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Evaluating Yield Models for Crop Insurance Rating

Generated crop insurance rates depend critically on the distributional assumptions of the
underlying crop yield loss model. Using farm level corn yield data from 1972-2008, we revisit
the problem of examining in-sample goodness-of-fit measures across a set of flexible
parametric, semi-parametric, and non-parametric distributions. Simulations are also conducted
to investigate the out-of-sample efficiency properties of several competing distributions. The
results indicate that more parameterized distributional forms fit the data better in-sample due to
the fact that they have more parameters, but are generally less efficient out-of-sample–and in
some cases more biased–than more parsimonious forms which also fit the data adequately, such
as the Weibull. The results highlight the relative advantages of alternative distributions in terms
of the bias-efficiency tradeoff in both in- and out-of-sample frameworks.

Keywords: Yield distributions, Crop Insurance, Weibull Distribution, Beta Distribution,
Mixture Distribution, Out-of-Sample Efficiency, Goodness-of-Fit, Insurance Rating Efficiency

Introduction

Crop insurance provides many options for farmers to manage yield and revenue risks emanating
from uncertain weather, demand uncertainty and other perils. The pricing of crop insurance not
only affects participation, but also relative indemnities paid by crop insurance companies. If
crop insurance rates are too high, farmers may choose other methods to manage risk, such as
hedging in the futures market; conversely, rates which are too low encourage adverse selection
and contribute to other problems endemic to the overprovision of insurance (e.g., land
degradation).

Generated crop insurance rates depend critically on the distributions assumptions of the
underlying crop yield loss model. Many studies have focused on how best to establish
parametric yield distributions in rating applications (e.g., Sherrick et al., 2004; Ramirez et al.,
2003), while others have advanced the use of non-parametric (e.g., Ker and Goodwin, 2000)
and semi-parametric methods (e.g., Wang and Zhang, 2002). Yet, no single family of
distributions or method of selection for non-parametric models is widely accepted for rating
insurance. While there is an extensively developed literature on goodness-of-fit measures of
fitted distributions, crop insurance applications are more concerned with bias and efficiency of
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the rates resulting from alternative distributions. Moreover, past studies have been principally
concerned with evaluating bias in rates generated from alternative distributions relative to
(unknown) the “true” distribution approximated by empirical distributions, and tend to ignore
the efficiency or precision aspect. Also, given that insurance rating is fundamentally a
forecasting exercise, Norwood et al. (2004) urge for out-of-sample approaches to distribution
assessment when evaluating yield models. The out-of-sample efficiency question is of critical
importance in insurance applications since typically only a short history of data is available for
any farm or county when making rates.

The purpose of this study is two-fold. First, using farm level corn yield data from the Illinois
Farm Bureau Farm Management Association (FBFM) from 1972-2008, we revisit the problem
of examining alternative in-sample goodness-of-fit measures and rates across a set of flexible
two and four parameter distributions, as well as a semi-parametric and a non-parametric
distribution. Next, to illustrate out-of-sample efficiency across alternative distributions,
simulations are conducted whereby small yield samples are drawn from a known parametric
distribution, and then fit to several candidate distributions; the estimated distributions are then
used to estimate insurance rates under each candidate distribution; this process is repeated in
order to estimate the rate sampling distribution of each candidate distribution. This approach to
out-of-sample evaluation is similar in spirit to that articulated by Norwood et al. (2004), but
differs somewhat from earlier approaches in that we assess the underlying rate distribution

directly–an arguably more relevant objective in insurance contexts.

Literature Review

The choice of the “best” distribution has been a long debated question, and indeed remains
contentious. Among the parametric family of distributions, many studies (Day, 1965; Ramirez,
1997; Atwood et al., 2003; Ramirez et al., 2003) reject normality as the “correct” distributional
form of crop yields because of negative skewness and excess kurtosis. In contrast, Just and
Weninger (1999) argue that the rejection of the normal distribution in preceding empirical
research is an incorrect assumption due to methodological problems in typical yield distribution
analyses. Other works (Nelson and Preckel, 1989; Nelson, 1990; Hennessy et al., 1997) use a
beta distribution to depict crop yields. The beta distribution is arguably the most highly
examined parametric form along with the normal distribution in empirical crop yield modeling
literature. The beta distribution is flexible enough to take on varying forms of skewness and
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kurtosis, as well as being bounded at zero and a maximum value. Still other works attempt to
examine alternative parameterizations of crop yield distributions, Gallagher (1986) and Pope
and Ziemer (1984) with the gamma distribution and Sherrick et al. (2004) with the Weibull
distribution. The gamma and Weibull distributions are similar to the beta distribution and its
need for relatively few parameters to capture varying degrees of skewness–positive and
negative–and variances.

Recently non- and semi-parametric distributional forms have received more attention in
empirical literature (Goodwin and Ker, 1998; C.G. and Zhao, 1999; Ker and Goodwin, 2000;
Norwood et al., 2004; Wang and Zhang, 2002; Ker and Coble, 2003) because of their increased
flexibility in modeling in-sample crop yields. The increased flexibility allows the distributional
form to cover a broader set of skewness and kurtosis values, but forecasting may suffer from
efficiency problems due to their tendency to over-fit sample data. While some studies have
suggested that semi-parametric methods may outperform parametric methods in similar
applications in terms of out-of-sample efficiency (see e.g., Norwood, Roberts, and Lusk, 2004),
the evidence to date is very weak.

Empirical Parametric Goodness-of-Fit and In-Sample Rate
Analyses

The first section of this study focuses on in-sample analyses. Two in-sample analyses are
conducted. First, goodness-of-fit tests are conducted comparing several parametric
distributions. Second, in-sample rate analyses are conducted to evaluate the performance of
several parametric and non-parametric distributions for insurance rating. The next section
outlines the data used in these analyses, followed by an overview of the procedures.

Data

This study utilizes a high quality, extensive farm-level corn yield dataset from the Illinois
FBFM from 1972 to 2008. FBFM, in cooperation with the University of Illinois, Department of
Agricultural and Consumer Economics, is a cooperative educational-service program that
assists farmers with management decision-making, and provides financial and production
business analysis reports. Over 6,000 grain farms participate in the FBFM program each year,
providing dependable and extensive yield histories. This dataset is unique in the United States
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for its long panel of certified corn yield data, which captures a uniquely representative
cross-section of farms. The highly reliable data are representative of commercial scale farms
with validated and commonly accounted yields.

The focus of this study is on commercially viable farms with long and complete yield histories.
Thus, farms were selected out of the FBFM database that met the following criteria: at least
twenty years of yields, more than eighty acres, and less than two consecutive years of missing
data. This resulted in 2,088 corn farms, of which 768 have thirty or more years of data.

In order to accurately model yield distributions in the context of rating crop insurance products,
the deterministic components of yields over time, namely the effects of improvements in farm
technology, are removed to allow yields from early years to be compared with yields from more
recent years. Empirical crop insurance rating studies use many techniques to detrend yield data.
The most common approach is to use OLS with a linear trend, and is adopted here (Zanini,
2001). We investigated four different data aggregation levels when detrending: state, district,
county and individual farm.

