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Introduction 
 

There have been some rigorous attempts to provide meaningful methods to 
quantify risk for weather index insurance in a spatial dimension. Part of the complication 
is that weather index insurance (or weather derivatives) pricing according to burn rate 
analysis deals not only with a spatial dimension but also a temporal one as historical 
frequencies are calculated. These calculations are further subjected to potential long-term 
trends due to climate change, as well as variations due to prevailing weather conditions 
according to the ENSO (El Nino Southern Oscillation) index.  

 
From an empirical point of view this paper investigates basis risk using a novel 

approach to space measurement. We have developed a program that is linked to all of the 
weather stations in a given region (i.e. includes data on all weather stations in the United 
States). From a randomly selected point, we select all weather stations within a 
proscribed radius and calculate the particular weather risk at each station to calculate the 
burn rate insurance premium. This is done for the same specific criteria for all stations 
within the sphere. First, we compare the premiums at each station to measure 
heterogeneity over space. Second, we compare on a year by year basis the payouts that 
would have been made at each pair of locations. Thus, if there are 20 weather stations 
then there are N(N-1)/2 = 190 pairwise comparisons. Third, we measure the error or basis 
risk between each station pair and regress the mean differences against a number of 
spatial variables. These spatial variables include longitude and latitude coordinates as 
well as elevation difference and distance between weather stations. 
 

This exercise reveals the spatial characteristics which have a persistent effect on 
temperature and precipitation risk. For temperature/heat risk, the most important 
independent variable is the difference in elevation between stations. This result is 
somewhat expected as there will likely be no differences in solar radiation in such a small 
area, and the primary temperature difference will be due to the elevation of the station. 
This results in an alternative way to price temperature risk that is highly dependent on 
differences in elevation and not distance. Rainfall, however, is not strongly correlated 
over distance as precipitation will often be an extremely localized phenomenon, with the 
other variables of lesser importance. The difficulty with rainfall is its periodic nature, 
which will often produce a long series of empty observations followed by a rain event. 
Many researchers ameliorate this issue by aggregating rainfall measurements into larger 
periods, such as 10-day periods called dekads.  Despite this, the spatial rainfall 
correlation will likely improve at a larger time scale which will average down total 
differences between stations. This paper contributes to the literature by offering a pricing 
strategy for both temperature and precipitation risk tailored to the specific typology of 
each distinct type of risk. In many cases, the "portfolio" method of selecting a proportion 
of risk from each nearby station based on similarity in elevation (temperature) or 
geographic placement (precipitation) offers advantages over an index based more 
sophisticated spatial statistics algorithms. Also, by compartmentalizing the risk into 
existing weather stations, the "portfolio" method has the advantage of allowing for easier 
pricing of policies for insurance and reinsurance companies. In this manner, we will 



demonstrate a strategy for pricing risk in distributed locations around the U.S. 
This paper is structured as follows: first, a discussion of the mathematical and 

data processing considerations for analyzing weather risk.  This is followed by the 
introduction of a regression equation that attempts to predict differences in risk at 
existing stations through the use of the geographic characteristics of those stations.  The 
results of the regression equation lead to a discussion of a pricing strategy for both 
temperature and precipitation risk tailored to the specific typology of each distinct type of 
risk as revealed by the regression results.  

  
Background 
 

Weather index insurance is a recent financial innovation that has received much 
attention from academics and implementers alike as a way to smooth risk for farmers in 
developing countries (Turvey 2001, Skees 2008, Vedenov and Barnett 2004). By using 
an "index" of weather observations as a proxy for crop loss, the problems of traditional 
indemnity insurance are reduced or eliminated. This removes the subjective nature of 
insurance adjustment as well as the problems of adverse selection and moral hazard that 
are present in the traditional indemnity insurance model.  This innovation makes it 
possible to offer microinsurance to rural farmers in developing countries, which can serve 
a valuable function in a development intervention and may lead to more interactive 
benefits, such as improved access to rural credit.  In developed countries, several private 
insurance companies have opened their doors in recent years to offer commercial 
products for the hedging of weather risk. 

