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Introduction

Interested in examining economies where
agents face risk of loss with some probability

One example is a flood-prone community

There may exist a public good that can affect
the probability that the agents in a community
experience a loss

Examples include levies, dams



Pareto efficient provision of Public
goods

* |dentifying and implementing Pareto efficient
levels of public goods under uncertainty is
challenging for several reasons:

— Often agents have incentive to misrepresent their
preferences for the public good to attempt to free-
ride.

— Unaware of any mechanism design work focused on
the provision of public goods under uncertainty

— Need complete markets (insurance) to achieve Pareto
efficiency.



Complexity of Insurance

* |[nsurance markets are traditionally handled in
economic theory with Arrow-Debreu
securities, one security for each unique set of
endowments in the economy.

* Problem: With certain kinds of risk, number of
states of the economy can grow
unmanageably large as the number of agents
increase. Real-life insurance bears little
resemblance to Arrow-Debreu securities.



Risk: Definitions

* Suppose there is an economy with N agents
and that there are M possible states of nature
each agent can experience. The number of
states of the economy will depend on N, M
and the type of risk that is presents.



Types of Risks

* Joint Risk: All agents experience the same state of the world.

* Graduated Risk: Agents live in an ordered environment, a river valley for example,
and the loss each agent suffers can be no greater than the agents in a lower state

in the ordered environment.

* Idiosyncratic Risk: Each agent can experience any of the possible states of world.
This doesn’t have to be a completely independent process, risks can be correlated,

but there must be some element of idiosyncratic or individual risk involved.



Computational Complexity

* Joint Risk: M states. Does not depend on
number of agents, just the states of nature M.

* Graduate Risk: Defined recursively as

S(M,N) = I1f(M == 2,Return[N + 1]
Else

REH{T‘HZS(W 1,N—1i)]

* |diosyncratic Risk: N*MN. Number of states of
the economy grows exponentially with the
number of agents



Limiting Behavior

* For graduated risk, the limiting behavior is
such that the number of states of the
economy increases in polynomial fashion with
the order of the polynomial given by M-1.
Thus, for M=2 the problem is linear. M=3 is

guadratic etc.



Current practice

 Army Corp of Engineers is responsible for
constructing most flood control projects

 Complex cost-benefit rules are used to
determine which projects are undertaken.

* Flood insurance is provided via separate
agency, part of the Federal Emergency
Management Agency.



Desired alternative

* Would be useful if the insurance component
of the problem and the public good
component could be combined as the two
decisions are related. Part of the demand for a
levee could come from risk aversion. This
would make flood an insurance and a levy
substitutes. Insurer likely to have strong
preferences over levee height as it affects
premiums.



FEMA meets the Army Corp of
Engineers

 What if we allowed a monopoly insurer to pick
premiums for agents and allowed the insurer
to provide the public good out money
received from the premiums?

* Theory of the second best: with one market
failure (public good) adding a second (market
power) may be welfare improving



Rationale

* |[nsurer has strong incentive to provide and
maintain the public good because it decreases
the probability of having to pay out claims

* Only one price is necessary, so efficient with
information

 Monopoly insurer can fund public good
provision out of revenue from insurance
premiums (ability to pay)



Single priced contracts

* We restrict the insurance company to selling
single-priced contracts. That is, the premium
an agent pays doesn’t not depend on the
realizations experienced by other agents (not
Arrow-Debreu). However, there is a risk that
the insurance company will default and not
pay your claim at all.



Default risk

* Tradeoffs with single priced contracts:
— Limits number of prices in markets

— Agents don’t need to trust or verify claims made by
other agents, only required to trust insurance
company

* Disadvantages

— In a sufficiently bad year, no way to avoid default

— Assume there is a government regulator who sets
maximum probability of default. Insurance companies
must make decisions to ensure probability of default
doesn’t exceed threshold.



Simple example

* |[nsurer surprises agents with public good
* Future work to look at mechanism design

* To simplify mathematical model, assume
agents face idiosyncratic risk



Problem details

Logarithmic utility: u =In (c)

Each agent has endowment of 1

Loss of 0.5 with probability p(6) = .1-.05 &6
Cost function is C(8) = 5 62

Limit on default risk, a, is the exogenous
parameter



Agents’ problem

m?x(l—cx][p*u(e—cﬁf—l-f—d]—l-(1—p]u(e—c*fj)+a(p*u(e—r:#a!'—d]
+(1-plule —c=1))

* Alphais probability of * |is quantity of insurance
default purchased
* Pis probability of loss * Disloss due to bad

« Cisinsurance premium outcome occuring



Insurer’s problem

* Maximize profit subject to a default constraint

* With idiosyncratic risk, probability of paying out a
given number of claims is governed by binomial
distribution

* Breakeven point:

Nec=[(c)—c(8)—X=I(c)=0



Insurer’s problem cont
* Solvency constraint is given by

1 — BinomialCDF(N,p(8),X) < a*



Insurer’s problem cont

N
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Conclusion

* Provision of public goods under uncertainty
presents both mechanism design and
computational challenges

* Only a limited literature exists in this area

e Numerical simulations indicate a tradeoff
between solvency and utility.