The optimal choice of aggregation when detrending is highly debated. Similar to previous work
(see e.g., Atwood, Shaik, and Watts, 2003) our research (not reported) suggested that farm level
detrending may result in highly inefficient trend estimates, while the state level trends may
exhibit unacceptably high degrees of bias. For example, detrending at the individual farm-level
resulted in highly volatile (and sometime negative) trend estimates across farms, even within a
county. While the overall implications of the study were not sensitive to level of aggregation
when detrending, following several other related studies we use district level trends when
detrending farm yields. Summary statistics for the original and detrended yields are provided in
Table 1.

In-Sample Goodness-of-Fit Analysis

This analysis examines the in-sample fitting capability of alternative parametric distributional
forms with three empirically popular goodness-of-fit tests-Anderson-Darling (A-D),
Kolmogorov-Smirnov (K-S) and Chi-Squared (χ2). The parametric distributions are comprised
of the conditional beta, gamma, inverse Gaussian, normal and Weibull. First, the distributions
are fit to the farm-level yields using maximum likelihood estimation for each farm individually.
Next, the three goodness-of-fit tests and a weighted average of the three test ranks are used to
rank each of the distributions in terms of their respective in-sample fitting performance. The
goodness-of-fit rankings for the parametric distributional forms are summarized and tabulated
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for each of the nine Illinois National Agricultural Statistics Service (NASS) Crop Reporting
Districts–Northwest, Northeast, West, Central, East, West Southwest, East Southeast,
Southwest and Southeast.

In some cases, the estimation of the conditional beta distribution did not converge, and as a
result 132 farms were dropped from the sample, and the remaining results did not appear to be
sensitive to dropping these observations. The test statistics from the goodness-of-fit tests for the
remaining farms are then calculated, and the distributions are then ordered by the number of
times they rank in first through fifth place. All of the goodness-of-fit tests are generally accepted
but differ somewhat in their focus. The A-D test puts more weight on the fit in the tails of the
distribution, while the K-S test is more sensitive to the center of the distribution, and the χ2 test
tends to put emphasis on a combination of the two. A weighted goodness-of-fit measure is also
constructed which equals the average of the K-S, A-D, and χ2 ranks.

Results of In-Sample Goodness-of-Fit Analysis

The results for the parametric goodness-of-fit application are aggregated by crop reporting
district and tabulated in Table 2. The number of FBFM farms in each region and the total FBFM
farms in Illinois for this application are: Northwest - 379, Northeast - 154, West - 88, Central -
492, East - 280, West Southwest - 140, East Southeast - 236, Southwest - 111, Southeast - 76
and state total - 1,956. Table 2 is formatted as follows: the far-left column contains the three
goodness-of-fit tests and the weighted average of the three tests; the next column has the
parametric distributions being examined. The values represent the percentage of times that a
distribution is ranked between one and five; a ranking of one means that the distribution fit the
best according to the specified test statistic. For example, the K-S test ranks Weibull best 44%
in the Northwest district, 40% second best and 4% third best.

With respect to the A-D test, the Weibull distribution fits seven of the nine districts best and
comes in second in the other two districts. The Weibull also performs best across all 1,956
farms, with 46% of the first place finishes. The conditional beta is the next best fitting
parametric distributional form, coming in first place 28% of the time and second place 27% of
time for the weighted state level results. The normal distribution has the highest percentage of
third place finishes and is consistently the next best after the conditional beta. The gamma and
inverse Gaussian distributions are in fourth and fifth place in every category.

The results for the K-S, χ2 and weighted tests are similar with the Weibull performing best
overall. The conditional beta and normal distributions consistently come in second and third
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place, respectively, across all categories, while the gamma and inverse Gaussian distributions
appear in fourth and fifth place. From the results of all four goodness-of-fit tests, the Weibull
distribution is the overwhelming favorite for fitting in-sample farm-level yields in this sample.

Empirical In-Sample Rating Analysis

The next analysis examines the bias and efficiency of rates generated under alternative fitted
distributions for each farm, and thus focuses on the left-tail of alternative distributional forms
which is critical in insurance rating. We investigate four parametric distributions (conditional
beta, gamma, normal, and Weibull), one semi-parametric (two-component mixture-of-normals)
and one non-parametric (Gaussian kernel density).

First, all distributions are fitted to each farm. The resulting distributions are then used to
calculate yield insurance rate estimates at coverage levels of 85%, 75% and 65%. The expected
yield insurance rate is expressed for each farm and candidate distribution as:

InsRatei,d =

ki∫
0

Max{0, ki − Yi}fd,i(Yi|θi,d)dYi

where ki = Cover × E(Yi), E(Yi) is the expected yield of farm i, Cover is the coverage level,
Yi is the yield for farm i and fd,i(Yi|θi) is the probability density function d and estimated
parameter set θi,d for farm i and candidate distribution d. The rate estimates are then compared
to the empirical (or “burn”) rates from the underlying farm-level yields to evaluate in-sample
bias and efficiency/precision across all farms.

The bias statistic is calculated as:

Biasd =
∑
i

[InsRatei,d −BurnRatei]

where BurnRatei is the empirical rate for each farm. The bias of the distributional forms has
been studied extensively in previous literature, but the efficiency, or precision, of distributional
forms has not been examined as extensively. The in-sample precision/efficiency is measured
using the root mean squared error (RMSE) across farms as:

Efficiencyd =

√
1

m

∑
(EstRatei,d −BurnRatei)2

where m is the number of farms in the sample being evaluated.
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Results of In-Sample Rating Analysis

Referring to Table 3, the average of the empirical burn rates ranges from a high of 3.70 bu./acre
in the East district, to a low of 2.25 bushels/acre in the West-Southwest district at an 85%
coverage level. The averages of the empirical rates for each FBFM corn farm across all districts
and coverage levels are 2.89 bushels/acre, 1.18 bushels/acre and 0.41 bushels/acre. Focusing on
the bias test statistic, the two-component mixture-of-normals fits best in 10 of the 27 coverage
level/districts combinations (9× 3 = 27), and also for the State as a whole. The Weibull and
conditional beta fit best in terms of bias in 9 and 8 of the 27 combinations, respectively. The
gamma, normal and inverse Gaussian distributions do not produce the best fitting rates in any of
the districts. The estimated rates from the conditional beta and kernel density estimator are
similar with respect to the fact that they both have rates that consistently are greater than the
empirical burn rate. A surprising characteristic of the differences between the empirical rates
and the estimated rates from the distributional forms is the fact that the kernel density estimator
performs the worst in terms of bias.

In contrast, the kernel density estimator is generally the most efficient distribution in-sample as
measured by the RMSE statistic. The kernel density estimator is the most efficient in 14 of the
27 coverage level/district combinations, while the mixture-of-normals is the most efficient in
13. The Weibull and beta distributions are the least efficient.