However, despite the promise of the technology, it is not always straightforward 
to apply.  In particular, we trade the problems of adverse selection and moral hazard with 
that of basis risk, which is defined as the risk that payoffs of a hedging instrument do not 
correspond to the underlying exposures.  Basis risk may be reduced through the selection 
of appropriate weather observations to construct the index, but in reality the prevailing 
weather conditions are only one variable in crop production and are often considered 
exogenous to the production function (Turvey and Norton 2008).  Basis risk is a major 
problem when using a risk-smoothing implement such as weather index insurance. The 
good years should help pay for the bad years, but if the product were not aligned 
properly, the advantages of smoothing risk could be harmful to the farmers’ bottom lines.  

The proposed solutions to the problem of basis risk are varied.  One approach is to 
perform spatial analysis techniques on weather data to provide a historical time series in 
varied geographic locations (Paulson and Hart 2006).  Another study intentionally 
analyzed data from a flat area with consistent elevation (Richards, Manfredo, and Sanders 
2004).  Other researchers link microinsurance to microcredit and advocate for a central 
financial institution to aggregate index insurance contracts so as to average out basis risk 
for all actors (Miranda et al 2010, Woodard and Garcia 2008a). Clearly, if index 
insurance is to be widely used as a risk mitigation and climate adaptation tool for 
individual farmers, the problem of basis risk must be overcome. 

A traditional sticking point in pricing weather index insurance is that there are 
only a certain number of weather stations for which historical data exists.  A longer time 
series of data provides more confidence for historical burn rate analysis pricing and often 
a minimum number of years is needed to understand historical weather patterns, which 



will take ten or twenty years.  Establishing a new station can provide high quality weather 
data, but there will be no historical record at that new station. This problem is acute in 
countries with poor infrastructure, which is paradoxically where weather index insurance 
might do the most good (Morduch 2006).  But even in places with many long-established 
weather stations, the spatial distribution of risk is not yet fully understood.   The 
challenge that is present in the weather index insurance market is how to strategically 
leverage the information from existing stations at geographic locations where the precise 
weather observations are unknown. 

Some researchers have applied spatial analysis techniques to the weather 
observations directly, and used that information to construct a surface of historical time 
series observations for any geographic point.  While techniques like kriging have shown 
to be very accurate in producing a prediction surface for points in space, these spatial 
analysis techniques are not designed to model for deviations from normal conditions, 
which is precisely what we are interested in and want to protect against.  This paper takes 
rather the opposite approach to spatial analysis by pricing risk at known locations and 
analyzing how that risk changes through space.  To that effect, we have developed a web-
based computer program named Weather Wizard that is able to analyze historical weather 
observation data for all weather stations in the United States.1  From a randomly selected 
point we select all weather stations within a certain radius and calculate the particular 
weather risk at each station to calculate the burn rate insurance premium.   
 
Mathematical Considerations for Spatial Weather Risk 

 
Table 1: Correlation of average of nearby stations of cumulative weather indexes 

Heat 
Base 

Station 

Avg. of 
Surrounding 

Stations Difference Correlation 
CDD Index (85° F): 68.41 71.51 -4.5% 0.8849 
Heat Risk Event 
(Payout): $22.37 $27.31 -22.1% 0.7751 
      
Rainfall     
Cumulative Rainfall 
(in.): 10.65 10.36 2.6% 0.7457 
Drought Risk Event 
(Payout): $20.95 $22.61 -7.9% 0.6897 

 
 
For illustration, some summary statistics are presented in Table 1.  Listed are the 

aggregate temperature and rainfall observations for Ithaca, NY for June 1st – August 31st 
along with the average observation for all stations within a proscribed radius (100 miles 
for temperatures and 67 miles for rainfall.)  The overall averages are similar, but when 
we examine the yearly variation as measured by the average correlation between the base 
station (Ithaca) and every other station, we find that heat is highly correlated but rainfall 

                                                 
1 Weather Wizard is available at: http://www.weatherwizard.us 



less so.  A familiar pattern is that when we introduce risk events (defined later), the 
variability increases, not only in the averages but also in the correlation.  The information 
presented here is also for relatively common events over long date ranges; presumably 
these numbers would weaken if a more specific time frame or risk event were used.   

The challenge presented is, very simply, to improve the accuracy of the yearly 
correlation.  Although this may seem somewhat abstract, insurance policies have 
profound real-world implications for farmers holding a policy and it is crucial to match 
the years with payments with the actual losses. By taking the payout schedule for all 
stations and adjusting for geographic variables, we can potentially price insurance 
contracts for any given point on the map.  Because of the vast number of stations located 
around the country, our hopeful result is a simple equation in which we can build upon 
this simple methodology and adjust for the differences in distance, altitude, and polar 
coordinates.  What follows is an attempt to provide a universal solution using those 
readily available geographic variables to arrive at a payout for any unknown location. 

