j, such that ai v aj exists. (8.W) 

Note that (8.13) is slightly different from axiom (ii) in the original definition of 
[l], however both definitions coincide for the case of bouquets of geometric 
lattices that we consider, also it suffices to adjoin a top element to P for obtaining 
the original definition of [l] for bounded posets. It is proved in [l] that the 
existence of a recursive atom ordering of P is equivalent to chain lexicographical 
shellability which implies the shellability of A(P). 

Proposition 8.14 (Theorem 7.2, [23]). Let Ce be a geometric semilattice of rank r 

with IS 8; and closure operator a(.). Then, any atom ordering that begins with 

some atoms F, = a(xl), . . . , F, = a@,) such that the set {x1, . , . , x,} is a basis of 

9 is a recursive atom ordering. 

Proposition 8.15. Let 9 be a pure IS of rank r having the 2-union property. Let 

%* be the greatest element of Z’(8), so 9* is a bouquet of 2 matroids with roofs 

X,, X,. Let 3 be a bouquet of Z’($) with closure operator a(.). Assume that the 

basis graph GB is connected, then any atom ordering of % that begins with some 

atoms F, = a(xJ, . . . , F,_, = a(~,_,) such that the set {x1, . . . , x,_~} is a basis of 

X1 n X, is a recursive atom ordering. 

Proof. We prove the theorem by induction on the rank r of the IS ,$ (or of any 
%E Z(9)). Let r(.) denote the rank function of 8, then, the rank function of % 
or %* coincides with r(.) on finite rank sets. By assumption, G, is connected, i.e. 
from Proposition 8.8, r(X, n X2) = r - 1 and the roof graph GR of % is connected. 
We can suppose that r 3 2. 
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We first verify that one can find r - 1 atoms of 3 as in Theorem 8.15. Since 
r(Xi nX,)=r - 1, take a basis I= {xi,. . . ,x,-l} of Xi f7Xx,, then the flats 
4 = a@,), . . . ) F,_* = a(~,_,) are atoms of % as in Theorem 8.15. Observe that 
the flat a(Z) = a(& U * * . U I$_,) is well defined. Define an atom ordering 52 of $9 
that begins with the atoms F,, . . . , F,_,. We prove that Q is a recursive atom 
ordering of $9. 

We show that 52 verifies (8.13). For this, take an atom F = a(x) of % which is 
distinct from F,. If F = fi with 2 s i 6 r - 1, then a(F, U F) is well defined. Else, 
F is after all &‘s in the order Q; by applying axiom (14) to the independent sets 
{x} and I (in the matroid on Xi when x E X,), we deduce that {x, Xi} E 2 for some 
1s i G r - 1 and thus a(F U 4) = CT( {x, Xi}) is well defined. 

We now prove that (8.12) is satisfied. For this, let F be an atom of %. Then, the 
intervals [F, -) in % and %* are bouquets isomorphic, respectively, to ?I - F and 
%* - F, of rank r - 1 and with IS 8; . (X - F) (Theorem 6.5). Furthermore, when 
F is contained in X1 n X2, the interval [F, 4) in (e* is a bouquet of 2 matroids 
with roofs Xi, X, and the IS 9 * (X - F) has the 2-union property; note that its 
basis graph is still connected since Xi II X, has rank I - 2 in [F, 4). When, for 
instance, F EX~ and F$ X,, then the interval [F, +) in ?I* is a matroid with 
roof X1 and the IS 9 . (X - F) is matroidal. Note that the atoms of the interval 
[F, 4) in 3 are of the form G = a( {x, y}) with y $ F and {x, y} E 2. Define the 
set B(F) of atoms of [F, ’ -+) m % that cover some atom F’ of % which is before F 

in the order Q. We show how to construct a recursive atom ordering of the 
interval [F, 4) in $I satisfying (8.12); for this, we distinguish three cases: 

Case 1. F E X1 and F $X2. Then, F = a(x) with x E X1 -X, and, since the 

independent set I = {xi, . . . , x,_~} is contained in X, ~-IX,, from axiom (Z3), 

I + x E 9. The flats G1 = a( {x, x,}), . . . , G,_, = a({~, x,_,}) are atoms of [F, -s) 

such that the set {xl,. . . ,x,_,} is a basis of 2 . (X - F). Note that 

{G,, . . . , G,_,} E B(F) holds. Consider an atom ordering of IF, -+) that begins 

with the atoms Gi, . . . , G,_, and then with the remaining atoms of B(F); then, 
from Proposition 8.14, it is a recursive atom ordering and it satisfies (8.12). 