Overall, the non- and semi-parametric distributional forms are shown to fit in-sample yields
quite well in terms of in-sample precision, while the parametric distributions perform less well.
Nevertheless, in both the goodness-of-fit examination and the empirical insurance application,
the conditional beta and Weibull distributions outperform all other parametric distributional
forms and are still capable of representing a relatively large range of skewness and kurtosis
values. The normal distribution does not tend to perform as well in either the goodness-of-fit
examination or the empirical insurance rating application, most likely due to its inability to
capture any variance in skewness or kurtosis.

Out-of-Sample Insurance Simulation Analysis

Although the underlying distributional form of an individual farm is unknown in empirical
applications, the empirical distribution is used as a proxy for its representation earlier in this
study and used to assess in-sample bias and efficiency. In this section we approach the issue
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from a slightly different angle in order to assess out-of-sample efficiency and bias. Specifically,
starting with known parametric distributions, we iteratively draw small samples from a known
theoretical distribution, and then fit the resulting sample to three candidate distributions
(Weibull, beta, and mixture-of-normals). The fitted distributions are then used to estimate rates.
This process is repeated 5,000 times to generate a sampling distribution for each method
relative to the known true rate. Thus, this exercise allows for out-of-sample assessment of the
performance of these distributions in terms of rates generated relative to known underlying
distributions.

We investigate this using both Weibull and beta starting distributions over a range of
parameterizations and draw sizes. The parameters of the Weibull and beta are selected to reflect
parameterizations consistent with typical farms in the Central Illinois region. Specifically,
Weibull and beta distributions are constructed to represent candidate pseudo-farms defined by
their mean and standard deviation; two mean levels (160 and 180 bu./acre) and three standard
deviation levels (20, 30 and 40 bu./acre) are investigated. In fitting the starting distributions, a
modified method-of-moments based approach is used to estimate the parameters of the Weibull
and beta distributions. These fitted distributions are then employed as the starting distributions
from which sampling is conducted.

The Weibull distribution has two parameters, a scale parameter, α , and a shape parameter β.
The method-of-moments approximation follows that of Garcia (1981), and expresses the shape
parameter:

1/β = z

(
1 + (1− z)2

n∑
i=0

kiz
i

)
where z = σ/µ and the ki and n coefficients are k0 = −0.220009910,

k1 = −0.001946641, k2 = 0.153109251, k3 = −0.083543480, k4 = 0, k5 = 0.007454537. The
scale parameter is estimated given the shape parameter and the mean, µ, as:

a = [Γ(1 + 1/β)/µ]β

where Γ is the gamma function.

The conditional beta distribution has two shape parameters, α and β, as well as an upper and
lower limit. The lower limit is bounded at zero. The method-of-moments approximation of the
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two shape parameters and the function for the upper limit are expressed as:

α =
(µ
h

)((µ
h

) (
1−

(
µ
h

))
v
h2

− 1

)
,

β =
(

1− µ

h

)((µ
h

) (
1−

(
µ
h

))
v
h2

− 1

)
,

h = µ+ 3 ∗ σ

where σ and µ are the sample standard deviation and mean, respectively.

Results of Out-of-Sample Insurance Simulation Analysis

The results are found in Tables 4–9 and are arranged as follows. Each table-set is comprised of
three individual tables, one for each of the three varying sample sizes, grouped by mean,
standard deviation and data generating distributional form. The table-sets contain the
comparison statistics – average, bias and efficiency – in the far-left column and the three
distributional forms being compared in the next column. The bias and efficiency (RMSE) are
presented in terms of percentages relative to the known theoretical “true” rate. The results are
presented by coverage level and distribution. The first line of the table-set contains the true
empirical rate for the given data generating distributional form, mean and standard deviation.

Referring to Table 4, which presents results for the known starting distribution with an expected
yield of 160 bu./acre and standard deviation of 20, the true rates from both starting/underlying
distributional (Weibull and beta) are quite similar at all coverage levels. In fact, this was true
regardless of mean and standard deviation level. With respect to the bias statistic, the fitted beta
consistently overestimated rates, ranging from 55%-90% bias for small N=15 at the 85%
coverage level, and increasing at lower coverage levels. For example, at 65% and N=15, the
bias was typically several hundred percent. These findings were true regardless of sample size
drawn, N. In contrast, the Weibull and mixture-of-normals performed quite well in terms of bias
regardless of the mean, standard deviation, and type of the underlying distribution, and sample
size drawn. The exception was that the Weibull performed poorly in some cases for low risk
levels, but always outperformed the beta. For example, at the 85% coverage level, the Weibull
and mixture-of-normals typically resulted in rate bias of less than 5% when standard deviation
of the underlying was 40 bu./acre and N=15; and at 65% coverage level the bias was always less
than 10%. In general, the bias decreased as the sample size increased as well, and increased at
lower coverage levels.
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Turning attention to the out-of-sample efficiency results, the RMSE of the estimated conditional
beta rates is, on average, 32.2% greater than the RMSE of the Weibull estimated rates at a
coverage level of 85%; 110.6% greater at a 75% coverage level. Compared to the
mixture-of-normals, the Weibull typically performed better in terms of out-of-sample efficiency,
although in a few cases they performed similarly. The efficiency appeared to be lower at lower
coverage levels, and naturally also increased as the sample size increased. At a sample size of
N=15, the estimated rates of the Weibull are more efficient than the estimated rates of the beta
by 51.53%, 179.12% and 745.36% at coverage levels of 85%, 75% and 65%, respectively. As
the sample size increases to N=30, the differences between the conditional beta and Weibull
efficiencies shrinks to 14.21%, 45.92% and 174.68% at coverage levels of 85%, 75% and 65%,
respectively.

Overall, we find that the parsimonious two-parameter Weibull tended to consistently outperform
both the mixture-of-normals and beta in terms of out-of-sample efficiency, and was also
comparable in performance to the mixture-of-normals in terms of bias.

Conclusions

Issues surrounding the choice of distribution for modeling yields, as well as the manner in
which one should go about evaluating and comparing them, are and remain contentious issues.
We shed light on these issues using a comprehensive dataset from the Illinois FBFM using
matched commercial scale corn yields from 1972-2008. Using three standard goodness-of-fit
tests, we first examine the in-sample fitting performance of five parametric distributional forms.
We then develop an application to examine in-sample rate bias and efficiency of several
alternative parametric and non-parametric distributions. Last, a simulation approach is used to
compare the out-of-sample bias and efficiency of the beta, Weibull and two-component
mixture-of-normal distributions.

The results from the first section show that the Weibull, conditional beta and normal
distributions perform better than the gamma and inverse Gaussian distributions at representing
yield samples across virtually all conditions represented in these farms. While the results from
the second section demonstrate that the two-component mixture-of-normals and kernel density
estimators are the most efficient in-sample, the results from the out-of-sample analysis suggest
that the more parsimonious Weibull distribution outperforms both the conditional beta and
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two-component mixture-of-normals on the basis of out-of-sample efficiency, and that this is
particularly true in small samples.

This finding is somewhat in contrast to the findings of Norwood, Roberts, and Lusk (2004), who
find that the mixture-of-normals was superior to other distributions investigated in that study,
and calls into question generalization of the “best” distribution (whether in-sample or
out-of-sample) for any particular application. The results of the simulations illustrate the
bias-efficiency tradeoff when evaluating distributions with different levels of parameterization,
and also add insight to the in-sample versus out-of-sample question as it relates to crop
insurance rating and distribution selection.