 

Defining the Risk Events 
 

Choosing an event that is sufficiently general yet meaningful for all sites is 
difficult, because there is no such thing as generality.  For example, a heat event in 
upstate New York is incomparable to a heat event in a warmer climate because 
temperatures in upstate New York infrequently reach above 90° F, but in Norman, OK 
this temperature is reached quite frequently in summer months (Turvey and Norton 
2008).  The sheer variation of climates in America requires us to tailor our heat risk 
events for each station. 

To start, evidence indicates that temperatures above 85° F correlate with crop 
yield losses.  (Schlenker and Roberts 2006) Using this as a benchmark, we accumulate a 
CDD index above 85° F with the mean CDD at the base station serving as the strike value 
or trigger and a sliding payout for values above that.  Payouts are calculated at each 
station for every year data is available.  Figure 1 shows the payout schedule for Ithaca, 
NY, where mean CDD is 68.41. 
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Figure 1: Schedule of payouts for heat risk event 

 
Six weather stations were selected at sites across the country according to quality 

of data and the absence of geographic features within 50 miles that would prevent 
weather stations from being placed, such as bodies of water or international borders.  
Mean CDD for those six stations vary from 68.41 at Ithaca, NY to 720.63 in Davis, CA 
and are listed in Table 2. 

 
Table 2: Mean CDD (85° F) at each location 

Station 
Bridgeport, 

NE  
Bethany, 

MO  
Greenville, 

AL  Davis, CA  Ithaca, NY  
Mosquero, 

NM  
Mean CDD 
(85° F) 442.13 350.74 603.18 720.63 68.41 282.05 

 
For precipitation, the contract is identical for all sites.  We use a drought event of 

less than .1” of precipitation over any 14-day period.  The payoff will occur on a sliding 
scale with $10 accumulating for each hundredth of an inch less than .1”, to a maximum of 
$100 per event if no rainfall was recorded.  Up to three non-overlapping events are 
possible, with an annual maximum liability of $300.  Figure 2 shows the payoff schedule 
due to the observed rainfall in any 14-day period, but yearly payoff amounts range from 
$0 to $300 because of the possibility of multiple events. 
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Figure 2: Schedule of payouts for drought risk event 

 

Defining the geographic area 
 

Weather Wizard is flexible as to the distance of the radius extending from the 
base station, but there are a few requirements that must be considered for a successful 
trial.  A certain number of stations are needed to provide contrast, but there are relatively 
few stations within a short distance (10 miles) of each other.  However, as we increase 
the radius of the circle, the area of the circle increases exponentially.  Barring any 
obstacles like oceans or international borders, the number of stations increases 
exponentially as the radius of the circle increases.  Because we compare each station 
against each other in each year, this also dramatically increases the number of 
comparisons that are made, as given by the following formula: 

yearsnnscomparison *
2

)1(* −
=  

Where n is the number of stations within the selected geographic radius, and years 
is the number of years of data at the base station.  The total number of comparisons is 
subject to missing and incomplete data; many stations have only limited data, and with 
longer time horizons the potential for periods of missing data within years becomes 
greater.   

Table 3 displays the number of stations for each type of weather data within a 
certain number of miles. Using the number of stations as the value of n in the equation 
above as well as the number of years of data at the base station, the number of potential 
comparisons between years is calculated.   

 



Table 3: Number of comparisons in Ithaca, NY for a given number of miles 
    Rainfall     

Miles Stations 
Potential 

Comparisons 
Actual 

Comparisons   
10 2 225 93 41.33% 
15 4 750 223 29.73% 
20 12 5850 801 13.69% 
25 17 11,475 1628 14.19% 
30 25 24,375 3,304 13.55% 
35 35 47,250 6,921 14.65% 
       
   Heat    

Miles Stations 
Potential 

Comparisons 
Actual 

Comparisons   
10 2  225 23 10.22% 
15 2  225 23 10.22% 
20 4 750 105 14.00% 
25 6 1575 220 13.97% 
30 10 4125 525 12.73% 
35 16 10,200 1,366 13.39% 

