Risk, Insurance, and the Provision of Public Goods Under Uncertainty

Stephen Aultman* Jay Coggins Department of Applied Economics University of Minnesota *Email: aultm015@umn.edu

Poster prepared for presentation at the Agricultural & Applied Economics Association's 2010 AAEA, CAES & WAEA Joint Annual Meeting, Denver, Colorado, July 25-27, 2010. Copyright 2010 by Stephen Aultman & Jay Coggins. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.

Introduction

- Interested in examining economies where agents face risk of loss with some probability
- One example is a flood-prone community
- There may exist a public good that can affect the probability that the agents in a community experience a loss
- Examples include levies, dams

Pareto efficient provision of Public goods

- Identifying and implementing Pareto efficient levels of public goods under uncertainty is challenging for several reasons:
 - Often agents have incentive to misrepresent their preferences for the public good to attempt to freeride.
 - Unaware of any mechanism design work focused on the provision of public goods under uncertainty
 - Need complete markets (insurance) to achieve Pareto efficiency.

Complexity of Insurance

- Insurance markets are traditionally handled in economic theory with Arrow-Debreu securities, one security for each unique set of endowments in the economy.
- Problem: With certain kinds of risk, number of states of the economy can grow unmanageably large as the number of agents increase. Real-life insurance bears little resemblance to Arrow-Debreu securities.

Risk: Definitions

 Suppose there is an economy with N agents and that there are M possible states of nature each agent can experience. The number of states of the economy will depend on N, M and the type of risk that is presents.

Types of Risks

- Joint Risk: All agents experience the same state of the world.
- Graduated Risk: Agents live in an ordered environment, a river valley for example, and the loss each agent suffers can be no greater than the agents in a lower state in the ordered environment.
- Idiosyncratic Risk: Each agent can experience any of the possible states of world.
 This doesn't have to be a completely independent process, risks can be correlated, but there must be some element of idiosyncratic or individual risk involved.

Computational Complexity

- Joint Risk: M states. Does not depend on number of agents, just the states of nature M.
- Graduate Risk: Defined recursively as

S(M,N) = If(M == 2, Return[N+1]

```
Else_{Return}[\sum_{i=1}^{M} S(M-1, N-i)]
```

 Idiosyncratic Risk: N*M^N. Number of states of the economy grows exponentially with the number of agents

Limiting Behavior

 For graduated risk, the limiting behavior is such that the number of states of the economy increases in polynomial fashion with the order of the polynomial given by M-1. Thus, for M=2 the problem is linear. M=3 is quadratic etc.

Current practice

- Army Corp of Engineers is responsible for constructing most flood control projects
- Complex cost-benefit rules are used to determine which projects are undertaken.
- Flood insurance is provided via separate agency, part of the Federal Emergency Management Agency.

Desired alternative

 Would be useful if the insurance component of the problem and the public good component could be combined as the two decisions are related. Part of the demand for a levee could come from risk aversion. This would make flood an insurance and a levy substitutes. Insurer likely to have strong preferences over levee height as it affects premiums.

FEMA meets the Army Corp of Engineers

- What if we allowed a monopoly insurer to pick premiums for agents and allowed the insurer to provide the public good out money received from the premiums?
- Theory of the second best: with one market failure (public good) adding a second (market power) may be welfare improving

Rationale

- Insurer has strong incentive to provide and maintain the public good because it decreases the probability of having to pay out claims
- Only one price is necessary, so efficient with information
- Monopoly insurer can fund public good provision out of revenue from insurance premiums (ability to pay)

Single priced contracts

 We restrict the insurance company to selling single-priced contracts. That is, the premium an agent pays doesn't not depend on the realizations experienced by other agents (not Arrow-Debreu). However, there is a risk that the insurance company will default and not pay your claim at all.

Default risk

- Tradeoffs with single priced contracts:
 - Limits number of prices in markets
 - Agents don't need to trust or verify claims made by other agents, only required to trust insurance company
- Disadvantages
 - In a sufficiently bad year, no way to avoid default
 - Assume there is a government regulator who sets maximum probability of default. Insurance companies must make decisions to ensure probability of default doesn't exceed threshold.

Simple example

- Insurer surprises agents with public good
- Future work to look at mechanism design
- To simplify mathematical model, assume agents face idiosyncratic risk

Problem details

- Logarithmic utility: u = ln (c)
- Each agent has endowment of 1
- Loss of 0.5 with probability $p(\delta) = .1-.05 \ \delta^{.5}$
- Cost function is $C(\delta) = 5 \delta^2$
- Limit on default risk, α, is the exogenous parameter

Agents' problem

 $\max_{I} (1-\alpha) (p * u(e - c * I + I - d) + (1-p)u(e - c * I)) + \alpha (p * u(e - c * I - d)) + (1-p)u(e - c * I))$

- Alpha is probability of default
- P is probability of loss
- C is insurance premium

- I is quantity of insurance purchased
- D is loss due to bad outcome occuring

Insurer's problem

- Maximize profit subject to a default constraint
- With idiosyncratic risk, probability of paying out a given number of claims is governed by binomial distribution
- Breakeven point:

$N * c * I(c) - c(\delta) - X * I(c) = 0$

Insurer's problem cont

- Solvency constraint is given by
 - $1 BinomialCDF(N, p(\delta), X) \leq \alpha^*$

Insurer's problem cont

$$\max_{c,\delta} \sum_{i=0}^{N} \left(\frac{N!}{i! (N-i)!} p(\delta)^{i} (1-p(\delta))^{N-i} \right) * N * c * I(c) - c(\delta) - i * I(c)$$

$$1 - \sum_{i=0}^{Floor(\frac{N*c*l(c)-c(\delta)}{l(c)})} \frac{N!}{i! (N-i)!} p(\delta)^i (1-p(\delta))^{N-i} \le \alpha^*$$

Public good as a function of $\boldsymbol{\alpha}$

Level of public good

Utility as a function of $\boldsymbol{\alpha}$

Expected utility

Expected profit as a function of $\boldsymbol{\alpha}$

Conclusion

- Provision of public goods under uncertainty presents both mechanism design and computational challenges
- Only a limited literature exists in this area
- Numerical simulations indicate a tradeoff between solvency and utility.