The scope of this study does not include analysis with greater than thirty years of yields due to
the small number of actual farms that contain near-perfect yield histories in our data.
Nevertheless, insurers typically group large numbers of farms together with like characteristics
when making rates. Thus, further research is needed in order to assess the sampling distribution
questions addressed here in more realistic and comprehensive frameworks when several like
risk farms are combined to estimate rates. Also, our out-of-sample analysis is based on
simulated pseudo-data from known and restrictive parametric distributions, and thus the
out-of-sample results found here may not always carry over to cases representing actual data for
any particular application (e.g., if the data have larger tails than the fitted beta and Weibull
distributions used here). Thus, frameworks need to be developed which can effectively assess
out-of-sample rate performance using actual yield data.
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Table 1: Illinois District Sample Characteristics from Filtered FBFM Corn Farms
Sample Summary Statistics

Region Data Mean* St Dev* CV* Skew* Kurt* Max* Min* Farm Count Yield Count Avg % of Tot Acreage

NW Original 135.97 29.00 0.21 -0.42 0.72 242.00 15.50 395 10,959 19.50%Detrended - β= 2.07 173.81 23.97 0.14 -0.83 1.35 252.34 44.27

NE Original 141.39 28.68 0.20 -0.20 0.30 250.00 24.34 176 4,662 8.30%Detrended - β= 1.86 172.69 24.46 0.14 -0.51 0.36 265.10 46.03

West Original 136.35 32.75 0.24 -0.48 0.63 265.00 17.00 94 2,647 5.06%Detrended - β= 2.12 175.58 28.17 0.16 -0.60 0.60 275.27 48.37

Central Original 146.71 30.95 0.21 -0.63 0.80 263.00 17.35 519 14,292 25.75%Detrended - β= 2.03 181.82 26.23 0.14 -0.75 0.93 281.36 59.10

East Original 139.86 32.17 0.23 -0.75 0.64 239.00 18.96 296 7,849 13.90%Detrended - β= 1.84 171.49 28.37 0.17 -0.86 0.81 253.68 57.58

WSW Original 141.07 28.06 0.20 -0.39 0.33 238.00 27.02 151 4,106 6.93%Detrended - β= 1.87 177.59 24.45 0.14 -0.58 0.43 257.84 62.08

ESE Original 126.85 28.20 0.22 -0.35 0.27 218.00 15.00 253 6,682 12.17%Detrended - β= 1.61 155.54 26.73 0.17 -0.37 -0.09 239.09 44.24

SW Original 106.05 28.80 0.27 -0.08 0.05 220.00 16.66 119 3,426 3.41%Detrended - β= 1.71 136.81 26.02 0.19 -0.30 -0.11 228.57 29.00

SE Original 112.05 26.62 0.24 -0.18 0.20 206.64 16.84 85 2,277 4.97%Detrended - β= 1.68 142.55 24.77 0.17 -0.33 -0.01 235.20 37.76

Total Original 136.25 29.80 0.22 -0.46 0.55 265.00 15.00 2088 56,900 100%
* in bushels/acre; for years 1972 to 2008
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Table 2: Goodness-of-Fit Results: Illinois Districts for Corn Farms

Illinois Districts

NW NE West Central East

Goodness-of-Fit Rankings

Test Distribution 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A-Da Beta 36% 43% 2% 2% 17% 44% 36% 5% 2% 14% 39% 42% 6% 3% 10% 34% 45% 4% 1% 15% 43% 30% 3% 1% 22%
gamma 1% 3% 20% 75% 0% 1% 4% 19% 76% 0% 3% 3% 15% 78% 0% 1% 2% 20% 77% 0% 0% 2% 23% 74% 0%

invGauss 1% 1% 3% 19% 77% 1% 1% 1% 18% 79% 1% 1% 2% 12% 83% 1% 1% 1% 18% 80% 0% 0% 2% 22% 75%
Weibull 52% 34% 5% 3% 6% 42% 38% 8% 4% 8% 43% 38% 8% 5% 7% 52% 34% 5% 4% 5% 50% 43% 2% 2% 2%
normal 11% 19% 70% 0% 0% 12% 20% 67% 1% 0% 14% 16% 69% 1% 0% 11% 18% 70% 0% 0% 7% 24% 70% 0% 0%

K-Sb Beta 41% 35% 8% 5% 11% 40% 34% 8% 8% 8% 38% 42% 9% 5% 7% 35% 41% 10% 7% 8% 45% 41% 5% 4% 5%
gamma 4% 5% 9% 80% 1% 1% 9% 13% 77% 0% 5% 9% 8% 78% 0% 3% 7% 10% 79% 1% 1% 2% 8% 88% 1%

invGauss 3% 4% 3% 8% 83% 3% 1% 5% 10% 82% 3% 5% 1% 7% 84% 2% 1% 5% 10% 82% 1% 1% 1% 7% 91%
Weibull 44% 40% 4% 5% 6% 41% 37% 8% 5% 10% 40% 40% 3% 8% 9% 49% 33% 5% 3% 9% 46% 43% 6% 1% 3%
normal 8% 15% 75% 1% 0% 15% 18% 66% 1% 0% 15% 5% 78% 2% 0% 10% 18% 70% 1% 0% 6% 14% 80% 0% 0%

χ2c Beta 37% 23% 16% 11% 12% 42% 26% 12% 7% 14% 38% 20% 17% 15% 10% 33% 28% 12% 13% 14% 38% 25% 13% 10% 14%
gamma 15% 18% 23% 39% 5% 16% 18% 26% 31% 9% 17% 18% 18% 39% 8% 18% 18% 23% 34% 6% 15% 14% 25% 41% 6%

invGauss 13% 11% 17% 23% 36% 16% 10% 20% 29% 25% 14% 12% 19% 30% 25% 13% 13% 16% 25% 32% 10% 11% 15% 23% 41%
Weibull 45% 25% 8% 12% 10% 48% 25% 12% 4% 10% 32% 18% 23% 14% 14% 43% 21% 12% 12% 12% 46% 29% 9% 8% 8%
normal 25% 25% 40% 6% 5% 21% 24% 42% 5% 7% 38% 22% 19% 10% 11% 27% 21% 36% 9% 7% 29% 20% 35% 10% 7%

Weightedd Beta 27% 28% 12% 9% 24% 32% 27% 11% 10% 20% 28% 24% 17% 15% 16% 27% 29% 13% 9% 22% 28% 25% 12% 5% 29%
gamma 6% 13% 25% 50% 7% 5% 12% 24% 51% 8% 7% 23% 18% 43% 9% 8% 14% 23% 48% 7% 6% 9% 31% 49% 6%

invGauss 3% 7% 12% 24% 54% 5% 4% 10% 26% 55% 6% 5% 24% 19% 47% 3% 7% 12% 24% 53% 2% 6% 7% 31% 54%
Weibull 44% 27% 7% 12% 10% 41% 31% 12% 8% 9% 34% 20% 17% 10% 18% 41% 25% 12% 10% 11% 46% 31% 11% 6% 6%
normal 20% 25% 44% 5% 5% 17% 27% 44% 5% 8% 25% 28% 24% 12% 10% 20% 24% 40% 9% 6% 18% 29% 39% 9% 6%