 
Such factors as length of contract and number of years selected will also affect the 

percentage of available data as presented in 



Table 3.  These percentages are somewhat low because of a relatively long date range.  In 
this case, a 92-day window encompassing June-August was selected, which offers more 
opportunities for data to be missing than a more carefully targeted risk event.  Also, more 
importantly, very few stations have data continuously to 1926 as Ithaca does; most 
stations date to just after World War II, and it’s not uncommon for a station to have as 
little as one or two years of data for the entire 75 year period.  If we selected a shorter 
contract length (say, 15 days instead of 92) fewer stations would be disqualified for 
missing data; likewise, if we only considered years after 1949, the percentage of actual 
comparisons would improve markedly.  This discussion is intended to underscore the fact 
that even though we might define an identical geographic area, there is often a very 
different spatial distribution of data within that area depending on the parameters we 
select. 

Also, perhaps in acknowledgement of the periodic, unpredictable nature of 
rainfall, precipitation observation stations are more densely placed and often contain 
more years of data.  In the case presented here, there are more than twice as many 
precipitation gauges in a given radius than temperature stations, even if the percentage of 
data which is usable is roughly similar.  It is very likely that temperature observations are 
placed more sparsely to reflect that temperatures are considered to be more continuous 
over a geographic area.   

The advantage of this comparison-based model is that it treats all weather stations 
equally and is able to include otherwise useless data.  In this model, the data will be 
compared on a year by year basis, regardless of how many years of data are at a particular 
station.  The weather stations that only have a few years of data help provide contrast for 
spatial distributions of risk even though it is impossible to accurately price a contract for 
that station individually. 

Also of pertinent interest is what these details entail for selecting a radius to 
study.  As the radius increases, the area of study increases exponentially (according to the 
area of a circle – πr2).  The number of stations increases accordingly, which has vast 
ramifications for the number of potential comparisons according to the equation above.  
Since Weather Wizard is hosted on a web platform, there are limitations to the amount of 
data that it can process in a single iteration - selecting a radius requires the user to select a 
value large enough to offer meaningful results that will also fit within technical 
possibilities. For this paper, we are using a radius of 50 miles, which is large enough to 
allow the inclusion of sufficient stations for both heat and precipitation, but small enough 
to run properly on the Weather Wizard website. 
 

The Regression Equation 
 

The goal when formulating this regression equation was to try and predict the 
difference in payouts in any given year between any two locations using simple 
geographic variables.   

 
(P1 – P2) =  ß1 φ  + ß2 (α1 – α2) + ß3 (ω1 – ω2) +  ß4 (λ 1 – λ 2) + ß0 +  ε 
 



Where Px are payouts at station 1 and 2, φ is the distance between the two 
stations, αx is the altitude at each station, ωx is the latitude at each station, and λx is the 
absolute value of the longitude of each station (as longitudes in the western hemisphere 
are traditionally negative.) 

This equation is primarily a difference equation, where we are attempting to 
explain the difference in payouts by the difference in altitude and geographic coordinates.  
At first blush, it seems as if the φ variable, distance, is ill-suited for inclusion because 
distance is strictly positive, and the differences in any part of the equation can easily be 
negative.  However, by imposing a condition of P1 >= P2 we may ensure symmetry 
between the left and right sides of the equation; only if (P1 – P2) is strictly positive will it 
reflect a potential linear relationship with φ.  Furthermore, distance is a trigonometric 
function of the individual latitude and longitude variables but is highly correlated to 
neither. This is because it is a joint function of latitude and longitude, and a degree of 
longitude is not a constant surface measurement but varies according to distance from the 
pole.  It is more useful to think of the latitude/longitude coordinates as reflecting 
directionality, and distance as an adjustment for increasing variability at increased 
distances. 

The equation for distance is given thusly: 
 
φ  =  R * Cos-1(Sin(ω1) * Sin(ω2) + Cos(ω1) * Cos(ω2) * Cos(λ 2 – λ 1)) 
 
Where R is a constant reflecting the radius of the sphere we can use to normalize 

to standard units; the constant for miles is 3963.1. 
What we are left with is a description of how each station compares to each other 

in three-dimensional space, not only in distance (φ ) but with x and y coordinates given 
by the latitude (ωx) and longitude (λ x), and z coordinate given by altitude (αx).  The initial 
hypothesis is that distance (φ) should be positively correlated in both heat and 
precipitation, meaning that as distance increases, so do the differences in premiums.  For 
rainfall, the rest of the geographic variables are indeterminate, given that coordinates 
and/or altitude would seemingly have no effect on the sporadic nature of rainfall.  For 
heat, however, we might expect that altitude and latitude have a negative effect on risk; 
or, in other words, heat risk is decreased by either an increase in elevation or more 
northerly locations. 