Case 2. F c X1 n X2 and F = E for i E [l, r - 11. Then the flats Gk = U({xi, xk}) 
for k E [l, r - 11, k Zi, are atoms of [F, -+) such that the set 

(x1,. . . ) Xi-13 x;+l, * . . t x,_,} is a basis of X1 n X, in 3 . (X - F). Note that 

B(F) E {Gi, * . * 7 Gi-1, Gi+i, * . . 7 G,_,} holds. Consider an atom ordering of 
[F, -) that begins with atoms of B(F) and then continues with the remaining 
atoms of {Gi, . . . , Gi-1, Gi+i, . . . , G,_,}; from the induction assumption, this is 
a recursive atom ordering and it satisfies (8.12). 

Case 3. FcX,flX, and F#F;for i~[l,r-11. Let F=u(x), then, by axiom 
(14) applied to the independent sets {x} and f = {n,, . . . , x,_,}, we deduce that 
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Z -xi + x E 9 for some i E [l, r - 11. The sets Gk = a({~, xk}) for k E [l, r - 11, 
k #i, are atoms of [F, -) such that the set Z-xi is a basis of X1 II X, in 
9 . (X- F) and {G,, . . . , Gi-1, Gi+l, . . . , G,_,} 5 B(F) holds. One obtains a 
recursive atom ordering of [F, -+) satisfying (8.12) by putting first the atoms 

G1,. . . p Gi-1, Gi+l,. . . j G,_l, then the remaining atoms of B(F) and finally all 
other atoms. 0 

Proposition 8.16. Let 9 be a pure IS with the 2-union property and whose basis 
graph is connected. Then the IS 9 satisfies the Hirsch conjecture. 

Proof, For two distinct bases B, B’ of 9, we denote by d(B, B’) the distance 
between B, B’ in the basis graph; by assumption, it is finite. We first observe 
that, if B, B’ are bases in a matroidal IS of rank r, then it follows from the basis 
exchange axiom (B) that: 

d(B, B’) = r - JB fl B’(. (8.17) 

Consider now a pure IS 2 of rank r on X, 1X1= n, with the 2-union property and 
connected basis graph. Hence, the greatest element %* of z(g) is a bouquet of 
two matroids with roofs X1, X, such that r(X, II XJ = r - 1. Let B, B’ be two 
distinct bases of 2. If B, B’ G Xi for i = 1 or 2, then, from (8.17), d(B, B’) = 
r - IB fl B’I c n - r. We now suppose that B E X1, B’ E X, and consider elem- 
ents x E B -X,, x’ E B’ -X1. Let Z be a maximal independent set such that: 
B fl B’ c Z G X1 n X,; then, II) = r - 1 and, from axiom (Z3), the sets B, = Z +x 
and B, = I +x’ are bases of ,j? respectively contained in X1, X,. From (8.17), we 
have that: d(B, B,) = r - IB n B,I = r - 1 - II fl BI and d(B’, B2) = r - IB’ c1 
B21 = r - 1 - (I fl B’I. Using the relations: d(B, B’) c d(B, B,) + d(B,, B2) + 

d(B*, B’) and d(B,, B2) = 1, we deduce that: 

d(B, B’)<2r-l-IZnBI-IZflB’I, (8.18) 

For completing the proof, we show that the right hand side of (8.18) is less or 
equal to n - r. For this, observe that: n 2IBUB’UZl and IBUB’UZI=IBU 
B’I + 111 - I(B fl I) U (B’ fl I)( = 3r - 1 - (B fl II - IB’ n I[, which therefore imp- 
liesthat:n-r~2r-1-IBnZI-IBrnZI;thisconcludestheproof. q 

The next theorem follows from Propositions 8.8, 8.9, 8.15 and 8.16. 

Theorem 8.19. Let 9 be a pure IS of rank r having the 2-union property, %* be 
the greatest element of T(,$) with roofs X1, X, and 59 be an arbitrary bouquet of 
_Y(dp). The following assertions are equivalent: 

(i) the basis graph is connected 
(ii) r(X1 n X2) = r - 1 

(iii) the roof graph of 9 is connected 
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(iv) FL(%) is shellable 
(v) FL@) is shellable 

(vi) 9 satisfies the Hirsch conjecture. 

The shellability of the flat complex FL(%) of a bouquet of matroids % seems 
therefore to be an intrinsic property of its IS 9, i.e. to depend only on properties 
of ,_$ and not on the flat configuration of the specific bouquet % E .3’(g). This is 
indeed the case for geometric semilattices and bouquets with the 2-union property 
for which a sufficient and necessary condition for shellability is the connectivity of 

the basis graph. We conjecure that this is still the case for general bouquets - at 
least when .3?(g) is a lattice - so, we conjecture that a bouquet is shellable if and 
only if the flat complex of its IS is shellable. We address the related open question 
of finding a necessary and sufficient condition for the shellability of FL($), or 

3 E KP). 
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