Continued on next page
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Table 2 – continued from previous page

Illinois Districts

WSW ESE SW SE Total

Goodness-of-Fit Rankings

Test Distribution 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A-Da Beta 36% 31% 7% 6% 21% 31% 33% 10% 4% 22% 31% 39% 14% 4% 13% 50% 29% 8% 3% 11% 37% 38% 5% 2% 17%
gamma 4% 4% 24% 67% 0% 3% 11% 25% 62% 0% 4% 5% 19% 72% 0% 4% 4% 17% 74% 1% 2% 4% 21% 73% 0%

invGauss 1% 4% 2% 20% 73% 3% 1% 6% 21% 69% 2% 2% 3% 14% 79% 3% 3% 3% 16% 76% 1% 1% 2% 19% 77%
Weibull 43% 36% 8% 6% 6% 40% 29% 10% 12% 8% 38% 37% 8% 9% 8% 24% 50% 9% 5% 12% 46% 36% 6% 5% 6%
normal 16% 25% 59% 1% 0% 23% 26% 50% 0% 0% 26% 17% 56% 1% 0% 20% 14% 63% 3% 0% 14% 20% 65% 0% 0%

K-Sb Beta 36% 31% 9% 6% 16% 36% 24% 14% 10% 17% 28% 39% 14% 9% 11% 43% 30% 8% 7% 12% 38% 36% 9% 6% 10%
gamma 5% 10% 16% 68% 1% 6% 11% 16% 64% 2% 10% 10% 5% 75% 1% 5% 12% 18% 63% 1% 4% 7% 11% 77% 1%

invGauss 2% 4% 6% 19% 70% 3% 7% 6% 12% 72% 3% 3% 11% 8% 76% 4% 4% 5% 16% 71% 2% 3% 4% 10% 81%
Weibull 42% 32% 7% 6% 12% 36% 34% 8% 12% 9% 39% 30% 14% 5% 13% 24% 41% 9% 11% 16% 43% 37% 6% 5% 8%
normal 14% 23% 62% 1% 0% 19% 23% 56% 1% 0% 21% 19% 58% 3% 0% 24% 13% 59% 4% 0% 12% 17% 69% 1% 0%

χ2c Beta 36% 23% 11% 16% 14% 42% 20% 11% 12% 14% 38% 26% 17% 12% 7% 45% 9% 16% 12% 18% 37% 24% 13% 12% 13%
gamma 20% 16% 26% 36% 2% 24% 20% 17% 26% 12% 20% 23% 21% 31% 5% 21% 18% 24% 33% 4% 18% 18% 23% 35% 7%

invGauss 16% 14% 21% 22% 27% 21% 12% 18% 25% 24% 23% 10% 15% 21% 32% 21% 14% 14% 22% 28% 15% 12% 17% 24% 32%
Weibull 44% 19% 14% 13% 11% 35% 17% 17% 17% 15% 38% 23% 12% 12% 15% 32% 33% 11% 14% 11% 42% 23% 12% 12% 11%
normal 32% 17% 34% 12% 5% 29% 23% 27% 12% 8% 23% 16% 36% 15% 10% 28% 17% 43% 9% 3% 27% 22% 35% 9% 7%

Weightedd Beta 29% 21% 11% 11% 28% 25% 26% 8% 11% 29% 23% 40% 8% 14% 16% 37% 11% 18% 16% 18% 28% 27% 12% 10% 24%
gamma 6% 19% 27% 41% 7% 13% 20% 24% 31% 12% 11% 17% 23% 41% 8% 11% 16% 12% 53% 9% 8% 15% 24% 46% 8%

invGauss 5% 7% 17% 21% 50% 8% 10% 15% 29% 37% 12% 9% 11% 19% 50% 9% 9% 12% 14% 55% 5% 7% 12% 25% 51%
Weibull 35% 27% 14% 16% 9% 31% 19% 17% 17% 15% 36% 20% 16% 12% 16% 20% 46% 9% 12% 13% 39% 27% 12% 11% 11%
normal 26% 26% 31% 11% 6% 22% 25% 35% 11% 7% 19% 14% 41% 15% 10% 24% 18% 49% 5% 4% 21% 25% 39% 9% 6%

a Anderson-Darling Test - (Stephens, 1974)
b Kolmogorov-Smirnov Test - (Chakravart et al., 1967)
c χ2 Test - (Snedecor and Cochran, 1989)
d Weighted Test = (.334*A-D + .333*K-S +.333*χ2)
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Table 3: In-Sample Rate Statistics: Illinois by Regions for FBFM Corn Farms at Three Coverage Levels (in bu/acre).

Illinois Districts

NW NE West Central East

Coverage Levels

Statistics Distribution 85% 75% 65% 85% 75% 65% 85% 75% 65% 85% 75% 65% 85% 75% 65%

Averagea Empiricalb 2.36 0.97 0.37 2.56 1.02 0.35 3.27 1.44 0.49 2.74 1.09 0.36 3.70 1.67 0.65
Weibull 1.97 0.63 0.18 2.30 0.78 0.24 2.98 1.09 0.35 2.30 0.74 0.21 2.75 0.99 0.31
gamma 1.80 0.40 0.07 2.02 0.50 0.10 2.68 0.69 0.13 2.05 0.44 0.07 2.92 0.82 0.17
normal 1.84 0.48 0.11 2.12 0.62 0.16 2.80 0.86 0.23 2.13 0.55 0.12 2.91 0.94 0.26

Beta 2.60 0.99 0.36 2.84 1.14 0.44 3.53 1.42 0.51 2.94 1.12 0.40 3.87 1.72 0.71
Mix2Norm 2.12 0.73 0.22 2.54 0.94 0.31 3.24 1.28 0.39 2.67 0.96 0.29 3.71 1.59 0.57

kernel 2.82 1.18 0.46 3.10 1.27 0.47 3.94 1.74 0.67 3.24 1.32 0.47 4.28 2.00 0.83

Biasc Weibull -0.38 -0.35 -0.19 -0.26 -0.23 -0.11 -0.28 -0.35 -0.14 -0.44 -0.35 -0.15 -0.95 -0.68 -0.34
gamma -0.56 -0.58 -0.30 -0.54 -0.51 -0.25 -0.58 -0.75 -0.36 -0.69 -0.65 -0.29 -0.78 -0.85 -0.48
normal -0.52 -0.50 -0.26 -0.44 -0.40 -0.18 -0.47 -0.58 -0.26 -0.61 -0.53 -0.24 -0.79 -0.73 -0.39

Beta 0.25 0.01 -0.01 0.28 0.12 0.09 0.26 -0.02 0.03 0.20 0.03 0.04 0.17 0.05 0.05
Mix2Norm -0.23 -0.24 -0.15 -0.03 -0.08 -0.03 -0.03 -0.16 -0.09 -0.07 -0.13 -0.07 0.01 -0.08 -0.08

kernel 0.46 0.20 0.09 0.54 0.25 0.13 0.67 0.30 0.18 0.49 0.23 0.11 0.59 0.34 0.18