 

Regression Results 
 

Table 4: Regression results for heat risk event 

Station 
Bridgeport, 

NE Bethany, MO 
Greenville, 

AL Davis, CA Ithaca, NY 
Mosquero, 

NM 

# of Years 104 75 66 83 74 71 
Mean CDD 442.13 350.74 603.18 720.63 68.41 282.05 

       
Stations within 
50 miles 19 25 21 44 35 16 
N 4300 4417 3052 7255 5953 1831 



        
R² 0.0103 0.0419 0.0010 0.0157 0.0525 0.4921 

Distance 
-.215  

(-2.22)** .118 (1.46) .094 (0.64) .285 (1.99)** .035 (1.32) .394 (1.86)* 

Alt. Diff. 
-.011  

(-2.45)** 
-.138  

(-8.86)** 
-.020  

(-1.03) 
-.020  

(-6.86)** 
-.008  

(-4.67)** 
-.210  

(-23.79)** 

Lat. Diff. .428 (0.13) 
14.897 

(3.03)** 
-7.660  
(-1.42) 

31.278 
(5.28)** 

-15.926  
(-14.41)** 

60.886 
(3.90)** 

Long. Diff. 
-9.286  

(-2.59)** 
15.125 

(3.52)** 
-2.933  
(-0.49) 

18.269 
(4.33)** 7.852 (9.88)** 

84.168 
(9.84)** 

Constant 
52.298 

(11.42)** 
35.226 

(9.48)** 
66.999 

(8.74)** 
80.507 

(11.99)** 
20.724 

(15.17)** 
69.946 

(8.27)** 
 



 
Table 5: Regression results for precipitation risk event 

Station 
Bridgeport, 

NE 
Bethany, 

MO 
Greenville, 

AL Davis, CA Ithaca, NY 
Mosquero, 

NM 

# of Years 104 75 66 83 74 71 

       
Stations within 
50 miles 27 33 41 70 79 35 
N 7515 8693 10895 22393 34846 5770 
        
R² 0.0104 0.0082 0.0131 0.0236 0.0074 0.028 
Distance .074 (2.34)** .177 (4.94)** .0001 (0.00) .049 (8.66)** .127 (8.91)** .216 (5.12)** 

Alt. Diff. 
-.014  

(-7.23)** 
-.027  

(-3.63)** .017 (4.13)** 
-.003  

(-18.51)** 
.009 

(13.36)** .002 (0.86) 

Lat. Diff. .308 (0.25) 1.821 (0.77) 2.345 (1.84)* 
-1.616  

(-6.58)** 
3.090 

(5.26)** 
-16.058  

(-4.73)** 

Long. Diff. 
10.054 

(7.99)** 
10.929 

(6.03)** 
13.975 

(11.21)** 
-1.234  

(-6.74)** -.741 (-1.68)* 9.48 (4.26)** 

Constant 
57.898 

(34.48)** 
54.71 

(31.94)** 
63.995 

(41.25)** 
14.614 

(48.68)** 
32.353 

(43.74)** 
66.293 

(30.71)** 
 

The first thing to notice when looking at these numbers is that with one exception 
the R² values are usually quite near to zero, which is to say that these geographic 
variables provide a very poor fit for predicting differences in payout amounts between 
stations.  In and of itself this is scant evidence for the predictive power of the geographic 
variables on the differences in payouts, but most of the difference is accounted for in the 
constant term.  The coefficients for the geographic variables are quite often significant, 
but unpredictably so.  This may reflect the fact that localized conditions can be expected 
to have effects on the latitude/longitude coefficients, as directionality within different 
locations might reflect different geographic characteristics.   