Efficiencyd Weibull 0.95 0.78 0.51 0.90 0.72 0.43 1.01 0.80 0.45 1.00 0.76 0.44 1.39 1.10 0.68
gamma 0.69 0.76 0.52 0.69 0.73 0.45 0.74 0.90 0.52 0.80 0.81 0.49 0.92 1.03 0.71
normal 0.70 0.73 0.50 0.64 0.66 0.41 0.70 0.77 0.45 0.77 0.74 0.44 0.96 0.97 0.64

Beta 0.75 0.62 0.45 0.74 0.60 0.44 0.66 0.46 0.31 0.73 0.61 0.40 0.79 0.71 0.51
Mix2Norm 0.83 0.62 0.40 0.43 0.32 0.20 0.58 0.47 0.31 0.57 0.41 0.26 0.55 0.43 0.31

kernel 0.54 0.28 0.15 0.60 0.33 0.20 0.73 0.36 0.25 0.56 0.29 0.15 0.66 0.40 0.24

Continued on next page

17



Table 3 – continued from previous page

Illinois Districts

WSW ESE SW SE Total

Coverage Levels

Statistics Distribution 85% 75% 65% 85% 75% 65% 85% 75% 65% 85% 75% 65% 85% 75% 65%

Averagea Empiricalb 2.25 0.78 0.21 3.20 1.22 0.40 3.57 1.50 0.54 3.02 1.19 0.41 2.89 1.18 0.41
Weibull 2.13 0.69 0.20 3.21 1.29 0.46 3.57 1.55 0.60 3.02 1.22 0.44 2.53 0.90 0.29
gamma 1.71 0.35 0.05 2.76 0.81 0.19 3.19 1.08 0.28 2.65 0.80 0.19 2.30 0.59 0.12
normal 1.85 0.47 0.10 2.97 1.05 0.33 3.36 1.33 0.47 2.82 1.02 0.32 2.39 0.73 0.20

Beta 2.67 1.00 0.35 3.78 1.70 0.71 3.88 1.78 0.75 3.40 1.48 0.60 3.18 1.31 0.50
Mix2Norm 2.12 0.62 0.15 3.26 1.20 0.38 3.59 1.44 0.49 3.06 1.11 0.34 2.83 1.06 0.34

kernel 2.77 1.01 0.31 3.98 1.68 0.63 4.33 1.99 0.81 3.75 1.61 0.62 3.46 1.48 0.56

Biasc Weibull -0.13 -0.09 -0.01 0.01 0.06 0.06 0.00 0.05 0.06 0.00 0.04 0.03 -0.36 -0.28 -0.13
gamma -0.54 -0.43 -0.15 -0.44 -0.41 -0.22 -0.38 -0.43 -0.26 -0.37 -0.39 -0.22 -0.59 -0.59 -0.30
normal -0.40 -0.31 -0.10 -0.23 -0.17 -0.07 -0.21 -0.17 -0.08 -0.19 -0.17 -0.08 -0.50 -0.45 -0.21

Beta 0.42 0.21 0.14 0.58 0.47 0.31 0.31 0.27 0.20 0.38 0.30 0.19 0.29 0.13 0.09
Mix2Norm -0.13 -0.16 -0.05 0.06 -0.02 -0.02 0.02 -0.07 -0.05 0.04 -0.07 -0.06 -0.06 -0.12 -0.08

kernel 0.52 0.23 0.11 0.78 0.45 0.23 0.77 0.49 0.27 0.74 0.43 0.21 0.57 0.29 0.15

Efficiencyd Weibull 0.85 0.62 0.37 0.84 0.65 0.41 0.74 0.64 0.47 0.78 0.61 0.42 1.00 0.79 0.49
gamma 0.68 0.62 0.37 0.59 0.59 0.41 0.58 0.57 0.43 0.56 0.56 0.42 0.74 0.78 0.51
normal 0.63 0.56 0.35 0.52 0.50 0.35 0.49 0.50 0.40 0.49 0.48 0.38 0.72 0.72 0.47

Beta 0.85 0.60 0.40 0.99 0.87 0.62 0.72 0.67 0.51 0.71 0.65 0.47 0.78 0.66 0.47
Mix2Norm 0.65 0.49 0.33 0.37 0.26 0.19 0.35 0.30 0.26 0.39 0.33 0.25 0.59 0.44 0.30

kernel 0.58 0.28 0.16 0.84 0.53 0.32 0.83 0.55 0.33 0.80 0.50 0.29 0.65 0.38 0.22
a Expected value of yield insurance at all farms in specified region.
b Expected burn rate [max(0,Yield Guarantee-Estimated Rate)] for all farms in specified region.
c Bias is expected value of empirical rate - estimated distributional rate for all farms in specified region.
d Efficiency is expected value of RMSE of all farms in specified region.
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Table 4: Out-of-Sample Rate Simulation Analysis: µ=160; σ=20

Data Generating Process: Weibull Beta

Coverage Level Coverage Level

Statistic Distribution 85% 75% 65% 85% 75% 65%

True Empirical 1.587 0.431 0.095 1.424 0.302 0.044

n=15

Average Beta 2.461 1.065 0.468 2.392 1.005 0.430
Weibull 1.582 0.463 0.117 1.640 0.483 0.123

Mix2Norm 1.483 0.354 0.074 1.396 0.281 0.047

Bias (%) Beta -55.0% -147.2% -391.3% -68.0% -232.8% -886.2%
Weibull 0.3% -7.4% -23.1% -15.2% -60.0% -181.4%

Mix2Norm 6.6% 17.9% 22.1% 2.0% 6.9% -7.7%

RMSE (%) Beta 156.1% 380.3% 1059.8% 166.0% 517.4% 2150.7%
Weibull 71.4% 103.8% 157.4% 79.2% 157.3% 383.3%

Mix2Norm 95.3% 148.7% 245.7% 94.2% 162.1% 328.5%
n=20

Average Beta 2.131 0.802 0.298 2.106 0.772 0.282
Weibull 1.599 0.463 0.115 1.680 0.493 0.124

Mix2Norm 1.553 0.389 0.085 1.452 0.301 0.050

Bias (%) Beta -34.3% -86.0% -213.3% -47.8% -155.6% -546.4%
Weibull -0.7% -7.3% -20.3% -17.9% -63.3% -183.3%

Mix2Norm 2.1% 9.6% 10.6% -1.9% 0.4% -13.7%

RMSE (%) Beta 111.9% 247.7% 620.6% 124.5% 360.7% 1388.6%
Weibull 62.7% 90.7% 135.7% 70.9% 142.1% 341.5%

Mix2Norm 85.8% 141.9% 241.1% 83.6% 147.9% 290.6%
n=30

Average Beta 1.836 0.590 0.177 1.735 0.514 0.140
Weibull 1.584 0.448 0.107 1.684 0.486 0.118