The two enduring relationships that can be deduced are the effect of altitude on 
heat risk and the effect of distance on precipitation risk.  The signs are consistent and 
significant for all stations except Greenville, AL.  The coefficient for altitude for the heat 
risk regressions is consistently negative and significant, which makes sense – we would 
expect heat risk to decrease as elevation increases. The effect of altitude on rainfall 
payoffs is unclear, as one might expect – rain likely doesn’t consider the altitude of the 
land on which it is falling.   The coefficient attached to distance for rainfall is, with one 
exception, significant and positive, meaning that as distance increases the difference in 
the payoffs does too.  Or in other words, as distance increases, the payoffs become less 
accurate.   We might expect a similar result for heat, as stations further apart produce 
more differentiated results, but it seems that temperatures vary continuously throughout a 
geographic region and the directionality measures are often of more interest. 

These relationships may have interesting implications for future efforts to model 
spatial variability.  In effect, the relationship between rainfall and distance is shown to be 
strong, which indicates that spatial prediction models could have some success.  Heat 



risk, however, is shown to be heavily influenced by altitude and spatial prediction models 
would do well to account for that effect above and beyond the effect of distance. 

These results may seem to be providing little beyond the very obvious – heat risk 
decreases with altitude because of lower temperatures at higher elevations; likewise, 
rainfall correlations decrease with distance because of the unpredictable, periodic nature 
of rainfall.  However, there is little evidence for other seemingly obvious implications, 
like the relationship between latitude and heat risk – we would expect that heat risk 
would decrease with increased latitudes, but in fact only one of the six coefficients is 
negative and significant.  In fact, it is somewhat remarkable how little we can say about 
the relationship between simple geographic variables and differences in downside risk.  It 
has been assumed by many researchers that it would be possible to provide a statistical 
solution to the problem of geographic basis risk; these results belie the fact that weather 
risk may indeed defeat the ability of statistical methods to predict. 

Improving the Fit 
 

There are a few transformations that we can do to improve the fit, which is not a 
purely academic exercise if our goal is to make out-of-sample predictions for unknown 
locations.  The easiest way to improve the fit of the regression is to include dummy 
variables for the weather stations and years.   

The justification for including dummy variables is thus: it is easy to postulate that 
each station is to some degree idiosyncratic; these dummy variables are intended to catch 
the effects of nearby lakes or valleys, or anything else that can’t be captured by the 
simple geographic variables that we use.  The dummy variables for each year isolate the 
amount of variability in any given year because the dependent variable is strictly positive.  
This will account for any years in which payout differences were more pronounced.  Both 
of these dummy variable types may also be included in a pricing algorithm as well, 
although if we are pricing a premium for an unknown location for which there have never 
been weather observations, we cannot use the variables which account for station 
idiosyncrasies. 

In addition, the geographic variables don’t explain the difference in payouts very 
well, but there is some evidence that the problem is one of scale.  More specifically, this 
difference equation has no way of distinguishing between payouts which are $0/$200 and 
$1000/$1200.  In both cases the dependent variable will be $200, even though they are 
quite different on a percentage basis. 

There are several potential ways to modify the equation to account for this.  One 
method is to move the P2 variable to the right side of the equation, where it may be fit 
with a regression coefficient.  This approach improves the fit markedly but necessitates 
difficult interpretations of the equation.  First, if the coefficient attached to the P2 variable 
is significantly different than one, it is difficult to interpret what that means, because P1 
and P2 are identical in nature and the matter of which one is written first depends only on 
the (P1 >= P2) condition.  Second, if we’re trying to make an out of sample prediction, we 
can’t assume that the P1 variable will be larger than P2, which may bias the results. 

 



Table 6: Results of transformations in the regression equation 
Original Incl. Station Incl. Year Incl. Station & Year P1 as Y All Effects

Rainfall 
DF 34841 34690 34768 34617 34840 34616
R² 0.0074 0.1788 0.1056 0.2412 0.2644 0.4435
Distance .127 (8.91)** .104 (7.05)** .122 (9.02)** .102 (7.13)** .133 (9.37)** .088 (6.22)**
Alt. Diff. .009 (13.36)** -.027 (-4.35)** .007 (10.50)** -.0243 (-3.98)** .009 (12.87)** -.028 (-4.56)**
Lat. Diff. 3.090 (5.26)** 8.155 (0.81) 3.049 (5.37)** 10.343 (1.06) 2.999 (5.12)** 17.119 (1.76)*
Long. Diff. -.741 (-1.68)* 12.824 (1.73)* -.534 (-1.26) 19.805 (2.75)** -.607 (-1.38) 17.933 (2.50)**
Constant 32.353 (43.74)** 23.671 (8.27)** 25.335 (2.50)** 10.075 (1.03) 30.445 (40.35)** 10.707 (1.11)
P2 -- -- -- -- 1.413 (110.38)** .419 (26.27)**

Heat
DF 5948 5889 5875 5816 5947 5815
R² 0.0525 0.2294 0.5404 0.6134 0.6771 0.8720
Distance .035 (1.32) .064 (2.21)** .008 (0.46) .086 (4.11)** .037 (1.53) .070 (3.69)**
Alt. Diff. -.008 (-4.67)** -.028 (-3.35)** -.008 (-6.60)** .022 (3.59)** -.0122 (-8.14)** .035 (6.14)**
Lat. Diff. -15.926 (-14.41)** -7.074 (-0.65) -11.570 (-14.69)** 35.801 (4.55)** -17.146 (-16.81)** 35.523 (4.97)**
Long. Diff. 7.852 (9.88)** -24.862 (-2.52)** 5.436 (9.62)** 5.653 (0.78) 7.853 (10.71)** 12.452 (1.88)*
Constant 20.724 (15.17)** 22.048 (5.34)** 8.27 (1.51) -28.215 (-4.82)** 13.025 (10.16)** -37.615 (-7.06)**
P2 -- -- -- -- 1.124 (110.29)** .717 (57.20)**  
 
 
 The results of these transformations for all stations and years of data are presented 
in Table 6.  The R2 calculations are highlighted and improve considerably, but remember  
standard caveats on the effects of R2 values when adding dozens, if not hundreds, of 
variables to the equation.  Of course, the greatest effect on the R2 value comes from the 
addition of a single variable (and the manipulation of the Y variable) that accompanies 
moving P2 to the right side of the equation. 

Remarkably, the P2 variable is highly statistically significant in all places that it is 
introduced.  The two variables that we identified as causal in the regression equation 
maintain their significance and sign through all modifications even as all other variables 
experience widely ranging results. 

Out of Sample Predictions 
 

Table 7: Out-of-sample predictions 

Heat Prediction
Obs. 

Average Difference Correlation
Geo. Variables Only $25.27 $64.39 -154.8% -0.4422 
With Station & Year 
Effects $32.20 $64.39 -100.0% 0.4623 
And moving P2 to 
right side $67.30 $64.39 4.3% 0.8956 
       
Rainfall      
Geo. Variables Only $37.34 $64.17 -71.8% 0.4294 
With Station & Year 
Effects $51.33 $64.17 -25.0% 0.5217 
And moving P2 to 
right side $66.81 $64.17 4.0% 0.6201 



This leads us to Table 7, which shows the results of out-of-sample predictions of 
payoffs in Ithaca, NY for heat and rainfall using several different types of effects for 
illustration – first with the simple geographic variables, then including the station and 
year dummy variables, and finally when moving P2 to the right side of the equation. Also 
of note is that this prediction was only performed when Ithaca was the station listed first 
(i.e. the P1 variable), the consequence of which is that the payouts are significantly higher 
($64.39 and $64.17) than the long-term averages as presented in Table 1 ($20.76 and 
$20.87).  Whether this has implications for the end results is an important consideration. 

What this shows is that the predictions with geographic variables are not very 
accurate, but improve with the addition of the station and year effects.  The strongest 
effect is obtained by moving P2 to the right side of the equations, which may make sense 
– the weather observations are the strongest piece of information we have about 
prevailing conditions in any given year and by taking the difference we often censor that 
important piece of information.  In any case, it must be said that the geographic variables 
seem to be useful only in the optimization of an already robust distribution – in any 
successful prediction presented herein, the “heavy lifting” is done by the station, year, 
and P2 effects.  And in the case of rainfall, this entire exercise has resulted in payouts that 
are in fact slightly worse than the very simplistic approach taken in Table 1 of simply 
averaging payouts for each station within 67 miles of Ithaca. 
 