Mix2Norm 1.566 0.393 0.084 1.422 0.291 0.048

Bias (%) Beta -15.7% -36.8% -86.4% -21.8% -70.1% -219.9%
Weibull 0.2% -3.9% -12.3% -18.2% -60.8% -170.2%

Mix2Norm 1.3% 8.7% 12.2% 0.2% 3.6% -9.5%

RMSE (%) Beta 78.4% 151.8% 326.9% 75.4% 182.1% 566.7%
Weibull 51.5% 73.1% 105.7% 57.6% 116.2% 274.4%

Mix2Norm 70.9% 120.8% 209.7% 65.8% 118.3% 245.5%
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Table 5: Out-of-Sample Rate Simulation Analysis: µ=160; σ=30

Data Generating Process: Weibull Beta

Coverage Level Coverage Level

Statistic Distribution 85% 75% 65% 85% 75% 65%

True Empirical 4.098 1.715 0.621 3.989 1.539 0.479

n=15

Average Beta 5.384 2.896 1.514 5.246 2.765 1.411
Weibull 4.021 1.735 0.667 4.063 1.756 0.674

Mix2Norm 4.153 1.708 0.605 4.034 1.533 0.475

Bias (%) Beta -31.4% -68.9% -143.8% -31.5% -79.7% -194.5%
Weibull 1.9% -1.2% -7.5% -1.8% -14.1% -40.7%

Mix2Norm -1.3% 0.4% 2.6% -1.1% 0.4% 0.9%

RMSE (%) Beta 102.0% 184.9% 363.2% 97.8% 192.8% 437.3%
Weibull 58.9% 77.1% 102.8% 58.2% 82.5% 129.6%

Mix2Norm 72.9% 105.0% 150.1% 70.0% 101.3% 146.5%
n=20

Average Beta 4.925 2.432 1.134 4.793 2.320 1.059
Weibull 4.049 1.735 0.658 4.065 1.740 0.657

Mix2Norm 4.170 1.719 0.609 4.068 1.573 0.497

Bias (%) Beta -20.2% -41.8% -82.6% -20.1% -50.8% -121.0%
Weibull 1.2% -1.1% -6.0% -1.9% -13.1% -37.2%

Mix2Norm -1.8% -0.2% 1.8% -2.0% -2.2% -3.8%

RMSE (%) Beta 74.4% 126.0% 229.0% 70.9% 132.9% 284.5%
Weibull 50.8% 65.8% 86.3% 49.4% 70.1% 110.1%

Mix2Norm 61.9% 89.9% 130.2% 59.2% 88.5% 135.1%
n=30

Average Beta 4.482 2.022 0.830 4.390 1.936 0.771
Weibull 4.066 1.728 0.645 4.117 1.754 0.655

Mix2Norm 4.157 1.704 0.599 4.041 1.537 0.480

Bias (%) Beta -9.4% -17.9% -33.7% -10.0% -25.8% -60.8%
Weibull 0.8% -0.7% -3.9% -3.2% -14.0% -36.8%

Mix2Norm -1.4% 0.7% 3.5% -1.3% 0.1% -0.2%

RMSE (%) Beta 53.8% 84.7% 141.2% 50.8% 87.1% 168.1%
Weibull 41.0% 52.8% 68.1% 40.5% 57.9% 91.4%

Mix2Norm 49.5% 72.7% 105.4% 47.5% 70.8% 108.4%
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Table 6: Out-of-Sample Rate Simulation Analysis: µ=160; σ=40

Data Generating Process: Weibull Beta

Coverage Level Coverage Level

Statistic Distribution 85% 75% 65% 85% 75% 65%

True Empirical 7.132 3.695 1.710 7.151 3.607 1.581

n=15

Average Beta 8.341 4.995 2.852 8.206 4.897 2.783
Weibull 6.926 3.625 1.722 6.895 3.601 1.704

Mix2Norm 7.220 3.736 1.702 7.223 3.638 1.591

Bias (%) Beta -17.0% -35.2% -66.7% -14.8% -35.8% -76.1%
Weibull 2.9% 1.9% -0.7% 3.6% 0.2% -7.8%

Mix2Norm -1.2% -1.1% 0.5% -1.0% -0.9% -0.6%

RMSE (%) Beta 70.2% 107.6% 175.5% 65.9% 104.4% 181.6%
Weibull 50.5% 61.8% 76.3% 48.3% 60.2% 78.5%

Mix2Norm 58.4% 77.1% 102.4% 56.4% 75.7% 102.6%
n=20

Average Beta 7.972 4.559 2.443 7.959 4.543 2.428
Weibull 6.940 3.622 1.711 6.949 3.623 1.706

Mix2Norm 7.221 3.755 1.729 7.251 3.658 1.595

Bias (%) Beta -11.8% -23.4% -42.8% -11.3% -25.9% -53.6%
Weibull 2.7% 2.0% 0.0% 2.8% -0.4% -8.0%

Mix2Norm -1.3% -1.6% -1.1% -1.4% -1.4% -0.9%

RMSE (%) Beta 55.6% 81.9% 127.3% 53.5% 82.0% 136.8%
Weibull 44.0% 53.9% 66.3% 42.8% 53.5% 69.5%

Mix2Norm 50.0% 66.6% 89.7% 49.0% 65.7% 89.4%
n=30

Average Beta 7.555 4.085 2.019 7.553 4.097 2.032
Weibull 7.012 3.651 1.713 7.011 3.651 1.712

Mix2Norm 7.178 3.685 1.672 7.229 3.622 1.565

Bias (%) Beta -5.9% -10.6% -18.1% -5.6% -13.6% -28.5%
Weibull 1.7% 1.2% -0.2% 2.0% -1.2% -8.3%

Mix2Norm -0.7% 0.3% 2.2% -1.1% -0.4% 1.0%

RMSE (%) Beta 42.7% 59.7% 86.5% 40.7% 58.9% 91.9%
Weibull 36.3% 44.4% 54.4% 35.3% 44.0% 57.1%

Mix2Norm 40.8% 53.9% 71.6% 39.7% 52.8% 71.0%
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Table 7: Out-of-Sample Rate Simulation Analysis: µ=180; σ=20

Data Generating Process: Weibull Beta

Coverage Level Coverage Level

Statistic Distribution 85% 75% 65% 85% 75% 65%

True Empirical 1.292 0.298 0.055 1.114 0.185 0.020

n=15

Average Beta 2.267 0.935 0.396 2.109 0.829 0.339
Weibull 1.326 0.339 0.074 1.395 0.362 0.080

Mix2Norm 1.216 0.254 0.050 1.123 0.184 0.025

Bias (%) Beta -75.4% -213.8% -622.8% -89.2% -347.0% -1627.8%
Weibull -2.6% -13.6% -35.6% -25.2% -95.1% -308.4%

Mix2Norm 5.9% 14.8% 8.9% -0.8% 1.0% -27.5%

RMSE (%) Beta 193.6% 527.8% 1677.8% 207.6% 784.5% 4282.3%
Weibull 78.0% 119.7% 193.9% 91.5% 208.1% 595.3%