The Next Step 
 
 While it may be difficult to propose an index insurance contract based on an 
average of every weather station within 67 miles, even if it is most accurate, the concept 
of doing so reveals a larger principle. Woodard and Garcia (2008b) write that “portfolio” 
of derivatives from established derivatives markets in large cities could be a solution to 
the problem of spatial basis risk.  While the authors of this paper would not advocate for 
using information from stations that are very far away, it may be possible to extend this 
concept by offering an index insurance contract which is a configured portfolio of local 
stations.  This is because our results strongly indicate that the strongest predictor of a 
payout at any given station is in fact whether or not there is a payout in a nearby station.  
Based on the discussion presented in this paper, the portfolio would use weather stations 
as close as possible and explicitly include elevation and distance into the portfolio 
selection criteria, if not the other variables which may or may not be significant in any 
geographic location. 
 The next step for this research would be to construct a function which could serve 
to provide guidelines for a “portfolio” of weather index insurance priced to the nearby 
stations.  The amount of index insurance purchased for the portfolio from nearby stations 
would depend on the similarity of the pertinent geographic characteristics.  For example, 
in a topologically diverse area such as the Finger Lakes region, this could mean a station 
that is quite removed in distance but similar in altitude.  Particularly in regard to the 
relationship between heat and elevation, the closest station in a geographically diverse 
region may not always be the most similar. 
 A portfolio of index insurance chosen according to pertinent spatial variables 
would offer several advantages.  First, since the pricing would be done at a known 
location according to historical burn rates, the price calculated would be straightforward 



and done in a manner consistent with previous applications of index insurance.  This 
would likely lead to easier adoption of the technology, as insurance companies would not 
need to build additional safeguards for risk into the model than those that already exist in 
established methodology.  Second, by pricing only at known locations, the concepts 
behind this method a more transparent to the layperson than a mathematically rigorous 
treatment designed to predict risk at any given point.  It is too true that as the complexity 
of mathematical instruments increases, the basis risk inherent in the equation decreases, 
as does comprehension.  The portfolio approach is a simple extension of existing 
methodology and has the advantage of being easier to comprehend and price.   

Lastly, this approach would likely take the form of a set of suggestions based on 
the best available evidence that would be easily modified to include additional 
information.  In other words, this approach would allow the farmer to individually tailor 
their index insurance portfolio according to their perceived risk. The farmer is likely to 
have the most detailed local knowledge as to prevailing weather patterns and will even 
have information as to the effects of other geographic characteristics that do not show up 
in the regression equation, such as mountains, bodies of water, or even the general pattern 
by which rain falls on their fields.  The ultimate source of information as to the 
minimization of basis risk is with the farmer and the portfolio approach would allow the 
flexibility for farmers to hedge their weather risk in the manner they best see fit. 

The one major disadvantage of this method that must be mentioned is that it 
would benefit from a rich series of historical data in the area surrounding the point of 
interest.  Unfortunately, this may preclude a portfolio method from being used in 
developing countries, which are areas of the world that could benefit greatly from the 
adoption of this technology.  Further research should be done to test the applicability of 
this so-called “portfolio” approach to pricing weather risk. 

Conclusion 
 

This paper tackles the problem of spatial basis risk for weather index insurance, 
which is a basic and fundamental problem in the widespread adoption of the technology, 
and shows that there is no easy solution at present.  Even when putting aside 
considerations of the weather/yield relationship and the predictive power of the selected 
index on crop yields, geographic basis risk will likely remain a persistent problem due to 
complex interactions of weather, space, and geography.  Our search for a general 
principle for pricing risk at unknown locations has all but failed, which is of interest in 
and of itself. 

The two enduring relationships presented in this research are the relationship of 
altitude on heat risk and distance on precipitation risk, which may have interesting 
implications for future efforts at spatial prediction models.  Rainfall is proven to be 
heavily influenced by distance measures, which holds promise for future efforts to model 
spatial variability, but future efforts to model heat risk should explicitly account for 
altitude as the predominant variable of interest. 

Our results also strongly show that the best predictor of a payout at any given 
location is the presence of a payout at another location, which entails that a portfolio 
method for buying index insurance may have advantages above and beyond a strategy 
which predicts risk at unknown locations.  These advantages include transparent pricing 



and ease of understanding, as well as a simple way for the consumer to configure the 
product for their own needs. 

Although our search for a general principle was unsuccessful, the concepts 
produced in this research provide insight into the possibilities and challenges present in 
pricing spatial basis risk.  It is expected that future researchers will be able to carry on the 
material presented in this paper by building upon the relationships that we did find to be 
evident in the struggle to overcome a persisting problem in the adoption of weather index 
insurance. 
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