Mix2Norm 109.3% 186.6% 366.7% 107.8% 201.3% 468.6%
n=20

Average Beta 1.856 0.651 0.233 1.776 0.587 0.198
Weibull 1.308 0.327 0.069 1.388 0.352 0.075

Mix2Norm 1.241 0.255 0.045 1.123 0.184 0.025

Bias (%) Beta -43.6% -118.3% -325.1% -59.3% -216.3% -907.5%
Weibull -1.2% -9.6% -26.3% -24.6% -90.0% -284.5%

Mix2Norm 4.0% 14.5% 17.3% -0.8% 0.6% -26.7%

RMSE (%) Beta 137.3% 348.1% 1041.8% 145.8% 498.9% 2434.5%
Weibull 67.4% 101.4% 159.5% 79.5% 180.9% 507.0%

Mix2Norm 94.5% 159.8% 281.6% 93.0% 183.7% 468.7%
n=30

Average Beta 1.509 0.422 0.112 1.461 0.390 0.101
Weibull 1.295 0.314 0.064 1.395 0.350 0.073

Mix2Norm 1.232 0.249 0.044 1.107 0.178 0.023

Bias (%) Beta -16.8% -41.7% -104.3% -31.1% -110.3% -413.8%
Weibull -0.2% -5.5% -16.1% -25.2% -88.5% -271.8%

Mix2Norm 4.7% 16.5% 19.8% 0.7% 3.9% -15.5%

RMSE (%) Beta 83.7% 171.1% 397.6% 100.0% 307.3% 1393.3%
Weibull 53.7% 78.0% 115.2% 68.4% 157.7% 435.4%

Mix2Norm 76.4% 131.0% 230.9% 76.2% 144.6% 313.8%
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Table 8: Out-of-Sample Rate Simulation Analysis: µ=180; σ=30

Data Generating Process: Weibull Beta

Coverage Level Coverage Level

Statistic Distribution 85% 75% 65% 85% 75% 65%

True Empirical 3.581 1.346 0.430 3.427 1.146 0.297

n=15

Average Beta 4.843 2.432 1.190 4.680 2.292 1.097
Weibull 3.524 1.378 0.476 3.548 1.387 0.478

Mix2Norm 3.571 1.302 0.406 3.414 1.110 0.294

Bias (%) Beta -35.2% -80.7% -176.4% -36.6% -99.9% -268.7%
Weibull 1.6% -2.4% -10.7% -3.5% -21.0% -60.6%

Mix2Norm 0.3% 3.3% 5.8% 0.4% 3.2% 1.3%

RMSE (%) Beta 106.6% 205.0% 429.7% 106.7% 234.1% 607.4%
Weibull 61.4% 82.8% 114.3% 60.9% 93.3% 163.3%

Mix2Norm 78.0% 117.4% 177.2% 74.7% 114.0% 181.9%
n=20

Average Beta 4.408 2.024 0.888 4.348 1.969 0.856
Weibull 3.565 1.383 0.470 3.617 1.406 0.478

Mix2Norm 3.595 1.299 0.395 3.487 1.148 0.305

Bias (%) Beta -23.1% -50.4% -106.4% -26.9% -71.7% -187.8%
Weibull 0.4% -2.7% -9.1% -5.6% -22.7% -60.6%

Mix2Norm -0.4% 3.5% 8.3% -1.8% -0.1% -2.5%

RMSE (%) Beta 83.2% 151.5% 299.5% 87.6% 186.2% 469.0%
Weibull 53.5% 71.4% 96.6% 53.2% 81.6% 142.3%

Mix2Norm 68.0% 101.9% 148.2% 64.2% 100.2% 161.6%
n=30

Average Beta 3.898 1.593 0.595 3.903 1.562 0.563
Weibull 3.525 1.347 0.447 3.677 1.424 0.478

Mix2Norm 3.562 1.277 0.389 3.507 1.148 0.302

Bias (%) Beta -8.8% -18.4% -38.2% -13.9% -36.3% -89.4%
Weibull 1.6% -0.1% -3.8% -7.3% -24.2% -60.9%

Mix2Norm 0.5% 5.1% 9.6% -2.3% -0.1% -1.6%

RMSE (%) Beta 58.7% 97.6% 174.6% 56.7% 106.4% 231.7%
Weibull 42.7% 56.0% 73.5% 44.7% 69.8% 122.9%

Mix2Norm 53.9% 82.6% 124.4% 51.7% 80.8% 131.1%
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Table 9: Out-of-Sample Rate Simulation Analysis: µ=180; σ=40

Data Generating Process: Weibull Beta

Coverage Level Coverage Level

Statistic Distribution 85% 75% 65% 85% 75% 65%

True Empirical 6.458 3.090 1.305 6.408 2.931 1.134

n=15

Average Beta 7.820 4.479 2.459 7.863 4.503 2.471
Weibull 6.235 3.027 1.324 6.310 3.073 1.346

Mix2Norm 6.423 3.036 1.252 6.512 3.000 1.174

Bias (%) Beta -21.1% -44.9% -88.4% -22.7% -53.6% -117.9%
Weibull 3.5% 2.0% -1.4% 1.5% -4.9% -18.7%

Mix2Norm 0.5% 1.8% 4.0% -1.6% -2.4% -3.5%

RMSE (%) Beta 80.5% 131.2% 228.9% 80.4% 139.3% 268.7%
Weibull 52.9% 65.8% 83.0% 52.2% 68.3% 95.6%

Mix2Norm 62.7% 85.9% 117.1% 62.0% 86.1% 121.1%
n=20

Average Beta 7.432 4.012 2.034 7.264 3.892 1.955
Weibull 6.330 3.062 1.327 6.278 3.036 1.315

Mix2Norm 6.564 3.104 1.274 6.449 2.942 1.142

Bias (%) Beta -15.1% -29.8% -55.9% -13.4% -32.8% -72.3%
Weibull 2.0% 0.9% -1.7% 2.0% -3.6% -15.9%

Mix2Norm -1.6% -0.4% 2.3% -0.6% -0.4% -0.7%

RMSE (%) Beta 63.5% 99.3% 165.5% 60.4% 99.4% 181.6%
Weibull 46.0% 57.2% 71.5% 46.1% 60.0% 83.0%

Mix2Norm 54.0% 74.0% 101.2% 53.2% 74.0% 104.5%
n=30

Average Beta 6.975 3.525 1.621 6.876 3.459 1.580
Weibull 6.422 3.107 1.342 6.370 3.078 1.326

Mix2Norm 6.587 3.125 1.295 6.441 2.928 1.135

Bias (%) Beta -8.0% -14.1% -24.2% -7.3% -18.0% -39.3%
Weibull 0.5% -0.6% -2.9% 0.6% -5.0% -16.9%

Mix2Norm -2.0% -1.1% 0.8% -0.5% 0.1% 0.0%

RMSE (%) Beta 46.5% 67.9% 102.8% 45.0% 69.2% 116.1%
Weibull 38.0% 47.6% 59.8% 37.9% 49.5% 68.7%

Mix2Norm 44.0% 61.2% 85.0% 43.1% 60.0% 85.1%
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